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1 ABSTRACT

Rehabilitation programs are vital for the people that suffer injuries.
The Covid-19 pandemic made it impossible for these people to follow
such programs at healthcare centers. This study aims to develop
a new solution for patients opting instead for a Rehabilitation in
the Home (RITH) program. The proposed approach is divided into
two phases. Firstly, the app tracks and extracts the 2D coordinates
of the joints. The second phase uses these extracted coordinates
to guide the patient during the exercise. All captured frames are
compared to the reference frames, and their similarity is computed.
Developing a home-based rehabilitation helper that will work on
low-resource devices will bring benefits, including decreased travel
time and flexible exercise hours for patients.

2 INTRODUCTION

Telerehabilitation has shown significant results due to the develop-
ment of new technologies. Nowadays, the greater public health fund-
ing allocation and telerehabilitation have improved significantly [1].
The technological advances substituted traditional face-to-face reha-
bilitation with telerehabilitation. In that way, the patient can follow
the entire course from home. Telerehabilitation also helps patients
reduce hospitalisation periods and expenditures; for patients and
health care providers - provides a remote environment where the pa-
tient can follow up the entire rehabilitation program without leaving
his home. During the COVID-19 pandemic, the practice of rehabil-
itation proved impossible for patients, as all hospitals and health
care centres were quarantined. Thus, the patients faced a problem
that was impossible to solve. In this situation, telerehabilitation
is their only solution. The recent developments in artificial vision
techniques and machine learning improved the accuracy of human
posture estimation, showing a potential practical application in the
field of telerehabilitation. To reduce patients’ expenditures and en-
sure greater accessibility to rehabilitation services, some researchers
proposed a new way of conducting the telerehabilitation, namely
using 2D pose detection libraries such as OpenPose, BlazePose, and
wrnchAl [2], which don’t require the physical presence of a rehabil-
itation specialist and gives the patient the opportunity to practice
all the rehabilitation exercises alone at home. Although the mo-
tivations for the above solution approach sound good. Although
the justification for the above-proposed solution approach sounds
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reasonable, the current state of the art of pose estimation needs
more computational power to determine the pose of a human in
real-time.

If an embedded device solution like mobile devices can be identi-
fied, it will help many in need. Specifically, the proposed research is
based on the idea that many patients may face problems getting to a
healthcare centre, the lack of available rehabilitation specialists at a
particular time in that area, or the patient’s schedule. Consequently,
the main aim of this research is to develop an app that will allow
each affected patient to get the necessary rehabilitation regardless
of their location. This is also a first step towards improving the
accessibility to rehabilitation indifferent of social status.

In light of the above, the work aims to ease the rehabilitation
process for patients by providing them with a new way to practice
the exercises wherever they are. However, numerous Al-powered
personal trainers use the latest technology to assess the quality
of exercises. The need for a post-injury rehabilitation mobile app
is still demanding. Given that it is computationally expensive to
estimate the pose of a human in real-time, it is pretty hard to run
those algorithms on embedded devices. It is necessary to find a way
to improve the accuracy of human posture estimation and provide
real-time guidance to the patient in the process of rehabilitation.
The following research questions (RQ) have been defined as the
foundation of the research.

(1) How to track the rehabilitation exercises in real-time with a
low-resource device?

(2) How to guide the patient during the exercise?

(3) How to improve the existing keypoint topology to increase
the impact of neck pain exercises?

The remainder of this paper is organised as follows. The related
work on the topic is described in the third section. The fourth section
describes the methodology used to answer the research questions.
Following that the fifth section presents the paper’s results. The sixth
section formulates the conclusions of this paper. Furthermore, the
seventh section describes what could be some of the improvements
to the current version of the research.

3 RELATED WORK

In this section, we would like to examine some related work on
this topic. Over the years, much research has been done on pose
estimation and telerehabilitation.

In 2002, Jurgen Broeren et al. [3] used a haptic device as a cin-
ematic utility to assess the rehabilitation exercises of the patients
that suffered strokes. In their 2010 paper, Marco Rogant et al.[1]
show telerehabilitation’s state of the art and its importance to so-
ciety. In 2010, Portia E Taylor et al. [4] used body-worn tri-axial
accelerometers to estimate the quality of the rehabilitation exercises
done by the patients. They built a classifier that successfully labels
the exercises as correct or incorrect. In 2010, Luis Enrique Sucar et
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al. [5] developed a vision-based system to monitor the performance
of the patients while following the rehabilitation programme. They
used a pressure-sensitive gripper for hand and finger rehabilitation
to assess the execution of the exercises. In their work, David Antén
et al. [6] developed a telerehabilitation system based on Kinect that
helps the user perform rehabilitation exercises by displaying a 3D
avatar that shows the correct execution of the movement. In this
way, the user is guided through the whole process. Work by Tomasz
Hachaj and Marek R. Ogiela [7] describes a new approach to im-
plementing a classifier that can recognise in real-time human body
poses and gestures in real time. In their work, Adeline Paiement et
al. [8] proposed a new method for human pose estimation based
on the Kinect skeleton data. They developed a statistical model for
the ideal movements of healthy subjects. Afterwards, they used this
model to compute the similarity score between the user’s move-
ments and the references. In their work, Ming-Chun Huang et al.
[9] develop a framework to supervise the on-bed range of motion
exercises using a pressure-sensitive bed sheet. Next, they analyse
the results using manifold learning techniques. In their paper, Mari-
anna Capecci et al. [10] provide an accuracy analysis of the Kinect
v2 sensor for a rehabilitation program. They use the joint positions
and angles for the evaluation of the accuracy. In 2016, Aleksandar
Vakanski et al. [11] proposed a new methodology for evaluating
human postures. They use the latest progress in neural networks
and machine learning technologies to build a parametric model of
human motions. Ben Crabbe et al. [12] in their work describe a
novel approach for estimating the body pose. Their approach uses a
Convolutional neural network (CNN) to map a person’s pose space
location to their depth-silhouette. There has also been much re-
search carried out on pose estimation and posture correction using
Microsoft Kinect. Elham Saraee et al. [13] developed a system called
PosureCheck that scores the patient’s posture while performing
the exercise in front of the camera by using Bayesian estimation
and majority voting for classifying the posture, whether correct or
not. Lynne V.Gauthier et al. [14] studied the efficiency of a reha-
bilitation program for stroke patients. The gameplay took place in
the home environment of each patient. Wan-wen Liao et al. work
[15] investigates the role of Kinect-based upper extremity rehabili-
tation performance for chronic stroke survivors. The work by Yalin
Liao et al. [16] analyses different methods for evaluating a patient’s
performance in a rehabilitation program. Work by Talal Alatiah
and Chen Chen [17] points out the necessity of machine learning
in judging an athlete’s performance during competition. Previous
works focused more on using accelerometer sensors to assess the
posture during exercise, work by Meera Radhakrishnan et al. [18]
uses an inertial sensor mounted on weight equipment that identifies
the mistakes in the execution of the exercises. Furthermore, in 2020
Steven Chen and Richard R. Yang [19] developed a new approach
to detecting and correcting posture during workouts using pose
estimation. They recorded a dataset of over 100 exercise videos and
built machine learning algorithms which can distinguish between a
well and a poorly performed exercise. Swakshar Deb et al. [20] use
GCN for assessing rehabilitation exercises given skeleton data of a
movement.
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4 METHODOLOGY

The system developed for this paper is a guide for the correct execu-
tion of rehabilitation exercises. It tracks the movements and gives
guidance, ensuring that the user completes the exercise correctly
and does not miss any phase of an exercise. We think of a rehabil-
itation exercise as a series of consecutive poses (see Fig. 1). Thus
we can easily convert them into a set of phases that the device can
understand and process.

ﬁ ‘ -Jﬂ

Fig. 1. Push-up phases. (2016, July 25). [lllustration]. Istockphoto.Com.
https://www.istockphoto.com/nl/vector/step-to-instruction-in-push-up-
gm578104104-99362979

4.1 BlazePose

BlazePose is a pose detection model created by Google that finds
and returns the x, y, and z coordinates of 33 skeleton keypoints
(see Fig. 4). BlazePose is made up of two different machine learning
models: a Detector and an Estimator. The Detector removes the
human region from the input image, whereas the Estimator inputs
a 256x256 resolution image of the recognised person and returns
the keypoints [21].

4.1.1  Architecture of BlazePose. The Detector works as follows,
given an image as input, it outputs a bounding box and a confi-
dence score. On the other hand, the estimator employs a regression
technique with all keypoints supervised by a combination heat
map/offset prediction [21] (see Fig. 2). The estimator’s output is the
keypoints that are made up of 165 components for each of the 33
keypoints of the model.
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Offset maps: 2562563
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Fig. 2. Bazarevsky, V., Grishchenko, I. (2020, August 13). Tracking
network architecture: regression with heatmap supervision [Graph].
https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-
tracking.html
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4.2  System Design

User's pose
R —

Coordinates of user's pose

BlazePose Comparator —— »  Similarity Score
Reference's pose Coardinates of reference’s pose

_—

Fig. 3. System design

Our solution was to use BlazePose [21] for tracking human pos-
ture because it is the best human pose estimation model at the
moment. In Fig. 5 are presented the results of the quality evaluation
of 5 models, mainly BlazePose GHUM Heavy, BlazePose GHUM
Full, BlazePose GHUM Lite, AlphaPose ResNet50, and Apple Vi-
sion. These models were evaluated against three different validation
datasets, mainly Yoga, Dance, and HIIT. The performance is evalu-
ated for COCO topology [22]. We see from the Fig. 5 that BlazePose
is performing best for the Percentage of Correct Keypoints (PCK),
where a detected joint is considered correct if the distance between
the predicted and the true joint is < 0.2 * torso diameter. We used
BlazePose to collect human poses for each reference image and
saved them for comparing them later with the patient’s posture.
After that, we used those saved coordinates of joints to compute
the similarity between the user’s pose and the reference image (see
Fig. 3). We analysed two comparison methods, namely Weighted
Distance and Cosine Similarity. BlazePose returns the coordinates
and the in-frame likelihood of the 33 different joints as output. The
keypoints returned by the BlazePose have the following format: x
and y coordinates and the confidence level of the keypoints. The
keypoints returned are shown in Figure 4.
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Fig. 4. BlazePose 33  keypoint  topology. (n.d.).
https://google.github.io/mediapipe/solutions/pose.html

[Graph].

4.3 Exercises analysis

In selecting exercises, we decided to choose exercises for specific
injuries, mostly related to lower body affections, knee injuries being
the most common injuries for older people, athletes, or sports enthu-
siasts [23]. For this purpose, we selected the most prevalent injuries
of the lower body, which are listed below, and selected rehabilitation
exercises that are most efficient for these injuries [24]. Besides this,
we also picked the Frozen Shoulder injury, as it appeared attractive
to study some exercises related to upper body rehabilitation.
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Fig. 5. Quality evaluation in PCK@0.2. (n.d.). [Graph].
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e Femoral Fracture
(1) Knee flexion supine
(2) Knee extension supine
(3) Hip abduction
(4) Leg lift
(5) Hip flexion side-lying
e ACL Sprain
(1) Heel Slide
(2) Knee flexion supine
(3) Hip abduction gluteus medius side-lying
e Baker’s Cyst
(1) Knee flexion prone
(2) Football kicks with band
(3) Knee extension prone
(4) Full wall squat
e Condramalacia Patella
(1) Football kicks with band
(2) Hip abduction gluteus medius side-lying
(3) Quadriceps stretch
o ACL RuptureRecon
(1) Knee flexion supine
(2) Knee extension supine
e Frozen Shoulder
(1) Passive shoulder flexion
(2) Elevation through abduction
(3) Drawing the sword

= =

4.4 Image Processing

Processing the reference images is the bottom line of our research,
which is why, after finishing the exercise selection, we started search-
ing for videos of the exercises mentioned above. Googling around,
we found for each exercise a reference video, where a professional
physiotherapist shows how to perform it correctly. Then, we devel-
oped a Python script that extracts the frames from a video. Firstly,
we are asked to decide on the starting and ending time codes for a
repetition of the exercise and the desired saving frames per second
(see Fig. 6). Next, for each exercise, we found descriptions of perfect
performance. Those descriptions helped us find the phases of an
exercise. For an example, see Fig. 1. Knowing the phases, we selected
the most relevant frame for each phase. (see Fig. 8). After manually
selecting the most relevant frames, we process them with BlazePose.
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Fig. 6. Example of the Python script used to extract the reference frames

First, we are asked to choose the keypoints we need for the exercise
evaluation. We select them by typing the ID of the keypoint from
the BlazePose Topology (see Fig. 7). For instance, in the Elevation
through Abduction exercise (see Fig. 8), we have eight keypoints
that we are interested in, mainly: Left shoulder with ID 11, Right
shoulder with ID 12, Left Elbow with ID 13, Right Elbow with ID
14, Left wrist with ID 15, Right wrist with ID 16, Left hip with ID
23 and Right hip with ID 24. While processing the selected frames
we apply a segmentation mask to the image, and then we draw
pose keypoints for each image chosen (see Fig. 9). While processing
reference images with Blazepose, we select, for each phase, the key-
points mentioned above and save them in a .json file for comparison
purposes.

Fig. 7. Example of the Python script used to process the reference frames

Fig. 8. Example of reference images. (2015, December 3). [Photo].
https://www.youtube.com/watch?v=cP4LLJie9kw

.

Fig. 9. Example of reference phases

4.5 Similarity computation

Before computing the similarity between reference pose, and actual
pose, we considered factors like a person’s height and distance
from the camera, as these factors vary a lot from person to person.
To tackle these differences, pose vectors were firstly scaled and
translated to a pose of size 1*1 and then normalised. L2 normalisation
was used, which divides each pair of coordinates by their magnitude
(see equation 1).

Il =\ D Ixil? (1)
k=1
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For pose similarity, we tested two distance metrics to measure
the similarity between pose vectors, mainly Cosine Similarity and
Weighted distance.

4.5.1 Cosine Similarity. The Cosine Similarity measures the simi-
larity between two normalised vectors. It determines if two vectors
are pointing in the same direction by calculating the cosine of the
angle between them (see equation 2). It returns 1, if they are the
same and -1, if they are opposite.

I
a-b
COSQ=_)—_) (2)
IFa il el

It will help us find out how related are the two pose vectors by
looking at the angle between them instead of magnitude (see Fig.
10)

Opposite scores
Score Veclors in opposite direction

Angle between then is near 180 deg
Cosine of angle is near -1 i.e. -100%

Similar scores Unrelated scores
Score Vectors in same direction Score Vectors are nearly orthogonal
Angle between then is near O deg. Angle between then is near 90 deg.
Cosine of angle is near 1 i.e. 100% Cosine of angle is near 0 i.e. 0%
Fig. 10. Visual depiction of cosine similarity. (2013, September 12). [Illustra-
tion]. https://blog.christianperone.com/2013/09/machine-learning-cosine-

similarity-for-vector-space-models-part-iii/

4.5.2  Weighted Distance. The Weighted Distance technique inte-
grates the in-frame likelihood of each landmark when computing
the similarity between pose vectors [25]. The idea is that a high
confidence score of a keypoint has a more significant impact on the
distance metric than those with a lower score (see equation 4).

33
1
ﬁ*chk“nyk_nykH (3)
Zk:l Ck k=1
In the above formula, F and G are two normalised vectors. Fe, is
the in-frame likelihood score of the kth landmark of F. Gy, and

Fyxy are the x and y coordinates of the kth keypoint for each vector
[26].

The weighted distance metric showed better results than the co-
sine similarity metric in detecting whether two poses matched. The
weighted distance metric showed better results since it incorporates
the confidence scores of each keypoint.

4.6 Custom keypoints detector

During the research, we concluded that there are exercises where the
standard Blazepose model is inefficient. Analysing different injuries,
we found that there is no way to assess the correctness of performing
the exercises related to neck pain because the model does not have
the necessary keypoints for this. We decided to train a keypoint
detection model on a custom dataset. We used an object detection
framework called Detectron2 [27]. In the following sub-sections, we
will describe how we implemented this.
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4.6.1 Preparing dataset. For a good assessment of neck pain exer-
cises, such as "Right side bending," "Left side bending", and "Cervical
nod, neutral”, we decided to add five keypoints to our model, namely
head, neck, right shoulder, left shoulder, and middle of the spine
(see Fig. 11). We chose these particular keypoints because the angles
that can be derived from them will help us assess the correctness of
the execution of the exercises.

Fig. 11. Custom keypoints representation

We have chosen to use the "MPII Human Pose Dataset" [28] as a
dataset. The dataset is a state-of-the-art benchmark for evaluating
human pose estimation. All the pictures from the dataset are from
YouTube videos and vary widely regarding human positions, sur-
roundings, attire, body size, distance from the annotated figure, and
viewpoint. For this task, we have selected 344 images from there
that will help us train and test the fine-tuned model. After selecting
the images from the dataset, we annotated all the images with the
help of the COCO Annotator [29], allowing the images to be labelled
efficiently. After successfully annotating the images with the new
keypoints, we split the dataset into two parts, 70% into training data
and 30% into validation data.

4.6.2 Training the model. After successfully preparing the dataset,
we are ready to train the keypoint detection model. We will use
the pre-trained R50-FPN Keypoint R-CNN with the following meta
parameters used during training (see table 1).

Table 1. Parameters used for training

Parameter Value

Learning Rate 0.00025
Max. Iterations 2000
BATCH_SIZE_PER_IMAGE 512

4.6.3 Inference. The next step will be to infer the new model on
sample images. Trying to predict the newly added keypoints yielded
the following result (see Fig. 14). After visually inspecting the results,
we see that the developed model predicts the outcomes reasonably
well, but still is not accurate enough to predict all the keypoints
correctly since the dataset was too small.
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4.6.4 Evaluation. For the performance evaluation, we have used
two metrics, precision and recall.

Precision = TP @
recision = TP+FP
TP
N=—"—"
Recall = 707N ©)

where TP is the number of true positives, FN is the number
of false negatives, and FP is the number of false positives. Recall
and precision are computed for different threshold values of Inter-
section over Union (IoU). IoU is calculated based on the overlap
between the predicted and ground truth bounding boxes [30]. For
instance, if the IoU threshold is 0.5 and the predicted value for the
IoU is 0.8, that prediction will be classified as true positive. On the
other hand, if the IoU is 0.2, it will be classified as a false positive
when it fails to predict the object on the image. The prediction
will be classified as a false negative. The recall and precision we
got on the validation set for the bounding boxes are illustrated in
the figure,12, and for keypoints are shown in the figure13. While
analysing the evaluation results for bounding boxes (see Fig. 12),
we got mean average precision (mAP) equal to 0.618 for the interval
ToU=0.5:0.95, where mAP is computed over all IoU thresholds, and
then the average is taken from those values. It is pretty low because
the dataset was too small. The mAP@.50I0U metric computes only
the average precision for IoU=0.5, the role of this metric is to give an
approximate estimation of precision if we are not very strict about
the position of the bounding boxes. In this case, it is performing
relatively well, with a score of 0.913. The mAP@.75IoU computes
the same as mAP@.50IoU, but using IoU=0.75 instead of IoU=0.5,
this metric is more strict about the position of the bounding boxes
because it requires at least IToU=0.75 to classify the prediction as
true positive. In this case, we got 0.747, which means that the vast
majority of the bounding boxes are detected correctly, and it is a
good score for a dataset of this size. The following three lines in the
figure 12 show the results that are computed in the same way as
the mAPs above, with a slight difference. The mAPs are divided by
the size of the bounding boxes. The small one computes the mAP
of the bounding boxes with less than 322 pixels. The medium one
computes the mAP of the bounding boxes with an area between 322
pixels and 96 pixels. Moreover, the large one computes the mAP of
the bounding boxes with an area greater than 962 pixels [22]. For
the small and medium sizes of the bounding boxes, we got -1, but
for the large sizes, we got 0.619. We got -1 for small and medium
sizes of the bounding boxes because the provided bounding boxes
while annotating the images were all large, with an area greater
than 962 pixels. When we look at the mean average recall (mAR),
we see that mAR is divided by the number of detections in an image,
i.e., 0 <= n <= x, where n is the number of detections and x is the
maximum number of detections. COCO evaluator has three values
for the maximum number of detections in an image, mainly 1, 10,
and 100. Thus the AR@x will calculate the mAR for all images with
at most x detections across all IoU thresholds (IoU=0.5:0.95). We see
that the score for 0 or 1 detections is equal to 0.658, while the score
for images where the number of detections is greater than one is
0.722. The last three lines are the mAR divided by the size of the
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detected boxes. For these scores, the same logic applies as for the
scores for the mAP. There we again got -1 for the small and medium
sizes of the bounding boxes for the same reason as above.

Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.618
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.913
Average Precision (AP) @[ ToU=0.75 | area= all | maxDets=100 ] = 0.747
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=180 1 = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ ToU=0.50:0.95 | area= large | maxDets=180 ] = 0.619
Average Recall {AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.658
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.722
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.722
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.8000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.722

Fig. 12. Evaluation results for bounding box

For the evaluation of the results for keypoints detection (see
Fig. 13), we used object keypoint similarity (OKS), similar to the
Intersection over Union (IoU) in the case of object detection. OKS
computes the overlapping ratio between predicted keypoints and
the ground truth keypoints [22].

Taking into account that OKS metric shows how close is the
predicted keypoint to the ground truth keypoint and its value is
between 0 and 1, where OKS = 0 means that the predicted keypoints
are off by more than a few standard deviations and OKS = 1 implies
that it predicted all the keypoints perfectly. We got an average
precision for all IoUs of 0.943 and a recall of 1, getting mAP and
mAR of -1 for the size medium for the same reasons that we have
already mentioned when analysing the evaluation results for the
bounding boxes. It means that the model predicts the keypoints
reasonably well. We also see this when we inspect visually the test
images illustrated in the figure 14.

area= all

Average Precision (AP) @[ IoU=0.50:0.95 | | maxDets= 20 ] = ©.943
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.943
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 8.943
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 1 = -1.000
Average Precision (AP) @[ IeU=0.50:0.95 | area= large | maxDets= 20 ] = 0.943
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 1.000
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 1.000
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = -1.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 1 = 1.000

Fig. 13. Evaluation results for keypoints

5 RESULTS

After processing all the rehabilitation exercises, we developed the
native app that was written with React Native. We chose this frame-
work because of the outstanding performance it provides. Next,
BlazePose was integrated into the app, allowing us to estimate the
pose of a human.

The app’s home page (see Fig. 15) allows the patient to select
the exercise related to their injury. By tapping on the exercise, the
patient is redirected to the exercise page (see Fig. 16), where the
patient can view the correct execution of the exercise and select how
many repetitions they want to do. Finally, the user presses the "start
exercise” button and is redirected to the camera view. The app checks
in each frame if all the required keypoints for the exercise are visible
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Fig. 14. Results of the inference

and have an in-frame likelihood greater than 0.8. If all the keypoints
are present, the app starts guiding the user on how to perform
the exercise correctly. It tells the patient, using audio messages,
how to get to the first phase of the exercise. During the exercise
performance, the app computes the coordinates of each keypoint
involved in the exercise and compares it with all the reference phases
of the exercise (see Fig. 3). If the similarity between those two vectors
is more than 0.9, then the phase is considered passed. If the user
fails to get to the end of the phase, the app tells the patient that this
is wrong and asks the patient to follow the guidelines. If the user
passes the phase successfully, the app considers this phase as passed
and tells the user the following guideline. If the user successfully
passes all the phases, the app increments the repetition counter
by one. When the number of repetitions performed is equal to the
number of repetitions selected earlier, the app raises a message that
tells the patient that the exercise was performed entirely.

6 CONCLUSIONS

This paper was partially inspired by the "Move Mirror" experiment
by Google [26]. We took as inspiration how they compute the simi-
larity between two poses by using weighted distance [25]. While
"Move mirror" computes a similarity score between two poses and
returns the most similar images it found. The novelty aspect of
our project lies in the possibility of assisting the user in real-time
by providing the needed guidance for the correct execution of the
exercise.

The following sub-sections describe the answers to the research
questions of this paper.
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6.1 Answering RQ1

The first research question was: "How to track the rehabilitation
exercises in real-time with a low-resource device?". To answer this
question, we searched all other internet body pose models to support
low-resource devices. After thorough research, we found BlazePose,
the fastest pose estimation model for low-resource devices. It al-
lowed us to estimate the human pose while performing a rehabilita-
tion exercise by returning the position of joints in real time.

6.2 Answering RQ2

The second research question: "How to guide the patient during the
exercise?". To answer this question, we processed all the reference
images and extracted the coordinates for each keypoint associated
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with each phase of the exercise. Then, we used the weighted dis-
tance technique to calculate the matching coefficient between the
current pose vector and the reference vector. If the patient success-
fully passes all the phases, the app counts the repetition as correct.
Otherwise, if the patient fails to pass a phase, the app raises an error,
telling the user to follow the exercise guidelines.

6.3 Answering RQ3

The third research question: "How to improve the existing keypoint
topology to increase the impact of neck pain exercises?" was an-
swered by finding a category of exercises that the current topology
cannot assess. Next, we defined the five needed keypoints, found
related images, and annotated them. Afterwards, we fine-tuned the
pre-trained model with our new custom dataset. Finally, we trained
and tested it with a sample of images (see Fig. 14).

7 FUTURE WORK

Due to a limited time frame, the research goals were relatively small.
Nonetheless, there is room for improvement. Namely, in the future
version of the app, we plan to include the feature to generate a
report at the end of the exercise performance, which will show
the mistakes that were made during the exercise execution, with a
comment on how to improve it next time. It can be implemented
by analysing the angles of the joints involved in the exercise and
comparing those to the reference video by using Dynamic time
warping (DTW) to compare those two and finding the errors in
the execution. Implementing this will transform the app’s current
version from a guiding app to a correcting one.

Another idea worth implementing in the future is integrating
an aufmented reality (AR) trainer into the app. Although we have
integrated ARCore in the current version, the display was getting
slower, destroying the user experience. In the future, we think we
will be able to render a 3D object in the app to help the user perform
the exercises. Lastly, we also plan to implement a tracking feature
into the app, where the therapist may monitor the patient’s progress
through the entire rehabilitation program.

REFERENCES

[1] Marco Rogante, Mauro Grigioni, Daniele Cordella, and Claudia Giacomozzi. Ten
years of telerehabilitation: A literature overview of technologies and clinical
applications, 2010.

Francisca Rosique, Fernando Losilla, and Pedro J. Navarro. Applying vision-based
pose estimation in a telerehabilitation application. Applied Sciences (Switzerland),
11(19), 2021.

[3] Jurgen Broeren, Ann Bjérkdahl, and Martin Rydmark. Virtual reality and haptics
as an assessment device in the postacute phase after stroke. Cyberpsychology and
Behavior, 5(3):207-211, 2002.

Portia E. Taylor, Gustavo J.M. Almeida, Takeo Kanade, and Jessica K. Hodgins.
Classifying human motion quality for knee osteoarthritis using accelerometers.
2010 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBC’10, (August):339-343, 2010.

L. Enrique Sucar, Roger Luis, Ron Leder, Jorge Hernandez, and Israel Sanchez.
Gesture therapy: A vision-based system for upper extremity stroke rehabilitation.
2010 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBC’10, (June 2014):3690-3693, 2010.

[6] David Anton, Alfredo Goni, Arantza Illarramendi, Juan Jose Torres-Unda, and
Jesus Seco. KiReS: A Kinect-based telerehabilitation system. 2013 IEEE 15th Inter-
national Conference on e-Health Networking, Applications and Services, Healthcom
2013, (May 2015):444-448, 2013.

Tomasz Hachaj and Marek R. Ogiela. Rule-based approach to recognizing human
body poses and gestures in real time. Multimedia Systems, 20(1):81-99, 2014.

[2

[4

[5

7



TScIT 37, July 8, 2022, Enschede, The Netherlands

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Adeline Paiement, Lili Tao, Sion Hannuna, Massimo Camplani, Dima Damen, and
Majid Mirmehdi. Online quality assessment of human movement from skeleton
data. BMVC 2014 - Proceedings of the British Machine Vision Conference 2014, pages
1-12, 2014.

Ming-chun Huang, Jason J Liu, Wenyao Xu, Nabil Alshurafa, Xiaoyi Zhang, and
Majid Sarrafzadeh. On Bed Rehabilitation Exercises. 18(2):411-418, 2014.

M. Capecci, M. G. Ceravolo, F. F. Ferracuti, S. Iarlori, S. Longhi, L. Romeo, S. N.
Russi, and F. Verdini. Accuracy evaluation of the Kinect v2 sensor during dynamic
movements in a rehabilitation scenario. Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016-
Octob(March):5409-5412, 2016.

Vakanski A, Ferguson JM, and Lee S. Mathematical Modeling and Evaluation of
Human Motions in Physical Therapy Using Mixture Density Neural Networks.
Journal of Physiotherapy & Physical Rehabilitation, 01(04):1-10, 2016.

Ben Crabbe, Adeline Paiement, Sion Hannuna, and Majid Mirmehdi. Skeleton-Free
Body Pose Estimation from Depth Images for Movement Analysis. Proceedings
of the IEEE International Conference on Computer Vision, 2016-Febru(December
2015):312-320, 2016.

Elham Saraee, Saurabh Singh, Kathryn Hendron, Mingxin Zheng, Ajjen Joshi,
Terry Ellis, and Margrit Betke. ExerciseCheck: Remote monitoring and evalua-
tion platform for home based physical therapy. ACM International Conference
Proceeding Series, Part F1285:87-90, 2017.

Lynne V. Gauthier, Chelsea Kane, Alexandra Borstad, Nancy Strahl, Gitendra
Uswatte, Edward Taub, David Morris, Alli Hall, Melissa Arakelian, and Victor
Mark. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): Protocol
for a multi-center comparative effectiveness trial of in-home gamified constraint-
induced movement therapy for rehabilitation of chronic upper extremity hemi-
paresis. BMC Neurology, 17(1):1-19, 2017.

Wan-wen Liao, Sandy McCombe Waller, and Jill Whitall. Kinect-based individ-
ualized upper extremity rehabilitation is effective and feasible for individuals
with stroke using a transition from clinic to home protocol. Cogent Medicine,
5(1):1428038, 2018.

Yalin Liao, Aleksandar Vakanski, Min Xian, David Paul, and Russell Baker. A
review of computational approaches for evaluation of rehabilitation exercises.
Computers in Biology and Medicine, 119:1-29, 2020.

Talal Alatiah and Chen Chen. Recognizing Exercises and Counting Repetitions in
Real Time. pages 1-13, 2020.

[18

[19

[20

[
-

Andrei Popovici

Meera Radhakrishnan, Darshana Rathnayake, Ong Koon Han, Inseok Hwang,
and Archan Misra. ERICA: Enabling real-time mistake detection & corrective
feedback for free-weights exercises. SenSys 2020 - Proceedings of the 2020 18th
ACM Conference on Embedded Networked Sensor Systems, pages 558-571, 2020.
Steven Chen and Richard R. Yang. Pose Trainer: Correcting Exercise Posture
using Pose Estimation. 2020.

Swakshar Deb, Md Fokhrul Islam, Shafin Rahman, and Sejuti Rahman. Graph
Convolutional Networks for Assessment of Physical Rehabilitation Exercises.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30:410-419,
2022.

Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan
Zhang, and Matthias Grundmann. BlazePose: On-device Real-time Body Pose
tracking. 2020.

Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollar, and C. Lawrence Zitnick. Microsoft COCO: Common objects
in context. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART
5):740-755, 2014.

T. Malone, T. A. Blackburn, and L. A. Wallace. Knee rehabilitation. Physical
Therapy, 60(12):1602-1609, 1980.

Rehabilitation Exercises — Stables Therapy Centre.

Personlab Person, Pose Estimation, George Papandreou, Tyler Zhu, Liang-chieh
Chen, Spyros Gidaris, Jonathan Tompson, and Kevin Murphy. PersonLab: Per-
son Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based,
Geometric Embedding Model.

Move Mirror: An Al Experiment with Pose Estimation in the Browser using
TensorFlow.js — The TensorFlow Blog.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
Detectron2. 2019.

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2D hu-
man pose estimation: New benchmark and state of the art analysis. Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 3686-3693, 2014.

Justin Brooks. COCO Annotator, 2019.

Ying Huang, Bin Sun, Haipeng Kan, Jiankai Zhuang, and Zengchang Qin. Follow
me up sports: New benchmark for 2d human keypoint recognition. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 11859 LNCS:110-121, 2019.



	1 Abstract
	2 Introduction
	3 Related Work
	4 Methodology
	4.1 BlazePose
	4.2 System Design
	4.3 Exercises analysis
	4.4 Image Processing
	4.5 Similarity computation
	4.6 Custom keypoints detector

	5 Results
	6 Conclusions
	6.1 Answering RQ1
	6.2 Answering RQ2
	6.3 Answering RQ3

	7 Future Work
	References

