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For resource-constrained devices, the traditional cryptographic schemes
are often too heavy. Therefore, signcryption was invented. Signcryption
performs signing and encryption at the same time and is theoretically more
efficient. However, no research has been done comparing the performance of
signcryption schemes with traditional cryptographic schemes in a practical
manner. This research will implement multiple signcryption and traditional
cryptographic schemes on a resource-constrained device and measure com-
putational costs, power draw & communication overhead. These measure-
ments will be analysed and used to create a comprehensive comparison
of real-world performance. The research will add to the scientific body of
knowledge of comparisons between signcryption and traditional crypto-
graphic schemes.
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1 INTRODUCTION
Over the past decades, billions of devices have been connected
with each other via the Internet [15]. While a portion of these
devices are still traditional computers, servers, phones, etc, there
has been a rise in the number of everyday objects connected to
the Internet via embedded sensors [15]. These types of devices
connected via the Internet are collectively known as the Internet of
Things (IoT). IoT devices are most commonly used to gather large
amounts of data. This data is generally transmitted over a network
to an application server or cloud, which handles the processing
and makes the data available for the end-user [16]. Since these IoT
devices use low-power embedded sensors and processors, they are
resource-constrained.

The ability to provide security for data during transit has been said
to be a key factor for increased adoption of IoT devices [10]. To
transmit data securely, cryptographic schemes are used for data
confidentiality, while digital signature algorithms are used for data
integrity [14]. However, since IoT devices are resource-constrained
regarding their storage, memory usage, and processing capabili-
ties, they cannot use the traditional heavy-weighted cryptographic
schemes to securely transmit data [6]. Because of this, there is a
need for a lightweight cryptographic scheme designed for resource-
constrained devices [4].

A proposed solution is signcryption. The traditional workflow to
transmit data is to first sign the data, then encrypt it and finally
transmit it. This is known as sign-then-encrypt. With signcryption,
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data is signed and encrypted at the same time. As proposed by
Zheng in [19], this could lead to 58% less computational costs and
85% less overhead with communication.

Although research has been done into the theoretical performance
gains of signcryption schemes, the studying of the real-world impact
on performance has not been done. Next to this, no research has
been performed looking into how these computational performance
gains transform into power-draw gains.

This problem statement leads to this research question:

How do signcryption and sign-then-encrypt schemes differ
in performance when compared in a practical scenario?

This research question can be answered with these sub-questions:

(1) RQ1:Howdo signcryption and sign-then-encrypt schemes
compare when computational cost is measured practi-
cally?

(2) RQ2:Howdo signcryption and sign-then-encrypt schemes
compare when power draw is measured practically?

(3) RQ3:Howdo signcryption and sign-then-encrypt schemes
comparewhen communication overhead ismeasured prac-
tically?

The approach to this research paper involves several steps. First,
related work will be researched. Then, the background behind sign-
cryption is explained. After this, we will implement signcryption
and sign-then-encrypt schemes and practically compare their per-
formance. This paper will measure the computational performance,
power draw and communication overhead of signcryption and sign-
then-encrypt schemes on a resource-constrained device. These mea-
surements will be analysed and compared with a comparative anal-
ysis based on literature. Finally, a conclusion will be made together
with a recommendation for choosing between signcryption and
sign-then-encrypt schemes.

The paper is organised as follows: Section 2 discusses work related
to this paper. Section 3 explains signcryption in detail and selects
several schemes to which signcryption will be compared. Section
4 explains the research methodology, measurement environment
and measurement tools. Section 5 shows the results of the research.
Section 6 contains an analysis of the results. Section 7 concludes
this paper and recommends a choice of cryptographic scheme.

2 RELATED WORK
Signcryption as a concept was first introduced in 1997 by Zheng in
[19]. The motivation for his research was the fact that while secure
message delivery is a significant aim of communication security
research, no alternatives to sign-then-encrypt had been created
since the start of public-key cryptography. Zheng’s signcryption
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scheme promised a 50% reduction in computational costs and an
85% reduction in communication overhead.

The work by Elshobaky et al. [5] from 2014 implements the Schnorr
Signcryption and the RSA Encrypt-Sign-Encrypt schemes. Next to
this, they compare the computational costs of both schemes in a
practical manner, by measuring the time it takes to securely transmit
a message over LTE using the respective cryptographic schemes.
Lastly, they analyse the impact of parallelisation techniques on the
computational costs of both schemes.

In their 2017 paper [12], Singh and Patro compare multiple sign-
cryption schemes. The signcryption schemes are compared on both
their respective security attributes and theoretical computational
costs. Additionally, they propose a generic approach for designing
lightweight signcryption schemes.

Rezaeibagha et al. in their work [11] propose a signcryption scheme
specifically designed for privacy preservation in IoT wireless sen-
sor networks by using deniable authentication and homomorphic
encryption. Additionally, they compared their scheme with other
schemes based on deniable authentication of security attributes and
performance. The schemes were implemented on a computer and
their performance was tested practically.

In [8], Kumar et al. propose a lightweight signcryption scheme
specifically for perception layer devices in IoT. The proposed scheme
uses a lightweight hashing function. The research validates the se-
curity of the proposed scheme and analyses possible attacks against
it. Moreover, the performance in terms of communication over-
head, computational costs and energy consumption are analysed
and compared to existing cryptographic schemes. The analyses were
performed practically, using a network of smartphones as clients,
laptops as servers and a gateway to connect them.

Lastly, in [13] a hybrid lightweight signcryption scheme for IoT is
proposed. The scheme uses both asymmetric and symmetric crypto-
graphic techniques in combination with an ultra-lightweight block
cipher. The security of the proposed scheme is analysed and proven.
Additionally, the performance is compared with two different sign-
cryption schemes by implementing them and measuring their com-
putational costs in practice.

3 BACKGROUND
In order to reason about the performance of signcryption vs sign-
then-encrypt schemes, signcryption must first be explained in detail.
First, the underlying mathematical problems behind signcryption
are explained. Then, two versions of signcryption schemes proposed
by Zheng in [19] and [20] are explained in detail. Lastly, a number
of sign-then-encrypt schemes to compare signcryption against are
chosen.

3.1 Underlying mathematical problems
The signcryption schemes explained below rely upon certain math-
ematical problems for their security. These mathematical problems
are all easy to compute in one direction, but near impossible to
compute inversely without knowing a certain fact. Therefore, these
mathematical problems are often called ’trapdoor functions’. For

the signcryption schemes chosen in this paper, these mathematical
problems are used:

(1) Discrete logarithm problem (DLP)

(2) Elliptic curve cryptography (ECC)

3.1.1 Discrete logarithm problem. The discrete logarithm problem
is based on the fact that it is very hard to find the exponent 𝑥 used
in the following equation:

𝑎 = 𝑔𝑥 mod 𝑛 (1)

Where 𝑛 is a large prime number and 𝑔 is a prime root of 𝑛. Due
to 𝑔 being a prime root of 𝑛, calculating 𝑎 = 𝑔𝑥 mod 𝑛 with any
exponent 𝑥 results in all solutions 𝑎 comprising the elements of a
cyclic group 𝐺 of order 𝑛 − 1. This means that solution 𝑎 is equally
likely to be any integer between 1 and 𝑛 − 1.

To calculate 𝑥 , the following equation is used:

𝑥 = log𝑔 𝑎 mod 𝑛 (2)

However, this is difficult due to the fact that for any given 𝑎, multiple
exponents 𝑥 could have resulted in 𝑎. Moreover, the amount of
guesses needed to find 𝑥 grows exponentially with the size of 𝑛.
Therefore, when a sufficiently large𝑛 is chosen, it is computationally
impossible to find 𝑥 in reasonable time. However, computing 𝑎 with
𝑥 is computationally easy, making it a good trapdoor function.

3.1.2 Elliptic curve cryptography. Elliptic curve cryptography was
independently invented in 1985 by Miller [9] and Koblitz [7]. An
elliptic curve is defined as a plane curve of a finite field, in which
all points satisfy the following equation:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (3)

A property of elliptic curves is that when adding two points, or
doubling a single point, this results in a new point. Due to the
properties of elliptic curves, the position of this new point seemingly
has no relation to the positions of the points used to create it.

This means that when a single point 𝑃 on the curve is multiplied
with an integer 𝑛 (addition to itself 𝑛 times), the result is a point 𝑄
with no identifiable relation with 𝑃 . Herein lies the mathematical
problem. With a known 𝑃 and 𝑄 , it is near impossible to determine
𝑛 if 𝑛 is sufficiently large. The advantage of ECC is that the size of
𝑛 can be relatively much smaller than the key sizes needed for the
DLP while offering an equally hard problem [17].

3.2 Signcryption
3.2.1 Traditional signcryption. Signcryption is a combination of
public-key cryptography with digital signatures in a single logical
step. Signcryption is based on the discrete logarithm problem (DLP).
Signcryption in general has three different basic functions: Key
Generation (KG), Signcryption (SC) and Unsigncryption (USC). The
KG function is responsible for providing the appropriate keys to
the user. SC is responsible for signing and encrypting the message,
while USC does the opposite.
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We will use the SDSS1-based signcryption scheme from [19]. 𝑥𝑎
and 𝑦𝑎 will refer to Alice the sender’s key pair, while 𝑥𝑏 and 𝑦𝑏 will
refer to Bob the receiver’s key pair. Both key pairs come from the
KG function. Encryption and decryption are done using a private
key cipher, such as DES in CBC mode [19]. Encryption with a key
is denoted as 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑘𝑒𝑦) and decryption is denoted as
𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑘𝑒𝑦)

Key generation

First, choose (𝑝, 𝑞, 𝑔) so that they define a multiplicative subgroup
of Z𝑝 .

(𝑝, 𝑞, 𝑔) = Z𝑝 (4)
𝑝, 𝑞 must be large primes, with q being of factor 𝑝 − 1 and 1 < 𝑔 <

𝑝 − 1 with order 𝑞. Using minimal sizes for 𝑝 and 𝑞 of 1024 & 160
bits ensures that the DLP is sufficiently hard enough. (𝑝, 𝑞, 𝑔) must
be public for all users of this signcryption scheme. Then, pick a
random integer 𝑥

𝑥 = [1, ..., 𝑞 − 1] (5)
Lastly, calculate public key 𝑦

𝑦 = 𝑔𝑥 mod 𝑝 (6)

SC by Alice

Pick a random integer 𝑥

𝑥 = [1, ..., 𝑞 − 1] (7)

Calculate 𝑘
𝑘 = 𝑦𝑥

𝑏
mod 𝑝 (8)

This means that
𝑘 = 𝑔𝑥𝑏∗𝑥 mod 𝑝 (9)

𝑘 must then be split into two sub-keys, 𝑘1 and 𝑘2. 𝑘1 is used as the
encryption key and 𝑘2 as the hash key. After this, calculate hash 𝑟

𝑟 = ℎ𝑎𝑠ℎ(𝑚,𝑘2) (10)

Then, calculate 𝑠
𝑠 = 𝑥/(𝑥𝑎 + 𝑟 ) mod 𝑞 (11)

Lastly, calculate ciphertext 𝑐

𝑐 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑚,𝑘1) (12)

Then, (𝑐, 𝑟, 𝑠) is transmitted to Bob by Alice.

USC by Bob

Derive 𝑘
𝑘 = (𝑦𝑎 ∗ 𝑔𝑟 )𝑠∗𝑥𝑏 mod 𝑝 (13)

This follows because
𝑦𝑎 = 𝑔𝑥𝑥𝑎

𝑔𝑥𝑎 ∗ 𝑔𝑟 = 𝑔𝑥𝑎+𝑟

𝑠 = 𝑥/(𝑥𝑎 + 𝑟 ) mod 𝑞
Therefore

(𝑔𝑥𝑎+𝑟 )𝑠∗𝑥𝑏 mod 𝑝 = (𝑔𝑥𝑏 )𝑥 mod 𝑝 = 𝑦𝑥
𝑏
mod 𝑝 = 𝑘 (14)

Then, 𝑘 must be split into 𝑘1 and 𝑘1 in the same fashion as the SC
step. After this, the message𝑚 can be retrieved as follows:

𝑚 = 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐, 𝑘1) (15)

After which,𝑚 can only be considered valid if

ℎ𝑎𝑠ℎ(𝑚,𝑘2) = 𝑟 (16)

3.2.2 ECC Signcryption. In 1998, Zheng proposed two new sign-
cryption schemes based on elliptic curve cryptography (ECC) [20].
The ECC signcryption process is largely the same as the traditional
signcryption process, with the key-generation step being replaced
by the step of determining the elliptic curve parameters. To de-
termine the required parameters, the following steps have to be
taken:

(1) Choose an elliptic curve 𝐶 with the form 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 over
a finite field 𝐺𝐹 (𝑝) where 𝑝 is a large prime at least 160 bits in
size.

(2) Choose 𝑞, a large prime of size |𝑝 |
(3) Choose a random point𝐺 on𝐶 , with𝐺 being of order 𝑞. This is

the base point used in the multiplications needed with ECC.
(4) Choose a one-way hash function ℎ𝑎𝑠ℎ with output size at least

128 bits. This will be used to compute the keys for encryption
& signing.

(5) Choose a keyed one-way hash function 𝐾𝐻 . This will be used
for the signature.

(6) Choose appropriate encryption (𝑒𝑛𝑐𝑟𝑦𝑝𝑡 ) & decryption algo-
rithms (𝑑𝑒𝑐𝑟𝑦𝑝𝑡 ). These can be any private-key cipher.

In this explanation, a sender Alice wants to send a message𝑚 to
Bob. Alice’s key pair consists of private key 𝑣𝑎 and public key 𝑃𝑎 ,
as defined by the key generation procedure.

Key generation

Private key 𝑣𝑎 chosen randomly

𝑣𝑎 = [1, ..., 𝑞 − 1] (17)

Public key 𝑃𝑎
𝑃𝑎 = 𝑣𝑎 ∗𝐺 (18)

Bob’s key pair is (𝑣𝑏 , 𝑃𝑏 ), derived similarly. We assume both parties
have exchanged their public keys. The following steps are based on
the ECSC1 signcryption scheme proposed in [20].

SC by Alice

Choose a random number 𝑣

𝑣 = [1, ..., 𝑞 − 1] (19)

Calculate keys (𝑘1, 𝑘2). 𝑘1 and 𝑘2 are derived by splitting the result
of the following equation.

(𝑘1, 𝑘2) = ℎ𝑎𝑠ℎ(𝑣 ∗ 𝑃𝑏 ) (20)

This links 𝑘1 and 𝑘2 to Bob’s public key. Then, the ciphertext is
calculated

𝑐 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑘1,𝑚) (21)
After which, hash 𝑟 is calculated

𝑟 = 𝐾𝐻 (𝑘2,𝑚) (22)

Then, signature 𝑠 is calculated. This can be used by Bob to derive 𝑘1
and 𝑘2. Finally, Alice sends (𝑐, 𝑟, 𝑠) to Bob.

USC by Bob
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Derive temporary variable 𝑢

𝑢 = 𝑠 ∗ 𝑣𝑏 mod 𝑞 (23)

Then, (𝑘1, 𝑘2) is derived like this

(𝑘1, 𝑘2) = ℎ𝑎𝑠ℎ(𝑢𝑃𝑎 + 𝑢𝑟𝐺) (24)

This follows because
𝑢𝑃𝑎 + 𝑢𝑟𝐺 = (25)

𝑢 (𝑃𝑎 + 𝑟𝐺) =

𝑢 (𝑣𝑎𝐺 + 𝑟𝐺) =

𝑢𝐺 (𝑣𝑎 + 𝑟 ) =

𝑠 ∗ 𝑣𝑏 ∗𝐺 (𝑣𝑎 + 𝑟 ) =

𝑠 ∗ 𝑃𝑏 (𝑣𝑎 + 𝑟 ) =

(𝑣/(𝑟 + 𝑣𝑎) ∗ 𝑃𝑏 ∗ (𝑣𝑎 + 𝑟 )) =

𝑣𝑃𝑏

Then,𝑚 can be calculated

𝑚 = 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑘1, 𝑐) (26)

After which, the validity of𝑚 is tested using this equation

𝐾𝐻 (𝑘2,𝑚) = 𝑟 (27)

3.3 Selected schemes
The traditional schemes chosen to compare with traditional sign-
cryption are:

(1) RSA

(2) ElGamal encryption + DSA signature

(3) ElGamal encryption + Schnorr signature

These schemes were chosen because in Zheng’s original paper [19],
signcryption was compared in a theoretical manner with RSA, ElGa-
mal encryption +DSA and ElGamal encryption + Schnorr. Therefore,
they are good candidates to be compared practically with traditional
signcryption. Moreover, all are well-known cryptographic schemes
with existing implementations.

For the ECC-based schemes to compare with ECC signcryption, the
chosen schemes are:

(1) ECC ElGamal encryption + ECDSA signature

(2) ECC ElGamal encryption + ECC Schnorr + signature

These schemes were chosen because they are the ECC-based coun-
terparts of the selected traditional cryptographic schemes. Therefore,
the performance of ECC and traditional cryptographic schemes can
be compared without having to introduce completely new schemes.
RSA is omitted in this category, as the underlying mathematical
problem of RSA cannot be transformed to work with elliptic curves.

4 TEST ENVIRONMENT

4.1 Measurement tools
The implementation of the chosen schemes will be done using the
charm-crypto library [1] and the Python programming language.
The charm-crypto library is a Python library which internally uses
PBC, OpenSSL and GMP to provide the arithmetic operations and
security parameters used in cryptographic schemes.

The charm-crypto library was chosen because it contains numerous
cryptographic primitives and helper functions which makes the
implementation significantly easier. Moreover, a significant number
of cryptographic schemes have already been implemented and are
included in the library. The charm-crypto library also has included
benchmarking functionality. This benchmarking functionality fea-
tures the possibility to record all cryptographic operations (addition,
subtraction etc) and records the duration of the chosen sequence.
The Python programming language was chosen because it is a very
well-known language which is fully compatible with the charm-
crypto library. The used version of the charm-crypto library is 0.50
and the Python version is 3.7, as that is the latest version which
works with the charm-crypto library.

4.2 Measurement environment
The device upon which the schemes will be implemented is a Rasp-
berry PI 4B 2GB. The Raspberry PI 4B 2GB is a 1.5GHZ 4-core ARM-
based small computer with 2GB of RAM. The Raspberry PI 4B uses
the 04-04-2022 version of 32-bit Raspberry Pi OS. A Raspberry PI
4B was chosen because it provides complete computer functionality
while remaining a relatively resource-constrained device. Moreover,
the charm-crypto library and the Python programming language
are compatible with the ARM architecture of the Raspberry Pi 4B
and the Linux-based Raspberry Pi OS.

4.3 Methodology
Firstly, each selected cryptographic scheme is either manually imple-
mented or uses an existing implementation. Then, for each scheme,
a random 28-byte message is signed + encrypted/signcrypted. Then,
the size of the resulting ciphertext is measured. After this, the ci-
phertext is unencrypted/unsigncrypted and it is verified that the
derived plaintext is correct. This process is repeated for several
iterations to get accurate measurements.

For the traditional cryptographic schemes, the signing algorithms
use 256-bit keys and the encryption/signcryption algorithms use
2048-bit keys. The ECC-based schemes use the 256-bit P-256 curve.
This curve was chosen as it is a very popular NIST-approved curve
and is available in charm-crypto library.

The power draw of the Raspberry PI will be measured by using a
USB power meter, situated between the Raspberry PI and its power
supply. The USB power meter measures voltage, current and power
draw in W and Wh. The computational cost will be measured by
measuring how long a scheme takes to process the message. This
is calculated as the total processing time divided by the number of
iterations. Communication overhead is measured by comparing the
original message size to the size of the ciphertext.
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The code used to benchmark the selected schemes and generate the
results in the following section can be found at https://github.com/
K0enM/ResearchProject. A guide to setting up the charm-crypto li-
brary can be found at https://lrusso96.github.io/blog/cryptography/
2021/03/04/charm-setup.html.

5 RESULTS

5.1 Comparative analysis
Table 1 shows the results of the comparative analysis. The com-
parative analysis consists of comparing the chosen cryptographic
schemes on computational costs, communication overhead and
power draw. This data is retrieved from relevant literature. For
the traditional signcryption and sign-then-encrypt schemes, the
data was retrieved from [19]. For the ECC-based schemes, the data
was retrieved from [20], [2], [18] and [3] for signcryption, ECC
ElGamal encryption, ECDSA and ECC Schnorr respectively.

Computational cost is measured in the number of modular mathe-
matical operations for the traditional schemes, with point multiplica-
tions added for the ECC-based schemes. Communication overhead
is represented as an equation, where the variables are the relevant
parameters of the cryptographic scheme. No power draw data could
be found in existing literature for the combinations of signature and
encryption schemes and the signcryption schemes chosen.

5.2 Test results
Table 2 contains the collected data for the traditional signcryption
and sign-then-encrypt schemes. Table 3 contains the data for the
ECC-based signcryption and sign-then-encrypt schemes. In these ta-
bles, for each cryptographic scheme, the computational cost, power
total, power average, # of iterations, total running time, and com-
munication overhead is displayed.

Figure 1 shows the computational cost for the traditional schemes,
while figure 2 shows it for the ECC-based schemes. Figures 3 and
4 show the average power draw of the traditional and ECC-based
schemes respectively. Next, figures 5 and 6 show the total power
draw of the traditional and ECC-based schemes. Lastly, figures 7
and 8 visualize the communication overhead.

6 ANALYSIS
It can be seen that both forms of signcryption are faster than the sign-
then-encrypt schemes while simultaneously drawing less power.
This seems to confirm the notion that signcryption is both faster and
more efficient. However, these performance differences do notmatch
up exactly with the theoretical performance gains. For traditional
signcryption, the performance difference with RSA is only 12.7%, but
for the ElGamal-based sign-then-encrypt schemes the differences
are 73% and 83% respectively as can be seen in figure 1. This is
different from the literature, which suggests a 58% difference in
computational costs. ECC-based signcryption also is not as fast
as theoretically proposed, with the differences being 34% and 35%
respectively, seen in figure 2.

Secondly, the power draw of signcryption compared to the sign-then-
encrypt schemes is interesting. Both forms of signcryption seem to
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Fig. 1. Computational cost of traditional schemes
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Fig. 2. Computational cost of ECC-based schemes

use the same or slightly more power on average when compared
with the other schemes, as can be seen in figures 3 and 4. Moreover,
ECC-based signcryption draws the highest average power of all ECC-
based schemes. However, as showed in figures 5 and 6, signcryption
draws significantly less total power than the sign-then-encrypt
schemes. This correlates with the theory behind signcryption of one
single computationally intensive step (responsible for peak power),
instead of two, which results in less total power being drawn.

Thirdly, in figures it is easily noticed that both ECC-based signcryp-
tion and sign-then-encrypt schemes are significantly faster than
their traditional counterparts, while still offering the same level of
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Table 1. Comparative analysis of signcryption & sign-then-encrypt schemes.

Algorithm Power Draw Computational cost Communication overhead
Signcryption - EXP=3, MUL=2, DIV=1, ADD=1, SUB=0 ℎ𝑎𝑠ℎ(𝑚) + |𝑞 |
RSA - RSA - EXP=3, MUL=0, DIV=0, ADD=0, SUB=0 |𝑛𝑎 | + |𝑛𝑏 |

ElGamal - DSA - EXP=6, MUL=2, DIV=3, ADD=1, SUB=0 2|𝑞 | + |𝑝 |
ElGamal - Schnorr - EXP=6, MUL=2, DIV=0, ADD=1, SUB=0 ℎ𝑎𝑠ℎ(𝑚) + |𝑞 | + |𝑝 |
Signcryption (ECC) - PMUL=3, MUL=2, DIV=1, ADD=1, SUB=0 𝐾𝐻 (𝑚) + |𝑞 |

ElGamal (ECC) - ECDSA - PMUL=6, MUL=3, DIV=1, ADD=1, SUB=0 ℎ𝑎𝑠ℎ(𝑚) + 2|𝑞 |
ElGamal (ECC) - Schnorr (ECC) - PMUL=6, MUL=1, DIV=0, ADD=1, SUB=1 ℎ𝑎𝑠ℎ(𝑚) + 2|𝑞 |

EXP = number of modular exponentiations, MUL = number of modular multiplications, DIV = number of modular divisions, ADD = number of modular
additions, SUB = number of modular subtractions, PMUL = number of point multiplications

Table 2. Performance comparison of traditional signcryption & sign-then-encrypt schemes

Scheme Comp. cost (s/it) Power total (Wh) Power average (W) Iterations Total time (mm:ss) Comm. overhead
Signcryption 7.85 0.116 2.729 20 2:37 1957%

RSA 9 0.145 2.899 20 3:01 1728%
ElGamal + DSA 29.25 0.441 2.714 20 9:45 1728%

ElGamal + Schnorr 45 0.676 2.704 20 14:59 1728%

Table 3. Performance comparison of ECC-based signcryption & sign-then-encrypt schemes

Scheme Comp. cost (s/it) Power total (Wh) Power average (W) Iterations Total time (mm:ss) Comm. overhead
Signcryption (ECC) 0.00325 0.062 3.434 20000 01:05 357%

ElGamal (ECC) + ECDSA 0.00495 0.093 3.452 20000 1:37 228%
ElGamal (ECC) + Schnorr (ECC) 0.00505 0.095 3.386 20000 01:41 228%
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Fig. 3. Average power draw of traditional schemes

security. Moreover, their communication overhead is also signifi-
cantly lower because of their use of smaller key-sizes, as can be seen
in figures 7 and 8.
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Fig. 4. Average power draw of ECC-based schemes

7 CONCLUSION
Based on figures 1 and 2, it can be seen that the computational
costs of signcryption schemes are lower than those of equivalent
sign-then-encrypt schemes. Therefore, RQ1 can be answered by
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concluding that signcryption schemes do indeed have better com-
putational costs when measured practically.

Answering RQ2, it can be concluded from figures 3, 4, 5 and 6 that
signcryption schemes consume less power in total compared to sign-
then-encrypt schemes, but their average power draw is equivalent.

Finally, based on figures 7 and 8, signcryption, it can be seen that
with this implementation, signcryption in practice has higher com-
munication overhead than sign-then-encrypt schemes. This is be-
cause signcryption transmits both the symmetrically encrypted
message + 2 large integers and the other sign-then-encrypt schemes
only need to transmit 2 integers. Therefore, RQ3 can be answered

0 1 2 3 4 5
1,500

1,600

1,700

1,800

1,900

2,000

Co
m
m
un

ic
at
io
n
ov
er
he
ad

(%
)

Signcryption RSA ElGamal + DSA ElGamal + Schnorr

Fig. 7. Communication overhead of traditional schemes
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by concluding that signcryption does not necessarily provide better
communication overhead when measured practically.

7.1 Recommendation
Based on the results and analysis of this research, we recommend
that anyone needing to transmit confidential data on resource-
constrained devices use ECC-based signcryption or sign-then-encrypt
schemes. ECC-based schemes are significantly faster while offer-
ing a high enough level of security. Additionally, we recommend
if performance is of the utmost importance, to use a signcryption
scheme, as based on this research it is even faster while using fewer
resources. However, there are no implementations of signcryption

7
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available in widely-used libraries or standards, so for most use cases,
ECC-based sign-then-encrypt schemes will be the best option.
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