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Human Activity Recognition (HAR) is becoming increasingly useful for

applications such as well-being monitoring and personalizing smart spaces.

Traditional methods for HAR often require wearable devices or camera’s.

The former is not feasible for every environment and the latter has strong

privacy concerns. The mmWave radar has been shown to be a promising

alternative as it does not imply the same privacy concerns and does not

require the users to have wearable devices. In this paper we have used a

low-cost mmWave radar to generate micro-Doppler spectrograms to ulti-

mately classify different activities. For this, multiple classifiers and methods

of spectrogram filtering have been examined. Finally a Time-Distributed

Convolutional Neural Network in conjunction with a Bi-Directional Long

Short-Term Memory has attained an average accuracy of 99.62% on a dataset

of 5 activities, involving 2 participants.

Additional Key Words and Phrases: Activity Recognition, mmWave Radar,

micro-Doppler, Spectrogram, machine learning

1 INTRODUCTION
Knowing the location of people and what they are doing can be of

importance to a variety of applications. Elderly require constant

monitoring to allow them to live an independent lifestyle, while also

ensuring their well-being [1]. Smart spaces can better respond to

personalized demands, such as heating, lighting, security manage-

ment and sound selection using this information, increasing comfort

and energy efficiency [8]. Currently user, identification and activity

tracking methods include using visual camera’s, WiFi and device-

based solutions, where users are identified by their smartphone,

watch or ID-card [11]. While camera’s achieve great performance

in these tasks, they do have the downsides of light-condition re-

liance, as well as privacy concerns. Camera’s are intrusive and often

poorly received in both domestic and commercial settings [2]. In

addition, camera’s in a hospital have been used to spy on female

patients [5]. WiFi-based solutions require a separate transmitter and

receiver, and only work when the target is located between them,

limiting their usability. Moreover, device-based solutions require

human effort and assume inseparability of the device and their users,

properties that are ultimately undesired for seamless integration.

The mmWave radar is a small device, operating as a transceiver us-

ing electromagnetic waves. In addition its waves can penetrate thin

layers of some materials, allowing it to be placed inside furniture or

walls [6]. These properties can make the mmWave radar a better

fit for user, identification and activity tracking purposes than the

aforementioned solutions.

Thus, in this paper the efficacy of the mmWave radar will be tested.

While it can be used for user-tracking, user identification, activity
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recognition and more, the focus of this paper will be solely on ac-

tivity recognition. However, the methods used can be applied to the

variety of applications discussed above.

2 RELATED WORK
Human activity recognition (HAR) has been researched extensively

over the past decade or so. As discussed in Section 1, solutions to

HAR include visual camera’s, Inertial Measurement Units (IMU)

and even WiFi Routers. However, because of the constraints and

concerns associated with these types of sensors, the radar-based

solutions are most relevant to this research.

Recently, Frequency Modulated Continuous Wave (FMCW) radars

have been increasingly used, because the higher frequency allows

for superior range resolution. However, instead of outputting raw

data, these devices automatically generate a point cloud. The num-

ber of points in each frame is not consistent, making it more complex

to use the point cloud as input for machine learning classifiers, as

the data is not of constant dimensions.

Singh. et al. circumvent this problem by transforming the generated

point clouds into a voxelized representation, which makes the data

dimensions constant, but also makes each individual frame a large

size of 10 x 32 x 32. They manage to achieve accuracies of 90% using

deep learning classifiers, showing that automatic feature extraction

can be as performant as manual feature extraction using traditional

machine learning methods. Zhao et al. also use the generated point

cloud, though they use it in real time by clustering the points to-

gether, tracking the clusters and finally identifying them [11].

While the point clouds are the usual outputs of the FMCW radars,

it is possible to use the raw data of these radars to detect micro-

Doppler effects from moving targets. These micro-Doppler effects

arise when non-rigid bodies move, as along with the general move-

ment of the body/torso, small micro-scale movements and rotations

also occur. Think of the swinging of the arms and the movement

of the feet during walking. These micro-Doppler effects can be vi-

sualized using a micro-Doppler spectrogram. A big advantage that

the spectrogram has over the point clouds is its data size. Using the

voxel presentation presented by Singh et al. each frame has a data

size of over 10.000 [9]. Meanwhile, the spectrogram usually has a

data size of 100 - 300 for a single frame. Additionally, similarly to

the point clouds, the spectrogram has also been demonstrated to

achieve high accuracy in (activity) recognition tasks.

Kim et al. have extracted features from the spectrogram manually

to train an SVM classifiers to achieve an accuracy of 90% for activ-

ity recognition [7]. Zhang et al. used it to recognize basic human

activities and achieve accuracies of over 90% [10]. Janakaraj et al.

used the spectrogram for the purpose of human identification based

on people’s gait and achieve an accuracy of 97.45% on a dataset of

20 people [3]. Moreover, the spectrogram proves useful for smaller

movements as well, as Jiang et al. have used it to detect hand ges-

tures using an SVM and CNN, attaining a best accuracy of 95% [4].

In this work, we have collected a HAR dataset containing 5 activities

using a mmWave radar operating in the 77-81 GHz range. Using the
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raw data of the radar, micro-doppler spectrograms have been gen-

erated for these activities. The spectrograms have been enhanced

using filtering methods to remove background noise and have subse-

quently been used to train different classifiers. The best performing

classifier has been able to achieve an average accuracy of 99.62%.

The rest of the paper is organized as follows. In Section 3 preliminary

information about the workings of the radar and the signal process-

ing methods is provided. Section 4 mentions the experimental setup,

the post-processing methods and the classifiers are presented. Sec-

tion 5 discusses the results and finally Section 6 concludes the paper.

3 BACKGROUND

3.1 Radar
A mmWave radar is a radar that works in the mmWave range. They

operate at frequencies between 30-300 GHz where the waves have

a size of 1 - 10 mm, hence the name. For this research, the TI IWR

1443Boost was used, which works in the 77-81 GHz frequency band.

It contains 4 receivers and 3 transmitters, allowing it to receive the

reflections of the sent signal. Due to having multiple receivers it is

also able to determine the Angle of Arrival (AoA) on the horizontal

plane of reflected waves.

Additionally, this is also a Frequency Modulated Continuous Wave

(FMCW) radar, meaning that the signal of the radar is sent in ’chirps’

and ’frames’. Each chirp is a continuous wave, but linearly increases

in frequency for the duration of the chirp. The frequency during a

chirp is sampled a set amount of times, which is denoted by ’ADC

samples’. A frame consists of multiple consecutive chirps and usually

ends with a refractory period where no signal is being sent. The

range and velocity of an object can be measured using the ADC

samples and the chirps, respectively.

The resolution of these properties can be influenced by the radar

configuration. These are important, because most activities to be

recognized involve micro-movements of peripheral limbs such as

the hands, arms or legs. Higher resolutions improve the fidelity of

the measurements of such activities and give the machine learning

classifiers higher quality data to learn from.

Range resolution (𝑑𝑟𝑒𝑠 ) determines the minimum distance be-

tween 2 objects, such that they can still be distinguished as different

objects. The formula for the range resolution is as follows:

𝑑𝑟𝑒𝑠 =
𝑐

2𝐵
(1)

where 𝑐 is the speed of light and 𝐵 is the bandwidth of the sweeping

chirp. Meaning the total bandwidth of a single chirp is the only

factor determining the final range resolution. The frequency band

of the IWR 1443Boost allows it a maximum bandwidth of 4 GHz,

which would yield a range resolution of 3.75cm.

Velocity resolution (𝑣𝑟𝑒𝑠 ) determines the minimum frequency dif-

ference between 2 discrete frequencies, such that their sum can be

resolved into their respective parts. The formula for the velocity

resolution is as follows:

𝑣𝑟𝑒𝑠 =
𝜆

2𝑇𝑓
(2)

where 𝜆 is the wavelength and𝑇𝑓 is the time of a single frame. With

the radar, there is limited control over the final wavelength, but its

high frequency allows for a strong velocity resolution compared to

lower frequency radars. However, the frame time can be controlled.

3.2 Signal Processing
Using the raw data of the radar, it is possible to generate a Micro-

Doppler Signature (MDS), also known as a (micro-)doppler spectro-

gram. The MDS is simply a plot of reflected (doppler) frequency or

velocity over time. This means that static objects only show up on

the x-axis where the velocity or frequency is 0, meaning that there is

no possibility to distinguish between non-moving objects. However,

the MDS allows micro-movements of peripheral limbs such as the

hands, arms and legs to be distinguishable from the bigger moving

parts such as the torso. Depending on the radar configuration vary-

ing levels of detail can be seen on the MDS.

One possibility to generate the MDS is as follows. First the data must

be arranged into the radar data cube. This is a way of arranging the

data such that the data has dimensions as follows: (# of Rx Channels,

# of ADC Samples, # of Chirps, # of Frames). The # of Frames is sim-

ply the time dimension, and is traditionally not included in the radar

data cube. This representation allows for Fast Fourier Transforms

(FFT) to be easily applied to the correct dimensions. The following

steps must be performed over each frame. First the Range-FFT is

applied over the ADC samples of a frame. Next, we sum over the

same dimension. Secondly, a hanning window is applied over the

chirps, after which the Doppler-FFT will be performed. Finally, we

sum over the Rx channels. One such MDS can be seen in Figure 1.

Fig. 1. Raw Micro-Doppler Spectrogram of a Squat

4 METHODOLOGY

4.1 Experimental Setup
In Table 1 the used radar configuration can be found. As outlined

in Section 3.1, the range and velocity resolutions are both very

important for the results of activity recognition. It was found that

range resolution could be improved by increasing the bandwidth of

the sweeping chirps, and velocity resolution could be improved by

shortening the frame time. The bandwidth increase could have been

facilitated by either lengthening the chirp time and/or increasing the

chirp slope. However, lengthening the chirp time has consequences

for the amount of chirps that can fit in a frame, so a higher chirp

slope was chosen. More chirps in a frame increases the resolution of

the spectrogram. As such, it was chosen to not decrease the frame
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Table 1. Radar Configuration

Parameter Value

Tx 1

Start Frequency 77 GHz

ADC Samples 256

Chirp Slope 66 GHz/s

Bandwidth 3963 MHz

Chirps per Frame 200

Frames 750

Periodicity 40 ms

Table 2. Activities

Activity # of Records Total Duration (s)

Clapping 26 780

Jogging 26 780

Jumping Jacks 26 780

Squats 26 780

Waving 26 780

time from the default settings and instead increase the amount of

chirps per frame significantly. Consequently, this does increase the

amount of data that needs to be processed. However, compared to

increasing the ADC samples to 512 or using 2 transmitters instead

of 1, the increase in data size is marginal. Regarding increasing the

ADC samples and transmitters used, neither were found to make a

significant difference in the spectrograms, and thus the increase in

data size was not deemed to be worth it. Finally, 750 frames were

chosen to make every measurement 30 seconds long.

For the data collection the radar was mounted on a tripod at a

height of 1.2m. The activities were performed at a distance of 2m

from the radar. The setup can be viewed in Figure 2. In total, 5 activ-

ities were performed by 2 participants. Each participant performed

each activity 13 times for 30 seconds. This yields a total of 6.5 min-

utes of data per activity per person, totalling 65 minutes of data. The

activities that were performed can be seen in Table 2, along with

the total number of records and total duration of recorded data.

Fig. 2. Data Collection setup

4.2 Post-Processing
Before training the different classifiers, the raw spectrograms need

to be improved. Particularly, the background noise needs to be fil-

tered to allow for the best possible results. For this purpose different

filtering methods were examined.

Filter 1 simply subtracts the mean of the entire spectrogram from

all points in the spectrogram. Subsequently all negative points are

set to 0.

Filter 2 uses the steps of filter 1 twice.

Filter 3 first applies a gaussian blur with a sigma value of 0.5 to the

spectrogram, after which the same steps from filter 1 are used.

The sigma value of the gaussian blur determines how strong the

blur is. A higher sigma value will increase the disparity between

background noise and signal, but will blur the signal in the process.

In Figure 4 in Appendix A all filters are applied to the same spec-

trogram as shown in Figure 1. It can be seen that filter 1 retains

the strongest signal, though also the most background noise. Filter

2 has a slightly weaker signal, but also has very little background

noise left over. Finally filter 3 has very little background noise as

well, however the signal is of slightly lower quality due to the gauss-

ian blur. After filtering, each spectrogram is sliced into slices of

2 seconds (50 frames), with an overlap of 0.32 seconds (8 frames).

The 2 second time window was chosen based on previous works

of human activity recognition and identification [9, 11] This gives

2288 samples per activity, making 11.440 samples in total.

4.3 Classifiers
Different Machine Learning Classifiers have been trained, specif-

ically the Support Vector Machine (SVM), the Long Short-Term

Memory (LSTM) and a Convolutional Neural Network (CNN) com-

bined with an LSTM were trained. These classifiers were taken from

the Github page
1
of the RadHAR paper [9]. The MLP from their

page was also trained, but did not converge past an accuracy of 20%

and was decided to not be included in the results. The only differ-

ence with their classifiers is the input size, as each spectrogram slice

has a size of 50 x 200 whereas each 2 second window of the RadHAR

voxel representation has a size of 60 x 10 x 32 x 32. Consequently the

CNN classes are now 1D classes instead of 3D classes. Each of these

classifiers were trained on the same train-test split of the gathered

dataset. A train-test split of 75/25 was used for the training. They

were implemented using sklearn and keras. For the deep learning

classifiers an Adam Optimizer was used with a learning rate of 0.001.

The models were trained for 30 epochs, during which the models

with minimum loss were saved.

4.3.1 SVM.
The SVM receives as data input a flattened representation of each

slice. Principal Component Analysis (PCA) is used to reduce the

dimensionality from 10.000 to 100. GridsearchSVC was used in con-

junction with an RBF kernel.

4.3.2 Bi-Directional LSTM.
The Bi-Directional LSTM is a classifier in which the LSTM layer is

duplicated, with the first layer receiving the input data from past

1
https://github.com/nesl/RadHAR
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Table 3. Classifiers with Accuracy per Filter

Accuracy

Classifier Filter 1 Filter 2 Filter 3

SVM 95.87% 96.56% 96.77%

LSTM 96.63% 97.65% 97.60%

CNN + LSTM 99.48% 99.62% 99.40%

Table 4. Classifiers with Accuracy Range per Filter

Range

Classifier Filter 1 Filter 2 Filter 3

SVM 95.70 - 96.08 96.33 - 96.92 96.22 - 97.10

LSTM 96.29 - 96.92 97.13 - 98.21 96.64 - 98.32

CNN + LSTM 99.20 - 99.65 99.30 - 99.83 99.09 - 99.55

to future and the second layer receiving it from future to past. This

allows the classifier to retain information from both past and future.

It consists of the Bi-Directional LSTM layer, followed by 2 fully

connected layers, with the output layer as final layer.

4.3.3 Time-Distributed CNN + Bi-Directional LSTM.
The Time-Distributed CNN applies a CNN layer to every temporal

slice of the input data. The complete model consists of 3 Time

Distributed convolutional modules, each including 2 convolution

layers and 1 maxpooling layer. Finally it has a Bi-Directional LSTM

layer, followed by the output layer. This is the only trained classifier

that has the capability to use the spatial dimensions of the input

data in addition to the time dimension.

The results of the classifiers can be found in Table 3. The reported

accuracies are the average of 4 training session, where each session

was done on the exact same train-test split. In Table 4 the ranges

of the achieved accuracies are also shown. Figure 3 contains the

confusion matrix for the best performing CNN + LSTM model from

filter 2. Only waving is not predicted with a 100% accuracy, how-

ever it does not confuse enough samples to show what it actually

predicted. It would make sense that it predicted clapping instead of

waving, as those 2 activities have the smallest total movement and

thus the smallest signal in the spectrogram.

5 DISCUSSION
All filtering methods achieve extremely good performance for all

classifiers. The high accuracy of the SVM is somewhat surprising,

given that in the RadHar paper it only achieved just over 60% on a

similar dataset. Without applying a PCA the accuracy was signifi-

cantly lower. This could be due to removing noise that was leftover

from the filtering steps. The Bi-Directional LSTM performs slightly

better than the SVM. This classifier has some concept of time and

tries to look at the sequence and timing of the input data. Since

human activities are usually performed over a short duration, it

makes sense that the LSTM performs well. The Time-Distributed

CNN + Bi-Directional LSTM performs phenomenally with an ac-

curacy of over 99% for both filters. Given that this is basically the

Bi-Directional LSTM with additional convolutional layers before it,

it is logical that it performs well. Despite the fact that the input data

Fig. 3. Confusion Matrix of the best CNN LSTM using Filter 2

does not have spatial dimensions, it is still able to learn extremely

well.

There are 2 main reasons that contribute greatly to the high accu-

racy for this research. Firstly, the chosen activities were relatively

different and consequently produce quite different spectrograms as

well. Obviously this makes it easier to classify the activities correctly,

compared to when more similar activities would have been cho-

sen. Secondly there were only 2 participants that contributed to the

dataset. Because people move in different ways, the spectrograms

that 2 different people generate by performing the same activity can

be very different. Thus if more people were involved in creating the

dataset, they would be harder to classify.

The difference in accuracy between the 3 filters is almost negligible.

Filters 2 and 3 do perform ever so slightly better than filter 1 for the

SVM and LSTM. This could be due to the lower total noise using

those filters. The differences for the CNN + LSTM are extremely

minor, and so no real conclusions can be drawn from this. However,

I would hypothesize that the small increase in accuracy for filter 2

is due to the lower noise level and the slightly lower accuracy for

filter 3 has a basis in the reduced quality of the signal.

6 CONCLUSION
In this paper, we generated our own human activity dataset us-

ing a low-cost mmWave radar for the purpose of Human Activity

Recognition. Using the radar’s raw data, micro-Doppler spectro-

grams have been created and subsequently used to train different

machine and deep learning classifiers. Using the classifiers of the

RadHAR paper [9] on a similar dataset we have been able to achieve

superior results with the best combination of classifier and filtering

method achieving an average accuracy of 99.62%. This could imply

that micro-Doppler spectrograms are a superior signal processing

option compared to the sparse point clouds, both in performance

and training data size.
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