
Improving the integrated development environment of a legacy software
platform
JELLE HULTER, University of Twente, The Netherlands

Legacy software platforms often have software development tools like in-
tegrated development environments (IDEs) which are outdated and do not
have modern features which are provided to more modern programming
languages. Useful and modern tool support assist the software developer
in their daily software developing tasks, which help them save time and
improve their software development efficiency and effectiveness. In this
research paper, we have taken a look at the Progress OpenEdge development
platform and developed a language plugin for the IntelliJ IDEA [21] using
their IntelliJ Platform SDK [19]. We have then tested whether the plugin
can be used by software developers of the Progress OpenEdge platform by
checking whether the plugin is compatible with a open-source software
repository.

Additional Key Words and Phrases: Progress OpenEdge, Integrated Develop-
ment Environment, Code Completion, Syntax Highlighting, Code Documen-
tation

1 INTRODUCTION
As the Progress Software Corporation describes on their website,
“Progress OpenEdge is a complete development platform for building
dynamic multi-language applications for secure deployment across
any platform, any mobile device, and any Cloud.” [30] Software
for this development platform is written in the Progress OpenEdge
Advanced Business Language (ABL). This software is written using
the Progress Developer Studio for OpenEdge (PDS) [32], which is an
Eclipse [8] based integrated development environment provided by
Progress. However, the PDS contains some flaws which negatively
impact the development experience of a Progress OpenEdge ABL
developer. Below, three of these flaws have been identified.
The code completion in the Progress Developer Studio is quite

unintuitive. In the Progress ABL programming language, there is
a built-in variable type called a “widget handle”, or “handle” for
short. A handle points to an object in memory and it allows the
developer to interact with this object, just like in most object ori-
ented programming languages. [31] This handler can contain a few
dozen of different “subtypes”. For example, different handle subtypes
are temp-tables (temporary in-memory database tables), datasets
(collection of such temp-tables), data-sources (link between temp-
tables and actual tables in the database), buffers (spot in memory
referencing a record in a (temp-)table, allowing reading and modifi-
cation of columns in that record), pointers to graphical user interface
(GUI) related objects, and many more. The code completion tool in
PDS [29] has a feature called “context-filtered autocomplete list”,
which shows a list of methods and attributes which can be applied to
the given object type. However, in the context of handles, this does

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

not quite assist the developer because the syntax autocompletion
tool shows all possible attributes and methods for all handle types,
resulting in a list of more than 1000 suggested keywords. However,
often only a small list of a few dozen methods/attributes are relevant
and applicable for a given subtype. This makes it difficult for the
developer to actually use the code completion tool for finding the
right method or attribute to be used for a handle typed variable.
Also, the syntax highlighting in PDS is sometimes incorrect,

which can negatively impacts the readability of the code. It seems
like the syntax highlighter gives certain tokens certain colors based
upon a regular expression, without using the context of the token
like you would expect it to do. For example, it is allowed to use
certain keywords as a variable name, where this variable name is
then highlighted as if it were a keyword. Also, method comments
are highlighted the same way as in-line comments which makes
them harder to read in my opinion.

Finally, there is no integration with the documentation in the IDE.
Progress has published a specification for writing code documenta-
tion called ABLDoc. It is syntactically quite similar to Javadoc [26],
but it is not integrated within the PDS in any way: it does not show
this documentation when the PDS gives code completion sugges-
tions. This negatively impacts the development experience, because
it makes it more difficult to know what a certain method does.

1.1 Platform history
For this section, an article from the Finland Progress User Group
has been used, which describes the history and milestones of the
Progress Software Corporation [11] in detail. Besides that article,
knowledge obtained by colleagues of mine have been used which
have been developing software for the Progress OpenEdge platform
for many years.

It all started in the 1970’s when a small group of developers started
the Data Language Corporation (DLC). The main product idea was a
database platform and programming language combined into one,
something which did not exist yet back in the day. This product
was initially called Relational Data Language which got renamed to
Progress 4GL later.

Programming languages can be classified using a generation spec-
ification system [4]. A first generation programming language (1GL)
is a machine-level programming language, which means that it is a
programming language at the machine code level were instructions
are written by the programmer using binary encoding. A second gen-
eration programming language (2GL) is a programming language at
the assembly level, which means that the programmer writes assem-
bly code for an assembler instead of writing the machine language
directly. This made writing programs for a system architecture al-
ready more convenient for the programmer. However, an assembly
language still makes it difficult to write more complicated programs,
because there is no abstraction at all. As Brooksheare et al. describe
it: “The situation is analogous to designing a house in terms of

1

TScIT 37, July 8, 2022, Enschede, The Netherlands Jelle Hulter

boards, nails, bricks, and so on. [...] The design process is easier if
we think in terms of larger units such as rooms, windows, doors, and
so on.” Hence, this is why third generation programming language
(3GL) were created, which abstracts certain low-level features for
the programmer such that it is easier to write more complicated
programs by translating the written software to assembler instruc-
tions. Eventually, there was a demand for more domain-specific
programming languages with even more abstraction, hence fourth
generation programming languages (4GL) got introduced, which
is also the reason why DLC named their language Progress 4GL,
because their language is a database query language and hence can
be categorized as a 4GL.

Because some other companies saw big potential in the language,
their market share had increased rapidly over time. Hence, the
name of DLC’s main product Progress got well-known within the
commercial software development community, which eventually
lead to a rename of the company to Progress Software Corporation
(PSC). Later, the programming language Progress 4GL got re-branded
to Progress OpenEdge Advanced Business Language.
During the evolution phase of the platform, many features got

introduced to the language. Features like SQL integration and sup-
port for client-server based architectures got introduced. Eventually
it was also possible to write entire graphical user interfaces na-
tively within their language. Only after many years, in 1995, object-
oriented programming syntax got introduced because of the rise
of popularity of other object-oriented programming languages like
C++ and Java. Because object-oriented support got introduced later,
many of the earlier introduced features have not been encapsulated
with this object-oriented approach. This seems to be the main rea-
son why the code completion of these older language features is
not as integrated within the IDE provided by Progress as many of
the other languages and their IDEs nowadays.

In the early 2000’s, a former consultant of the Progress Software
Corporation and her husband, Judy and John Green, started devel-
oping a tool called Proparse which provides analysis of Progress
OpenEdge ABL code. Initially, Proparse was created as a proprietary
tool, but after many years of its creation, it has been published as
an open-source repository on GitHub. One of the applications of
Proparse is another open-source tool called Prolint which is “a tool
for automated source code review”, and “reads one or more source-
files and examines it for bad programming practices or violations
against coding standards” [7].

2 PROBLEM STATEMENT
Because of the inefficient code completion, incorrect syntax high-
lighting and the absence of integration of documentation within
the PDS, the integrated development environment for the Progress
OpenEdge platform can be improved. In this research paper, the
importance of autocompletion, syntax highlighting and code docu-
mentation are discussed and the issues given in section 1 have been
solved by implementing an IntelliJ IDEA [21] plugin.

2.1 Goal
The main goal of this research project is to improve the overall de-
veloper experience of an Progress OpenEdge developer by creating

a plugin which adds language support for Progress OpenEdge ABL
for the IntelliJ IDEA. The plugin should provide code completion
suggestions based upon context, provide correct syntax highlighting
and integrate class and method documentation support.

2.2 Research questions
In order to reach the goal mentioned in section 2.1, the following
main research question will be answered:

• How can the development experience of a Progress OpenEdge
ABL developer be improved?

In order to answer this main research question, the following
sub-questions will be asked:

(1) How can the code completion be improved compared to the
Progress Developer Studio for OpenEdge?

(2) How can the syntax highlighting improved compared to the
Progress Developer Studio for OpenEdge?

(3) How can the method documentation be more integrated into
the IDE compared to the Progress Developer Studio for Open-
Edge?

3 RELATED WORK

3.1 Related tools
A plugin for Visual Studio Code which implements ABL language
support for Visual Studio Code has already been created [6]. How-
ever, this plugin does not provide the same level of autocompletion
as the original PSD provides and also makes the same syntax high-
lighting mistakes as described in the introduction. The source code
is available publicly which might be useful.
There is already an ANTLR2 language description of Progress

OpenEdge ABL available [10], which originates from an old open-
source ABL parser called Proparse [14] (this tool was also mentioned
in section 1.1 about platform history). This Proparse tool has been
reused and updated to ANTLR4 for a plugin called Code Analyzer
for ABL in SonarQube (CABL) [33]. As the name already suggests, it
performs code analysis on software written in ABL.

3.2 Code completion
A case study by Amann from 2016 shows how the Visual Studio
IDE [24] is used in practice by 84 professional C# software develop-
ers [1]. The participants in this case study installed a plugin in Visual
Studio which recorded all actions performed within the IDE. The
case study showed that the interaction "code completion" was the
most frequently performed interaction. This shows the importance
of code completion in an IDE for software developers nowadays.

A study byMurphy in 2006 did a similar case study for Eclipse [25].
It also shows that within Eclipse the content assist is a frequently
used interaction by Java developers, but less as described in the case
study from Amann.
Hyvönen and Mäkelä consider the usage of semantic autocom-

pletion instead of syntactic autocompletion in a broader perspec-
tive [17]. They mention the existing syntactic autocompletion ap-
plications, like Microsoft’s IntelliSense in the Visual Studio IDE and
word predictions on mobile phones. The authors raise the perspec-
tive by one level by looking at what improvements are possible for

2

Improving the integrated development environment of a legacy software platform TScIT 37, July 8, 2022, Enschede, The Netherlands

autocompletion at the semantic level. This means that the technol-
ogy should not just look at which characters have already been
entered and give a good suggestion by applying this information
to a given dictionary, but that it should also look at relations of
any preceding and/or succeeding tokens in order to give a good
autocompletion suggestion. Hyvönen et al. mostly look at existing
applications of semantic autocompletion in the context of search
queries and they discuss the different types of relations that can be
used for this semantic autocompletion.
Kang et al. propose a new framework to be used for efficient

query autocompletion, also in the context of search queries [23].
They mention that the traditional method of using a lookup-based
approach by reusing queries and search terms a model has seen
in the past performs well on common queries, but do not function
well on unknown or rarely used search queries. In order to fix this
issue, the authors have created a framework called QueryBlazer
which uses a generative approach for autocompletion instead of the
look-up approach mentioned earlier.
Muhammed et al. discuss a technique called Context Sensitive

Code Completion, which as the name already suggests, uses the
overall context in order to perform better suggestions [2]. This
overall context includes any user defined identifiers like variable or
method names, but also language keywords. The paper describes
the structured process which is applied in order to determine the
most relevant code completion suggestion to the developer by using
this overall context.

A research article by Bruch et al. describes a few concepts which
will likely be adopted in the future in the development field of
integrated development environments (IDEs) [5]. It illustrates the
concept of “IDE 2.0”, where more intelligence is shared amongst
software developers. The article mentions that currently, most code
completion systems are using relative simple systems in order to
determine the best code completion suggestion. There are systems
which prioritize the auto complete functionality based upon context
and how commonly certain application programming interface (API)
calls are used. However, this can only be applied for certain specific
APIs and require a lot of work to implement for everyAPI. Hence, the
paper describes that in the future, collective information might be
used to improve the code completion within IDEs. This information
can be collected by the code completion system in the IDE, and
shared amongst other software developers anonymously in order
to provide better code completion suggestions.
To conclude the information mentioned above, it can be stated

that software developers use code completion features provided by
IDEs very frequently. Also, the potential of semantic code comple-
tion suggestions has been discussed.

3.3 Syntax highlighting
In 2016, Beelders and du Plessis have performed a study where they
compared the effectiveness of syntax highlighting by looking at the
movement of the eye while reading and the time it takes for the
eyes to fixate [3]. In this study, there was not a significant difference
between highlighted and unhighlighted code. However, the students
participating in this research did seem to prefer highlighted code
over unhighlighted code.

A study performed by Sarkar in 2015 also used eye trackers to
determine the impact of syntax colouring on the comprehension
of code [34]. It showed that syntax highlighting did significantly
reduce task completion time, but the effect does decrease depending
on the experience of the programmer. A study by Häregård [16]
also did not show a significant difference between highlighted and
unhighlighted code and also suggested a similar correlation between
the impact of syntax highlighting and programming experience.

A paper by Patrignani demonstrates the potential benefits which
syntax highlightingmight havewhen applied to research papers [28].
The paper describes in which cases syntax highlighting within re-
search papers can be useful. It also describes some downsides to
syntax highlighting: relying on syntax highlighting too much dis-
advantages colorblind people, and that papers are often printed
in a black-and-white format. It argues that there are already tools
available which can help the author of a paper with such syntax
highlighting, but that it does not get used quite often because of the
struggle of researchers adapting new technologies. Finally, the paper
shows some examples on how to adapt such colours and syntax
highlighting within LATEX.

Using the above mentioned papers, it can concluded that syntax
highlighting does not necessarily improve effectiveness, however
most programmers do prefer highlighted code over unhighlighted
code. This preference justifies the need of proper syntax highlighting
for the plugin.

3.4 Documentation integration
Forward and Lethbridge have performed a survey in 2002 about
the relevance of software documentation and tools [12]. In this
survey, they asked 41 professional software developers about the
way they use documentation and what they think is important
about writing good documentation. One of the questions asked
the to participants was to rate how important particular documents
contribute to the overall effectiveness of code documentation in their
opinion. Availability received on average a 4.35 out of 5, hence it can
said that the participants seem to think that the availability of the
documentation is important to the effectiveness of documentation.
As already mentioned in section 3.2, a research article by Bruch

et al. shows the concept of “IDE 2.0” [5]. Besides future develop-
ments of code completion, the article also describes the possible
future developments of code documentation, where documentation
of commonly used APIs can be improved using collective intelli-
gence. Users might for example be able to give feedback on existing
documentation or provide new documentation for undocumented
pieces. This concept already exists for bigger projects, where docu-
mentation is maintained by the software development community.
However, the article mentions that there generally is a lack of par-
ticipation by software developers, which might be solved once a
developer is able to provide such feedback and suggestions directly
from their IDE.

4 METHODOLOGY
In order to answer the research questions and complete the goal
of this research project, an IntelliJ plugin which adds language
support for the Progress OpenEdge ABL progamming language will

3

TScIT 37, July 8, 2022, Enschede, The Netherlands Jelle Hulter

be implemented. In order to do this, the following tasks have to be
completed:

• Writing a lexer. The lexer should read a file and group all
characters into the respective tokens.

• Writing a parser. The parser should check if the tokens match
the given grammar of the Progress OpenEdge ABL program-
ming language.

• Adding syntax highlighting based upon the parsed tokens.
• Implement code completion functionality based upon the
parsed tokens.

• Implement the ability to add type hinting for handle typed
variables, such that more specific code completion can be
provided for this handle.

• Implement documentation integration by parsing ABLDoc
comments which are placed above methods and classes.

4.1 Quality assurance
In order to assure the quality of the plugin and this research project,
the compatibility with certain Progress OpenEdge ABL source code
files have been tested. A publicly available repository targeted for
the Progress OpenEdge 12.2 version has been used.
Because there are not many open-source repositories available

which can be used for testing, the corelib library from the Progress
ADE Sourcecode repository has been chosen [9]. This code library
is distributed with every Progress installation containing system
defined data-structures and tools defined like collections, maps,
JSON parsers and many other useful tools. It is quite broad and uses
many of the object oriented language constructs.

5 ABOUT THE LANGUAGE

5.1 Procedural vs. Object Oriented
Initially, the Progress OpenEdge ABL language was created as a
procedural data querying language. This means that all software
is structured into procedures, and did not allow any abstraction
like an object-oriented programming language would be able to do.
Procedures are be defined in a .p and can have multiple input and
output parameters. As mentioned in section 1.1 about the history of
the Progress OpenEdge platform, the language eventually evolved
into an object-oriented programming language by introducing .cls
files, which can contain a class, interface or enumerator definition.

5.2 Keywords
The keywords in ABL work in a bit of a different way compared to
most other programming languages: many keywords and built-in
functions in the language can be abbreviated. If a keyword is abbre-
viateable, it also has a minimal length of characters which need to
be present before the keyword is correctly recognized. For example,
the keyword “define” has a minimal starting length of 3, so the key-
word can be written as “def”, “defi”, “defin” or “define”. This makes
writing a lexer for the language difficult, because an abbreviateable
token can consist of many different character sequences. Also, some
of the keywords are unreserved and hence can also be used as an
identifier for a variable.

5.3 Handles
As already mentioned in section 1, the language has a data type
called a “widget-handle”, or “handle” for short. A handle is a refer-
ence to one of the 73 available defined handle-based objects. They
can reference to database tables (temp-tables, work-tables, data-
sources, datasets), system-level interactions (file reading, running
procedures in other files, compilation) and graphical user interface
(GUI) related tasks (rendering images, input boxes, windows, and
many more).

6 IMPLEMENTATION
In this section, the implementation and structure of the plugin
which has been written for the IntelliJ Platform SDK as a part of
this research project will be discussed.1

6.1 Lexer and parser
Asmentioned in section 3.1 about the existing alternatives, there was
already an ANTLR language description available of the Progress
OpenEdge ABL programming language. Because the language struc-
ture is quite big and complicated in terms of grammar rules, it felt
unnecessary to redefine this grammar from scratch.
The IntelliJ Platform SDK examples which are given on the doc-

umentation website did not make use of an ANTLR-based gram-
mar. Those examples made use of JFlex [22] in order to generate a
lexer, and made use of JetBrains’ self-developed Grammar-Kit plu-
gin [18]. So, initially there was an attempt in converting the existing
Proparse [10] ANTLR-4 grammar to JFlex and Grammar-Kit. How-
ever, this was difficult, since ANTLR4 does allow for left recursive
grammars, while the Grammar-Kit tool discourages the usage of
left recursion in its grammars. This meant that many modifications
in the existing grammar needed to be performed in order to remove
all the left recursions.

As a result of this, the ANTLR4 IntelliJ Adaptor was given another
try [27]. The adaptor is a tool which allows ANTLR4 grammars to
be used within a language plugin for the IntelliJ Platform SDK. The
Proparse repository did not make use of the lexing features provided
by ANTLR, but used a custom lexer implementation defined in
Java instead. Eventually, an own ANTLR4 lexer has been written
by using the list of all possible keywords which were listed as an
enumerator in the Proparse [10] project. This list of enumerators
also contained the minimal starting length (explained in section 5.2)
of every keyword. Using this list of enumerators, a script which
would create the lexer definition of every keyword using theminimal
starting length could be written. As an example of what this script
did, the lexer definition of the keyword "define" can be found in
listing 1. Although this approach is not desirable, there does not
seem to be another way of defining abbreviateable tokens in an
ANTLR4 grammar.

Listing 1. ANTLR4 lexer definition of the keyword “define”.

DEFINE : ' def ' (' i ' (' n ' (' e ') ?) ?) ? ;
Finally, lexing rules of elements like number expressions, string

literals, identifiers, whitespace characters and comments needed
1The plugin and its source code are publicly available at the GitLab instance of the
University of Twente: https://gitlab.utwente.nl/s2240122/openedgeplugin

4

Improving the integrated development environment of a legacy software platform TScIT 37, July 8, 2022, Enschede, The Netherlands

to be defined. For the comments, additional lexing rules have been
specified in the case of documentation comments, such that the
information from these comments could be easily extracted and
displayed for the implementation of the improved documentation
integration.

6.2 PSI classes
The IntelliJ Platform SDK uses a program structure interface
(PSI) [20] which parses the files in a convenient way, allowing easy
traversal of the different parsed elements. For example, the PSI al-
lows for easy traversal to neighbouring nodes, child nodes, parent
nodes and can also recursively traverse the PSI tree looking for a
PSI element with a certain element type.
In the psi package of the plugin, many custom defined PSI ele-

ments can be found. The ANTLR4 IntelliJ Adaptor by default parses
every non-leaf node to a ANLTRPsiNode, with as element type the
name of the parsing rule. Because the given PsiTreeUtil class can
recursively find parent, sibling or child nodes of a given PSI element
by class type, it was easier to define custom PSI elements. These
custom PSI elements represent a specific part of the entire PSI tree
and match to exactly one parsing rule from our grammar. Custom
PSI elements are also needed in order to define certain methods
specifically related to a certain language construct. For example,
the custom PSI element DefinePropertySubtree represents the define-
Property grammar rule, which describes the definition of a property
inside a class. Additional methods which have been implemented for
this custom PSI element are for example getName() and getType(),
which allow for easy access to the name and type of the defined
property respectively. Also, methods like getClassSubtree() allowed
for easy access to the ClassSubtree which this property belongs to.

6.3 Completion Contributor
The OpenEdgeCompletionContributor class takes care of the code
completion within the editor. By calling the extend() method orig-
inating from the parent class CompletionContributor, completion
suggestions can be provided for specific token types. In the case of
our plugin, we have defined four of these completion contributor
extensions:

• Method or attribute code completion after an identifier
• Method or attribute code completion after the this-object to-
ken

• Widget-handle type completion when defining a type-hint
• General code completion when invoking the code completion
in any other context than defined above.

In order to reuse code completion suggestions, many custom PSI
elements have a getSuggestions() method, which gets all suggestions
of a certain variable or property. Also, many PSI elements have a
getLookupElement() method, which returns a LookupElement repre-
sentation of that PSI element such that the display of these elements
are consistent throughout the different code completion contexts.

6.4 Documentation Provider
The OpenEdgeDocumentationProvider provides the integrated docu-
mentation when this is requested by the user. All elements which
are able to display documentation should implement the custom

defined DocumentedElement interface. This interface contains only
one method, namely getDocumentation() which returns a string con-
taining the respective documentation if available. The usage of such
an interface is useful, because this allows other PSI elements to
also inherit this interface in the future when documentation can be
provided for such elements.

6.5 Data types
The OpenEdgeDataType enum contains a list of all possible data
types in the Progress OpenEdge ABL language. In case of the class
or handle data type, amore specific type definition is possible. Hence,
the class and handle data types both contain a variable to specify
this subtype, namely className and handleType respectively.
All handle types are defined in the OpenEdgeHandleType enum.

The class OpenEdgeHandleTypeDetails contains a statically defined
list of attributes and methods for every handle type, extracted from
the documentation provided by Progress [31]. These method and
attribute definitions are then used in the constructor of every handle
type definition in the OpenEdgeHandleType enumerator.

7 RESULTS

7.1 Code completion
The plugin is able to introspect a code file and find all accessible
variables, properties and methods and give code completion sugges-
tions for these definitions. It also shows the type of a property or
return type of a method. In order to get the code completion of a
class, the class does need to be imported by adding a using statement
at the start of the file. In figure 1, we can see a screenshot of what
the code completion suggestions of a custom defined class called
Car look like.

Fig. 1. An example of code completion for a class called Car.

In case a handle is defined and its “subtype” could not be deducted
from its context, type hints can be used in order to manually define
the subtype of a variable. It then shows all possible built-in functions
and attributes of this subtype. In figure 2, the code completion
suggestions for a temp-table handle can be seen.

Also, when invoking the code completion context when not trying
to access a method or variable, it will show all properties, methods
and local variables available within that context.

7.2 Syntax highlighting
As visible in figures 1 and 2, proper syntax highlighting has been
implemented. In the case an unreserved keyword is used as an
identifier, the syntax highlighter will update the syntax highlighting

5

TScIT 37, July 8, 2022, Enschede, The Netherlands Jelle Hulter

Fig. 2. An example of adding type hints to a handle

of the given keyword once it has detected using the context that it
is indeed used as an identifier instead of an unreserved keyword.

7.3 Documentation integration
When performing the action View | Quick Documentation (by default
using the shortcut Ctrl+Q) in the IntelliJ IDEA while selecting one of
the code completion suggestions, the documentation of that method
will show up if available. Using this feature, a software developer is
easily able to see what a certain method does or what certain input
parameters mean. In figure 3, the documentation of the setKilome-
ters() method can be seen, which takes in one integer parameter as
input. In the case no documentation is provided for a method, the
IDE tells that there is no documentation available.

Fig. 3. An example of documentation integration

The nicely formatted documentation pop-up can also be shown
when performing the same action in the editor itself at places where
a method is used or defined.

7.4 Other features
During the development of the plugin, other useful features have
also been implemented, like the following:

• Implemented a Structure view, which shows all methods and
properties of a class

• Added a references for fields and import statements, allowing
to easily navigate to the definition of the field or class.

• Error annotation when the parser was unable to parse the
source file correctly.

7.5 Testing results
As described in 4.1, the Progress ADE Sourcecode [9] repository has
been used in order to assure that the plugin works for most Progress
OpenEdge ABL projects. All of the 230 source files were parsed
perfectly fine, except for files where annotations were used. The
Proparse [10] lexer definition used a pre-processor to filter out such
annotations for the actual lexer, because annotations in Progress
OpenEdge ABL are only used upon build-time, and are not available
on runtime. Since this pre-processor for the plugin has not been
implemented, it does not recognize the annotations and hence it
results into being marked as an error in the IDE. To fix this, either
the pre-processor could be implemented as an ANTLR4 lexer, or the
annotations can be parsed as comments instead.

8 CONCLUSION
To conclude, an answer will be given to the main research question
as proposed in section 2.2. In order to do this, the three sub-questions
as proposed in 2.2 are answered first. Using the conclusions of these
three sub-questions, a conclusion can be drawn for themain research
question.

8.1 ResearchQuestion 1
How can the code completion be improved compared to the Progress
Developer Studio for OpenEdge?

The code completion of the Progress Developer Studio for Open-
Edge can be improved by adding type deduction and type-hints for
handles to our plugin. This allows the subtypes of a handle to be
defined and hence more selective code completion suggestions can
be given.

8.2 ResearchQuestion 2
How can the syntax highlighting improved compared to the Progress
Developer Studio for OpenEdge?
The syntax highlighting of the Progress Developer Studio for

OpenEdge can be improved by ensuring that unreserved keywords
which are used as an identifier are correctly identified by the IDE
by using the semantics of such a token.

8.3 ResearchQuestion 3
How can the method documentation be more integrated into the IDE
compared to the Progress Developer Studio for Open Edge?

The method documentation integration of the Progress Developer
Studio for OpenEdge can be improved by recognizing code com-
ments at the lexer level, so that this documentation can be shown
in a nicely-formatted manner when the software developer might
need it. For example, at method calls, variable definition or when
using the code completer.

8.4 Main ResearchQuestion
How can the development experience of a Progress OpenEdge ABL
developer be improved?
The development experience of a Progress OpenEdge developer

can be improved by implementing code completion which is more
selective for widget-handle objects, by implementing proper syntax
highlighting and by integrating user-writtenmethod documentation

6

Improving the integrated development environment of a legacy software platform TScIT 37, July 8, 2022, Enschede, The Netherlands

inside the IDE itself. However, the developer experience can be
improved even more by implementing additional features to the
plugin, as mentioned in section 9.

8.5 Threats to validity
As already mentioned in section 4.1, there are not many publicly
available source code repositories of the Progress OpenEdge lan-
guage. To improve the validity and stability of the plugin, the amount
of repositories used should be increased such that the certainty that
the lexer and parser are implemented correctly can also be increased.
The validity and stability of the plugin could also be improved

by generating a set of test-cases for the grammar. Many examples
already exist for this in the computer science literature, like gen-
erating test cases using the grammar [15] or in combination with
"whitebox fuzzing" [13].

9 FUTURE WORK
In the near future, I am planning to add the following features to
the plugin:

• Adding compiler integration allowing to compile source files.
• Using the compiler to annotate build-time errors inside the
editor of the IDE.

• Adding type checks to the parser to detect type errors before
attempting to compile.

• Improving the code completion even more by using semantics
in order to give a better prioritization of the suggestions.

• Besides integrating the documentation of user-written func-
tions, the documentation of system-level functions can be
integrated too.

• Improving the validation by adding additional tests as men-
tioned in section 8.5.

REFERENCES
[1] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. 2016. A Study

of Visual Studio Usage in Practice. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. 124–134. https:
//doi.org/10.1109/SANER.2016.39

[2] Muhammad Asaduzzaman, Chanchal K. Roy, Kevin A. Schneider, and Daqing
Hou. 2014. CSCC: Simple, Efficient, Context Sensitive Code Completion. In
2014 IEEE International Conference on Software Maintenance and Evolution. 71–80.
https://doi.org/10.1109/ICSME.2014.29

[3] Tanya R. Beelders and Jean-Pierre L. Du Plessis. 2015. Syntax highlighting as an
influencing factor when reading and comprehending source code. Journal of Eye
Movement Research 9, 1 (2015). https://doi.org/10.16910/jemr.9.1.1

[4] J. Glenn Brookshear and Dennis Brylow. 2020. 6.1 Historical Perspective. Pearson,
320–326.

[5] Marcel Bruch, Eric Bodden, Martin Monperrus, and Mira Mezini. 2010. IDE 2.0:
Collective Intelligence in Software Development. In Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research (Santa Fe, New Mexico, USA)
(FoSER ’10). Association for Computing Machinery, New York, NY, USA, 53–58.
https://doi.org/10.1145/1882362.1882374

[6] Camicas Christophe. 2020. OpenEdge ABL. Retrieved May 8, 2022 from https:
//marketplace.visualstudio.com/items?itemName=chriscamicas.openedge-abl

[7] Jurjen Dijkstra. 2001. What is Prolint. WebArchive. Retrieved May
20, 2022 from https://web.archive.org/web/20011109094234/http://www.global-
shared.com/prolint/prolint.htm

[8] Eclipse Foundation n.d.. Eclipse IDE. Retrieved May 3, 2022 from https://eclipseide.
org/release/

[9] Mike Fechner. 2016–2022. ADE Sourcecode. Retrieved June 22, 2022 from https:
//github.com/consultingwerk/ADE-Sourcecode

[10] Mike Fechner, Sebastian Wandel, and Marian Edu. 2014–2021. Proparse. Retrieved
May 3, 2022 from https://github.com/consultingwerk/proparse

[11] Finland Progress User Group n.d.. A History of Progress. Retrieved May 23, 2022
from https://www.finpug.fi/historiaa/a-history-of-progress/

[12] Andrew Forward and Timothy C. Lethbridge. 2002. The Relevance of Software
Documentation, Tools and Technologies: A Survey. In Proceedings of the 2002
ACM Symposium on Document Engineering (McLean, Virginia, USA) (DocEng
’02). Association for Computing Machinery, New York, NY, USA, 26–33. https:
//doi.org/10.1145/585058.585065

[13] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-Based
Whitebox Fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08).
Association for Computing Machinery, New York, NY, USA, 206–215. https:
//doi.org/10.1145/1375581.1375607

[14] John Green. 2007. Proparse Book. Retrieved May 3, 2022 from http://www.oehive.
org/proparse/

[15] Hai-Feng Guo and Zongyan Qiu. 2013. Automatic Grammar-Based Test Genera-
tion. In Testing Software and Systems, Hüsnü Yenigün, Cemal Yilmaz, and Andreas
Ulrich (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 17–32.

[16] Erik Häregård and Alexander Kruger. 2019. Comparing syntax highlightings and
their effects on code comprehension.

[17] Eero Hyvönen and Eetu Mäkelä. 2006. Semantic Autocompletion. In The Semantic
Web – ASWC 2006, Riichiro Mizoguchi, Zhongzhi Shi, and Fausto Giunchiglia
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 739–751.

[18] JetBrains. 2014–2021. Grammar-Kit. Retrieved June 14, 2022 from https://github.
com/JetBrains/Grammar-Kit

[19] JetBrains 2022. IntelliJ Platform SDK. Retrieved May 8, 2022 from https://plugins.
jetbrains.com/docs/intellij/welcome.html

[20] JetBrains 2022. IntelliJ Platform SDK: What is the PSI? Retrieved June 24, 2022
from https://plugins.jetbrains.com/docs/intellij/psi.html

[21] JetBrains n.d.. IntelliJ IDEA: Capable and Ergonomic IDE for JVM. Retrieved May
8, 2022 from https://www.jetbrains.com/idea/

[22] JFlex n.d.. JFlex - The Fast Scanner Generator for Java. Retrieved June 14, 2022
from https://www.jflex.de/

[23] Young Mo Kang, Wenhao Liu, and Yingbo Zhou. 2021. QueryBlazer: Efficient
Query Autocompletion Framework. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining (Virtual Event, Israel) (WSDM ’21).
Association for Computing Machinery, New York, NY, USA, 1020–1028. https:
//doi.org/10.1145/3437963.3441725

[24] Microsoft n.d.. Visual Studio: IDE and Code Editor for Software Developers and
Teams. Retrieved May 8, 2022 from https://visualstudio.microsoft.com/

[25] G.C. Murphy, M. Kersten, and L. Findlater. 2006. How are Java software developers
using the Eclipse IDE? IEEE Software 23, 4 (2006), 76–83. https://doi.org/10.1109/
MS.2006.105

[26] Oracle n.d.. How toWrite Doc Comments for the Javadoc Tool. RetrievedMay 8, 2022
from https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

[27] Terence Parr, Bastien Jansen, Danny van Bruggen, Yegor Petrov, and Alex Katlein.
2015–2021. ANTLRv4 support in IntelliJ IDEs. Retrieved June 14, 2022 from
https://github.com/antlr/antlr4-intellij-adaptor

[28] Marco Patrignani. 2020. Why Should Anyone use Colours? or, Syntax Highlighting
Beyond Code Snippets. https://doi.org/10.48550/ARXIV.2001.11334

[29] Progress Software Corporation 2017. Invoking syntax-completion assistance. Re-
trieved May 3, 2022 from https://docs.progress.com/bundle/openedge-developer-
studio-olh-117/page/Invoking-syntax-completion-assistance.html

[30] Progress Software Corporation 2017. What is OpenEdge. Retrieved
May 3, 2022 from https://docs.progress.com/bundle/openedge-guide-for-new-
developers-117/page/What-is-OpenEdge.html

[31] Progress Software Corporation 2021. Handle Reference. Retrieved May 6,
2022 from https://docs.progress.com/bundle/openedge-abl-reference-117/page/
Handle-Reference.html

[32] Progress Software Corporation n.d.. Introduction to Progress Developer Studio
for OpenEdge. Retrieved May 3, 2022 from https://www.progress.com/services/
education/openedge/introduction-to-progress-developer-studio-for-openedge

[33] Gilles Querret. 2016–2022. CABL - Code Analyzer for ABL. Retrieved June 24,
2022 from https://github.com/Riverside-Software/sonar-openedge

[34] Advait Sarkar. 2015. The impact of syntax colouring on program comprehension..
In PPIG. 8.

7

https://doi.org/10.1109/SANER.2016.39
https://doi.org/10.1109/SANER.2016.39
https://doi.org/10.1109/ICSME.2014.29
https://doi.org/10.16910/jemr.9.1.1
https://doi.org/10.1145/1882362.1882374
https://marketplace.visualstudio.com/items?itemName=chriscamicas.openedge-abl
https://marketplace.visualstudio.com/items?itemName=chriscamicas.openedge-abl
https://web.archive.org/web/20011109094234/http://www.global-shared.com/prolint/prolint.htm
https://web.archive.org/web/20011109094234/http://www.global-shared.com/prolint/prolint.htm
https://eclipseide.org/release/
https://eclipseide.org/release/
https://github.com/consultingwerk/ADE-Sourcecode
https://github.com/consultingwerk/ADE-Sourcecode
https://github.com/consultingwerk/proparse
https://www.finpug.fi/historiaa/a-history-of-progress/
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
http://www.oehive.org/proparse/
http://www.oehive.org/proparse/
https://github.com/JetBrains/Grammar-Kit
https://github.com/JetBrains/Grammar-Kit
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://plugins.jetbrains.com/docs/intellij/psi.html
https://www.jetbrains.com/idea/
https://www.jflex.de/
https://doi.org/10.1145/3437963.3441725
https://doi.org/10.1145/3437963.3441725
https://visualstudio.microsoft.com/
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1109/MS.2006.105
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://github.com/antlr/antlr4-intellij-adaptor
https://doi.org/10.48550/ARXIV.2001.11334
https://docs.progress.com/bundle/openedge-developer-studio-olh-117/page/Invoking-syntax-completion-assistance.html
https://docs.progress.com/bundle/openedge-developer-studio-olh-117/page/Invoking-syntax-completion-assistance.html
https://docs.progress.com/bundle/openedge-guide-for-new-developers-117/page/What-is-OpenEdge.html
https://docs.progress.com/bundle/openedge-guide-for-new-developers-117/page/What-is-OpenEdge.html
https://docs.progress.com/bundle/openedge-abl-reference-117/page/Handle-Reference.html
https://docs.progress.com/bundle/openedge-abl-reference-117/page/Handle-Reference.html
https://www.progress.com/services/education/openedge/introduction-to-progress-developer-studio-for-openedge
https://www.progress.com/services/education/openedge/introduction-to-progress-developer-studio-for-openedge
https://github.com/Riverside-Software/sonar-openedge

	Abstract
	1 Introduction
	1.1 Platform history

	2 Problem statement
	2.1 Goal
	2.2 Research questions

	3 Related work
	3.1 Related tools
	3.2 Code completion
	3.3 Syntax highlighting
	3.4 Documentation integration

	4 Methodology
	4.1 Quality assurance

	5 About the language
	5.1 Procedural vs. Object Oriented
	5.2 Keywords
	5.3 Handles

	6 Implementation
	6.1 Lexer and parser
	6.2 PSI classes
	6.3 Completion Contributor
	6.4 Documentation Provider
	6.5 Data types

	7 Results
	7.1 Code completion
	7.2 Syntax highlighting
	7.3 Documentation integration
	7.4 Other features
	7.5 Testing results

	8 Conclusion
	8.1 Research Question 1
	8.2 Research Question 2
	8.3 Research Question 3
	8.4 Main Research Question
	8.5 Threats to validity

	9 Future work
	References

