
Edge Server Placement on Traffic Lights for Smart City Services
THEODOR-FABIAN NICULAE, University of Twente, The Netherlands
t.f.niculae@student.utwente.nl

Cities of the future will be smarter, with services being driven by citizens

and adapted dynamically with a goal of ensuring higher efficiency and

safety. Towards this vision, Internet-of-Things (IoT) collect data from the

city to provide more information about the context and operate more smartly.

However, processing the data generated by these sensors may not take place

on the sensors due to their resource limitations. Hence, there is a need for

edge computing infrastructure. As a densely deployed city infrastructure,

street poles can be a promising candidate. In this study, we consider such

a system and design an algorithm to decide where the edge servers should

be placed to minimise costs without affecting latency and processing time

of the edge servers. Using the data on traffic light locations for Enschede,

we analyse the performance of our algorithm in comparison to a simple

baseline, which places the edge servers on randomly-selected street poles.

Our numerical analysis shows that total costs and number of edge servers

deployed can decrease significantly compared to the baseline.

Additional Key Words and Phrases: Edge computing, internet of things, edge

servers, traffic lights.

1 INTRODUCTION
From homes to transportation, we witness that services become

smarter, collect data from the sensors deployed in an area, and in-

terpret data to improve the efficiency and smartness of services. For

example, a home resident can turn on the lights remotely through

an application, control the doorbell camera, or smart locks. Alter-

natively, devices can be controlled automatically without a human

in the loop by processing the collected sensor data and acting ac-

cordingly [19]. Moreover, the majority of the devices and services

companies provide are connected to the Internet to process the

information collected by the device. Some examples include tags

that can track the location in which the item is located and warn

the owner in case of a suspicion of being lost.

To process the collected data from all interconnected smart

objects, a computation infrastructure is needed. Typically, cloud

servers that process the collected data are thousands of miles away,

resulting in long round trip times compared to a case with pro-

cessing near the sensors. Smart Lamps and traffic lights constitute

the densest electrically operated public infrastructure in urban ar-

eas [14] and could be a promising option for deploying edge servers

to minimize the costs due to their large number and already-made

placements. Since these city infrastructures are close to the end

users where the sensors are deployed, the resulting latency is ex-

pected to be lower compared to the case where the processing is

performed on a remote cloud. This means that users can get almost

instant responses having low latency for actions such as decisions

that autonomous cars have to make, traffic monitoring including

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

possible incidents alerts, simple connections of mobile phones in

the covered area and sensors that may be on the poles. For such

smart city services, edge computing can offer benefits over cloud

computing, which is meant to process data that is not time-driven.

Besides, edge computing is favoured for remote locations without

stable connectivity to a centralized location [9].

An earlier study proposed street lamps as a platform for com-

puting [14]. Inspired by that study, this paper aims to understand

whether existing traffic lamp infrastructure suffices to offer the

needed edge computing capacity and where the edge servers should

be deployed on these traffic lamps to meet the latency requirements

of the applications. As a case study, we focus on Enschede city and

use the original data for the traffic lights. We developed an algo-

rithm to determine where edge servers should be placed on these

traffic lights by considering various factors, such as the number of

users and sensors, transmission rates, and computing capacity of

the edge servers. Different from the prior work, we consider the

multitude of data sent at a point in time and latency of the appli-

cations. These factors affect the placement of the edge servers and

are important when considering low latency applications that need

such fast responses.

Given the problem statement, we will address the following re-

search questions in this paper:

• Where could the edge servers be placed for good spatial cov-

erage?

• What would be the average latency for the users and sensors

assigned to a pole?

• Where should the edge servers be placed on traffic lamp

infrastructure within a city such that the coverage, processing

power of the edge servers, and average latency are acceptable

for low-latency applications?

To address the above-listed questions, we will first model an

edge computing environment and devise a simple algorithm to

determine where the edge servers should be deployed by defining

a simple scoring scheme for each traffic light. The score is based

on the TOPSIS [13] method for multiple criteria decision making.

The core idea behind this method is assessing different traffic lights

properties that have different scalar values by computing shortest

distance to the positive ideal solution and the longest distance from

the negative ideal solution. This is an objective approach of creating

a score based on the weights and signs, that can be modified by

the users to accomplish their ideal approach for the algorithm to

make the placements. Further details about the approach can be

found in Section 4. We will then analyse the performance of our

algorithm, dubbed Edge Score, under various scenarios. We compare

the performance of Edge Score to a baseline which randomly deploys

servers to a given fraction of traffic lights without considering load,

capacity, or latency requirements of the applications.

The rest of the paper is organized as follows. Section 2 provides

an overview of the most relevant work while Section 3 presents the

1

TScIT 37, July 8, 2022, Enschede, The Netherlands Author

considered setting. Next, Section 4 introduces Edge Score which is

the proposed edge server placement algorithm. Section 5 provides a

performance assessment of Edge Score in comparison to a simple

baseline. Finally, Section 6 and Section 7 discuss the future research

directions and conclude the paper.

2 RELATED WORK
Using smart lamps as an edge computing platform is proposed by

[6]. The goal of their study was to analyse where edge servers

(cloudlets) can be deployed on access points such as cellular base

stations, routers or street lamps. After examining coverage metrics

such as spatial coverage that refers to the ratio between the union

of the communication ranges of available cloudlets and the total

size of the area, that were recorded with the help of two smartphone

applications, authors designed two algorithms namely Random and

Greedy-Cost-Aware for cloudlets placement. Different from [6],

we take into consideration the assigned users/sensor in the radius

of each potential placement of edge servers and round-trip times

of the data sent by the people and sensors, including edge server

processing times. This is necessary to ensure some performance

guarantees for the served applications.

Other studies on edge computing using street lamps are typically

qualitative, where features of concepts for smart street lamps are

listed or hypothetical opinions on the next features of the edge com-

puting integration into cities are discussed [4, 5, 14, 16, 17, 20, 22].

Studies on edge server placement aremany, ranging from algorithms

considering energy efficiency of the network [11] to those consider-

ing security of the communication [10]. Gedeon et. al [7] propose

GSCORE for placing cloudlets (edge servers) in urban spaces that

considers costs and quality of service (i.e., communication ranges

and available resources). The developed algorithm splits an area

into smaller squares and for each of them one or more edge servers

are placed. In this way, overlay might appear if the communication

ranges of the edge servers are greater than the length of an imag-

inary square. Also, placing an edge server in each of the squares

might not be necessary because of the region/number of data traffic

that is generated there. Our algorithm works differently because

the placements of the edge servers are done such that a minimum

number of servers is required, and a maximum number of users and

sensors are satisfied as much as possible. Also using sensors’ loca-

tions, we can better estimate if the average latency is good enough

for smart city services such as trafficmonitoring, energy monitoring,

noise monitoring, urban Lab monitoring [3]. However, the men-

tioned study does not consider the distance between a user/sensor

to a possible edge server placement such that the round-trip times

are minimized.

3 SYSTEM MODEL
Let us consider an IoT network of 𝑁 sensors deployed in a city to

collect environment data (e.g., temperature, video, air pollution) as

illustrated in Fig.1. We consider𝑀 users that can also use the edge

servers for different tasks, such as video streaming, web browsing

or different actions that might be processed by edge servers. We

assume that the information received by an edge server from a

user/sensor is processed and sent back, the processed data being

between 1𝑀𝑏 and the number in𝑀𝑏 of the data received from the

users and sensors. Each user device, sensor, and edge servers that

will be placed on a traffic light are associated with a transmission

speed depending on their connection bandwidth.

We assume that each server has a certain computation capacity,

denoted by𝐶 seconds per processed Megabit, which depends on the

server hardware, e.g., number of processing cores, the CPU clock

speed (in GHz). Moreover, placing an edge server at a traffic light

might lead to different costs depending on the location or other

factors that can influence its placement, such as modifications of the

traffic lights for installing and housing the edge server. We randomly

assign variable costs to traffic lights that may be equipped with edge

servers. This will be shown in the Simulation Parameters Table 2. As

our edge server setting, we consider the specifications of Raspberry

Pi4 computers that have low price and very limited computational

power. Using other, more performance-oriented models of edge

servers, transmission speeds, data handled, and round-trip times

can be improved significantly.

While the processes might experience queuing delay at a server

for being processed, we will ignore the latency due to queuing

when the edge server needs to send all the data back to the senders

(transmission queuing). This is done because in most cases, the time

it takes for processing the data sent by all the users and sensors

assigned to a traffic light is short, and transmission speed cannot

copewith such large chunks of data sent in a single second. Note that

we assume that each edge server also possesses a wireless router to

receive the transmitted data from the sensors for processing and to

send the data back. Moreover, traffic lights can have a connection to

the cloud in cases where the computation capacity of this node falls

short of executing a task and thereby requiring a more compute-

reach server. We assume the wireless technology used by the sensors

and users to be 4G and the edge servers to send the data through their

wireless incorporated router. We will denote the wireless coverage

range of an edge server by 𝑅 meters.

Note that a user or a sensor might be in the wireless coverage

range of multiple edge servers, depending on the density of deploy-

ments. For a dense deployment or for wireless networks with higher

coverage range (operating at sub-6 GHz bands), sensors and users

can be covered by multiple edge servers. In our approach we assign

users to edge servers based on their haversine distance, which is

the great-circle distance between two points on a sphere given their

longitudes and latitudes. We chose the shortest distance consider-

ing all distances between the user and all available edge servers in

its range. This can be visualised in the Fig. 1 where there are two

traffic lights that can be equipped with edge servers. The user will

be handled by the edge server that is in its range and the nearest to

the user. This approach can also leave users and sensors unselected

if traffic lights do not have the coverage range big enough or simply

if there are no traffic lights near them to be equipped with edge

servers. For these users and sensors that do not have access to an

edge server directly, we claim that their data is sent to the cloud

through other channels.

2

Edge Server Placement on Traffic Lights for Smart City Services TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 1. The System Model. Sensors generate data to be processed, and the users consume the processed data for their services, e.g., checking the traffic
conditions or air pollution in different parts of the city.

4 EDGE SERVER PLACEMENT: A HEURISTIC
In this section, we introduce the design of our algorithm, so-called

Edge Score. The goal of our algorithm is to place edge servers within

a selected area for good area coverage, number of users and sensors

served by the edge sensors to be high, but also for as small as

possible average latency. Edge Score considers variables such as

number of users and sensors, round-trip times of devices if they

would be assigned to an edge server and specifications of computing

capacities of edge servers models.

To decide on whether a traffic light should have an edge server,

we define a score for each traffic light. To determine the score, Edge

Score uses the following properties as its input:

• number of devices/sensors in range of a traffic light,

• total cost,

• transmission speed (in Mb/s),

• total data generated by all the users/sensors that are assigned

to this traffic light,

• Mean of waiting times of users and sensors assigned to this

traffic light,

• wireless coverage radius (in m).

Edge Score uses TOPSIS Multi Criteria Decision Analysis [23]

to create a score from columns of data that have different scalar

values. TOPSIS uses the principle that the alternatives selected must

have the shortest distance from the positive ideal solution and the

farthest from the negative ideal solution from a geometrical point

by using the Euclidean distance to determine the relative proximity

of an alternative to the optimal solution. Each of the properties

presented has a weight and a sign. The weight of all the properties

needs to sum up to 1. In this way we can define for each property

the importance, for the algorithm behind TOPSIS to know the sig-

nificance of these variables. The sign for each property is a Boolean

variable, so that the algorithm knows if higher values (TRUE) or

lower values (FALSE) are preferred. An existing TOPSIS algorithm

was used [21] for creating the scores in Edge Score . The main steps

of Edge Score is as follows: the creation of an evaluation matrix

consisting of𝑚 alternatives and 𝑛 criteria, normalising the matrix,

calculating the normalised decision matrix, determining the worst

and best alternative, calculating the Euclidean between the target

alternative and worst condition and calculating the similarity of the

normalised matrix. The algorithm returns a list which contains the

index of traffic lights sorted from the best to the worst. The first one

from the list is chosen for edge server deployment.

Edge Score calculates (for each traffic light) the distances to all

these users/sensors that are in its communication range. If the users

are in the range of multiple possible edge servers, they will be as-

signed to the one that is closest to them. The next step is to assign

each traffic sign a variable cost and fixed cost to determine the total

cost of the traffic light if an edge server is deployed there. The fixed

cost is the price that we need to pay for the edge server itself and

the variable cost is randomly assigned from a list of prices. This is

chosen because modifying a traffic light for hosting an edge server

may imply smaller or higher prices to be paid. Then, focusing on

the edge server model, Edge Score includes the CPU clock speed in

GHz, number of the processors and transmission rate (in Mbps) of

the edge servers, sensors and users. Depending on the clock speed

and number of processors we can calculate how much data can be

processed by a processor at a single clock cycle, considering 100%

load. Edge Score needs to first calculate the round trip time for each

3

TScIT 37, July 8, 2022, Enschede, The Netherlands Author

Algorithm 1 Edge Score algorithm.

Require: Lat/Long coordinates, filled variables

𝑎𝑣𝑙𝑏𝐸𝑆 ← 1 ⊲ Available Edge Server

𝐸𝑆𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ← [] ⊲ The coordinates of the Edge Servers

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑇 ← [] ⊲ List for keeping latency times of edge servers

while 𝑎𝑣𝑙𝑏𝐸𝑆 <= 𝑁 do
totalData() ⊲ Computes the total data arrived at each of the traffic lights and

the round trip times of users’s devices or sensors at each individual traffic light is

they are in its range

meanwaitingtimes() ⊲ Computes the average waiting time of the

devices/sensor assigned to each of the traffic lights

𝑎𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ← []
𝑙𝑖𝑠𝑡𝑂 𝑓 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 ← []
for i in range dataframe indexes do ⊲ prepare the evaluation matrix for

TOPSIS to make the scores

𝑟𝑜𝑤 ← []
if type of element of the row is ’traffic signal’ and traffic

light at index i has number of devices >0 then
𝑟𝑜𝑤 ← 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑓 𝑜𝑟𝑇𝑂𝑃𝑆𝐼𝑆𝑠𝑐𝑜𝑟𝑒

𝑎𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ← 𝑟𝑜𝑤

𝑙𝑖𝑠𝑡𝑂 𝑓 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 ← 𝑖

if allValues is empty then. ⊲ Here we can finish the program if there are no

more traffic lights that are necessary to be equipped with edge servers

Print for the traffic lights selected to be equipped with edge
servers information such these means: latency times for them, number
of devices in range hadled, total cost and total data received

break ⊲ check if the list of selected street lights that can have a score to be

computed if different from 0

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 ← 𝑎𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝑠

𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑡𝑜𝑝𝑠𝑖𝑠 (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑠𝑖𝑔𝑛𝑠) ⊲ Compute the score

based on the evaluation matrix, weights and signs

𝐸𝑆𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ← 𝑠𝑐𝑜𝑟𝑒𝑠 [0]
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑇 ← 𝑎𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦 [𝑠𝑐𝑜𝑟𝑒𝑠 [0]] ⊲ The average latency of the highest

score traffic light

𝑡𝑦𝑝𝑒𝑇𝑟𝑎𝑓 𝑓 𝑖𝑐𝐿𝑖𝑔ℎ𝑡 ← 𝑒𝑑𝑔𝑒𝑆𝑒𝑟𝑣𝑒𝑟 ⊲ Change the type of the highest score

traffic light to edge server

𝑖 ← 0

while 𝑖 < 𝑛𝑟𝐼 do ⊲ number of indexes

if type of element of the row is ’traffic signal’ then
𝑏 ← 0

𝑐𝑜𝑝𝑦 ← 𝑐𝑜𝑝𝑦𝐼 ⊲ copy of number of coordinates of devices in range of i

while 𝑏 < 𝑛𝑟𝐶𝑖 do ⊲ number of coordinates of i

𝑡𝑠𝑥 ← 𝑙𝑎𝑡𝐼 ⊲ the latitude of the traffic signal i

𝑡𝑠𝑦 ← 𝑙𝑜𝑛𝐼 ⊲ the longitude of the traffic signal i

𝑗 ← 0

𝑒𝑠 ← 𝑛𝑟𝐸𝑆𝑐 ⊲ The last selected traffic light that was transformed to

an edge server number of coordinates

while 𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ𝑜 𝑓 𝑒𝑠 do
𝑒𝑠𝑥 ← 𝑙𝑎𝑡𝐸𝑆 ⊲ the latitude of the edge server

𝑒𝑠𝑦 ← 𝑙𝑜𝑛𝐸𝑆 ⊲ the longitude of the traffic signal i

if 𝑡𝑠𝑥 is 𝑒𝑠𝑥 and 𝑡𝑠𝑦 is 𝑒𝑠𝑦 then
copy remove the sublist ⊲ Removes from the copy the

sublist from the list of lists of the current traffic light

𝑗 ← 𝑗 + 1
𝑏 ← 𝑏 + 1

𝑡𝑟𝑎𝑓 𝑓 𝑖𝑐𝑙𝑖𝑔ℎ𝑡 ← 𝑐𝑜𝑝𝑦𝐶 ⊲ Gets copy of remaining coordinates

𝑛𝑟𝐷𝑒𝑣𝐼𝑛𝑅𝑎𝑛𝑔𝑒 ← 𝑙𝐶𝑜𝑝𝑦 ⊲ number of devices in range of the current

traffic light received the length of copy

𝑖 ← 𝑖 + 1
𝑎𝑣𝑙𝑏𝐸𝑆 ← 𝑎𝑣𝑙𝑏𝐸𝑆 + 1

sensor/user assigned to each of traffic lights. Latency has four com-

ponents: i) uploading the data from the sensor to the edge server 𝑡𝑢 ,

ii) processing delay at the edge server 𝑡𝑝 , and iii) sending the data

back to the users/sensors 𝑡𝑠 and iv) the propagation delay 𝑡𝑝𝑑 .

The first component can be calculated as: 𝑡𝑢 = 𝑢𝑠𝑑/𝑢𝑠 , 𝑢𝑠𝑑 rep-

resenting data sent by the user or sensor and 𝑢𝑠 the transmission

speed of the users/sensors. We assume that users have a different

transmission speeds than the sensors. The time that it takes for the

edge server to process the received information is based on the pro-

cessing capacity of the CPU and the amount of bits to be processed.

Then, we can calculate 𝑡𝑝 as follows: 𝑡𝑝 = 𝑢𝑠𝑑/(𝑝𝑐𝑐𝑝𝑢 ∗ 𝑛𝑟𝑝 ∗ 64).
(𝑝𝑐𝑐𝑝𝑢 represents the processing capacity of the CPU, 𝑛𝑟𝑝 the num-

ber of processors, and 64 represents the number of bits. The reason

behind multiplying with 64 bits is that 1 load instruction represents

8 bytes/64 bits on 64-bit architecture per cycle.

The third component is similar to the first component, in this case

representing the transmission speed of the edge server: Since the

processed data might be different in size (e.g., usually smaller), this

should be considered in calculating the delay for downloading the

processed data. Hence, the last delay component 𝑡𝑑 can be calculated

as: 𝑒𝑠𝑑/𝑒𝑠𝑠 where 𝑒𝑠𝑑 represents the data sent back to users and

sensors and 𝑒𝑠𝑠 the transmission speed of an edge server.

The last component is the propagation time. This delay is summed

up to the transmission delay for the users, sensors and edge servers.

This is calculated as: 𝑡𝑝𝑑 = 𝑑/𝑙𝑠 . 𝑑 represents the distance between

the sensor/user and edge server and 𝑙𝑠 represents the speed of light.

The round-trip time is computed for each individual sensor and for

each traffic light that is in its range. An average delay is computed

for each traffic signal based on the assigned users/sensors. This is

done by summing up all the round-trip times and dividing by the

number of assigned users/sensors.

After Edge Score computes the scores using TOPSIS these scores

are sorted in decreasing order. Depending on the number of servers

to be deployed, the first 𝐸 traffic light with the highest score will be

chosen for deployment, each time, TOPSIS being used for creating

a score. After Edge Score selects a traffic light to be equipped with

an edge server, it takes out all the coordinates of the sensors/users

from other traffic signals that had them also in its range, such that

there is no overlap in assigned users and sensors to an edge server

and also updates all the properties accordingly.

The output of a program is a list with the indexes of traffic lights

that were chosen to be equipped with an edge server, the average

latency times of the users of the selected locations for placing the

servers, the number of users and sensors handled, the total cost of

the placements and also the total data of the users handled. In the

end, an HTML will open in the users’ default browser in order to

show the map with the different types of locations. They have the

ability to zoom in and out and see the locations in terms of latitude

and longitude of any marked point on the map. Every location

is placed keeping in mind the number of users handled and for

achieving great spatial coverage.

The computational complexity of Edge Score is 𝑂 (𝑛2) where 𝑛 is

the total number of traffic lights received as an input.

This section of the paper covered the first research question,

including the idea behind the placements of edge servers.

5 PERFORMANCE ANALYSIS
In this section, we will first introduce the datasets used in the sim-

ulations and the goal of simulations. We will compare our Edge

Score algorithm with a random approach (referred to as Random) of

placing edge servers at traffic lights. We will address the following

research questions via simulations:

4

Edge Server Placement on Traffic Lights for Smart City Services TScIT 37, July 8, 2022, Enschede, The Netherlands

• What is the difference between using different transmission

speeds of edge servers in terms of average latency?

• How does the percentage of selected traffic lights equipped

with edge servers affect the total number of users handled

both for Edge Score and Random?

• How does the percentage of selected traffic lights affect the

total cost for both Edge Score vs Random?

5.1 Traffic Light Dataset
We have used the following resource, Overpass Turbo [18] to extract

the locations of traffic lights located in Enschede. Using Overpass

turbo, we export the data to a CSV file. Our data includes 435 traffic

lights which are distributed in the city as shown in Fig.2. As the

heatmap shows, an intersection might have multiple traffic lights.

Fig. 2. Heatmap of the traffic lights in Enschede.

Fig.3 shows the distribution of the maximum distance between

the nearest neighbour of each individual traffic light around the

inner-city area of Enschede. We compute the distances between

two neighboring traffic lights using Ball Tree algorithm for Nearest

Neighbour searches [12]. As we can observe from the figure, the

distance between two traffic lights can be very small (in the order

of a few metres) for intersections or city center. However, we also

observe that some traffic lights can be as separated as with a distance

of 700 metres. From this CDF plot we can also observe that the

distance between two nearest neighbour traffic lights is less than

100 metres for almost 70% of the traffic lights.

For the rest of the research, we will focus on the inner-city, which

has a dense deployment of traffic lights and where the users and

sensors are expected to be more ubiquitous. The considered area is

7.62 𝑘𝑚2
rather than the complete Enschede city with all its suburbs

having a total area of 46.34 𝑘𝑚2
. In the considered area, there are

146 traffic lights. Table 1 summarises the number of traffic lights in

the inner-city and the complete Enschede city with all its suburbs.

5.2 Simulations
We assume that users and sensors are randomly distributed in the

area of interest. Please refer to Table 2 for the default values of

parameters used in the simulations.

Fig. 3. CDF Nearest Neighbour distance in meters.

Table 1. Number of traffic lights collected

Traffic lights
Total points of complete area 322

Density per 𝑘𝑚2
6.94 𝑝𝑜𝑙𝑒𝑠/𝑘𝑚2

Inner city 146

Density per 𝑘𝑚2
14.55 𝑝𝑜𝑙𝑒𝑠/𝑘𝑚2

Table 2. Simulation parameters.

of users inner area {1000}
Coverage radius (meters) [100, 200, · · · , 600]
Percentage of traffic lights [10, 20, · · · , 100]
User link rate (Mb/s) [40, 41 · · · , 65]
Sensor link rate (Mb/s) [50, 51 · · · , 108]
Edge server link rate (Mb/s) 100, 8142

CPU clock speed (GHz) 1.5

Number of cores 4

Data by sensors (Mb) [1, 2, · · · , 10]
Data by users (Mb) [1, 41, · · · , 25]
Data by edge servers (Mb) [1, 2, · · · , 𝑠𝑒𝑛𝑠𝑜𝑟/𝑢𝑠𝑒𝑟𝑠𝑒𝑛𝑡𝑑𝑎𝑡𝑎]
Fixed cost (Euro) 60

Variable cost (Euro) [100, 200, 300, 350]
TOPSIS Weights [0.15, 0.11, 0.15, 0.15, 0.22, 0.22]
TOPSIS Signs [𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒,𝑇𝑟𝑢𝑒,𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒,𝑇𝑟𝑢𝑒]

Let us first investigate how an increase in the fraction of traf-

fic lights with an edge server would affect the ratio of inner area

coverage.

Fig.4 shows the coverage ratio of the selected area which quan-

tifies how much of the total area is covered by the potential edge

servers depending on their wireless coverage range 𝑅. We compute

the area using the ArcGIS [1] software and overlapping areas are

considered only once. Analysing the coverage ratio is an impor-

tant step in order to know what percentage of the selected traffic

5

TScIT 37, July 8, 2022, Enschede, The Netherlands Author

Fig. 4. Coverage ratio with increasing percentage of selected traffic lights,
under various radii settings.

lights covers as much area as possible, depending on the commu-

nication range. To fully utilise the computation capacities of each

edge server, Edge Score avoids placing edge servers that may be in

vicinity. From the figure, we can observe that even when all traffic

lights have an edge server deployed, it is not possible to cover the

whole area. Typically, by selecting between 20%-30% of the available

traffic lights out of the 146 poles, the improvement in coverage is

marginal. Since traffic lights might be close to each other (e.g., at an

intersection), deploying new servers does not offer significant im-

provement in terms of coverage ratio. Comparing different coverage

radii, unsurprisingly, higher radius results in higher coverage ratio.

Two key take-aways from this analysis are as follows: first, existing

traffic lights may not suffice to meet all computation requirements

of a city as they do not cover the whole area. Second, increasing

the coverage radii may result in fewer edge server placements, to a

smaller total cost.

Furthermore, the map in Fig. 5 shows the output of

Edge Score when 10% of edge servers are selected to be placed

within the inner-city of Enschede. The communication range of

the edge servers was 500 metres and the number of chosen users

being 998 and only 2 sensors.

On the map we can see the exact location of the edge servers

in order to know on which traffic light we can mount them. The

users receive in the program output the average latency times of

each edge server, the total cost for placing all of them and the

total number of users/sensors within the range of servers. For this

example, the total cost was 3640 euro, 838 users and sensors handled

and an average time of 5 seconds. This very big average latency time

was due to using transmission times of edge servers of only 100

Mb/s. After each edge server processes the data received from their

assigned users and sensors, the transmission rate cannot handle all

the data at once, so queuing delays before transmission will appear.

The selected intervals of data that may be sent at a single point

in time are really large, made for showing differences in terms of

performance.

In continuation, we will assess how Edge Score performs com-

pared to Random. Together with this random approach of placing

Fig. 5. The output of the Python application showing the edge servers

Fig. 6. Average number of devices in range using different coverage trans-
mission ranges and percentages of selected traffic lights to be equipped
with an edge server Edge Score vs. RANDOM placement

a proportion of available traffic lights, we assess the difference be-

tween the total cost of positioning edge servers and number of

devices that are in range of edge sensors. The experiment is done

for every proportion and radius from Table 2. We report the average

of multiple experiments along with 95% confidence intervals. We

use the parameter values in Table 2.

In Fig.6, we can see the main differences in terms of the number

of devices handled by the computing infrastructure, determined by

Edge Score and Random. Because the inner area of the city is quite

small, and the traffic lights are grouped together in intersections,

around 5% of the users can not have their data processed when

using a maximum radius of 600 metres. The difference between

Random and Edge Score in terms of numbers of devices/sensors

is significant, with a difference of 40% between them. Also, when

selecting a small percentage of edge servers to be placed, 20% - 30%

out of the total of 146, Edge Score achieves markedly high number

6

Edge Server Placement on Traffic Lights for Smart City Services TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 7. Average total cost for edge servers placements Edge Score vs. RAN-
DOM placement

of users in range compared to Random and in general because of

the Edge Score placing the edge servers efficiently.

Fig. 7 shows the total cost of edge servers based on the percentage

of edge servers that are selected to be placed. Random places all the

edge servers, increasing the total cost linearly.

Our approach makes the placements as they are described in

the past sections based on the number of devices in range, data

that needs to be processed and average waiting times. Based on the

inner area of Enschede, larger communication range of the edge

servers decreases the total cost. For example, out of the 10% of edge

servers to be placed, only a fewwill be really selected by Edge Score .

Consequently, this results in ending the process faster and leads to

more efficiency than placing all the allowed percentage of servers.

Having higher coverage ranges accomplish this goal faster and

keeps the total costs low. The total cost for placing percentages of

edge servers using random placements increases linearly and can

reach high levels depending on the number of traffic lights equipped.

Edge Score and related code/simulation plots can be found here [15].

Fig. 8. Average latency based on selected percentage of traffic lights

In this simulation, we will answer the second research question

of this paper, namely the average latency times of users and sensors.

Real data of the sensors transmitted to be processed in a single

second can be very small. This can be seen in [3] that analysed all

the current data generated by all the sensors of the city Barcelona.

For our simulation we will take into account the same Simulation

Parameters Table 2 but with users streaming simultaneously 4K

videos, requiring 25Mb/s [8] of data. We took this value of data sent

by the users in order to simulate a real life scenario. Now, consider-

ing traffic lights are equipped with ThinkEdge SE350/SE450 [2] edge

servers with transmission speeds of 1GB/s (these are able to send

data from 1GB/s to 1000GB/s), we have the following plot Fig. 8. The

average waiting time can vary between 2% and 9% depending on the

chosen radius and percentage of traffic lights selected. When choos-

ing only 10% of traffic lights to be equipped with an edge server, the

average latency times are slightly higher because Edge Score tries

to make the placements such that the maximum number of users

are handled. When the coverage transmission range is bigger, more

users are handled, so the average latency times are increasing too.

The biggest change between 10% and 20% of selected traffic lights

is when the radius of edge servers is between 300 and 500 meters.

This is due to big amounts of users handled by the first placements

made by Edge Score, leaving smaller number of users assigned to

other edge servers. The average times remain the same after 30%

of selected traffic lights because all the necessary placements of

edge servers are full filed by Edge Score. We also made the simu-

lation for randomly assigned users’ data between 1 and 25Mb for

different actions such as Web surfing, email, social networking, 4K

video streaming, Online multiplayer gaming and the average latency

times, giving the same other values as the first simulation for de-

termining the latency, were between 8 − 12𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . Choosing

to place multiple edge servers, reduces slightly the average latency

times, but increases the total cost. When using higher radii coverage

ranges more users can be handled, resulting in less total costs for

the placements, but bigger average latency times.

Using the Simulation Parameters Table 2 and based on the data

sent by the users from the average latency times simulation we

would choose a 600 meter coverage radius of edge servers, having a

small total cost for the few placements that are made, if the average

latency times do no affect the actions made by users and sensors.

If applications need low latency times we would make a slightly

higher number of placements with edge servers having less radii as

coverage range and higher processing capacities including transmis-

sion speeds. Using this approach we can answer the third research

question, depending on the users’ needs.

5.3 Discussion
Using the Simulation parameters Table 2 and the selected inner-

city of area Enschede, when we have a only a few edge servers

equipped with high coverage radii and increased transmission times,

the overall number of handled users increases. On the other hand,

average latency times increases too because of the multitude of data

received from the assigned users.

Moreover, the total cost of placement is lower compared to

equipping a bigger number or percentages of traffic lights with

lower performance edge servers. The selected area is a small ex-

ample of what can be achieved using Edge Score and the values

7

TScIT 37, July 8, 2022, Enschede, The Netherlands Author

of chosen simulation parameters depend on the considered set-

ting. Edge Score showed higher performance than a simple baseline

which can be also further improved. The idea of creating such an

algorithmwas within the scope of potential stakeholders to simulate

different environments with their own values based on their choice.

This creates a powerful tool that can be used together with other

simulation applications to gather insights of actual real world edge

server placements.

6 FUTURE WORK
In this section, we will address possible features that can be imple-

mented based on our current approach for edge server placement.

First, we can further improve Edge Score by letting the users

choose how much overlay between two edge servers placements

can exist. Because of the overlay in the area, we can split the number

of people evenly to multiple edge servers, instead of a single one

to handle all the users from that particular area. In this way, we

can lower the average latency times, because of the less number of

people assigned to an edge server.

Secondly, efficiency of the algorithm can be improved. Searching

all the information in the Python data set and updating it, increases

quadratically and would not be efficient for large number of edge

servers and large population samples. Lastly, different edge server

properties can be considered for a more realistic modelling of the

computing nodes. This can be done by introducing their specifica-

tions and outputting a score for them, based on the final average

waiting time, radius, real transmission speeds tested in real life

environment and processing specifications.

7 CONCLUSION
In this paper, we have discussed the impact of selecting proportions

of edge servers to be placed, different communication ranges of the

servers, transmission speeds and average latency times. The inner-

city of Enschede was an example for building the algorithm and

assessing its performance. Possibilities of using different parameters

were discussed in order to better understand the potential edge

server placement algorithms and needed values of different variables.

This can be replicated for larger areas, together with more users,

sensors and other estimations or values chosen by the users of this

tool.

8 ACKNOWLEDGEMENTS
I would like to thank my track chair Suzan Bayhan who was also my

supervisor, for all support and efforts made to guide me through all

the phases of the project, giving me feedback, helping me develop

ideas, but also for being strict and monitoring my work so that I

attain my potential and provide the best work.

REFERENCES
[1] Arcgis. Get Started with Distance and Direction in Web AppBuilder for ArcGIS

(Developer Edition).
[2] Lenovo edge servers. Purpose-built edge servers for secure IoT, edge computing, and

storage.
[3] Amir Sinaee, Jordi Garcia Almiñana, X. M. E. M.-T. J. C. G. G. F. C. Estimating

smart city sensors data generation. The 15th IFIP Annual Mediterranean Ad Hoc
Networking Workshop (2016).

[4] Carvalho, G., C. B. P. V. . B. J. Edge computing: Current trends, research chal-

lenges and future directions - computing. 993–1023.

[5] Corcoran, P., . D. S. K. Mobile-edge computing and the internet of things for

consumers: Extending cloud computing and services to the edge of the network.

IEEE Consumer Electronics Magazine 5, 4 (2016), 73–74.
[6] Gedeon, J. A. Urban edge computing. TU Darmstadt Publication Service (2020).
[7] Gedeon, J., S. M. K. J. F. P. K.-K. M. C. W. L. . M. M. From cell towers to smart street

lamps: Placing cloudlets on existing urban infrastructures. 2018 Third ACM/IEEE
Symposium one Edge Computing (2018), 187–199.

[8] GVEC. How much data is created every day in 2022? GVEC Internet Products
Services, Tech Insight Tips (2021).

[9] Hiter, S., . E. C. The pros and cons of edge computing.

[10] Kasi, M. K., Abu Ghazalah, S., Akram, R. N., and Sauveron, D. Secure mobile

edge server placement using multi-agent reinforcement learning. Electronics 10,
17 (2021), 2098.

[11] Li, Y., and Wang, S. An energy-aware edge server placement algorithm in mobile

edge computing. In 2018 IEEE International Conference on Edge Computing (EDGE)
(2018), IEEE, pp. 66–73.

[12] Mohamad Dolatshah, Ali Hadian, B. M. Ball*-tree: Efficient spatial indexing

for constrained nearest-neighbor search in metric spaces.

[13] Mohamed Hanine, Omar Boutkhoum, A. T. T. A. Application of an integrated

multi-criteria decision making ahp-topsis methodology for etl software selection.

[14] Mühlhäuser, M., Meurisch, C., Stein, M., Daubert, J., Von Willich, J., Rie-

mann, J., and Wang, L. Street lamps as a platform. Communications of the ACM
63, 6 (2020), 75–83.

[15] Niculae, T.-F. Edge score.

[16] Oyinlola, T. Energy prediction in edge environment for smart cities. 2021 IEEE
7th World Forum on Internet of Things (WF-IoT) (2021).

[17] Pan, J., . M. J. Future edge cloud and edge computing for internet of things

applications. IEEE Internet of Things Journal 5, 1 (2018), 439–449.
[18] Raifer, M. Overpass-turbo. Query wizard.
[19] Sardjono, W., . S. E. The relationship between internet growth and implementa-

tion of the internet of things. Journal of Physics Conference Series (2021).
[20] Shi, W., C. J. Z. Q. L. Y. . X. L. Edge computing: Vision and challenges. IEEE

Internet of Things Journal 3, 5 (2016), 637 – 646.

[21] shivabehl. Topsispy.

[22] Solmaz, G., C. F. . d. J. J. M. Getting started with smart cities.

[23] Zulqarnain, R. M., a. S. M. Application of topsis method for decision making.

International Journal of Scientific Research in Mathematical and Statistical Sciences
7, 2 (2020), 76–81.

8

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Edge Server Placement: A heuristic
	5 Performance Analysis
	5.1 Traffic Light Dataset
	5.2 Simulations
	5.3 Discussion

	6 Future Work
	7 Conclusion
	8 ACKNOWLEDGEMENTS
	References

