
Comparative Analysis between Fast and Basic Scalar
Multiplication Used in Elliptic Curve Cryptography

Research Proposal
Twan Boeve

t.boeve@student.utwente.nl
University of Twente

Enschede, The Netherlands

ABSTRACT
Nowadays, more and more physical devices that are used in every-
one’s daily life are connected to the internet in order to exchange
information with other devices. This is commonly known as the
Internet of Things, or IoT for short, which includes increasingly
more small devices with limited computation power and commu-
nication capacity. The problem here arises when there is a need
to secure the data, which needs to be done using a cryptographic
algorithm that is as efficient as possible for the IoT devices to be
able to handle this. In this paper, the research into such an algo-
rithm, called Elliptic Curve Cryptography (ECC), is shown. The
paper focuses on the differences between this algorithm and the
currently most-used RSA algorithm, and mainly on the differences
between two methods of scalar multiplication used in ECC: basic
and fast scalar multiplication operation.

KEYWORDS
Cryptography, Internet of Things, RSA, ECC, Scalar Multiplication

1 INTRODUCTION
The Internet of Things (IoT) has been rapidly expanding in the past
few decades, especially now that even fridges and water kettles are
connected to the internet [17]. However, being connected to the
internet does have its risks and consequences since this means that
(often sensitive) data is transferred which could be intercepted by
outsiders [20].

For this reason, it is important to secure the transmission of data
to be accessed by another device or service [10]. To be able to do
this, a cryptographic algorithm is needed that can be used to se-
cure the transmission of private/sensitive data via IoT devices [26].
Rivest–Shamir–Adleman (RSA) [21] is considered one of the main
cryptographic algorithms that are used to secure the transmission of
data between different parties in the network, but the problem with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Research Paper, June 2022, Enschede
© 2022 Association for Computing Machinery.

RSA and other traditional schemes is that they require a relatively
high amount of computation power and communication capacity
[7]. Nowadays most IoT end devices are resource-constrained [23].
For that reason, a lightweight algorithm with simpler and more
efficient calculations is needed. This is where Elliptic Curve Cryp-
tography (ECC) comes into play [16].

Both RSA and ECC make use of a trapdoor function [4]. This is
a function that is easy to compute one way, but very difficult to
compute the other way [1]. Within ECC, this trapdoor function is
the scalar multiplication of a point. When encrypting a message
using ECC, this trapdoor function is often executed many times,
which brings the need for an efficient way of performing this scalar
multiplication to again reduce the needed computation power and
communication capacity of an IoT device [18]. This claimed quicker
method is called ‘fast scalar multiplication’, which is used for both
encryption and decryption in ECC.

To be able to better understand the differences between RSA and
ECC, and also to get a better understanding of why ECC is con-
sidered better for resource-constrained devices, the first research
question is as follows:

(1) “How does the ECC algorithm differ from the RSA algo-
rithm?”

Since the need for a more efficient way of performing scalar mul-
tiplication is quickly rising with the rapidly increasing amount of
small IoT devices, the second (and main) research question is the
following:

(2) “What is the difference in computation and communication
costs between basic and fast scalar multiplication in the
context of ECC?”

To answer the first research question, both qualitative and quanti-
tative data are gathered. The qualitative data is gained by extracting
information from already existing scientific papers, as mentioned
in Section 3. Since the exact differences between the algorithms
are purely based on facts, analysing this data is unnecessary. The
quantitative data is gathered by executing both algorithms on the
Raspberry Pi and analysing the differences.



Research Paper, June 2022, Enschede Twan Boeve

To answer the second research question, only quantitative data
is gathered on how much different the computation and communi-
cation costs are between basic and fast scalar multiplication. The
data is obtained by running Python scripts on the Raspberry Pi and
then analyzed using Python libraries and a Volt/Ampere meter.

In this paper, first a literature review will be done on related
work in section 3. Then the scenario will be discussed in section 4,
including the hardware and software used for the research. After
that, the results will be given from researching existing literature
and performing the algorithms in section 5. Following will be a
discussion on the given results in section 6. And finally, a conclusion
is given on the research questions in section 7.

2 BACKGROUND
In this section, background is given on the separate algorithms used
in this research. The two encryption algorithms are RSA and ECC,
where first RSA is analyzed in subsection 2.1, then ECC is analyzed
in subsection 2.2, and finally the differences between the two are
analyzed in subsection 2.3.

2.1 RSA
To start off, the RSA algorithm will be analyzed. The development
of the RSA algorithm already began in 1977 [9], making it one of the
oldest public-key cryptosystems. Even though the algorithm was
described over 40 years ago (as of the time of writing), it is still the
most widely used encryption algorithm as it provides enough secu-
rity for most use cases while still being manageable by most devices.

The reason that the RSA algorithm can be used by most devices
nowadays is that it makes use of a so-called trapdoor function,
making the encryption calculations relatively lightweight. A trap-
door function is a function that is easy to compute one way, but
very difficult to compute the other way [1]. A trapdoor function
is also used by the ECC algorithm but in a different way, as will
be discussed later. In RSA, the trapdoor function is based on the
difficulty of factoring a large integer into two large prime numbers.
This is known as the Integer Factorization Problem. For example, it
is very easy for a computer to calculate that 3 times 17 equals 51,
whereas it is a lot more difficult for this same computer to calculate
that the number 51 is a product of the two prime numbers 3 and
17. Applying this to a product of two large prime numbers, often
consisting of over hundreds of digits, makes it very difficult for
most devices to calculate what the original prime numbers are.

As told before in this section, RSA is a public-key cryptosystem.
This means that it makes use of both a public key and a private
key, which are both needed to be able to send and receive messages
without them being able to be dismantled easily.

In RSA, the public key (PubKey) consists of a pair of numbers.
The first of these is the number e, which is a prime number between
1 and the least common multiplier of the product of (𝑝 − 1) and
(𝑞 − 1) (called r), where p and q are randomly generated prime
numbers. e has to be co-prime to r, too. The second part of the

PubKey is the number n, which is simply the product of p and q.

This same number n is also the second part of the private key
(PrivKey) in RSA. The first part of the PrivKey is the number d,
which is used for decrypting messages. d is calculated using the
number e from the PubKey and the number r, which was calculated
before. The formula for d is (𝑑 ∗ 𝑒) mod 𝑟 = 1.

The key size of the RSA algorithm determines the size of the
modulo r, and because of that essentially also the size of e and d
used in the PubKey and PrivKey (since they make use of this mod-
ulo r). The greater the key size, the harder it becomes to calculate p
and q when knowing the PubKey and thus the better the security.

2.2 ECC
Now the Elliptic Curve Cryptography (ECC) algorithm will be ex-
amined. The ECC algorithm was described in 1985, about 8 years
later than the RSA algorithm. Even though it has been around for
over 35 years now, it is only just becoming relatively popular. Its
rise began in 2004, when the need for cost-efficient algorithms be-
gan to rise because of smaller IoT devices. The type of data they
share varies, but examples are activity data of someone living in a
house (for example to automatically turn lights on when the person
is awake and at home) or signals (for example to be able to turn on
a water kettle from a smartphone) [17].

As opposed to the RSA algorithm, the trapdoor function of the
ECC algorithm is based on the difficulty of finding the discrete
logarithm of a random elliptic curve element with respect to a pub-
licly known base point [3], which is known as the Elliptic Curve
Discrete Logarithm Problem (ECDLP). In other words, it is easy to
compute the next point given a starting point (the multiplicand)
and a multiplication, even when doing this many times, but (nearly)
impossible to compute this multiplicand given the final product
point.

The public key in an ECC cryptosystem essentially consists of
all coordinates the dot calculations pass through, although these co-
ordinates can be compressed into one end coordinate (called point
Z) which is most often used as the single public key of the ECC
algorithm.

The private key in ECC is the number n, which is the number of
times the dot function is applied to reach the end coordinate from
the starting coordinate. A single dot function consists of a starting
point (A) and a line from A that passes through a point B on the
same - in the case of ECC ’elliptic’ - curve. The thing that is special
about elliptic curves though is that such a line through A and B
always goes through a third point on the curve (C). This point C is
the result of the dot function applied to A and B. This is a single
dot calculation which, again, is relatively easy to compute but very
difficult to do backwards (retrieving A when knowing C)

The size of both the public and private keys determines the max
value of the point on the elliptic curve for each calculation. If the



Comparative Analysis between Fast and Basic Scalar Multiplication Used in Elliptic Curve Cryptography

Research Proposal Research Paper, June 2022, Enschede

value of this point exceeds this max value, its modulus with this
value is taken and used for the calculation. This means that with
larger keys, more points are possible on the elliptic curve making
it harder to find the private key when knowing the public key.

2.3 ECC vs RSA
Finally, the major differences between ECC and RSA will be dis-
cussed. The first and most important difference between the two is
the key sizes required for equal amounts of security provided. In
Table 1 below, the differences in key sizes between the RSA and
ECC algorithms can be compared for different Security Bit Levels
(source: [19]).

Security bits RSA Key Length ECC Key Length

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

Table 1: Difference in key sizes between RSA and ECC

Since the major problems of IoT devices nowadays are the lim-
ited sizes of the computation and communication capacities, it is
very important that lightweight algorithms can be used. As can be
seen from the Table, the RSA algorithm requires far larger key sizes
as the Security Bit Level increases. For example, for a Security Bit
Level of 128 bits, RSA requires a key size of 3072 bits whereas ECC
requires a key size of 256 bits while providing equal (if not better)
security at the same time [19]. This was already clear in 2014, when
it was proved that 1024-bit RSA is more unsafe than 160-bit ECC [2].

As mentioned before, ECC requires smaller key sizes in order
to provide the same amount of security, allowing the memory size
required by IoT devices to be smaller. However, RSA does prove
to have more speed when generating private and public key pairs
[15], meaning that it requires less computation power. This is due
to the fact that performing product calculations, which are used in
the RSA algorithm, is easier for a processor to do than performing
dot calculations, which are used in the ECC algorithm.

However, the ECC algorithm clearly outperforms the RSA algo-
rithm when it comes to decrypting messages, especially when it
comes to larger key sizes. This is partially due to the fact that the
required key sizes are smaller, but also because the calculation is
easier [15].

All in all, the ECC algorithm proves far more useful than the
RSA algorithm for resource-constrained devices. This is not only
because the required key sizes are smaller for the same level of
protection, but also because the average calculation difficulties are
way lower, consequently making the computation costs lower and
the requirement for good processors less.

3 RELATEDWORK
In this section, it is discussed what is presented in the literature
regarding the RSA and ECC algorithms and the usage of scalar
multiplication in ECC algorithm.

ECC is not at all a new concept. Its first use was in 1985, when
Koblitz [12] and Miller [22] proposed to use the group of points
on an elliptic curve defined over a finite field in a cryptographic
system. In their report [13] authors explained why ECC has not
been used broadly and what the state of ECC is. It is obvious here
that the report is slightly outdated, but it explains very well the
issues that arise when attempting to implement the algorithm.

In 2012, Mike Hamburg released a report on the difference be-
tween fast and compact elliptic-curve cryptography [11]. Although
this report does not have the exact same subject as the main re-
search question proposed in Section 1, it is interesting that there is
an entirely different approach in attempting to improve cryptosys-
tem speeds, in this case by introducing a new implementation on
curve signature and key agreement.

Another report, made by Matthieu Rivain from CryptoExperts
[24], covers a subject very close to our main research problem: it
compares fast and regular algorithms for scalar multiplication over
elliptic curves. This paper is very interesting in this case since it
explains clearly what the different fast algorithms are and how they
are different from each other, which could very well help in the
research towards the speed differences between these algorithms
which we are planning to discover in this paper.

Finally, in their report, Benson and Ballard propose a framework
for practical parallel fast matrix multiplication [5]. In this report,
they do not only show how their framework works, but they also
compare it to regular matrix multiplication algorithms along with
the difference in results. Although their paper proposes a very
swift algorithm, the authors do state that one of the most serious
implementation challenges is that it requires a relatively big amount
of communication capacity.

4 SCENARIO
In this section, the scenarios considered to answer the performance
evaluation of both research questions are discussed. After that, the
hardware and software used to perform these scenarios are given.

4.1 Research Question 1
For research question 1, the algorithms for both RSA and ECC (with
basic scalar multiplication) need to be implemented. Since RSA is
relatively basic to implement when compared to ECC, this can be
implemented without the use of any non-standard (meaning: not
official) library. All that is required to perform a full key genera-
tion, encryption, and decryption algorithm are some mathematical
functions (such as the greatest common divisor) and a few standard
libraries.

As stated in section 3, however, ECC appears to be relatively
difficult to implement. For this reason, a library will be used that is



Research Paper, June 2022, Enschede Twan Boeve

able to do basic scalar multiplication. The rest of the full algorithm
is possible to be implemented without the use of other non-standard
libraries.

4.2 Research Question 2
For the second research question, we encounter the same issue as
described above for research question 1: ECC is very difficult to
implement when compared to (for example) RSA. This problem
extends even further with the implementation of the fast scalar
multiplication algorithm if this would also be implemented from
scratch. For this reason, a library is also used to implement the fast
scalar multiplication portion of the ECC algorithm.

4.3 Hardware
To start off, all hardware will be listed. The computations and algo-
rithms are run on a Raspberry Pi 4 Model B with 2GB of RAM. The
reason a Raspberry Pi is used is that it can handle any software that
was planned to be used in the research, and so others could repro-
duce the results easier since each Raspberry Pi of the same model
should produce the same results when running the algorithms [8].

Furthermore, a Volt/Ampere meter is used that is connected to
the Raspberry Pi. This is the USB Charger Doctor, which shows the
voltage and current flowing through it, switching between the two
every three seconds. This device is used to compute the computation
costs for the algorithms. The connection with the Raspberry Pi can
be found in Figure 1 below and consists of only a power adapter,
the USB Charger Doctor, a power cable and the Raspberry Pi.

Figure 1: The setup used to measure the power consumption
of the Raspberry Pi while running the different algorithms

4.4 Software
4.4.1 Operating Software. Since these two devices are all that is
needed, now the software used on the Raspberry Pi will be discussed.
The Raspberry Pi used to run the algorithms was installed with (at
the time of writing) the latest version of Raspberry Pi OS, released
on 04/04/2022.

4.4.2 Programming language. The programming language used for
the algorithms is Python. There are several reasons for this, of which

the main one is that there were already several libraries existent
that were useful when implementing the different algorithms. On
top of that, the programming language is often seen as easy to use
and pick up.

4.4.3 Python libraries. Now the different Python libraries used will
be listed. First off, some default Python libraries are used. These
are the following:

• time: Timer used to compute the time it takes for an algo-
rithm to finish

• math: Used in the RSA algorithm to easily compute the gcd
(greatest common divisor) of two numbers.

• random: Random number generator used to generate ran-
dom private keys for both RSA and ECC.

• os and psutil: Both used only once to measure the memory
used when executing the algorithms.

On top of that, a few other libraries are used. The first of these
is called ecdsa [25], which is a library used for key generation and
basic scalar multiplication for the basic ECC algorithm.

The second library used is called fastecdsa [14], which is a library
that is able to perform scalar multiplication operations (such as
point addition or multiplication on an elliptic curve) relatively fast
when compared to the basic ecdsa library. This library is very easy
to use, since it does not change how points are added or multiplied;
this is done almost exactly the same way this would normally be
done, but now relatively quicker.

4.4.4 Produced Python scripts. Lastly, the produced Python scripts
written for this research are used. These are six different files, con-
sisting of a normal version of the three algorithms and looped
versions of the algorithms, the latter of which were used to more ac-
curately measure the computation power. The scripts can be found
on the author’s GitHub [6].

5 RESULTS
In this section, the results from performing the research will be
given. This includes the results for both research questions, where
the results from the first research question are derived from both
existing literature and the algorithms, and the results for the second
(and main) research question are derived solely from running the
algorithms.

5.1 Research Question 1
The first research question is: “How does the ECC algorithm differ
from the RSA algorithm?”. As stated before, the results of this
research question consist of both reviewing existing literature and
of results from running the algorithms. The first of these two parts
was discussed in section 2. For the second part, however, results
are available on both the time difference and time difference when
executing the two different algorithms and on the computation and
communications costs needed for both algorithms.

5.1.1 Algorithms. To start off, the difference in time between both
algorithms will be discussed. In Table 2 below, the time (in seconds)
between the RSA algorithm and the basic ECC algorithm can be



Comparative Analysis between Fast and Basic Scalar Multiplication Used in Elliptic Curve Cryptography

Research Proposal Research Paper, June 2022, Enschede

found when executing them both fully several times; this includes
key generation, encryption, and decryption.

Loops RSA (in seconds) ECC (in seconds) Difference

1 7.287 0.0405 ∼180x
2 11.963 0.0842 ∼142x
10 89.84 0.3801 ∼236x
100 > 900 3.9891 >225x

Table 2: Difference in execution time between RSA and ECC

Now, the difference in memory usage between the same two
algorithms will be shown. In Table 3 below, the memory usage can
be seen after executing key generation, encryption, and decryption
for both algorithms. Since the amount of loops did not have any
influence on how much memory is used, a table is used instead of a
graph. Do note that in the table RSA uses a keysize of 16 bits here
whereas the ECC algorithm uses a keysize of 256 bits. This was
unfortunately not possible to change for the test.

Algorithm Memory used (in MB)

RSA (keysize 16 bits) 38.0273
Basic ECC (keysize 256 bits) 23.7

Table 3: Difference in memory usage between RSA and ECC

Finally, results are available on the power consumption of both
algorithms. These can be found in Table 4 below. Also for the power
consumption there was no influence on the amount of loops, so
again a table is used instead of a graph.

Algorithm Average current (in amperes)

RSA 0.80
Basic ECC 0.69

Table 4: Difference in power usage between RSA and ECC

5.2 Research Question 2
The second andmain research questionwas stated as follows: “What
is the difference in computation and communication costs between
basic and fast scalar multiplication in the context of ECC?”. As
stated before, the results of this research question consist solely of
results from running the algorithms. This includes both the com-
putation and communication costs of the algorithms, although the
time taken is also measured.

To start off, a graph is given below showing the differences
in speed when encrypting the same message using equal-length
encryption keys between basic and fast scalar multiplication when
used in ECC. Results are included on when the algorithm is run
once, 10 times, 100 times, 250 times, 500 times, 750 times, and finally
1000 times. The results can be found in Figure 2

0 200 400 600 800 1,000

0

10

20

30

Amount of loops

Ti
m
e
ta
ke
n
(m

s)

Basic Scalar Multiplication
Fast Scalar Multiplication

Figure 2: Speed difference between fast and scalar multipli-
cation used in ECC

Next, the difference in memory usage between basic and fast
scalar multiplication in ECC can be found in Table 5 below, the
memory usage can be seen after executing key generation, encryp-
tion, and decryption for both algorithms. Again, the amount of
loops did not have any influence on how much memory is used.

Algorithm Memory used (in MB)

Basic ECC 23.7
Fast ECC 21.5

Table 5: Difference in memory usage between basic and fast
ECC

Finally, results are available on the power consumption of both
algorithms. These can be found in Table 6 below. Also here the
amount of loops has no influence on the results.

Algorithm Average current (in amperes)

Basic ECC 0.69
Fast ECC 0.76

Table 6: Difference in power usage between RSA and ECC

6 DISCUSSION
In this section, a discussion is given on the results. This includes
whether the results are equal to the expected results, and if not,
why they might differ.

6.1 Research Question 1
For the first research question, only the results from running the
algorithms will be discussed since the literature review is based on
facts and allows for little discussion. The results from the literature



Research Paper, June 2022, Enschede Twan Boeve

review, however, do give a clear view of what is expected from the
algorithms.

Looking at the speed differences between RSA and ECC given in
Table 2, it is clear that ECC is much faster than RSA in the combina-
tion of key generation, encryption, and decryption. As mentioned
in section 2 about the background of the project though, this was to
be expected. One thing that is apparent is the fact that the difference
seems to increase as more loops are performed. This most likely has
to do with the fact that any potential startup delays when starting
the loops have less effect on the total time when more loops are
performed.

Secondly, the memory difference between the two algorithms
will be discussed as given in Table 3. The difference in memory
usage for both algorithms is not extreme, although it is lower for
ECC, but the measurements were performed with different key
sizes for the two algorithms: RSA used a key length of only 16 bits
whereas ECC used a key length of 256 bits. From this it is clear that
when equal key lengths would be used, ECC uses less memory on
average than RSA.

Finally, results on difference in power consumption are available
in Table 4. From the Table it is clear that basic ECC uses less power
than RSA: on average, 0.69A is used by ECC whereas 0.80A is used
by RSA while running the algorithms. Also this result was expected,
as stated in section 2.

6.2 Research Question 2
Now the results from research question 2 will be discussed, as given
in section 5. This research question covers the differences between
basic and fast scalar multiplication used in ECC. For research ques-
tion 2, there is only quantitative data to look at.

In Figure 2, the speed difference between the two algorithms can
be found. Since the differences between the two algorithms were
small enough (as opposed to RSA versus ECC), it was possible to
put the results into a graph. From this graph, it is clear that the al-
gorithm using fast scalar multiplication is faster than the algorithm
using basic scalar multiplication. This, as the methods of scalar
multiplication might suggest, is to be expected.

Next, the differences in memory usage between the two algo-
rithms can be found in Table 5. Here it can be seen that the fast
scalar multiplication algorithm uses around 2MB less than the basic
one when executed. This, however, is most likely due to the fact
that two libraries had to be used to decrypt messages for the basic
algorithm, which resulted in a few extra variables that had to be
used. All in all, there is almost no difference in memory usage be-
tween the two algorithms.

Finally, the power usage of the scalar multiplication operations
can be found in Table 6. It can be seen that fast scalar multiplication
used more power than basic scalar multiplication. Although it is not
explicitly clear what the result here should be, it is expected that the
power consumption is slightly higher for fast scalar multiplication

since the multiplications performed are more advanced, although
they are quicker than basic scalar multiplication.

7 CONCLUSION
In this final section a conclusion is given on the research questions
and the final result. On top of that, any ideas for future work are
listed.

To start off, research question 1 has been answered in full, and
there is an obvious reason ECC is slowly becoming more popular
than RSA. Smaller IoT devices require easy calculations and low
computation and communication costs, which ECC excels at in
comparison with RSA.

On top of that, research question 2 has also been answered: both
the computation and communication costs are put into tables in
section 5. From this we can conclude that fast scalar multiplication
in ECC makes quite a big difference in speed, while only costing
a little more memory to process (again, this most likely has to do
with the fact that an additional library and additional libraries were
required for basic ECC to work in this case).

All in all, ECC should definitely be used in (small) IoT devices,
since its calculations are much quicker while its computation and
communication costs are also more favourable than RSA. Fast scalar
multiplication is also very desirable, especially when speed and
power usage are very important. In terms of memory usage, there
is only a small difference with basic scalar multiplication, if any.

What could still be studied to further specify the differences
between basic and fast scalar multiplication in ECC is for example
whether the same results are found for different key sizes, since it
might be possible that the fast algorithm makes even more differ-
ence when used with even greater key sizes.

REFERENCES
[1] Mansoor Ahmed. What is a Trapdoor Function? https://dev.to/

ahmedmansoor012/what-is-trapdoor-function-pb6, 2021. Accessed: 03/05/2022.
[2] Mohsen Bafandehkar, Sharifah Md Yasin, Ramlan Mahmod, and Zurina Mohd

Hanapi. Comparison of ecc and rsa algorithm in resource constrained devices.
In 2013 international conference on IT convergence and security (ICITCS), pages
1–3. IEEE, 2013.

[3] Liantao Bai, Yuegong Zhang, and Guoqiang Yang. Sm2 cryptographic algorithm
based on discrete logarithm problem and prospect. In 2012 2nd International
Conference on Consumer Electronics, Communications and Networks (CECNet),
pages 1294–1297. IEEE, 2012.

[4] Mihir Bellare and Silvio Micali. How to sign given any trapdoor function. In Con-
ference on the Theory and Application of Cryptography, pages 200–215. Springer,
1988.

[5] Austin R. Benson and Grey Ballard. A framework for practical parallel fast matrix
multiplication. SIGPLAN Not., 50(8):42–53, jan 2015.

[6] Twan Boeve. Research Project ECC. GitHub, 2022. https://github.com/
TwanBoeve/ResearchProjectECC.

[7] Kyung Jun Choi and Jong-In Song. Investigation of feasible cryptographic algo-
rithms for wireless sensor network. In 2006 8th International Conference Advanced
Communication Technology, volume 2, pages 3 pp.–1381, 2006.

[8] Mohammed El-Haii, Maroun Chamoun, Ahmad Fadlallah, and Ahmed
Serhrouchni. Analysis of cryptographic algorithms on iot hardware platforms.
In 2018 2nd Cyber Security in Networking Conference (CSNet), pages 1–5. IEEE,
2018.

[9] S.L. Garfinkel. Public key cryptography. Computer, 29(6):101–104, 1996.
[10] Alan Grau. Can you trust your fridge? IEEE Spectrum, 52(3):50–56, 2015.
[11] Mike Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint

Archive, Report 2012/309, 2012. https://ia.cr/2012/309.

https://dev.to/ahmedmansoor012/what-is-trapdoor-function-pb6
https://dev.to/ahmedmansoor012/what-is-trapdoor-function-pb6
https://github.com/TwanBoeve/ResearchProjectECC
https://github.com/TwanBoeve/ResearchProjectECC
https://ia.cr/2012/309


Comparative Analysis between Fast and Basic Scalar Multiplication Used in Elliptic Curve Cryptography

Research Proposal Research Paper, June 2022, Enschede

[12] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[13] Neal Koblitz, Alfred Menezes, and Scott Vanstone. The state of elliptic curve
cryptography. Designs, codes and cryptography, 19(2):174, 2000.

[14] Anton Kueltz. fastecdsa. PyPi, 2021. https://pypi.org/project/fastecdsa/.
[15] Vivek B Kute, PR Paradhi, and GR Bamnote. A software comparison of rsa and

ecc. Int. J. Comput. Sci. Appl, 2(1):43–59, 2009.
[16] Carlos Andres Lara-Nino, Arturo Diaz-Perez, and Miguel Morales-Sandoval.

Elliptic curve lightweight cryptography: A survey. IEEE Access, 6:72514–72550,
2018.

[17] Joseph Lindley, Paul Coulton, and Rachel Cooper. Why the internet of things
needs object orientated ontology. The Design Journal, 20(sup1):S2850–S2851,
2017.

[18] Julio López and Ricardo Dahab. An overview of elliptic curve cryptography.
pages 1–2, 2000.

[19] Dindayal Mahto and Dilip Kumar Yadav. Rsa and ecc: a comparative analysis.
International journal of applied engineering research, 12(19):9053–9061, 2017.

[20] Ulf T Mattsson. Database encryption-how to balance security with performance.
Available at SSRN 670561, 2005.

[21] Evgeny Milanov. The rsa algorithm. RSA laboratories, pages 1–11, 2009.
[22] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the theory

and application of cryptographic techniques, pages 417–426. Springer, 1985.
[23] Effy Raja Naru, Hemraj Saini, and Mukesh Sharma. A recent review on light-

weight cryptography in iot. In 2017 International Conference on I-SMAC (IoT in
Social, Mobile, Analytics and Cloud) (I-SMAC), pages 887–890, 2017.

[24] Matthieu Rivain. Fast and regular algorithms for scalar multiplication over elliptic
curves. Cryptology ePrint Archive, Report 2011/338, 2011. https://ia.cr/2011/338.

[25] Brian Warner. ecdsa. PyPi, 2021. https://pypi.org/project/ecdsa/.
[26] Jinbo Xiong, Lei Chen, Md Zakirul Alam Bhuiyan, Chunjie Cao, Minshen Wang,

Entao Luo, and Ximeng Liu. A secure data deletion scheme for iot devices through
key derivation encryption and data analysis. Future Generation Computer Systems,
111:741–753, 2020.

https://pypi.org/project/fastecdsa/
https://ia.cr/2011/338
https://pypi.org/project/ecdsa/

	Abstract
	1 Introduction
	2 Background
	2.1 RSA
	2.2 ECC
	2.3 ECC vs RSA

	3 Related Work
	4 Scenario
	4.1 Research Question 1
	4.2 Research Question 2
	4.3 Hardware
	4.4 Software

	5 Results
	5.1 Research Question 1
	5.2 Research Question 2

	6 Discussion
	6.1 Research Question 1
	6.2 Research Question 2

	7 Conclusion
	References

