
Teaching Array Verification Using Snap!
DAMIAN VERHEIJEN, University of Twente, The Netherlands

Working with arrays is a vital skill for any programmer. Functions that

use arrays can be complex, making it hard to verify the correctness of

the function. Program verification can be used to check the functionality

of a program more thoroughly. Providing novice programmers with the

knowledge to use verification techniques could greatly improve the quality

of their programs. Snap! is a visual programming language tailored to high

school students. In this research project, we propose a library for arrays as

an extension of VerifiedSnap!. VerifiedSnap! is an extension made for Snap!

that allows it to support both runtime and static verification techniques.

Exercises to go along with the designed tool were designed to help teach

high school students how to use arrays and verification techniques. A small

empirical study was carried out to determine how useful the designed tool

and exercises would be in teaching students. The results of the study are

inconclusive, but suggestions to improve this in the future are described.

Additional Key Words and Phrases: verification, arrays, education

1 INTRODUCTION
In the world of programming, arrays are considered one of the fun-

damental principles. Most programming languages support arrays,

and they are used in most programming projects. Arrays have var-

ied uses, therefore a good base understanding of how to use arrays

safely is vital.

Mistakes when working with arrays can be hard to spot at times.

Using verification techniques, programmers can confirm that a pro-

gram is working as expected, and find bugs in complex programs [2].

Since arrays are so widely used, it is important that programmers

are able to verify programs in which arrays have been used. For this

reason, it is important to focus on teaching programmers specifically

about the use of program verification in regard to arrays.

One approach for program verification is calledDesign-by-Contract

(DbC) [8]. For DbC a program is split in multiple subroutines or

functions. Each subroutine is assigned specifications that are used

to define the requirements the subroutine needs to fulfil. In DbC

specifications are defined using annotations for the given function

or subroutine.

There are four ways to describe annotations that specify the

behaviour a function needs to follow when applying DbC. There

are pre-conditions, which are used to describe rules that need to be

true before the function is executed. Then there are post-conditions

that define what effect the function had, this can be both based on

the output of the function or the current state of the program.

In addition to these, you can also have annotations within the

function. Loop invariants are annotations connected with a loop

within a function. At no point during the execution of the loop can

these annotations be violated.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

There are also asserts. An assert statement can be put at any

location within the function. Asserts can be used to check at a point

within a function a certain rule is still followed. Big functions some-

times have multiple subroutines, so at certain points a programmer

can put asserts to check the state of the program at key points dur-

ing the execution. Checking the state like this can help assure that

the program is still on the right track and make it easier to find out

where a program went wrong.

When the program has been written, it needs to be confirmed

that the program indeed satisfy the assigned specifications. This can

be done in two ways. One of these ways is by verifying the program

during runtime. Hereby, test cases defined by the programmer are

used. If, at any point during these tests, one of the specifications are

violated, the test fails, indicating that the program has a mistake.

Note, that runtime verification does not verify all possible states in

the program. Meaning, that if the right test cases are not used, bugs

can still be missed.

Alternatively, deductive verification techniques can be used, also

referred to as static verification. With deductive verification, logic is

used to deduce all possible states the program can reach. Through

this, a situation can be discovered where a state can be reached that

does not satisfy all defined specifications, if such a state exists.

The existence of program verification techniques will not help

programmers in spotting errors if they do not know how to use

them. Teaching this to novice programmers could greatly enhance

the quality of the programs they develop.

Huisman et al. have created VerifiedSnap! to help teach high

school student about DbC [6]. They created an extension on the

already existing program Snap!, which is a visual programming

language [4]. VerifiedSnap! adds support for runtime verification

and static verification into Snap!.

Snap! does not support arrays and therefore VerifiedSnap! can

not be used to teach about array verification. Through this paper, a

library supporting arrays was designed as an extension of Verified-

Snap! building upon the previous work of Huisman et al. In order

to do so, a data type for arrays was added to Snap! and support for

the verification of this in VerifiedSnap!.

In combination with the tool, a lesson plan was designed to teach

students how to think about the bounds of their arrays and how

to verify their implementation using DbC. This is done through

exercises that make use of the extended version of VerifiedSnap!.

The exercises should highlight problem statements surrounding

arrays students can be faced with, so they can learn how to catch

and handle these.

From the creation of this lesson plan, the following research

questions were formulated:

RQ1: What are the main mistakes students need to be aware of

when dealing with arrays.

RQ2: How effective can an array library as an extension of Veri-

fiedSnap! be used to teach students about correctly programming

arrays.

1



TScIT 37, July 8, 2022, Enschede, The Netherlands Damian Verheijen

Fig. 1. Example of a BYOB block in VerifiedSnap!

2 BACKGROUND
Snap! is a reimplementation of Scratch, both are visual programming

languages. Scratch was created as a tool to get children enthusiastic

about programming by making it visually appealing [10]. Scratch

is mainly targeted at children below high school age, though it is

used by other age groups as well.

Scratch, and therefore Snap!, uses draggable blocks as function

definitions. Programmers can drag these blocks around to the main

program screen, snapping them together to create a program. Drag-

ging around blocks instead of writing code might be more familiar

to computer users, making it less daunting to be introduced to

programming.

Snap! was developed with the aim to be used to teach program-

ming to high school or college students. Snap! is similar to Scratch,

but tailored to be more suitable for high school students. Snap! has

additional features over Scratch, which makes it more useful to

teach programming fundamentals [3].

Blocks in Snap! can have one of three types. A command block

carries out an action, the shape of a command block has a missing

rectangle at the top . and this is added at the bottom

allowing multiple command blocks to be slotted together, allowing

a sequence of command blocks to create a program.

There are also reporter blocks, a reporter block calculates a value

and returns it. A reporter block can be recognized by the rounded

shape .

Lastly, there are predicate blocks, these blocks return a boolean.

Predicate blocks are the only blocks that can be dragged into dia-

mond shaped slots, therefore telling the users that at specific places

they can only use predicate blocks. These blocks are very useful

for verification too, they are used by the user to describe the anno-

tations. To indicate that predicate blocks are associated with the

diamond shaped slots, they are also diamond shaped .

Snap! has a Build Your Own Block (BYOB) feature not found in

Scratch, this allows the user to define their own blocks. Similar to

how functions are created in conventional programming languages.

The BYOB function of Snap! is used by VerifiedSnap! to implement

room for the specifications of the function. Figure 1 shows the

implementation of a BYOB block.

When defining BYOB blocks in VerifiedSnap! there are two added

sections that are not in Snap!. The requires section offers the pro-

grammer a slot to add boolean logic to define the pre-conditions.

While the ensures section offers the same, but for post-conditions. A

slot for loop invariants was also added. All these slots can be seen

in Figure 1.

Studies have been carried out on the effectiveness of using Scratch

in teaching programming skill to programming novices. The study

conducted by Quahbi et al. found that a teaching method using

Scratch helps in making students more motivated in learning pro-

gramming [9]. The study conducted by Hijon et al. concluded that

incorporating Scratch in a CS1 course, beginner level, significantly

improves the understanding and knowledge of the students [5].

A study on the grasp programmers had of using the bounds of

arrays found that many of the CS2 programmers, lacked the skills

to come up with clever ways to work with loop bounds and solve

problems related to working with bounds [1].

2.1 Current State of VerifiedSnap!
As mentioned in the introduction, VerifiedSnap! supports both run-

time and static verification. Custom blocks can be used to define

functions within the program. When a user defines a custom block,

they can also add pre- and post-conditions, which are used to verify

the program. Each time the custom block is run, VerifiedSnap! auto-

matically checks whether the specified conditions are not violated.

If any condition is violated, the program will throw an error to

indicate to the user which one was violated.

For static verification, VerifiedSnap! uses Boogie. Boogie is an

intermediate verification language intended to be used to represent

programs in object orientated languages, enabling it to be checked

by the software verifier also called Boogie [7].

Static verification is not done within VerifiedSnap!.Instead, a

custom block can be exported as a Boogie program. The generated

code can be run in Boogie to verify the program.

3 DESIGN DECISIONS
In this section, the most important design choices for the Verified-

Snap! extension will be highlighted and the reasoning behind the

choices explained.

3.1 Array features
While working on this extension, it was realized that there are actu-

ally multiple understandings of what an array is. Different program-

ming languages have different implementations of arrays, which

makes it hard to pick one correct definition.

When choosing the features for the array block in Snap! it has

been considered how relevant each feature was for the students. For

each option, it was considered whether being acquainted with it

would give the students more of an advantage in the future when

working with different programming languages. In the sections

2



Teaching Array Verification Using Snap! TScIT 37, July 8, 2022, Enschede, The Netherlands

below, some of these features have been highlighted and the choice

for each feature that was implemented explained.

Index bounds. For lists in Snap! it is not checked whether a given

index is out of bounds. This means that when an element is queried

at an index that does not exist, no error will be thrown. Instead,

VerifiedSnap! generates an object that acts like a neutral identity

element that has no influence in most operations.

This means that further operations will not fail but instead pro-

duce wrong data, meaning that index out of bounds errors with lists

are not always clear in more complex code. When teaching about

bounds, it would be easier to have explicit errors related to bounds

to avoid confusing the high school students.

It should be noted that in most programming languages the

bounds of an array are checked, an error will be thrown making

the user aware when an index out of bounds happens. However, a

notable exception to this can be found in C, where no error is given

and instead the value of a wrong memory address is returned, more

similar to what is the behaviour of lists in VerifiedSnap!.

Considering the above information, the decision was made to

also have our implementation of arrays in VerifiedSnap! check for

this.

Type support. Lists in VerifiedSnap! allow for multiple different

types to be put in a single list. Arrays generally only allow for a

single type. In the implementation of arrays, it was decided to follow

this convention.

For arrays in Snap!, upon declaration and when updating an ele-

ment, it is checked whether all elements of the array are of the same

type, when this is not the case an error will be shown. Indicating

the determined type of the array, based on the first element in the

array, and which wrongly typed element was found in the array.

Counting from zero. One of the conventions in programming is

to start counting at 0. This is something that can be confusing for

novice programmers since in most other situations one would start

counting at 1. Lists in Snap! start counting at 1, it can be said that

this is better. There are many new concepts taught to students,

delaying the introduction of 0 based indexing can make it slightly

less daunting to learn about indexing to begin with. t

However, when students initially learn about indexing starting

with 1, they will have to unlearn this when they move to other

programming languages. Confusing them once more and potentially

inviting them to make thought errors since they learned to think

about array bounds using the 1 indexing. Instead, allowing students

to become familiar with counting to 0 early on might be more

beneficial down the line, despite it being more confusing initially.

Therefore, the decision was made to have arrays in VerifiedSnap!

start with index 0.

Static size. Depending on the programming language, the size

of an array can be determined on initialization (a static size), or it

can be determined dynamically. Working with static sized arrays is

more tricky, it requires thinking about the size an array needs to be

beforehand.

Because of this, it was decided to have the size of an array be set

on initialization. It forces students to be more aware of the bounds

Fig. 2. Error message shown when an index out of the range of the array is
accessed.

Fig. 3. The colours assigned to some of the block types

of their array, and it will still teach them how to reason about arrays

even if down the line they are dynamically sized.

3.2 Error messages
VerifiedSnap! will be used to teach students basic skills on working

with arrays and the verification of programs using them. When

learning, it is natural to make mistakes. Receiving proper feedback

on their work can make it easier for students to figure out where

they went wrong and correct their understandings.

One way to help students in correcting their mistakes is giving

clear error messages if their code does not work. If the error message

is confusing, it might scare students and prevent them from figuring

out what went wrong and what caused the error.

When writing the error messages thrown by arrays, an attempt

was made to keep the language within the message simple and as

descriptive as possible. And so giving users information they can

both understand and use to fix their program.

Figure 2 shows an example of an Index out of bounds error, the

message tells the user which index was tried to be accessed and

the size of the array, giving a hint on what the range of the index

should be. The name of the error is also explicitly mentioned, so the

students can learn to recognize the error in the future.

3.3 Block colour
The main selling point of Snap! is that it is a visual language, al-

lowing the users to drag around blocks that act as functions to the

right spot in order to make programs. In Snap! each block has been

assigned a colour. The colour of the block indicates the type of the

block. A small overview of types and their colour mapping can be

found in figure 3.

The design of the new array blocks needs to be chosen such that

it fits in seamlessly within the program. Within Snap! the colour for

variables is a light orange, as seen in figure 3. Within Snap! lists can

be found in the same location as variables, lists and the function

associated with lists have been given a slightly darker orange than

the variables.

3



TScIT 37, July 8, 2022, Enschede, The Netherlands Damian Verheijen

Fig. 4. The colour for lists next to the chosen colour for arrays.

Since arrays are similar to lists in Snap! it was decided to give the

array blocks a somewhat similar colour to lists to express that they

are similar yet different. As can be seen in figure 4 the chosen colour

for array blocks is red. It was deemed similar enough that it fits in

with the other colours, while being clearly different to indicate that

they are of a different type.

3.4 Array functions
Despite the above-mentioned differences between lists and arrays,

they are also similar in many ways. This means that arrays and lists

have an overlap between some of their default block functions. For

example, the map block, which applies a given operator to each

element of a list, would work exactly the same for an array. At

the same time, while there is an overlap between functions, not all

default blocks for list can work with arrays.

For example, since the size of an array is static, it is not possible

to add a new element to an array so the function block that adds an

element to a list can not work for arrays.

The similarity and difference between list and array makes it

difficult to determine the best way to add support to arrays through

default function blocks.

It is possible to only edit the compatible list blocks to also work

with arrays. However, if it is not clear that only some block work of

arrays and some do not, the students might make assumptions that

they can use all blocks for arrays in the same way as they can use

them for lists and then be surprised that it does not work.

A way to avoid this issue is to make different blocks for arrays,

making it clear that they are different blocks. This would allow

students to better understand that blocks of a certain type only

work for that type. However, since lists and arrays have an overlap

in base functions, it can be a bit counterintuitive that the same

function block has two obviously separated implementations.

As explained above, both options to deal with this issue have

advantages and downsides, there is no clear better option. So since

it was simpler to change existing blocks than adding new ones and

because we wanted to keep the block list minimal, it was decided to

change the existing blocks in the prototype.

4 EXERCISES
For designing the exercises, it was exploredwhat sort ofmistakes can

occur when working with arrays. Virtually all mistakes that could

be found were mistakes made when working with arrays seemed

to be related to index out of error. In particular, students seem to

struggle with Off-By-One errors. Off-by-One errors occur when

a programmer makes a mistake with the bounds of an array and

therefore misses one element of the array or tries out one element

too many [11].

Because of this, it was decided to focus on understanding array

bounds through the exercises. In order to decide which exercise

would be used for the lesson plan at the end, multiple example

programs were made and considered.

For an example program to be chosen for an exercise, it was

considered how relevant and useful it was to teaching the basics of

arrays and verification of the functions using arrays.

For the first exercise, fig 1, it was decided to have a simple program

printing the elements of the inputted array. This exercise is meant

as an introductory exercise showing off the difference between lists

and arrays and showing the students an example of how to iterate

over an array.

For the following exercise, it was chosen to use an example

program that calculates the average of an array to introduce pre-

conditions. Calculating the average can only be done over numbers,

so introducing a post-condition for checking that the given array

is indeed a number array can be more intuitive for the students,

allowing them to understand better what the use of post-conditions

are.

Further example programs were chosen because they calculated

something easily verifiable later on, allowing the introduction of

post-conditionswithout too complicated logic. One of these program

gets the smallest number of an array and the other returns the sum

of the inputted array.

Each exercise repeats the learning goal of the previous exercise to

continue exposing the students to what they learned before allowing

them to get more experience with the new concepts and therefore

hopefully gaining a better understanding.

5 BOOGIE
As mentioned in previous sections, there are two type of verifi-

cation methods. Run time verification and static verification. Run

time verification happens in Snap! itself. The conditions for runtime

verification are based on the existing predicate blocks, so imple-

menting working arrays in Snap! is enough on its own to work.

Static verification is done through Boogie, in order to allow verifica-

tion through Boogie the VerifiedSnap! code need to be parsed into

Boogie code. Through the previous work from Huisman et al. there

is an existing framework for this [6]. In order to enable parsing, it

needs to be defined for each block how it should be translated into

the Boogie language. Since there was no time to define the Boogie

representation for all default blocks in VerifiedSnap! some example

programs had to be changed to only have blocks that already had an

implementation. For students to learn about the static verification,

it is not necessary that the Boogie parsing allows for all possible

type of arrays. Therefore, it has been decided to only support arrays

of numbers and booleans.

6 STUDY
In the study, we assess the usefulness of the extension as a tool to

teach about arrays and the effectiveness of the exercises. This has

been done through a small empirical study with a small group of

people who have little to no programming experience using the

4



Teaching Array Verification Using Snap! TScIT 37, July 8, 2022, Enschede, The Netherlands

prototype that was designed. We use the outcome of this study to

reflect on the design decisions we made for the tool and the didactic

effectiveness of the exercises we prepared for the students. Ideally,

the study would have been done using high school students who

already have had basic lessons in programming and verification

through VerifiedSnap!, so they would be familiar with basic pro-

gramming concepts, verification and VerifiedSnap! itself. However,

a study like that was out of the scope for this project, and instead it

was decided to carry out the study with people that have no prior

programming experience, to try and simulate a teaching experience.

When the study was initially planned, the choice was between

choosing participants with no prior programming experience, or

students from computer science who already have understood these

concept and have an affinity to programming. It was decided to

choose the participants with no experience, as they were closer to

the desired target group of high school students.

For the study, 7 participants were approached, each of them had

no prior programming experience. Each of the participants was

given the VerifiedSnap! environment alongside with the exercises.

Then the participants were instructed to try and solve the exercises,

they were encouraged to ask questions if they got stuck.

Instead of having multiple participants work on the assignment

simultaneously, it was decided to have separate sessions for each

participant. This mainly was to compensate for the lack of program-

ming experience, giving them ample room to get concepts explained

to them if they got stuck. In addition to this, it also allowed the

understanding of the exercises and concepts to be observed as the

participant worked on the exercises.

After working on the exercises, the participants were given a

small questionnaire in which they were asked about how well they

thought they understood the topics addressed in the exercises and

whether they thought the exercises were clear.

7 STUDY RESULTS
While performing the study, it became very apparent that the chosen

target group of people with no or very little programming expe-

rience was not suitable for this research. The gap in the required

programming knowledge and the actual understanding of the par-

ticipants was too big to reconcile.

Most participants struggled to understand the basic foundations

of programming, things like variables and functions were completely

foreign to them. Many of the participants did not understand the use

of the introductory exercise, not understanding why the elements

were printing or why you would want this to begin with.

Since the participants did not understand the basics of program-

ming, the study was not very productive for evaluating the quality

of the lesson plan. Since the participants did not grasp the basics, it

was virtually impossible for them to work on the exercises related

to verification.

As a result of this, none of the participants managed to finish all

the exercises, with most of them giving up after the second exercise,

after already getting many hints.

While working on the exercises, most of the participants failed to

understand what the use of lists were and how the indexing can be

used. When, after this, they were introduced to arrays, the difference

between a starting index of 0 instead of 1 seemed to increase the

confusion.

Most of the participants seemed to not understand what the

iterator variable was for, or why it would need to increase within

loops. They did not seem to understand that it would keep track

of the location where the program currently was in the array and

when faced with an off-by-one error they often changed it so that

the iterator would no longer increase since they saw a -1 thinking

that was how it needed to be fixed.

8 CONCLUSION
Throughout this research, we attempted to create a lesson plan to

teach high school students about program verification when work-

ing with arrays by creating an extension of the visual programming

language Snap!. The program can be found on https://gitlab.utwente.nl/fmt-

student-projects/snapverifiedwitharrays. In this repository the exer-

cises can also be found inside the subfolder lessons and then arrays.
For this, we explored common made mistakes when working

with arrays. Most mistakes can be boiled down to mistakes when

working with the bounds of the array. Using this conclusion, we

designed some exercises to highlight the use of arrays and the

bounds, alongside exercises to highlight the difference between lists

and the implemented arrays.

To evaluate the effectiveness of the extension alongside with the

exercises, which together created the lesson plan, a studywas carried

out giving participants with no prior programming experience the

exercises to solve.

During the study, it was discovered that the choice of target group

for the study was wrong. The lack of knowledge was too much for

the study to be effective. Therefore, due to the experienced issue

with the study, there is no definitive answer on how effective the

designed lesson plan is.

In hindsight, it would have been better to choose computer science

students who already understand the concepts taught in the lesson

plan. Computer science students could simulate how the exercises

would be received by high school students. However, it was not

feasible to carry out an alternative study within the allotted time.

9 LIMITATIONS OF VERIFIEDSNAP
VerifiedSnap! in its current state, it is not finished. This section goes

over the main features lacking in VerifiedSnap.

Foremost, VerifiedSnap! currently is unable to convert all code

blocks into Boogie code. While the program does tell the user that

it does not support the blocks when they are trying to compile their

BYOB into Boogie. Adding Boogie support to the remaining blocks

would allow creating more versatile programs and verify them using

Boogie. https://www.overleaf.com/project/62a9f4e0d818f34a4d830fba

Additionally, it is not possible to run Boogie code through Verified-

Snap!, instead the generated code will be downloaded to the user

computer where they can run it. Unfortunately, the process of in-

stalling Boogie is complicated, and it needs to be run from the

command line. Since the main goal for VerifiedSnap! is to be in-

tuitive and user-friendly, having an extended program that is the

opposite seems counterproductive. In the future, a way needs to be

5



TScIT 37, July 8, 2022, Enschede, The Netherlands Damian Verheijen

found to integrate Boogie more into VerifiedSnap! or at least make

it more friendly.

Finally, when using verification techniques for checking arrays,

there can be situations where the type of an array matters. Currently,

in VerifiedSnap! there is no way to query the type of an array. It is

possible to get the type by checking the type of the first element,

since all elements in an array are the same, but it could be more

intuitive to have a dedicated block for this.

10 FUTURE WORK
Building upon this paper, there are still questions that need to be

answered and studies that can be carried out.

First of all, the study thatwas carried out did not help in answering

the question since it was the wrong target group. Therefore, the

same study should be carried out with a more suitable target group,

potentially Computer Science students.

Additionally, as mentioned before, there was no room within

the scope of this project for a large scaled study with high school

students on the effectiveness of the designed program. Carrying out

such a study in the future would be necessary, though it might be

beneficial to first address the limitations mentioned in the previous

section.

One of the questions that was encountered while developing the

extensions for arrays was whether to use separate functions for

array or to adapt the existing functions to work with arrays. It could

be desirable to explore in future research which of these options

will help students learn to understand how to use arrays better and

how they differ from lists.

What was noticed in the study was that it seemed to be confusing

people that lists and arrays started with different indexes. It might

be better to keep this consistent between lists and arrays in Veri-

fiedSnap!. Starting with indices from 1 might be more intuitive for

novice programmers, but starting with 0 is the norm in program-

ming. It could be explored which of these option it is better to start

with when introducing novice programmers to the notion of lists

or arrays.

REFERENCES
[1] David Ginat. “On novice loop boundaries and range conceptions”. In: Computer

Science Education 14.3 (2004). issn: 17445175. doi: 10.1080/0899340042000302709.
[2] Stijn de Gouw et al. “OpenJDK’s Java.utils.Collection.sort() Is Broken: The good,

the bad and the worst case”. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 9206. 2015. doi: 10.1007/978-3-319-21690-4_16.

[3] Brian Harvey and Mönig Jens. SNAP! Reference Manual. 2020. url: https://snap.
berkeley.edu/snap/help/SnapManual.pdf.

[4] Brian Harvey et al. “SNAP! (Build Your Own Blocks) (Abstract Only)”. In:

Proceeding of the 44th ACM Technical Symposium on Computer Science Education.
SIGCSE ’13. New York, NY, USA: Association for Computing Machinery, 2013,

p. 759. isbn: 9781450318686. doi: 10.1145/2445196.2445507. url: https://doi.org/

10.1145/2445196.2445507.

[5] Raquel Hijón-Neira et al. “A guided scratch visual execution environment to

introduce programming concepts to cs1 students”. In: Information (Switzerland)
12.9 (2021). issn: 20782489. doi: 10.3390/info12090378.

[6] Marieke Huisman and Raúl E Monti. “Teaching Design by Contract using Snap!”

In: 2021 Third International Workshop on Software Engineering Education for the
Next Generation (SEENG). 2021, pp. 1–5. doi: 10.1109/SEENG53126.2021.00007.
url: https://ieeexplore.ieee.org/document/9474640.

[7] Rustan Leino. “This is boogie 2”. In: Manuscript KRML June (2008).

[8] Bertrand Meyer. “Applying “Design by Contract””. In: Computer 25.10 (1992).
issn: 00189162. doi: 10.1109/2.161279.

[9] Ibrahim Ouahbi et al. “Learning Basic Programming Concepts by Creating

Games with Scratch Programming Environment”. In: Procedia - Social and
Behavioral Sciences 191 (2015). issn: 18770428. doi: 10.1016/j.sbspro.2015.04.224.

[10] Mitchel Resnick et al. “Scratch: Programming for all”. In: Communications of
the ACM 52.11 (2009). issn: 00010782. doi: 10.1145/1592761.1592779.

[11] Liam Rigby, Paul Denny, and Andrew Luxton-Reilly. “A miss is as good as a

mile: Off-by-one errors and arrays in an introductory programming course”. In:

ACE 2020 - Proceedings of the 22nd Australasian Computing Education Conference,
Held in conjunction with Australasian Computer Science Week. 2020. doi: 10.1145/
3373165.3373169.

6

https://doi.org/10.1080/0899340042000302709
https://doi.org/10.1007/978-3-319-21690-4_16
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.3390/info12090378
https://doi.org/10.1109/SEENG53126.2021.00007
https://ieeexplore.ieee.org/document/9474640
https://doi.org/10.1109/2.161279
https://doi.org/10.1016/j.sbspro.2015.04.224
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3373165.3373169
https://doi.org/10.1145/3373165.3373169

	Abstract
	1 Introduction
	2 Background
	2.1 Current State of VerifiedSnap!

	3 Design decisions
	3.1 Array features
	3.2 Error messages
	3.3 Block colour
	3.4 Array functions

	4 Exercises
	5 Boogie
	6 Study
	7 Study results
	8 Conclusion
	9 Limitations of VerifiedSnap
	10 Future Work

