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Large scale machine learning is on the rise due to the various advancements
in technology. Multiple industries are pushing to become smarter as fast as
possible. This paper summarizes the use of large scale machine learning in
industries as well as the factors affecting energy consumption of machine
learning models. Furthermore, simulations are performed to estimate the
amount of energy consumption of training a model. This is extended to
include different types of algorithms used in specific large-scale machine
learning applications.
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1 INTRODUCTION

The manufacturing industries have had multiple revolutions leading
up to now, where the fourth industrial revolution (also known as
Industry 4.0 or Smart Industry) is on the rise [15]. This revolution
brings forth the transformation of organizations and companies to
a digital embodiment which alters how they operate and function
[30]. This is mainly achieved through the application of the Internet
of Things (IoT) and Cyber-physical Systems (CPS) to link the real
and digital structures which allows said organizations to improve
their performance if utilized correctly [23].

Through the use of sensors in industries, IoT is enhanced by
gathering more and more data. Data can then be processed to provide
useful information by Machine Learning (ML) models, which is a sub
division of Artificial Intelligence (AI). One of ML models’ current
weaknesses is the huge time costs when used on large scale data
[38]. An estimate was made that around 1 trillion sensors will be
used by humanity in 2025 [25]. This will contribute heavily to Big
Data, which leads to the necessity of large-scale Machine Learning .

Energy consumption has not been considered much in machine
learning research but rather accuracy of the models was the main
and most important factor [7]. There is also a growing pressure to be
more sustainable especially with the international treaty on climate
change that was signed back in 2015 [34]. In the follow up meeting
of the treaty in 2021, it was estimated that , with extra implementa-
tions to reduce greenhouse gas emissions, the total emissions of the
involved parties would be 11.3 percent lower than their goal in 2030
[35]. This provides further reason for machine learning research to
take a look at energy consumption as an important factor which
[12] did. The energy usage of specific machine learning models was
measured and compared with other models while also using two
different types of datasets to compare even further.

This leads to the research question:
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How much energy would large scale machine learning consume
in industry applications?

With the help of these sub-questions this research question can
be answered:

(1) What is massive scale machine learning in industries and
what are its applications?

(2) What are the factors that affect energy consumption of ma-
chine learning processes?

This paper aims to be a hub for data scientists in the industry
aiming to be more aware of the different large scale machine learn-
ing processes as well as the factors that contribute to their energy
consumption.

2 METHODOLOGY

This research will be conducted mainly of qualitative analysis by
means of a systematic literature review that loosely follows the
guidelines of Kitchenham [14] and Wohlin [40]. This method of
literature review helps identify, evaluate and interpret the state of
the art research relevant to the research questions to be answered in
this paper [14]. In Wohlin’s paper, it is suggested to identify a set of
papers that start as a starting point which are then used to snowball
[40]. Therefore, known item search will be carried out first to find
the most relevant papers which would then be used to snowball to
reduce the number of irrelevant studies by using papers that have
been cited in said relevant papers.

All database searches are done through Scopus and Web of Sci-
ence for sub question 1 as they contains a wide variety of articles
and journals. For the first subquestion, the search terms used are
"TITLE-ABS-KEY ( ( "large scale machine learning" OR "massive
scale machine learning” OR "large-scale machine learning" ) AND
("industry 4.0" OR "smart industr*" OR "industr*" ) )" as well as "(
"large scale machine learning" OR "massive scale machine learning"
OR "large-scale machine learning" ) AND ( "industry 4.0" OR "smart
industr*" OR "industr*")" for Scopus and Web of Science respectively.
Take a look at Table 1 to have a better overview of the search results.
This search came up with 24 and 26 results respectively for Scopus
and Web of Science. Before reading any of them all duplicates were
removed which amounted to a total of 15 duplicates. Irrelevant pa-
pers were also removed if they talked only about the optimization
of specific algorithms or did not mention which machine learning
models were used in an application. From these results, one key doc-
ument called "Large-scale machine learning systems in real-world
industrial settings: A review of challenges and solutions" [20] was
used to further snowball and find relevant applications in industries.
This snowball resulted in 18 additional relevant papers.

For sub question 2, it was difficult to conduct a systematic liter-
ature review as not a lot of papers can be easily found regarding
through Scopus and Web of Science with the search terms "Green



TScIT 37, July 8, 2022, Enschede, The Netherlands Ziad Elleithy
Table 1. Search Terms Results
Question Search Term Results  Duplicates Irrelevant Snowball
( "large scale machine learning” OR "massive scale
. machine learning" OR "large-scale machine learn-
Sub Question 1 & & 50 15 23 18

OR "industr*" ) )

AI" or ("factor™ AND "energy consumption” and ("machine learn-
ing" or "AI")) . Only one paper was found through Scopus, that
contributes to the question, called "Green AI" [29]. Therefore a non
systematic literature review was conducted that resulted in a total
of 5 papers that discuss energy consumption in machine learning.
Through the help of the supervisor [12, 28] were provided at the
start of the thesis and [2] was found through Google Scholar. The
final paper was found by searching through the Vrije Universiteit
Amsterdam’s Database of the Software and Sustainability research
group [36] which is what this paper builds upon for the model and
simulations .

Furthermore, a small quantitative analysis will be established
to help answer the main research question by estimating roughly,
through other literature work, how much energy would be con-
sumed by specific applications. To achieve this modelling and simu-
lations will be used for which Insight Maker will be utilized. Insight
Maker is an open-source modelling web-based tool that focuses on
accessibility and the inclusion of various features [10].

3 RESULTS

In this section each sub question will first be answered individually
after which the main question will be asnwered.

3.1 Sub Question 1

The structure behind machine learning implementations is that their
logic is generated by continuously learning from data instead of
the logic being explicitly programmed in traditional software [20].
Moreover what differs large scale machine learning from regular
machine learning is the large amount of data, having billions of
instances features or classes [5]. In the following paragraphs, the
different applications of large scale machine learning will be listed
along with the used/preferred machine learning model (see Table 2
for an overview).

Recommendation systems are a popular application of large scale
machine learning used in online applications such as Alibaba, the
Facebook Marketplace, and Youtube [6, 8, 11, 37, 45]. The most
common machine learning model used in this application is Neural
Networks along with either Graph Embedding [8, 37, 45] or Logistic
Regression [6]. There is one study that stands out in this field which
uses Topic Modelling and Random Forest models to generate user
profiles based on what applications they have installed on their
phone [11]. The study concludes that the machine learning models
used can notably increase correct prediction of a user’s interest and
gender.

In the advertisement industry, large scale machine learning is
utilized for the prediction of click through rates on advertisements or

ing" ) AND ( "industry 4.0" OR "smart industr*"

for displaying the right type of advertisements for each user [1, 3, 26].
Linear and Logistic Regression models are used to predict click
through rates by using hundreds of terabytes of data to maximize
revenue of advertising companies [1, 3]. Perlich et al. also describes
how Linear and Logistic Regression models can be used for targeted
display advertising. [26]

Fraud, anomaly and intrusion detection systems are another im-
portant application of large scale machine learning [17, 31, 39, 43, 46,
47]. For fraud detection, multiple models are viable such as Random
Forest, Logistic Regression and Decision Tree models [39, 43, 46].
However, in the case of fraud detection in mobile device payment,
Gradient Boosting Decision Trees were proven to be most accurate
[46]. In terms of anomaly detection, Support Vector Machine models
are used more frequently to analyse sensor data [47]. With regards
to online intrusion detection, Support Vector Machines, Logistic
Regression, and Random Forest models have been utilized to detect
intruders in Facebook and Skype accounts [17, 31]. In Skype’s case,
it was reported that the Random Forest model performed 10 percent
better than other models [17].

Text Mining is another use case of large scale machine learning
where all studies used Topic Modelling to categorize text in social
media applications such as Twitter [4, 41, 42]

In the telecommunication field two applications were identified
through the literature review. The first being dynamic real-time
network monitoring using Neural Networks which ensures high
reliability and availability of telecommunication networks [22]. The
other application is identifying influential subscribers through social
network analysis by using Neural Networks, Logistic Regression
and Decision Tree models [21].

Random Forest models are employed within the medical industry
to help predict which advanced visualization algorithm should be
applied in specific scenarios to save time [9].

In an industrial production setting for metal casting, machine
learning was used for the creation of quality prediction models [16].
In this process multiple models were used such as Neural Networks,
Random Forest, and Support Vector Machines.

Visible Light Positioning, which is a term for all executions of
optical wireless indoor positioning systems, can use different types
of machine learning models for location based services such as Neu-
ral Networks, K-Nearest Neighbours, and Support Vector Machines
[27].

Traffic Sign Recognition systems in vehicles use Density-Based
Clustering models to construct auto-pilot maps that are used by Al
in autonomous vehicles for auto-piloting features [44]

The rubber industry uses Neural Networks to predict vulcaniza-
tion data of rubber gum for the production of tires[19].
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Table 2. ML Application Mapped to ML Models used

ML Model
NN | SVM | KNN | LR | TM | DT | RF | GE | DBC

Warehousing (Location Based Services) [27]

Text Mining [4, 41, 42]

Traffic Sign Recognition [44]

Rubber Manufacturing [19]

Near-Wall Modeling for Turbulence [32]

==
1
'
'
1
'
'
|
]

Job Title and Query Classification [13, 18]

Flight Arrival Time Prediction [24]

Application Autonomous Pallet Trucks [33]

Recommendation Systems [6, 8, 11, 37, 45]

==
1
1
=
1
=l
=
'

Click through rate & Ad targeting [1, 3, 26]

Fraud/Anomaly/Intrusion Detection [17, 31, 39, 43, 46, 47]

Telecommunication [21, 22]

= =
'
'

Advanced Medical Imaging & Scanning [9]

Quality Prediction and Operation Control [16]

| | | 1]

=<
=<
'
'
'

Table 3. Table 2 Legend

ML Model Full Name

NN Neural Network

SVM Support Vector Machine
KNN K-Nearest Neighbours

LR Linear/Logistic Regression
K-M K Means Clustering

™ Topic Model

RF Random Forest

GE Graph Embedding

DT Decision Tree

DBC Density Based Clustering

Neural Networks are also used for wall functions which are used
for near wall modelling for turbulence of air crafts [32].

Another aviation industry usage of machine learning is regarding
real-time flight arrival time predictions [24]. For this, regression
models as well as Decision Trees are utilized.

Classification of different subjects is another job for machine
learning. Support Vector Machines and K-Nearest Neighbours mod-
els are used in the HR industry to classify and categorize job titles
[13]. While only Support Vector Machines models are used in ve-
hicles to automate the classification of queries from drivers using
unconstrained natural language [18].

Last but not least, autonomous pallet trucks make use of Neural
Networks to navigate the work floor for pallet movement operations
[33].

3.2 Sub Question 2

There are multiple ways to measure efficiency of machine learning,
one of them being electricity usage which is the main focus of
this research question [29]. An important factor which is identified
here is hardware, as electricity consumption of the same models
on the different hardware specifications can differ [28, 29]. This

is reinforced by the papers that talk about energy consumption
in Al so far, by having hardware as a controlled variable in their
experiments [2, 12, 36].

While having hardware as a constant factor, one study explores 3
different factors that could affect energy consumption of model train-
ing [36]. The factors explored are algorithm used, number of data
points and number of data features. The algorithms experimented
on were Support Vector Machines, Decision Trees, K-Nearest Neigh-
bours, Random Forest, Adaptive Boost, and Bagging Classifier. Based
on the study’s results, it was apparent that the algorithms are a factor
as different algorithms consume different amounts of energy with
the biggest difference being the K-Nearest Neighbours algorithm
consuming 99.49% less energy than the Random Forest algorithm.
Keeping in mind that the p-values are minimal, the number of data
points positively correlate with the amount of energy consumed
within every algorithm where the Support Vector Machines algo-
rithm being the strongest correlated with a coefficient of 0.95 and
K-Nearest Neighbours is the weakest but still strongly correlated
with a coefficient of 0.80. Those results were further analyzed and it
was found that reducing data points can lead to a reduction of energy
consumption, up to a minimum of 61.72% for K-Nearest Neighbours
and a maximum of 92.16% for Random Forest. Finally, the effect of
number of features on energy consumption was investigated. The
results show that the number of features are either moderately or
strongly correlated to energy consumed for all algorithms except for
K-Nearest Neighbours with a correlation coefficient of 0.04. How-
ever, the coefficient being so low could be highly up to chance due
to the p-value being quite high (0.54).

Further studies confirm that algorithms affect the amount of
energy consumed [12]. Two different Decision Tree algorithms were
compared on two different data sets. The results show that the Very
Fast Decision Tree (VFDT) algorithm consumes 200% less energy
compared to the Hoeffding Adaptive Tree (HAT) algorithm on a
RandomTree data set with only a cost of 0.35% accuracy. However,
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on a RandomRBF data set, VFDT consumes 11.8% less energy at the
cost of 16% lower accuracy.

Another study explores the effects of hyperparameters on energy
consumption on different data sets only using a multilayer percep-
tron classifier which is a form of Neural Networks [2]. The hyper
parameters explored were hidden layer size, activation function,
solver, alpha, and max iterations. The study could not deduce any
clear patterns except for hidden layer size having a positive correla-
tion with energy consumption and "tanh" (an activation function
parameter) is often consuming the most energy.

Table 4. Factors affecting energy consumption and their maximum energy
reduction

Source
Factors [2] [12] [28] [29] [36] | Reduction
Hardware Y Y Y Y Y N/A
Algorithm - Y - - Y 99.49%
Number of Datapoints | - - - - Y 92.16%
Number of Features - - - - Y 75.8%
Hyperparameters Y - - - N/A

Alist of factors affecting energy consumption in machine learning
(also shown in Table 4) consists of the following, based on the
previous studies:

(1) Hardware

(2) Algorithm

(3) Number of data points

(4) Number of features

(5) Hyperparameters

Features

Datapaints
Increase

Increase , "
No. of Datapaints Features No. of
Datapoints Coefficient Coefficient Features
Ea ':f;, - ———eeee B
C‘D_HSEI ption K
Hyperparameters

Fig. 1. Model of factors affecting energy consumption of machine learning

Based on these factors a model was created with Insight Maker to
visualize said factors which can be see in Figure 1.
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Fig. 2. Adapted Model for Simulation

Table 5. Calculated Model Parameters [36]

Algorithm Datapoints Coefficient Features Coefficient

SVM 1.24 % 1074 9.51 %107
KNN 3.75 % 1076 2.06 % 1076
DT 3.25 % 1072 2.19 % 1075
RF 5.01% 1074 2.96 % 1074

3.3 Main Research Question

The model is adapted (Figure 2) into a smaller version as not all
factors (hardware and hyperparameters) have been investigated
enough, in current literature, to have a clear correlation with energy
consumption that can be simulated. The "Energy Consumption”
flow (blue arrow) has been divided into 2 different flows called "Dat-
apoints Energy Consumption” and "Features Energy Consumption”
For compactness’ sake, they were renamed to "DEC" and "FEC"
respectively for the model.

For the simulations, the coefficient for datapoints and features
are calculated with the help of data gathered from the experiments
of Verdecchia et al. [36]. The data was extracted from their github
posted in the paper. One thing to keep in mind is that these exper-
iments were run on a constant hardware setup that is a 2.4GHz
Quad-Core i5 processor with 16 GB 2133 MHz LPDDR3 RAM. The
coefficients were calculated by taking the average amount of en-
ergy it took to train the algorithm per set amount of data points
or features, then calculating the slope of the best fitting line using
Microsoft Excel’s LINEST function. The results are in Table 5.

Based on the literature reviewed in sub question 1, only 5 papers
included the number of datapoints used as well as the number of
features [6, 11, 13, 43, 46]. However one of them uses algorithms
that do not have sufficient data to simulate at the moment [6]. .The
simulations will extrapolate how much energy would be consumed
in large scale machine learning cases that have explicitly state how
much datapoints and features they used,while also only consider-
ing the four different algorithms that are SVM, KNN, RF, and DT.
In the following paragraphs each papers’ parameters (number of
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Table 6. Estimated Energy Consumption of Machine Learning Applications

Algorithm Application Number of Datapoints Number of Features Total Energy Source
SVM Job Title Classification 2,000,000 280 248.03] [13]
KNN Job Title Classification 2,000,000 280 7.50 ] [13]

DT Bankcard Enrollment Fraud Detection 100,000 614 3.26] [46]
RF Bankcard Enrollment Fraud Detection 100,000 614 50.28 J [46]
RF Mobile Recommendation System 904 1000 0.75] [11]
RF Automatic Cash-Out Fraud Detection 131,000,000 300 65631.09 ] [43]

datapoints and number of features) will be simulated and displayed.
The results of the simulations can be seen in Table 6.

For SVM and KNN both simulations (see Table 7 & 8) are relat-
ing to Job Title Classification with a training data set of 2 million
datapoints and 280 non zero features [13]. With a SVM algorithm, 2
million datapoints would consume around 248 joules and 280 fea-
tures would add around 0.0266 joules. Meanwhile a KNN algorithm
would consume only 7.50 joules for 2 million datapoints and about
0.000618 joules for 280 features.

For the case of Fraud detection within bankcard enrollment, only
100 thousand training data points with 614 features utilizing both an
RF and DT algorithm [46]. For the case of a DT algorithm simulation
(see Table 9), 100 thousand data points would consume 3.25 joules
while 614 features would consume 0.0134 joules. The RF simulation
(see Table 10 for this scenario would consume 50.1 joules for 100
thousand data points and 0.182 joules for 614 features.

For a mobile recommendation system based on users’ interests
using an RF algorithm, 904 datapoints were used along with 1000
features [11]. 904 data points would consume 0.453 joules and 1000
features would consume 0.296 joules.

Finally, the largest scale application of machine learning found
in the literature review uses an RF algorithm for the automatic
detection of cash-out fraud with a training set of 131 million data
points and 300 features [43]. The amount of energy consumed for
131 million data points and 300 features, would be 65.631 kilojoules
and 0.0888 joules respectively.

4 DISCUSSION & LIMITATIONS

This study conducted 2 literature reviews of which 1 was non-
systematic regarding the factors of energy consumption of machine
learning processes. This can include biases of which are not quite
clear. Therefore a systematic literature review should be conducted
to remove any biases introduced due to that. Furthermore, the sys-
tematic literature review could also still be improved upon by mak-
ing a wider search. Some applications were not found in the search,
such as machine learning in logistics operations, as a result.

The model used for simulations is not as accurate as possible due
to the omission of some factors for energy consumption. This can
be further improved upon by conducting experiments regarding
these factors by finding out and estimating the correlation between
the factors and energy consumption. Moreover, a model regarding
energy consumption while predicting (using the model) should be
investigated. An interesting relation to research is whether the way
a model is trained also affects its energy usage while predicting.

Based on the results of Verdecchia et al. [36], it becomes apparent
that the number of datapoints and features definitely affect energy
consumption of training models. Data scientists in corporations
mostly have a specific data set collected by the business itself in the
factory for example. It is important to consider the increase of the
model’s accuracy with increasing datapoints or features compar-
ative with the energy consumption. Although the storage of said
data is another point of energy consumption, using all the data is
not necessary. Based on the simulations of the RF algorithm, con-
sumption of energy can start from around 0.75 J although that is
quite a small dataset in terms of number of datapoints, however the
number of features used is the most out of any application identified
in the literature review. Moreover, energy used can scale as high
as 65.63 kJ when utilizing 131 million data points and 300 features.
However, at some point the increase in number of datapoints or
features increases the accuracy by a negligible amount for a huge
increase in energy consumption depending on the algorithm [36].

5 FUTURE WORK

Conducting research outside of lab settings is crucial as those con-
tinuous applications of machine learning and data mining would
have the most implications on energy consumption. It would be
helpful to consider a case study for large scale applications such as
Google’s Analytics services for example. Multiple questions come
to mind when investigating such a thing: How often does the model
get retrained? How big is the dataset? How many features does each
datapoint contain? How much energy would inference (through
the trained model) consume? Performing such a case study will
help bring us closer to understanding and breaking down energy
consumption in real-life scenarios.
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SIMULATION TABLE RESULTS

This section shows the results of the extrapolation simulations done
through Insight Maker.

A1

Datapoints (#) DEC (J) Features (#) FEC(J)  Total Energy (J)

SVM Simulation

Table 7. SVM Simulation Results

A.4 RF Simulations

TSclT 37, July 8, 2022, Enschede, The Netherlands

Table 10. RF Simulation Results

Datapoints (#) DEC (J) Features (#) FEC (J) Total Energy (J)
904 0.452904 1000 0.296 0.748904
100,000 50.1 614 0.181744 2.9376144
131,000,000 65,631 300 0.0888 65,631.0888

1,600,000 198.4 240 0.022824 198.422824
1,700,000 210.8 255 0.0242505 210.824251
1,800,000 223.2 270 0.025677 223.225677
1,900,000 235.6 285 0.0271035 235.627104
2,000,000 248 300 0.02853 248.02853

A.2  KNN Simulation

Datapoints (#) DEC (J) Features (#) FEC(J)  Total Energy (J)

Table 8. KNN Simulation Results

1,600,000 6 240 0.0004944 6.0004944
1,700,000 6.375 255 0.0005253 6.3755253
1,800,000 6.75 270 0.0005562 6.7505562
1,900,000 7.124 285 0.0005871 7.1255871
2,000,000 7.5 300 0.000618 7.500618

A.3 DT Simulation

Datapoints (#) DEC (J) Features (#) FEC(J)  Total Energy (J)

Table 9. DT Simulation Results

80,000 2.6 512 0.0112128 2.6112128
85,000 2.7625 544 0.0119136 2.7744136
90,000 2.925 576 0.0126144 2.9376144
95,000 3.0875 608 0.0133152 73.1008152

100,000 3.25 640 0.014016 3.264016
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