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Traditional pavement maintenance programs are focused on the monitoring
of motorized roadways. As a result, new monitoring techniques are required
for non-motorized lanes. In this study, an investigation into road roughness
detection using an off-the-shelf motion sensor has been conducted. Three
different experiments were performed to find a surface roughness estimation
technique independent of speed conditions. We selected distinct road surface
types to determine how surface materials affect road quality. The results
illustrated that when using the IRI standard formula, the roughness of roads
decreases as speed increases. To reduce these impacts, a new method was
proposed, which proved suitable for surface roughness estimation under
variable speed conditions. After testing the system on roads with visible
anomalies, we created thresholds of good road quality. All roughness values
captured below 0.77 for asphalt roads and 1.27 for tile segments were consid-
ered to be from a good surface quality road. The findings of this study are
expected to improve the maintenance of unmotorized paths while making
bicycle use more safe, reliable, and comfortable.

Additional Key Words and Phrases: Road pavement; Roughness; Bicycle;
Motion sensors; IMU; Vibration; Bicycle lane, Speed

1 INTRODUCTION
With a bicycle path network consisting of more than 37,000 km,
maintaining and rehabilitating transport infrastructure in theNether-
lands has become a prime concern for governing entities [1]. Current
road maintenance programs are primarily concerned with the reha-
bilitation of motorized highways and have elevated economic costs.
More frequent and accessible maintenance programs are needed to
provide users with a safer and more comfortable riding experience.
Indications of unfavourable pavement conditions can sometimes be
seen with the naked eye, in the form of pavement fractures, distor-
tion, or disintegration [20]. Techniques such as crowdsensing, which
can capture massive amounts of high-quality data at lower costs,
could be used to monitor the state of unmotorized lanes in real-time
[3]. High road roughness levels affect not only the comfort quality
of rides but also the life of vehicles and the safety of those riding.
Therefore, the use of alternative monitoring techniques should be
investigated.

Road roughness, defined as the surface deviations from actual planar
conditions, can be efficiently quantified using surveys or evalua-
tion metrics such as the International Roughness Index (IRI) or the
Present Serviceability Rating (PSR). They have been designed to
be evaluated by certified inspectors using professional instruments
like high-speed inertial profilers, dipsticks, and response-type tools.
Many are mounted on motorised vehicles, making them inoperable
on non-motorised roads [21].
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The IRI is the most well-known and widely used indicator of road
surface roughness. It is based on the quarter-car model and consti-
tutes the way a single car tire is affected by the pavement profile.
As illustrated in equation 1, it is represented as the sum of the ver-
tical displacement of all sampling intervals divided by the travel
distance, where 𝑆 represents the travelled distance and 𝛼 the vertical
displacement [21].

𝐼𝑅𝐼 =

∫ ∫ 𝑡𝑠𝑡𝑜𝑝

𝑡𝑠𝑡𝑎𝑟𝑡
|𝛼𝑧 | (𝑑𝑡)2

𝑆
(1)

Nowadays, smartphones can estimate the roughness of roads. The
vertical displacement needed to calculate the IRI may be determined
using the smartphone’s built-in tri-axial accelerometer. Similarly,
a Global Navigation Satellite System (GNSS) module may estimate
the total travel distance. As a consequence, when compared to pro-
fessional measuring equipment, smartphones have the potential to
provide promising findings.

Current road monitoring techniques have been designed to be used
on motorised roads. Currently, no standard index to evaluate the
quality of bicycle lanes has been identified. Alternative methods are
therefore needed to deliver safer riding experiences.

In this paper, we will investigate possible correlations between the
vibration of bicycles and the roughness of bicycle-lane paths. To
improve the maintenance of these roads, we will create a dynamic
bicycle roughness index for unmotorised lanes. The paper has been
structured in nine different sections: Section 3 presents the related
work, Section 4 the research background, and Section 5 highlights
the methodology. In Section 6, the different experiments conducted
will be explained, of which the results can be found in Section 7.
Finally, in Section 8 and 9 respectively, the discussions, conclusions
and future work can be found.

2 PROBLEM STATEMENT
Although research has been done on alternative road roughness
estimation techniques, most of it has focused on motorised roads.
Enabling the assessment of unmotorised lanes through bicycles can
lower road maintenance costs and provide more frequent feedback
to local authorities.

Previous research studies have identified smartphone use inside
motorised vehicles as a tool whose collected measures exhibit rela-
tionships with standard IRI values [16]. Fewer studies, however, have
established a correlation when capturing vibration data on unmo-
torised conveyances. The smartphone’s orientation when capturing
this data and outside noise worsens the prediction of bicycle-lane
roughness. Moreover, external factors that influence the acquired
sensor data are frequently overlooked. Theoretically, cycling speed,
tire pressure and damping, sensor placement, and mass of the cyclist
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and bicycle may all be factors that impact roughness indices [11, 18].
Previous works in the field assume the parameters mentioned above
to be stable, as they merely attempt to show a correlation between
measurements from professional equipment and their proposed
methods. However, these factors should be considered when mea-
suring roughness in a crowdsensing way (from multiple users and
devices).

Bicycle lanes consequently require different sensing procedures.
The use of off-the-shelf motion sensors as an alternative to using
smartphones for data collection can be proven to be a more reliable
substitute for road monitoring.

2.1 ResearchQuestion
To accomplish the goals set in the problem statement; investigate
how bicycle-lane surface quality can be estimated under adaptable
conditions using off-the-shelf motion sensors, a research question
has been constructed, that will be the basis of this research work:
How can the surface quality of a bicycle lane be assessed using off-the-
shelf motion sensors under variable speed conditions?

To answer this main research question, the following sub-questions
have been constructed:

(1) How could off-the-shelf motion sensors be configured and
located on a bicycle?

(2) How can the roughness of a bicycle lane be estimated using
motion sensors?

(3) How can road surface roughness be calculated independent
of cycling speed?

3 RELATED WORK
In this section, we will analyze papers on road maintenance and
monitoring. Firstly, we will focus on reports documented on anom-
aly detection using smartphones [1, 7, 8, 14]. Following this, the
usage of different roughness indexes will be reviewed. Previous
work can help us understand how smartphones can reliably es-
timate the quality of motorized lanes [2, 16, 21]. Finally, papers
focusing on road roughness estimation on unmotorized vehicles
will be examined [3, 19, 21].

Road quality assessment and monitoring is a widely studied topic
by researchers, with a strong focus on developing alternative main-
tenance programs. In literature, many papers can be found on the
use of smartphones to detect individual road anomalies and pave-
ment distress [1, 7, 8, 14]. These studies revealed that the triaxial
accelerometer and Global Positioning System (GPS) are the most of-
ten used smartphone sensors for pavement evaluation and, therefore,
ideal for use. Together, they allow for the detection and triangulation
of pavement anomalies. Additionally, these papers revealed ways to
eliminate noise from the collected measurements through filtering
techniques. Anomalies can appear for various reasons, and even
if a road has been paved recently, this does not indicate a lack of
abnormalities. Therefore, by identifying them in real-time, bicycle
accidents can be prevented. At the time when this research was
conducted, no standard roughness index for bicycle lanes could be
found.

Several studies have been conducted on determining road highway
roughness through smartphone sensors. The International Road
Roughness Index (IRI) was the most studied parameter [16], al-
though there are other road roughness indexes available like the
Present Serviceability Rating (PSR) or the Pavement Quality In-
dex (PQI). Further, there have been a few studies that focus on the
use of quality management standards like ISO to determine ride
comfort and consequently identify road quality conditions [2, 6].
These studies revealed that under the right circumstances, there
exists a correlation between bicycle vibration data and the rough-
ness/quality of the roads.

Although in literature many research papers deal with the use of
smartphone sensors to determine road conditions on motorized
vehicles, few studies try to determine roughness of roads through
the use of non-motorized transportation modes [3, 11]. These two
studies revealed that the sensors used to assess road anomalies can
also be utilized to measure road quality.

In the paper [21], the authors proposed a method for evaluating
road roughness on un-motorable roads. To do that, they collected ac-
celerometer data on a bicycle-mounted smartphone at stable speeds.
Through their experiments, the authors were able to show a correla-
tion between the road roughness values captured by their proposed
method and those from professional measuring equipment. Never-
theless, it was suggested that the effects of different riding styles,
cycling speeds, bicycle models, and smartphone installation posi-
tions should be considered for accurate roughness estimation.

In [18], O.Wage studied the roughness of bike lanes. To do that, he
developed a phone application that captured vertical accelerometer
data. From it, the IRI, the standard deviation (STD), and the Dynamic
Comfort Index (DCI) index were calculated in different test setups.
With his experiments, the author proved that road vibrations are also
affected by external factors like speed and tire pressure. Nonetheless,
no method was proposed to reduce the impact of these external
factors.

The application of Artificial Intelligence (AI) tools for traffic moni-
toring, particularly machine learning approaches based on image
recognition, has grown in recent years. The authors of [12] advo-
cated using a linear discriminant analysis to classify different road
types (asphalt, pebble, and bumpy paths). Their findings revealed
that their proposed strategy was more than 90% accurate. In [4], a
machine learning algorithm was developed, capable of detecting
road abnormalities like speed bumps with an accuracy of 97%. The
implementation of algorithms such as Neural Networks (NN) or
Support Vector Machines (SVM) on accelerometer data has been
investigated in a few instances.

To summarize, the use of smartphone sensors to estimate road rough-
ness has been widely studied and validated for motorized vehicles.
Still, little research has been conducted on determining a dynamic
index for bicycles using motion sensors. Even though it has been
proven that road roughness can be estimated under stable condi-
tions using smartphones, it is not yet known how the effects of these
conditions could be reduced. Based on findings, a research study is
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needed to investigate alternative non-motorized road maintenance
programs that do not rely on smartphone orientation and are not
affected by external factors like travel speed.

4 BACKGROUND
This section will highlight the importance of evaluating roads with
different surface types differently. Additionally, to understand how
surface quality can be assessed, we will describe the road monitoring
methods used by different regions of the Netherlands.

As mentioned in the introduction, this work aims to discover an
alternate technique of road infrastructure monitoring. The proposed
method should be more affordable, scalable, and capable of assessing
non-motorized paths. To speed up the current road monitoring pro-
cess, a method for determining when roads need to be repaired must
be developed. Previous research studies have focused on estimating
the roughness of paths without creating thresholds for different road
surface types. However, when the road surface type is unclear, it is
not possible to determine whether road repairs are required. A high
roughness index does not always indicate that a road’s condition is
poor or that it needs to be fixed. For example, a well-paved tile path
with no anomalies will have greater vertical acceleration values
than a smooth asphalt road, as illustrated in Figure 1. Similarly, a
poorly paved asphalt path might have the same vertical acceleration
values as a well-paved tile path. Therefore, knowing the surface
type is required for surface roughness estimation.

Fig. 1. Vibrations in asphalt and tile roads

To evaluate whether repairs on a specific path are required, thresh-
olds per road surface type; upper and lower roughness limits, must
be established. As previously stated, to design the thresholds, we
must first determine the path we are on. This research paper will
assume that the road type is known. The threshold may then be
calculated based on the steady accelerometer measurements col-
lected while cycling under ideal conditions. We will investigate a
mechanism for proposing alternative thresholds further in Section
6.

Before implementing new road monitoring systems, it is crucial
to identify how cities and regions are currently monitoring their
roads. For this thesis, the municipality of Enschede, a region of the
Netherlands, was contacted. They are now employing a procedure
known as visual inspection weighing from the CROW norm, a
publication available for governing entities. The most significant
disadvantage of this system is that it is manual, and only certified
inspectors can monitor the roadways. Passing a theory exam as
well as a practice are required for certification [5]. To emphasize
the significance of the problem addressed by this thesis work, it is
vital to mention the municipality’s enthusiasm and willingness to
test the final product to be developed.

In summary, roughness thresholds need to be created per surface
type to determine whether repairs on a particular road segment
are required. Furthermore, after contacting the municipality of En-
schede, their need for a new road monitoring system was proven.

5 METHODOLOGY
In this section, the methodological approach performed to conduct
this research study will be explained.

To comprehensively address the research question stated in Sec-
tion 2; evaluate how the surface quality of a bicycle lane may be
assessed using motion sensors under variable speed conditions, the
following approach was implemented. First, a literature review was
undertaken to establish the hardware needed for road roughness
assessment. Possible sensor placement locations were also investi-
gated. Second, research publications were examined to assess how
data from the chosen sensor could be acquired. The sensor data
was then collected, pre-processed, and analyzed to investigate how
different factors influence the vibration of roads. Two strategies
were selected and implemented to test the feasibility of creating
thresholds for various surface types; the highest and lowest vertical
acceleration values and the IRI method. More details on the data
collection, processing, and acquisition process can be found on the
flowchart illustrated in Figure 2. Finally, the results were studied,
and a strategy for minimizing the impacts of speed conditions when
measuring road roughness was proposed.

5.1 Sensor placement and configuration
As stated in the introduction, bicycles with integrated sensors could
generate new opportunities in the automobile industry. Through
crowdsensing tools; where many devices collectively share data and
extract information, user experience and safety while cycling can
be increased. This section will describe the hardware selected for
this project, the ideal sensor placement, and its configuration.

Crowdsensing tools can allow for real-time road quality monitor-
ing. Nevertheless, they have some limitations. One of the biggest
bottlenecks of crowdsensing instruments is that they are energy-
constrained [13]. When using Bluetooth to communicate with other
devices, battery consumption levels increase. On the contrary, when
using Bluetooth Low Energy (BLE); a wireless personal area net-
work that runs independently of classic Bluetooth, devices can run
powered by batteries for more extended periods. The reason is that
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Fig. 2. Flowchart: Data collection, pre-processing and analysis

BLE devices are constantly in sleep mode, except when a connection
is initiated [13]. Therefore, BLE devices can be preferred for road
monitoring systems.

Out of all the BLE devices with built-in accelerometers available in
the market, the Nordic Thingy:52 has been the one chosen for this
project. It is compact, counts with a rechargeable 1440 mAh battery,
and allows data collection from multiple sensors (environmental,
motion, sound, etc.). The multi-sensor functionality might allow for
the development of alternative sensing platforms, capable of im-
proving the connected vehicles ecosystem of the future. To connect
this sensor with a smartphone, a bridge has to be built. This can
be done by developing a BLE scanner on a smartphone application
that allows users to connect to a BLE device. Once connected, the
sensor can be configured using the ‘thingylib’ library 1.

In research, the most common sensor placements in bicycles are in
the handlebar and the seat [15]. These locations are contact points
between the cyclists and the bike, which can be used to measure
ride comfort estimation. Nevertheless, this research paper aims to
measure bike-lane surface quality by detecting the input vibrations
from the road surface. By placing the sensors in any of the above-
mentioned arrangements, the data captured would experience a
higher degree of influence by human reflexes and bicycle suspen-
sion systems. And with the front and rear wheels being the closest
points to the ground in a bicycle, selecting them as ideal locations to
measure the input vibrations from the road surface is reasonable. A
summary of the chosen sensor configuration can be found in Table
1. Additionally, Figure 3 illustrates the final placement of the sensor,
which was firmly attached with tape to the bicycle.

1Thingy Library for Android

Table 1. Sensor Configuration

Communication medium BLE (streaming to a smartphone)
Device name Nordic Thingy:52
Sensing parameters x,y,z axis acceleration
Sampling rate ∼ 10 Hz
Positioning Front wheel

This section highlighted why BLE devices are preferred for surface
quality estimation due to their extended battery lives. In particular,
we selected the Nordic Thingy:52 sensor for this study for its multi-
sensing capabilities. To configure the sensor, the ’thingylib’ library
was utilized. To prevent the influence that riders and suspension sys-
tems may have on the acquired data, and due to its closeness to the
ground, the front wheel location was chosen for sensor positioning.

Fig. 3. Installation of the Nordic Thingy:52

5.2 Roughness Calculation
This section describes how surface roughness can be estimated using
off-the-shelf sensors. As a starting point, two strategies were chosen
for roughness estimation: the highest/lowest vertical acceleration
values and the IRI standard formula. To the writer’s knowledge, the
first strategy selected has not yet been used in research. On the
contrary, the IRI is a widely used method for roughness estimation.
The results obtained from these two techniques will show whether
we can use them to estimate surface roughness using off-the-shelf
motion sensors. To determine if they can assess roads’ quality, the
measurements must show a clear difference between good and poor
surface quality conditions.

5.2.1 Vertical acceleration. When cycling, road surface flaws cause
bicycles to experience minor vertical leaps and falls, commonly re-
ferred to as vertical accelerations. If the highest and lowest vertical
acceleration values experienced on a particular surface type are
known, it might be possible to estimate the quality of a road. To
obtain the vertical acceleration value from the Nordic Thingy:52 sen-
sor, which is more precise than a smartphone’s built-in accelerom-
eter, its tri-axis accelerometer may be used. The z-axis cannot be
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directly taken as the final vertical acceleration value due to the
tilting motion that bicycles experience during turns. Therefore, data
pre-processing is needed. All accelerometer dimensions need to
be considered for computing the vertical acceleration value while
excluding the influence of tilting. The final gravitational vertical
acceleration value can be calculated following Formula 2 proposed
by K.Zang, where 𝐴𝑥 , 𝐴𝑦 and 𝐴𝑧 represent any acceleration output
at their respective axis, and𝐴𝑥 ,𝐴𝑦 , and𝐴𝑧 the average acceleration
after calibration [21].

𝐴𝑣 = 𝐴𝑥 ∗𝐴𝑥 +𝐴𝑦 ∗𝐴𝑦 +𝐴𝑧 ∗𝐴𝑧 (2)

To calculate 𝐴𝑥 , 𝐴𝑦 , and 𝐴𝑧 , users are required to keep the bicycle
in a static stand position for five seconds before the acquisition
process. This is needed for positioning calibration, in order to create
a reference vector 𝐴𝑣 = (𝐴𝑥 , 𝐴𝑦, 𝐴𝑧).

The average highest and lowest vertical acceleration points can be
derived from the outputs of the gravitational vertical acceleration
data 𝐴𝑣 . They can be computed by determining every high and
low peak in the sensor wave at a time interval and saving them
in two separate arrays. At the end of each sampling interval, the
average of the returned two array values can be computed, resulting
in the average of the highest and lowest vertical acceleration values.
With them, a threshold of good riding conditions can be obtained.
Any road path segment with average accelerometer values outside
the higher and lower limit can be considered to have poor road
conditions (rough path).

5.2.2 International Roughness Index. The International Roughness
Index is one of the most widely used roughness indices. Even though
it was designed to be used with sensor measurements from motor-
ized vehicles, previous studies have tried to use it for bike-lane
roughness estimation. As illustrated in Formula 1, it can be calcu-
lated using the vertical acceleration value and the trip duration. To
facilitate its computation, the formula can be adjusted. The numera-
tor of the IRI standard formula is equal to the sum of the vertical
displacement in a sampling time interval, where ℎ is the longitudi-
nal offset of a road surface. The term vertical displacement refers
to the distance moved in the vertical direction from one point to
another. Therefore, the current vertical displacement is equal to the
longitudinal offset ℎ at time 𝑖 minus the offset at time 𝑖 − 1, where
the longitudinal offset is the height of a wave from the reference
axis. The final vertical displacement can then be calculated using
Formula 3 [21].∫ ∫ 𝑡𝑠𝑡𝑜𝑝

𝑡𝑠𝑡𝑎𝑟𝑡

|𝛼𝑧 | (𝑑𝑡)2 =

𝑛∑︁
𝑖=2

|ℎ𝑖 − ℎ𝑖−1 | (3)

Finally, the speed gathered at each sampling point; which can be
obtained directly from the smartphone’s GPS module, may be used
to compute the total travel distance 𝑆 . Even though it is obtained
from a smartphone, the speed has a reported accuracy ranging from
0.1 m/s to 0.2 m/s. By using Formula 4, where 𝑉 is the measured
travel speed at time 𝑡 , the total travel distance can be computed
[21]. With these parameters; travel distance and the sum of vertical

displacements in a sampling period, the IRI value can be calculated
following Formula 1.

𝑆 =

∫ 0

𝑡

𝑉𝑡𝑑𝑡 (4)

To summarize, two strategies for estimating surface roughness have
been presented in this section. The highest and lowest vertical ac-
celeration approach assesses road roughness by constructing higher
and lower vertical acceleration limits. Any value exceeding the limit
is considered part of a poor road section. On the other hand, the IRI
approach uses the sum of vertical displacements in a sampling in-
terval divided by the total travel distance to assess the roughness of
a path. In Section 7, we will analyze the efficacy of both techniques.

6 EXPERIMENTS
This sectionwill describe the three experiments conducted to answer
the questions proposed in Section 2. The first experiment attempts
to determine a strategy for roughness estimation under different
surface types using two techniques. The second experiment seeks to
determine the roughness of roads independent of different cycling
speeds. Finally, the third experiment tries to establish an appropriate
threshold of good surface conditions.

To obtain and process the sensor data, we developed a smartphone
application. In all three experiments, we used this application. The
application interface had the following components: a graph to
display the gathered accelerometer data, a button to start and stop
the data recording, a text view showing the current driving speed, a
text field to insert the desired segment length and a map view. After
collecting and preprocessing data for each road segment, the system
placed a marker on the map view with the gathered information.
You can observe more details about the test setup in Table 2.

Table 2. Test setup

Bicycle brand Swapfiets
Bicycle model Original
Bicycle weight 15kg
Tire width 47 mm
Segment length 20 m
Surface type Asphalt and tiles

6.1 Experiment 1 - Roughness calculation
A controlled experiment was conducted to evaluate how a bicycle
lane’s surface roughness may be estimated using motion sensors.
We identified roads with tile and asphalt surface types with no
visible anomalies and selected 20-meter sections. The experiment
was conducted at constant speeds ranging from 10 to 25 km/h.
Additionally, we computed the average highest and lowest vertical
acceleration values and the standard IRI values during each run.
For this experiment, three segments of each road surface type were
run (60-meter sections). The IRI was the method selected for road
roughness estimation based on the results, which we will further
discuss in the next section.
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6.2 Experiment 2 - Speed correction
This section investigates how different cycling speeds affect the
IRI formula and presents a method for evaluating surface rough-
ness independent of velocity. We used the same test setup as for
experiment 1 for this experiment. Different runs were performed at
the selected 20 meter segments, with constant speeds ranging from
10-15 km/h (slow), 15-20 km/h (medium), and 20–25 km/h (fast).
For each surface type, twenty-one runs were completed (seven per
cycling speed). During each run, the IRI value was calculated.

We believe that speed will impact road roughness based on the find-
ings of O.Wage [18]. When estimating roughness in a crowd-sensing
manner, the effects of different speeds should be minimized to effec-
tively classify the condition of road segments based on their true
roughness condition. Users should obtain the same roughness value
regardless of travel speed when travelling on fixed road sections. A
first test was conducted to prove our hypothesis. The results, which
can be observed in Section 7, confirmed that our reasonings were
correct; speed influences road roughness. Based on the results, a
second test was performed to minimize the impacts of that influence.

6.3 Experiment 3 - Roughness threshold
Knowing a road’s roughness value is only beneficial if we understand
what that value entails. As a result, thresholds must be created to
determine whether road repairs are required. In this experiment,
we will attempt to find the roughness limits for several surface
types. We selected additional segments with ideal conditions to
demonstrate that the same roughness values can be obtained from
asphalt and tile segments other than those used in experiments 1
and 2. Furthermore, we identified segments with visible anomalies
to analyze if the roughness values under poor road conditions fall
outside the determined thresholds of good surface quality.

To summarise, we identified six segments with no visible anomalies
for this experiment, and three different runs were performed on
each. In addition, runs in six other segments with visible anomalies
were also conducted. In Section 7, the findings of these two tests
can be found.

7 RESULTS
This section will describe and discuss the results of the three differ-
ent experiments performed. The findings will determine if we can
use the proposed roughness estimation method to measure road
surface quality under variable speed conditions.

7.1 Experiment 1
This first experiment aimed to find a way to estimate the roughness
of a bicycle lane using motion sensors. We used two techniques
to compute the roads’ roughness: the highest and lowest vertical
acceleration values and the IRI. The results from the test runs can
be observed in Table 3 and 4.

As illustrated, the highest vertical accelerometer value captured
during the three trials was 1,34 on an asphalt segment and 1,42 on
the tiled one. In addition, the lowest acceleration values recorded
were 0.82 and 0.67, respectively. This places the suitable riding

Table 3. Highest and lowest vertical acceleration values

Highest 𝐴𝑣 Lowest 𝐴𝑣

Asphalt Tiles Asphalt Tiles
Trial 1 1,15 1,24 0,94 0,77
Trial 2 1,34 1,42 0,88 0,67
Trial 3 1,15 1,23 0,82 0,75

condition threshold of vertical accelerometer values between (0.82,
1.34) for asphalt roads and (0.67, 1.42) for tile paths. Therefore, when
using this method, the threshold for asphalt roads is located inside
the threshold for tiled roads, leading to no clear division between
different road segments.

Table 4. IRI roughness value

IRI
Asphalt Tiles

Trial 1 0,49 0,95
Trial 2 0,42 0,75
Trial 3 0,46 0,86

On the contrary, when using the IRI method, clear divisions can be
observed between asphalt and tiled paths. Based on the results, the
threshold of good riding conditions under the IRI technique would
be (0.42, 0.49) for asphalt segments and (0.75, 0.95) for tiled paths.

In conclusion, the results of this experiment have shown that the
IRI technique is a suitable method for surface roughness estimation
using motion sensors. On the other hand, the vertical acceleration
method does not enable the creation of thresholds per surface type.
Therefore, it has been considered unsuitable for assessing the quality
of roads.

7.2 Experiment 2
This second experiment aimed to determine a roughness formula
that was not reliant on velocity. To do that, two different tests had to
be performed. In the first test, we identified the impacts of velocity
on roughness estimation. With them, a new roughness formula was
proposed. The second test attempted to demonstrate the efficacy of
the suggested speed correction algorithm.

The results of the first test, illustrated in Table 5, revealed that, in line
with our hypothesis, greater speeds resulted in lower roughness
levels. Overall, the roughness difference between slow and fast
speeds was 0.06 on asphalt paths. On the other hand, this difference
was only 0.21 on tile segments. This result also shows that the effects
of speeds increase as the road conditions worsen. Due to the lack of
surface defects on paved segments, the influence caused by different
speed conditions was relatively small. As a result, it can be observed
that the gap between slow and fast speeds widens as road conditions
deteriorate.

To decrease the impacts of different cycling speeds, we added a
constant to the numerator component of the IRI standard formula.
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Table 5. Road roughness before speed correction

Average IRI value
Speed Asphalt Tiles
Slow (10-15 km/h) 0,49 0,98
Medium (15-20 km/h) 0,45 0,81
Fast (20-25 km/h) 0,43 0,77

Adding a constant to the denominator of the formula would only in-
crease the effects of different driving speeds. Because speed was the
only variable that was not kept constant throughout the experiment,
it was multiplied by the constant to consider the difference between
distinct cycling speeds. To obtain this variable, we modified the IRI
formula with an unknown variable 𝑐 , where 𝑅 is the roughness of
road type 𝑟 ; ℎ𝑖 is the longitudinal offset of a road surface, and 𝑣 is
the velocity at an average speed of 𝑠:

𝑅𝑟 =

∑𝑛
𝑖=2 |ℎ𝑖 − ℎ𝑖−1 | + 𝑐 ∗ 𝑣𝑠

𝑆

We solved the equation for 𝑐 such that the roughness value of a tile
segment 𝑅𝑡 for different speeds remains the same.

𝑅𝑡𝑠 = 𝑅𝑡𝑚∑𝑛
𝑖=2 |ℎ𝑖 − ℎ𝑖−1 | + 𝑐 ∗ 𝑣𝑠

𝑆
=

∑𝑛
𝑖=2 |ℎ𝑖 − ℎ𝑖−1 | + 𝑐 ∗ 𝑣𝑚

𝑆
19, 6 + 𝑐 ∗ 12, 5

20
=

16, 1 + 𝑐 ∗ 17, 5
20

𝑐 = 0, 148

𝑅𝑡𝑚 = 𝑅𝑡 𝑓∑𝑛
𝑖=2 |ℎ𝑖 − ℎ𝑖−1 | + 𝑐 ∗ 𝑣𝑚

𝑆
=

∑𝑛
𝑖=2 |ℎ𝑖 − ℎ𝑖−1 | + 𝑐 ∗ 𝑣 𝑓

𝑆
16, 1 + 𝑐 ∗ 17, 5

20
=

15, 36 + 𝑐 ∗ 22, 5
20

𝑐 = 0, 7

The results showed that to minimise the effects of different driving
speeds, a constant variable between 0,148 and 0,7 could be used.
Through trial-and-error, 0,35 was the constant selected. Formula 6
displays our proposed speed correction method.

𝑅 =

∑𝑛
𝑖=2 |ℎ𝑖 − ℎ𝑖−1 | + 0, 35 ∗ ((∑𝑁

𝑖=0 𝑣𝑖 )/𝑁 )
𝑆

(5)

With this new formula, an additional test was performed. We kept
the test setup constant and conducted twenty-one additional test
runs. The results of the experiment can be found in Table 6.

Table 6. Road roughness after speed correction

Speed Average R Highest R Lowest R
Asphalt Tiles Asphalt Tiles Asphalt Tiles

Slow 0,58 0,99 0,66 1,27 0,46 0,81
Average 0,58 0,95 0,77 1,03 0,48 0,83
Fast 0,59 0,98 0,63 1,20 0,56 0,79

As illustrated, the proposed speed correction formula has proven to
be a success. The roughness value disparity between slow and fast
travel speeds has decreased significantly. In tile paths, it went from
being 0.21 before speed correction to 0.04 afterwards. Similarly, the
roughness value difference in asphalt routes was 0.06 before and
0.01 after that. Based on the results, we can create a threshold of
good riding conditions from the average of the highest and lowest
roughness values. This threshold goes between (0.77,0.46) for asphalt
paths and (1.27, 0.79) for tiled segments.

On the whole, the results of this experiment have demonstrated that
when calculating road roughness using the IRI method, the results
are affected by different cycling speeds. Road roughness values de-
crease as speed increases. A speed correction method was proposed
to minimise these impacts, which proved to be successful. More
testing should be performed to confirm that this initial threshold
can be used for alternative road segments.

7.3 Experiment 3
This third experiment aimed to obtain a threshold of good road
conditions per surface type. Two different tests were required to
obtain this. The first one, whose results can be observed in Table 7,
attempted to demonstrate that the findings from Experiment 2 are
equivalent for different road segments. As illustrated, the roughness
values captured on the new road segments selected are very similar
to those obtained in Experiment 2. The average roughness value for
asphalt segments decreased from 0,58 to 0,48. The reason for this is
that the asphalt path selected had been paved recently. Moreover, the
average roughness value on tile segments was 0,93, when previously
it had been around 0,97. Even though we picked different paths, the
difference between the obtained roughness values was minimal.
Therefore, we can conclude that regardless of the street segment, if
a road has good roughness conditions, its roughness values will be
below 0,77 for asphalt paths and below 1.27 for tile segments.

Table 7. Alternative segments with ideal conditions

Average R Highest R Lowest R
Asphalt 0,48 0,53 0,44
Tiles 0,93 1,15 0,84

Fig. 4. Defective road segments

The second test was performed on roads with visible poor quality,
illustrated in Image 4. You can find the results of this test in Table 8.
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As it can be observed, the tile segment’s average roughness value
was 1,75. In addition, the average roughness value of the asphalt
sections with visible anomalies was 0,95. It is worth noting that
there aren’t many anomalous asphalt sections in the region where
the experiments were performed. As a result, the lowest roughness
value in one of the segments was 0,70, within the acceptable qual-
ity threshold determined in the above paragraph. Therefore, even
though the experiment was performed on asphalt roads considered
to have lower quality, we can conclude that the condition of these
segments was not that deficient.

Table 8. Bad quality road segments

Average R Highest R Lowest R
Asphalt 0,95 1,33 0,70
Tiles 1,75 2,2 1,39

Based on these findings, we can conclude that roads with values
above 0,77 would be categorised as bad road conditions for asphalt
sections and above 1,27 for tile segments. Table 9 illustrates the
final threshold of good riding conditions, calculated under the speed
correction formula.

Table 9. Roughness Threshold

Threshold of good road quality
Asphalt < 0,77
Tiles < 1,27

In this section, three different experiments were conducted. Their
results established a relationship between cycling speeds and road
roughness values. They illustrated that the IRI could be a suitable
roughness estimation method if the impacts of different velocities
were reduced. After proposing a new roughness estimation tech-
nique, we obtained consistent measurements independent of speed.
With the results, a threshold of good surface quality for different sur-
face types was proposed, with upper limits of 1.27 for tile paths and
0.77 for asphalt segments. Due to time constraints, we did not eval-
uate the proposed method. By comparing the results to those from
the municipality of Enschede dataset, we could obtain a quantitative
evaluation. Similarly, we could conduct a qualitative assessment
with feedback from road maintenance inspectors. With these evalua-
tions, we expect the experiment results to improve while facilitating
the monitoring and maintenance of roads in the region.

8 DISCUSSION
This section will explain and evaluate our findings. As illustrated in
Section 7, the paper proved that the quality of non-motorised roads
can be analysed while cycling through an off-the-shelf motion sen-
sor. In Section 7.1, the IRI method was proved capable of assessing
the quality of roads. In line with the hypothesis, Section 7.2 revealed
that travel speeds influenced the roughness values calculated using
this method. Nevertheless, the results of paper [11] showed that
contrary to our findings, higher velocities led to higher roughness

values. Therefore, the influence of the factors kept stable in our
experiments (bicycle weight, tire pressure, tire width, suspension
systems, etc.) should be studied further to analyse its impact. In
addition, in Section 7.3 a threshold of good road conditions was con-
structed, which can be observed in Table 9. Due to time constraints,
we did not compare the system’s performance to other roughness
estimation techniques. However, we believe that a quantitative or
qualitative evaluation will help to improve our findings.

9 CONCLUSIONS AND FUTURE WORK
Maintaining and rehabilitating transport infrastructure has become
a prime concern for governing entities. Currently, most road mon-
itoring techniques are time-consuming and have been designed
to be utilized on motorized roads. With the extensive bicycle in-
frastructure available in the Netherlands, alternative monitoring
techniques are required. Until now, most research studies that have
attempted to build a roughness index applicable to bicycles using
smartphones. However, factors like phone orientation are a con-
strain in a crowd-sensing setting. This research paper tried to find
a way to estimate the surface quality of bicycle lanes using off-
the-shelf motion sensors under variable speed conditions. Three
experiments were conducted; roughness calculation, speed correc-
tion and roughness threshold creation.

The Nordic Thingy:52 sensor was selected and placed on the bicy-
cle’s front wheel to determine road quality. This sensor not only has
a BLE communication mechanism, enabling it to have a longer bat-
tery life, but also a multi-sensor capability. The experiments’ results
proved that our hypothesis was correct; speed influences the Inter-
national Roughness Index. Our proposed speed correction method,
designed to minimize these effects, obtained consistent roughness
measurements at different velocities. Therefore, we might use this
approach to determine road quality under variable speed conditions.
From the results, we created a threshold of good surface conditions.
All roughness values below 0.77 for asphalt paths and 1.27 for tile
segments are considered to be part of a good road segment.

In conclusion, this research paper has proven that the use of onboard
motion sensors is suitable for evaluating the quality of roads under
variable speed conditions. The findings bring us closer to the possi-
bility of an intelligent bicycle ecosystem in the future, where bicycle
use could become more reliable, safer and comfortable. In the subse-
quent research phases, we will evaluate the system and investigate
the influence of external factors like tire width and pressure.
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