Weighed and Found Legacy: Modernity Signatures for PHP Systems

Using Static Analysis

WOUTER VAN DEN BRINK, University of Twente, The Netherlands

The PHP language has undergone many changes in its syntax and grammar,
both in what features the language has to offer and in the distribution of
language features used by programmers in their projects. We present a novel
method of using grammar usage statistics to calculate a modernity signature
for a PHP system, so that we can determine its age. The system will aid
developers in choosing whether or not to execute or use a PHP system,
without having to perform an extensive inspection.

Additional Key Words and Phrases: PHP, static analysis, weighed attribute
grammars

1 INTRODUCTION

In its long history and many versions, the PHP language has un-
dergone many changes [5]. One of the first versions of PHP used a
Perl-like syntax in HTML comments. The rewrite of the language
by Andi Gutmans and Zeev Suraski into an extensible language
made it possible for other developers to add new functionality to the
language, either by modifying its syntax or by adding new functions
and data types.

The language is still evolving nowadays, with the most recent
development being the release of PHP 8.1 in November 2021. This
version adds many major additions to the syntax, e.g. enumerations
[4] and intersection types [1]. These syntax modifications encourage
PHP programmers to use new programming paradigms in their code.

Other modifications introduced by new language versions do not
modify the syntax, but rather modify the available functions and
their signatures. For example, PHP 8.0 introduced the str_con-
tains(), str_starts_with(), and str_ends_with() functions.
And there exists a continuing migration from resource types to
standard class objects, further elaborated by Karunaratne [11].

1.1 PHP Language Levels

For every PHP system, we can define its language level as the min-
imum major PHP version required to be able to run the code in
the system. For example, version 9.11.0 of the Laravel framework
requires PHP version 8.0.2 or higher. The language level is then
PHP 8.0. Today, information about the minimum required PHP
version and other requirements imposed by a PHP system is usu-
ally contained in a composer. json file, an artifact produced by the
Composer package manager’.

The PHP language level indicated in the composer . json file by
means of the minimum required PHP version does what it says
on the tin: it tells other developers wishing to use a system what

!https://getcomposer.org/

TScIT 37, July 8, 2022, Enschede, The Netherlands

© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

version of PHP they should install to run the code. However, it
does not tell much about the actual modernity, or rather, the age,
of the code base. While PHP regularly has backwards incompatible
changes between major versions, much legacy PHP code will still
run without problems in later PHP versions, or will do so with few
minor modifications.

As aresult, it is possible to advertise a code base as being com-
patible with a recent version of PHP, thereby implying that the
system has been recently maintained, while most of the code is in
fact very old and might contain several bugs and security issues. The
actual modernity of the code is thus invisible to users of the system
without performing extensive analysis. Thus, we wish to reliably
determine the modernity of a PHP code base without needing to
execute the code, and without extensive human inspection.

1.2 Static and Dynamic Analysis

Analyzing software without executing it is called static analysis [3].
Numerous static analysis tools for PHP have been developed and
are used today, such as the code inspections offered by PhpStorm
[10], PHP AiR [7, 9], and the framework described in [6]. On the
other end of the spectrum, dynamic analysis refers to analyzing
software while it is being executed [3]. Several dynamic analysis
solutions exist for PHP [13, 14]. Note the use of the word spectrum
here, as most tools, such as the ones cited, in fact employ a hybrid
form of static and dynamic analysis to achieve their goals.

Most PHP code analysis tools have a strong focus on standards
enforcing and security. The standards enforcing tools notify the user
of problems in a code base, like formatting errors or code smells,
and some might even propose a solution or apply it autonomously.
Tools focused on security either work in a similar way or apply
patches or extra logic to code while it is being executed. All these
tools have in common that they rely on pattern matching to find
points that need attention.

1.3 Research Question

The goal of this paper is to investigate the value of static analysis,
particularly grammar usage statistics, in determining the age of a
PHP system. More precisely, we will give an answer to the following
research question:

To what extent can we use grammar usage statistics to reliably
determine the modernity of a PHP system?

We do this by answering the following sub-questions:

RQ1 How can we define a modernity signature of a PHP system
using grammar usage statistics?

RQ2 What influences the modernity signature defined in RQ1?

RQ3 Can we use the modernity signature of an unknown PHP
system to predict its age?

By answering RQ1, we create a novel method of applying gram-
mar usage statistics to infer the modernity of a PHP system. The

https://getcomposer.org/

TScIT 37, July 8, 2022, Enschede, The Netherlands

© Enumerations are only allowed since PHP 8.1
O Arrow function syntax is only allowed since PHP 7.4
O Arrow function syntax is only allowed since PHP 7.4

Fig. 1. PhpStorm warns the developer that features are used which are not
supported by PHP 7.1.

practice of establishing and analyzing such statistics is further elab-
orated in Section 3. Then, by answering RQ2, we determine to what
extent the signature we design is biased, e.g. by the author or the
functionality of the code. Finally, with RQ3 we test the signature in
the field by applying it to an unknown PHP system with a known
age to be able to discuss the value of the proposed signature.

2 RELATED WORK

Analysis of PHP code bases and the language features being used
has been performed before, for example by Hills et al. [8]. In this
study, the researchers have performed statistical analysis on feature
usage in various open source projects. Various interesting insights
and conclusions come forward, but no comments are made on the
modernity, or lack thereof, of the code in the corpus.

Current efforts in analyzing PHP systems to determine its age
are mostly focused on determining the language level in terms of
compatibility. For example, PhpStorm features a static analysis tool
to determine whether language features are used which are not
supported by the minimum version specified by the developer (see
for example Figure 1).

Another example existing solution is PHP Compatinfo [12], a
tool which determines the minimum required PHP version and
the required installed language extensions for a given PHP system.
The tool is quite extensive and has a long history, and it gives us
more information on the required PHP version than PhpStorm does.
However, it does not give information on the age of the code base it
analyses.

3 METHODOLOGY

The modernity signature will use grammar usage statistics to derive
the modernity of a code base. Consider, for example, the follow-
ing grammar definition, which defines the grammar for attributed
statements in the PHP language.

attributed _statement:
function_declaration_statement
| class_declaration_statement
| trait_declaration_statement
| interface_declaration_statement
| enum_declaration_statement;

The grammar defines an attributed statement to be the declaration
of either a function, a class, a trait, an interface or an enumeration.
In other words, there are five possibilities to choose from when
creating an attributed_statement in this grammar. By analyzing
a PHP system, we can add annotations to the grammar describing
how often the different paths are taken:

attributed_statement:
function_declaration_statement [33%]

W. van den Brink

| class_declaration_statement [48%]

| trait_declaration_statement [1%]

| interface_declaration_statement [11%]
| enum_declaration_statement [7%];

In this example, enumerations are chosen in 7% of the cases, but
enumerations were introduced in PHP 8.1.0. Thus, we know that this
code base will require at least language level 8.1. By adding metadata
on the language level associated with the different paths in the
grammar, and by adding usage statistics to the different possibilities
offered by the grammar, we can infer the modernity signature of a
PHP code base.

In the following subsections, we will elaborate the various steps
taken to perform the research.

3.1 Gathering a Corpus of PHP Systems

First, various PHP systems have been collected to use in the rest
of the research. We have used various open source projects to per-
form the research. Previous empirical analysis of PHP systems have
resulted in many available data sets of open source PHP projects,
but they all offer one specific version of the system, as the accom-
panying studies did not investigate the modernity of systems in
general. We could not find existing, freely available data sets of PHP
systems, including their historical versions. Thus, for this research,
a new corpus had to be assembled, in which we collected historical
versions of various open source PHP systems. Specifically, we have
gathered historical versions of the open source projects listed in
Table 1 and Table 2. The first collection has been used to develop
the signature, while the second collection has been used to verify
the signature.

Table 1. Open source projects used to train the signature.

Project Home page Versions
CakePHP cakephp.org 29
Joomla! joomla.org 18
Laravel laravel.com 16
MediaWiki mediawiki.org 36
phpMyAdmin phpmyadmin.net 22
Symfony symfony.com 32
WordPress wordpress.org 44

Initially, the goal was to gather, for each project, at least one
historical version for every PHP language level for which the au-
thors have released a version. However, it quickly became apparent
that the minimum PHP version, and thus the language level, was
not published for many historical versions of the various projects.
Fortunately, all projects (more or less) adhered to the Semantic
Versioning specification [15], and we chose to collect every minor
release instead.

3.2 Gathering Grammar Usage Statistics

Next, we have written a library to infer grammar usage statistics
of a given PHP system. Previously, PHP AiR[7, 9] has been used to
analyze PHP systems. The current version of the underlying parser

https://cakephp.org/
https://www.joomla.org/
https://laravel.com/
https://www.mediawiki.org/
https://www.phpmyadmin.net/
https://symfony.com/
https://wordpress.org/

Weighed and Found Legacy: Modernity Signatures for PHP Systems Using Static Analysis

Table 2. Open source projects used to test the signature.

Project Home page Versions
Codelgniter codeigniter.com 8
Guzzle HTTP guzzlephp.org 37
Monolog seldaek.github.io/monolog 36
PHPUnit phpunit.de 57

of PHP AiR? only supports PHP 5.2 to PHP 7.2, but we wished to
parse and analyze code bases using newer PHP versions as well.
The language of the library is PHP, using the PHP parsing library>
on which the parser for PHP AiR is based.

3.3 Developing and Calculating a Modernity Signature

Having collected grammar usage statistics of the systems in the
corpus, we have developed the modernity signature. The signature
takes the form of an n-tuple, where n is the amount of PHP language
levels the project considers — currently 134. Every element of the
tuple is then a quantitative representation of the extent to which
the analyzed code base looks like code written for this language
level.

The modernity signature was then calculated for every system
in the corpus. Based on the results, and the age of the systems in
the corpus, the signature was further improved until satisfactory
results were achieved. The signature underwent multiple changes
during the research. The nature and reasoning of these changes is
further elaborated in Section 4.

3.4 Testing the Modernity Signature

Finally, after the modernity signature was developed and calculated
for the various systems, we have calculated the modernity signature
for projects that were not used in developing the signature, and
for which the age is known, so that we can validate the algorithm.
For this testing phase, we have used historical versions of the open
source projects listed in Table 2. These historical versions were se-
lected and collected using the same method that has been described
in Section 3.1.

4 SIGNATURE DESIGN

In this section, we discuss the nature of and reasoning behind the
design of the modernity signature.

4.1 Requirements

First, the modernity signature has to be calculated fairly quickly.
This is a difficult requirement to satisfy, as parsing is generally a
computationally expensive task, and an important component of the
signature. The scanner used by the parser library used in this project
is PHP’s native scanner, which in turn is generated using re2c
[2, 17]. The performance of this scanner is quite adequate, because
it is written in C. Unfortunately, the parser, which transforms the
token stream generated by the scanner into an abstract syntax tree

Zhttps://github.com/cwi-swat/PHP-Parser
Shttps://github.com/nikic/PHP-Parser
4The library supports PHP versions 5.2 - 5.6, 7.0 — 7.4, and 8.0 — 8.2.

TSclT 37, July 8, 2022, Enschede, The Netherlands

(AST), is written in PHP, so we cannot expect impressive parsing
speed.

In order to satisfy the performance requirement, it was thus of the
utmost importance that the performance quirks and properties of
PHP were considered during every step of the development process.
An important tool that was used to find and mitigate performance
issues in the library is Xdebug?®, along with PhpStorm’s debugging
tools.

Next, the signature has to produce satisfactory results. The signa-
ture takes the form of an n-tuple, with one value for every language
level considered by the library, ordered by the age of the level. Every
element of the tuple should then represent how much the analyzed
code "looks like" code written for that language level. It then follows
that the signature should ideally skew more to the left for newer
code. Here, skewing to the left means that elements of the tuple
representing newer language levels have higher values than others.

Finally, any bias in the signature must be eliminated. The only
dependent variable of the signature must be the age of the code
base. This is another difficult requirement to satisfy, as naturally,
two pieces of source code can differ in their appearance for other
reasons than its age. Intuitively, factors like the code’s author and
intended functionality will influence the distribution of language
feature usage, and thus we must ensure that this does not influence
the signature significantly.

4.2 Implementation

In this subsection, the eventual method by which the modernity
signature is calculated is described. The various choices in the im-
plementation are motivated when needed. The implementation is
published as open source software licensed under the MIT license®.

To determine the modernity signature of a given directory, the
analyzer starts by generating a list of files that need to be analyzed.
This is done by recursively traversing the directory, and adding any
files with . php or .php5 as extension to an array.

Then, for every file in the array, the modernity signature of that
file is analyzed. First, the PHP parser is invoked for the file, which
generates an abstract syntax tree (AST) of the file. Then, multiple
node visitors traverse the tree:

e First, a visitor included in the PHP parser library adds an
attribute to every node referencing its parent node. The li-
brary does not do this by default, but it is needed for the next
visitor.

o Then, a visitor developed for this project determines the min-

imum and maximum language level for every node in the

tree.

Finally, another visitor calculates the modernity signature of

the AST. This is done by generating modernity signatures for

every node, then reducing these many signatures to a single
signature using weighted sums.

The last two visitors are further explained in the following para-
graphs.

Shttps://xdebug.org/
®https://github.com/WoutervdBrink/PHP-Modernity-Signature

https://www.codeigniter.com/
https://guzzlephp.org/
https://seldaek.github.io/monolog/
https://phpunit.de/
https://github.com/cwi-swat/PHP-Parser
https://github.com/nikic/PHP-Parser
https://xdebug.org/
https://github.com/WoutervdBrink/PHP-Modernity-Signature

TScIT 37, July 8, 2022, Enschede, The Netherlands

4.2.1 Language Level Determination. The visitor stores the mini-
mum and maximum language level in which the node, in its current
form, is supported in attributes of the AST node. Determining these
language levels is generally straightforward. In the trivial case, the
mere presence of a certain type of AST node is an indicator of the
minimum or maximum PHP version. Enumerations were introduced
in PHP 8.1, so the minimum and maximum language level of an Enum
AST node is by definition 8.1 and 8.2, respectively. For some node
types, however, determining the language levels of a node depend
on the properties of the node. These cases range from simple cases,
where new properties were introduced in later versions, to very
specific changes in the grammar, like syntactically preventing octal
numbers from overflowing”.

4.2.2 Modernity Signature Reduction. Every node in the AST has
zero or more sub nodes. For example, a PropertyFetch node, rep-
resenting the retrieval of the value of a property of a class instance.
The node has two sub nodes, namely var and name. The first sub
node represents the class instance for which the property is re-
trieved, while the other represents the name of the property. We
know, from the type declaration of the sub node properties in the
parser’s source code, that var must always be an expression, but
that name can either be an identifier or an expression.

For every type of AST node, the modernity signature visitor keeps
track of how often a certain type of sub node is chosen. For the
property fetch example, this would mean that the visitor keeps track
how often the source code uses an identifier or an expression as the
property name. Furthermore, for every language level, the visitor
keeps track how often a sub node is encountered which requires at
least this language level to be valid syntax. Thus, the entry for the
PropertyFetch node in the visitor’s memory could be represented
as shown in Table 3.

Sub node Type Language levels

var Expression (6) (0,2,3,1)
Identifier (4) (0,1,3,0)
name .
Expression (2) (2,0,0,0)

Table 3. Example sub node information of the PropertyFetch AST node
type. Four language levels are considered for brevity.

In an earlier version of the algorithm, we not only incremented
the counter for the minimum language level required for the node
to be valid syntax, but also for every language level in which the
node was still valid syntax. For a node with minimum and maxi-
mum language levels of 5.2 and 5.5, this would mean incrementing
the counter for language levels 5.2, 5.3, 5.4, and 5.5. This proved
to be counterproductive in the training phase, because PHP his-
torically almost never introduces backwards incompatible changes
in its grammar. Consequently, in most cases, the counter for every
language level was incremented, which heavily cluttered the tuple.

For a similar reason, the calculator ignores nodes for which the
minimum language version is the oldest language version supported

"https://wiki.php.net/rfc/octal.overload-checking

W. van den Brink

by the library. During development it became clear that most node
types have been supported since PHP 5.2. This meant that the value
for this language level became very high in comparison to the other
values in the signature, which made inspecting the signatures dif-
ficult. When the calculator encounters a node with minimum lan-
guage level 5.2, it acts as if the node is not present in the AST.

After traversing the entire tree, the visitor has information on
the distribution of sub node types and their respective language
levels, as long as they are used in the source file. Then, the tuples
belonging to every sub node type are reduced to a single tuple. This
is an iterative process of applying weighted sums of normalized
tuples. A normalized tuple is the tuple for which every value is
scaled, such that the maximum value is exactly 1. For example,
normalizing (0, 1, 3, 0) results in the tuple (0,1/3, 1, 0).

First, the weighted sum is calculated for every sub node. The
weight of the tuples is the distribution of its occurrence. In the
example shown in Table 3, the weight for a property name as an
identifier and as an expression would be /s and 2/s, respectively.
Thus, the weighted sum for the property name sub node would be
calculated as follows:

46+ (0,1/5,1,0)
+2/6-(1,0,0,0)
=("/52/,%/50)

Next, the weighted sum is calculated for every node type. Here,
the weight of the tuples is equal to !/n, where n is the amount
of sub nodes allowed by the AST specification. Continuing with
the PropertyFetch example, the weights would be equal to 1/, as
this node has two sub nodes. Furthermore, the tuples are again
normalized before calculating the weighted sum.

Finally, the weighted sum is calculated for the entire AST. Now,
the weight of the tuples is again equal to the distribution of the
occurrence of the node type. If the visitor encountered 74 other
nodes while traversing the tree, then the weight of the tuple for the
property fetch would be equal to ¢/s0. Again, in this weighted sum,
the tuples are normalized before the weighted sum is calculated.

So far, we have described how the library calculates the modernity
signature for a single file, which is a normalized tuple calculated with
a weighted sum of the tuples of the various (sub) nodes. To calculate
the signature for an entire directory, i.e. an entire PHP system, again
the weighted sum of the normalized tuples is calculated. Now, the
weight of the tuple is the ratio of file size to the sum of file sizes.
For example, the tuple of a file of 500 bytes in a directory with 5000
bytes of PHP code will be granted a weight of % in the sum.

Note that this method of calculating the weighted sums is mostly
based on intuition, rather than for example existing statistical meth-
ods or previous research. Fortunately, as will be shown in Section 5,
this method shows promising results. Other methods of calculating
the weighted sum are left as future work.

5 RESULTS

After the signature calculator was designed and implemented ac-
cording to the specification described in the previous section, we
could let it calculate modernity signatures for the software listed in

https://wiki.php.net/rfc/octal.overload-checking

Weighed and Found Legacy: Modernity Signatures for PHP Systems Using Static Analysis

Table 1 and Table 2. The first list of software was used to design and
implement the algorithm. As a rule, we made no further changes to
the design or the code when we started calculating the signatures
for the second list. In this section, we present our findings. In the
next sections, the findings will be further discussed.

As the graphic representations of the results will show, the moder-
nity signatures for two different versions of the same software show
little change when their release dates are close together. For this
reason, but also simply because a tabular representation of the data
would be too large for this report, we have chosen to represent
a collection of modernity signatures as a triangular surface plot.
Here, the X-axis represents the various language levels, the Y-axis
shows the release date, and the Z-axis the values in the modernity
signature.

5.1 Training Phase

First, we present the modernity signatures calculated in the training
phase, grouped by project in Figure 2. The signatures are all heavily
skewed to the right, independent of the release date of the software.
This is probably due to the fact that, as explained in Section 4, most
node types in the PHP language have been supported since the
earliest versions, no matter their form.

To compensate for this, we also present the signatures without the
values representing these older language levels in Figure 3. Finally,
in Figure 4, we present all modernity signatures, ordered by release
date. Again, the results are shown with and without the earliest
language levels included.

5.2 Testing Phase

Next, we show the signatures calculated in the testing phase. In
Figure 5, the results are first shown grouped by project. The values
corresponding to the earliest language levels have been omitted.
Finally, in Figure 6, we show the results for all projects in the test
phase, ordered by release date. Here, the results are displayed with
and without the values for the earliest language levels.

6 DISCUSSION
6.1 Bias

In Figures 3 and 5, we see different patterns in how the signature
changes over time. An unbiased signature would have a similar
shape for two different systems developed in the same year, but
unfortunately, this is not the case. We can thus conclude that there
exists a slight bias in the signature. This can be explained by the
nature of the projects in the corpus. We remark that different project
authors have different strategies for maintaining their products.
Compare, for example, the charts for Laravel and Joomla!, where it
becomes apparent that the Joomla! team seems to strongly prefer
supporting as much PHP versions as possible, while newer Laravel
versions use newer PHP features.

This change in adaptation of newer language levels is probably
due to the intended user base of the software. The average Joomla!
user will use Joomla! on a shared web hosting environment, where
they do not control the installed PHP version. Unfortunately, older
versions are still actively in use today [16], and the Joomla! devel-
opers will have to account for this. On the other hand, Laravel is

TSclT 37, July 8, 2022, Enschede, The Netherlands

mostly used by developers with full access to the server on which
their project is deployed, and will thus prefer to use the latest stable
PHP version and the features it introduces.

6.2 Age Prediction

For most projects in the corpus, there is a correlation between the
release date of a PHP system and the shape of the modernity signa-
ture. The key exception is Joomla!, but starting from the versions
released after 2021, the pattern appears as well. The exact nature of
the correlation differs significantly between projects. Laravel, for
example, starts showing left-skewed signatures as early as 2015,
while WordPress only starts behaving like this in 2020. We conclude
that the signature is able to determine the relative age of a PHP
system, but in its current form is not able to determine an absolute
release date.

7 CONCLUSION

In this section, we answer the sub-questions set out in Section 1.3,
so that we can answer the research question introduced in the same
subsection.

We have given an answer to RQ1 in Section 4. Our signature uses
an AST visitor to determine the minimum language level required
for the various nodes in the AST. Then, statistical analysis of the
language level distribution for the various node types is applied to
derive a signature using weighted sums.

Next, we answer RQ2 in Section 6.1. There is some bias in the
signature, which is due to the nature of the various software sys-
tems we used to train and test the signature. We present various
opportunities for future work in Section 8, which can eliminate this
bias and improve the value of the signature.

Finally, RQ3 is answered in Section 6.2. The signature is able to
determine the relative age of a system, i.e. which of two versions of
the same software are newer, but not the absolute age.

In conclusion, we have shown that it is plausible that we can
use grammar usage statistics to determine the modernity of a PHP
system. There is room for improvement so that we will be able to
determine the absolute, rather than relative, age of a system.

8 FUTURE WORK
8.1 Phabricator

In the original proposal for this research, we also intended to use
Phabricator® in the testing phase. Unfortunately, it became apparent
that Phabricator does not have a versioning scheme, but rather
recommends the user to download and run whatever is currently in
the main branch of the Git repository. The testing and validation
of the signature could be expanded with the inclusion of various
snapshots of the repository.

8.2 Weighted Sum and Signature Reduction Alternatives

Currently, as described in Section 4, we use weighted sums with
various weight factors to reduce the language level tuples to a single
signature. This calculation method was based mostly on intuition,

8https://www.phacility.com/phabricator/

https://www.phacility.com/phabricator/

TScIT 37, July 8, 2022, Enschede, The Netherlands

(d) phpMyAdmin

(b) Joomla!

(e) Symfony

W. van den Brink

(f) WordPress

Fig. 2. Modernity signatures calculated in the testing phase, grouped by project. See also Table 2.

rather than statistical methods or previous research. One could fur-
ther research various alternative methods of reducing the language
level tuples in order to improve the signature.

REFERENCES
[1] George Peter Banyard. 2021. PHP RFC: Pure intersection types. Technical Report.

[2

B3

[4
[5

G

7

]

]

_ =

]

—

The PHP Group. Retrieved May 3, 2022 from https://wiki.php.net/rfc/pure-
intersection-types

Peter Bumbulis and Donald D Cowan. 1993. RE2C: A more versatile scanner
generator. ACM Letters on Programming Languages and Systems (LOPLAS) 2, 1-4
(1993), 70-84. https://doi.org/10.1145/176454.176487

Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012. A
survey on automated dynamic malware-analysis techniques and tools. Comput.
Surveys 44 (2 2012), 1-42. Issue 2. https://doi.org/10.1145/2089125.2089126
Larry Garfield and Ilija Tovilo. 2020. PHP RFC: Enumerations. Technical Report. The
PHP Group. Retrieved May 3, 2022 from https://wiki.php.net/rfc/enumerations
The PHP Documentation Group. 2022. PHP: History of PHP. Retrieved May 3,
2022 from https://www.php.net/manual/en/history.php.php

David Hauzar and Jan Kofron. 2015. Framework for Static Analysis of PHP Ap-
plications. In 29th European Conference on Object-Oriented Programming (ECOOP
2015), John Tang Boyland (Ed.), Vol. 37. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 689-711. https://doi.org/10.4230/LIPIcs.ECOOP.
2015.689 Keywords: Static analysis, abstract interpretation, dynamic languages,
PHP, security.

Mark Hills and Paul Klint. 2014. PHP AiR: Analyzing PHP systems with Ras-
cal. In 2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, Antwerp, Belgium,
454-457. https://doi.org/10.1109/CSMR-WCRE.2014.6747217

[8] Mark Hills, Paul Klint, and Jurgen Vinju. 2013. An Empirical Study of PHP Fea-

[9]

[10]

(1]

[12

(13

[14

[15
[16

(17

]

ture Usage: A Static Analysis Perspective. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis (ISSTA 2013). Association for Comput-

ing Machinery, New York, NY, USA, 325—-335. https://doi.org/10.1145/2483760.
2483786

Mark Hills, Paul Klint, and Jurgen J. Vinju. 2017. Enabling PHP software engi-
neering research in Rascal. Science of Computer Programming 134 (2 2017), 37-46.
https://doi.org/10.1016/]J.SCICO.2016.05.003

JetBrains s.r.o. 2022. Code inspections | PhpStorm. Retrieved May 4, 2022
from https://www.jetbrains.com/help/phpstorm/code-inspection.html#access-
inspections-and-settings

Ayesh Karunaratne. 2020. PHP’s resource to object transformation. PHP:Watch.
Retrieved May 3, 2022 from https://php.watch/articles/resource-object

Laurent Laville. 2022. PHP Compatinfo Home Page. Retrieved June 25, 2022
from https://llaville.github.io/php-compatinfo/6.x/

Ettore Merlo, Dominic Letarte, and Giuliano Antoniol. 2007. Automated protection
of php applications against SQL-injection attacks. In Proceedings of the European
Conference on Software Maintenance and Reengineering, CSMR. IEEE Computer
Society, Amsterdam, The Netherlands, 191-200. https://doi.org/10.1109/CSMR.
2007.16

Toannis Papagiannis, Matteo Migliavacca, and Peter Pietzuch. 2011. PHP Aspis:
Using Partial Taint Tracking to Protect Against Injection Attacks. In 2nd USENIX
Conference on Web Application Development (WebApps 11). USENIX Association,
Portland, Oregon, 13-24. https://www.usenix.org/conference/webapps11/php-
aspis-using-partial-taint-tracking- protect-against-injection-attacks

Tom Preston-Werner. 2013. Semantic Versioning 2.0.0. Retrieved June 25, 2022
from https://semver.org/spec/v2.0.0.html

Brent Roose. 2022. PHP Version Stats: July, 2022. Retrieved July 1, 2022 from
https://stitcher.io/blog/php-version-stats-july-2022

Ulya Trofimovich. 2020. RE2C: A lexer generator based on lookahead-TDFA.
Software Impacts 6 (2020), 100027. https://doi.org/10.1016/j.simpa.2020.100027

https://wiki.php.net/rfc/pure-intersection-types
https://wiki.php.net/rfc/pure-intersection-types
https://doi.org/10.1145/176454.176487
https://doi.org/10.1145/2089125.2089126
https://wiki.php.net/rfc/enumerations
https://www.php.net/manual/en/history.php.php
https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
https://doi.org/10.1109/CSMR-WCRE.2014.6747217
https://doi.org/10.1145/2483760.2483786
https://doi.org/10.1145/2483760.2483786
https://doi.org/10.1016/J.SCICO.2016.05.003
https://www.jetbrains.com/help/phpstorm/code-inspection.html#access-inspections-and-settings
https://www.jetbrains.com/help/phpstorm/code-inspection.html#access-inspections-and-settings
https://php.watch/articles/resource-object
https://llaville.github.io/php-compatinfo/6.x/
https://doi.org/10.1109/CSMR.2007.16
https://doi.org/10.1109/CSMR.2007.16
https://www.usenix.org/conference/webapps11/php-aspis-using-partial-taint-tracking-protect-against-injection-attacks
https://www.usenix.org/conference/webapps11/php-aspis-using-partial-taint-tracking-protect-against-injection-attacks
https://semver.org/spec/v2.0.0.html
https://stitcher.io/blog/php-version-stats-july-2022
https://doi.org/10.1016/j.simpa.2020.100027

TSclT 37, July 8, 2022, Enschede, The Netherlands

Weighed and Found Legacy: Modernity Signatures for PHP Systems Using Static Analysis

(a) CakePHP (b) Joomla! (c) Laravel

(d) phpMyAdmin (e) Symfony (f) WordPress

Fig. 3. Modernity signatures calculated in the training phase, grouped by project, without signature values for the earliest language levels. See also Table 1.

Value

(a) With earliest language levels (b) Without earliest language levels

Fig. 4. Modernity signatures calculated in the training phase, with and without signature values for the earliest language levels.

W. van den Brink

TScIT 37, July 8, 2022, Enschede, The Netherlands

(b) GuzzleHTTP

Value

(d) PHP Unit

(c) Monolog

Fig. 5. Modernity signatures calculated in the testing phase, grouped by project, without signature values for the earliest language levels

Value

o
2015 °
o

8.1

(b) Without earliest language levels

(a) With earliest language levels

Fig. 6. Modernity signatures calculated in the testing phase, with and without signature values for the earliest language levels.

	Abstract
	1 Introduction
	1.1 PHP Language Levels
	1.2 Static and Dynamic Analysis
	1.3 Research Question

	2 Related Work
	3 Methodology
	3.1 Gathering a Corpus of PHP Systems
	3.2 Gathering Grammar Usage Statistics
	3.3 Developing and Calculating a Modernity Signature
	3.4 Testing the Modernity Signature

	4 Signature Design
	4.1 Requirements
	4.2 Implementation

	5 Results
	5.1 Training Phase
	5.2 Testing Phase

	6 Discussion
	6.1 Bias
	6.2 Age Prediction

	7 Conclusion
	8 Future Work
	8.1 Phabricator
	8.2 Weighted Sum and Signature Reduction Alternatives

	References

