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The number of networked devices is increasing rapidly with numbers reach-
ing 29.3 billion by 2023, up from 18.4 billion in 2018. This increasing user
density requires new technologies to provide reliable connectivity. 5G and
IEEE 802.11ax are among these technologies. Deployment of Artificial Intel-
ligence (AI) in wireless networks has been proven useful in optimizing dense
networks, however optimization frameworks proposed in literature lack
analysis of user density variation over optimization time and performance
improvements. In this paper, Contention Window (CW) optimization in
802.11ax networks has been analysed because it has been shown to improve
network performance significantly. The analysis shows that throughput
varies from 33.9 Mbits/s with 5 users in the network to 32.7 Mbit/s with 50
users in the network while delay and jitter variations remain within 45 and
14 milliseconds, respectively. The analysis reveals CW optimization can help
improve performance in dense networks and this analysis can help network
administrators to deploy cost-optimized networks.

Additional Key Words and Phrases: Deep Reinforcement Learning, IEEE
802.11ax, Throughput, Wireless LAN, Contention Window, DRL based Opti-
mizations, User density in WLANs

1 INTRODUCTION
As can be seen from figure 1, the number of connected devices grows
by billions every year [5]. One of the biggest growing categories
is Machine-to-Machine (also called IoT) devices. It is forecasted
that 50 per cent of total connected devices will be M2M devices
by the end of 2023, of which around half is wireless. That is why
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Fig. 1. Global device and connection growth. Source: [5]

researchers are trying to find ways for Access Points (AP) and edge
devices to work more and more efficient. Internet standard IEEE
802.11ax is a result of such research and released in 2020. This new
standard is more efficient than its predecessors, especially when it
comes to higher user density. It employs OFDMA to support high
user density however, it still follows the Contention-based channel
access mechanism.

When user density grows channel access becomes very complex
and induces a lot of collisions. To get access to the channel the
station checks if the channel is idle and then transmits its data
frame. The station waits for an acknowledgement to see if there
was no collision before it proceeds with the next frame. If there
was no acknowledgement there was most likely a collision and it
waits a random number of time slots between 0 and the Contention
Window (CW) to avoid another collision. When the channel does
not get an acknowledgement it doubles the CW and this continues
until the station gets an acknowledgement and it will then send the
rest of the frames. This way of choosing CW can be very inefficient
in networks with a high user density and setting the right CW is
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very important to the performance of a WiFi network [3]. That is
why researchers are trying to find techniques to optimize the CW
value.

Optimization of CW can be efficiently done with the help of
Machine learning-based algorithms like DRL [11] or supervised
learning (SL) [8] and throughput improvements have been achieved
compared to conventional optimization techniques. Now with the
increase of devices, it is important to understand all the conse-
quences of user density increase in such optimized networks like
latency or the convergence speed of the DRL. This can help network
administrators decide on the employment of CW optimization solu-
tions and design more robust and efficient networks while reducing
infrastructure costs.

The objective of this research is to find out how user increase af-
fects CW optimization time and overall network performance. This
analysis will help design WiFi networks keeping in view anticipated
user density. The analysis can also be used to design cost-effective
networks with minimal infrastructure to support a given user den-
sity. In order to perform this analysis, network simulations were
carried out in NS3 with the CW optimization framework used in
[11].

2 RELATED WORK
A lot of research has been done on network optimization with ML.
The articles in the introduction [11](using ML and neural networks)
and [8](using ML without neural networks) are examples of CW
optimization. But there are other parameters that can be optimized
using ML. Like frame length optimization using Supervised Learn-
ing [7], they were able to achieve an improvement of 18.36% in
throughput by optimizing the length of the packet frames using
Supervised Learning. Applying RL to optimize the data transmis-
sion rate [4] is another example, here the data sending rates of
nodes is controlled with a DRL agent and higher throughput was
achieved. Or this research [1], where DRL is used to solve time and
resource allocation problems in OFDMA wireless networks. Higher
throughput was achieved here as well. ML research in other wireless
networks like Long-Term Evolution (LTE) has also been done [9],
this research also achieved higher throughput.

Some of these papers have an analysis of how varying user density
affects throughput, but other effects are left out. This paper will
show how CW optimization in 802.11ax networks ...

• affects jitter with varying user density.
• affects delay with varying user density.
• affects throughput with varying user density.
• can best be deployed.
• can reduce network costs.

3 METHODOLOGY
To study the effects of increasing user density on CW optimization
networks simulations have been used. IOT sensors andM2M devices
are represented as nodes with varying traffic requirements. Traffic
generation is done from nodes towards AP and from AP towards
nodes. Parameters like bandwidth, packet size and CW are set up
as per IEEE 802.11ax standard. Network statistics like throughput,

Delays, Jitter and CW values are monitored and collected for the
DRL algorithm to perform CW optimization.

3.1 Ns-3 and Ns3-gym
For the simulations, a combination of Ns-3 and ns3-gym is used.
Ns-3 is an open-source network simulator developed in C++ using
object orienting programming model and is widely used in network
research. Ns-3 can simulate the latest 802.11ax network models
and allows sophisticated tracing and monitoring of the network.
Ns3-gym uses the OpenAI Gym[2] RL toolkit. Given numerical data
of observations, actions and rewards OpenAI Gym can train a RL
agent. Ns3-gym is a framework that uses this toolkit specifically for
RL research in networking.

In this paper, an open-source framework [11] has been usedwhich
already has a DRL algorithm for CW optimization.

3.2 Data
In these simulations, user density has been increased and the effects
on DRL and certain aspects of the network have been analyzed.
All simulations have been run twice, once with CW optimization
and once with standard 802.11ax. Later the results are analyzed and
compared for improvement. So in this quantitative research, the
following data on networks with varying number of stations from
5,10,....,N has been collected:

• Optimization time (the time it takes for the DRL algorithm to
learn the optimal CW value).

• Throughput of the network (successfully transferred data in
Mbits/second).

• Latency (Time it takes for a packet to be received).
• Jitter (delay variation in seconds).

The gathered data will be presented in graphs. From these graphs,
conclusionswill be drawn and a real-life environmentwill be sketched
to see if network costs can be reduced.

3.3 Network and study model
The simulated network consists of one AP and varying number of
stations from 5,10,....,N. These stations will constantly send UDP
packets with a fixed size of 1500B to the AP. The CW-value is calcu-
lated with the DRL algorithm and then broadcasted to all stations
in the neighbourhood. After receiving these broadcasts all stations
update their CW accordingly. The network topology is shown in fig-
ure 2 and while network parameters used in simulations are given
in Table 1. Around 20% of the connected stations are stationary,
and the rest of the stations are mobile. All stations are connected
wirelessly.

3.4 DRL Framework
The DRL framework used in [11] has been used in this study. In RL
there is an agent who can perform certain actions in an environment.
In this framework, the RL agent is centralized at the Access Point
(AP). The environment is the wireless network and the action the
agent can take is to broadcast a certain CW.

The goal of the agent is to optimize its parameters, in this case, the
CW. The agent learns how to reach this goal bymeans of rewards and
punishments. Throughput is a good measure of the performance of
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# AP 1
# Stations 5 up to N
IEEE 802.11ax
Modulation 1024-QAM
Channel width 20 MHz
Packet protocol UDP
Packet size 1500B

Table 1. Network settings
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Fig. 2. Network topology: stations sent UDP packets, AP broadcasts CW.

the network and is therefore used as a reward factor. The algorithm
works in steps, in every step, a CW is chosen and the throughput is
measured. If the throughput has increased or decreased since the
last step the agent is rewarded or punished respectively. The frame-
work’s algorithm uses Neural Networks to learn from its experience
and determine the CW, which makes this a DRL algorithm. The
framework has two options for the algorithms: discrete (DQN) and
continuous (DDPG). In this paper, only the DDPG method is used,
since the research from this paper[11] shows that this method has
higher throughput than the discrete method. The settings of the DRL
algorithm are shown in table 2 [11]. DDPG has two neural networks,
one for the actor who gives an action directly from a state and one
for the critic who takes the state and action as input and outputs
the expected reward. Both the critic and the actor network had the
following layers structure: 8 × 128 × 64. The hyper-parameters in
table 2 and the network configuration are all important for the DRL

AP
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Sent frames Sent frames

Inference 64

CW

64
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new CW
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Fig. 1. The considered topology (stations transmit data to the AP) and process
of CW update (𝜇 denotes mean, 𝜎 – standard deviation).

IV. SIMULATION MODEL

We implemented CCOD in ns3-gym [20], which is a
framework for connecting ns-3 (a network simulator) with
OpenAI Gym (a tool for DRL analysis). The neural networks
of DDPG and DQN were implemented in Pytorch and Ten-
sorflow, respectively, to demonstrate independence of agent
implementation.

The ns-3 simulations used the topology of Fig. 1 and the
following settings: error-free radio channels, IEEE 802.11ax,
the highest modulation and coding scheme (1024-QAM with a
5/6 coding rate), single-user transmissions, a 20 MHz channel,
frame aggregation disabled4, and constant bit-rate UDP uplink
traffic to a single AP with 1500 B packets and equal offered
load calibrated to saturate the network. Also, we assumed
(i) perfect and immediate transfer of state information to
the agent (i.e., the current values of 𝑁𝑡 and 𝑁𝑟 are known
at the AP) as well as (ii) the immediate setting of 𝐶𝑊

at each station. In practice, relaxing the former assumption
would require an overhead of around 100-200 B/s sent from
the stations to the AP, while relaxing the latter assumption
would require dissemination of CW values by the AP through
periodic beacon frames leading to slower convergence. In
summary, the idealized simulation settings allow for assessing
the base performance of CCOD before moving to more
realistic topologies.

The DRL algorithms were run with the parameters in
Table I, which were determined empirically through a lengthy
simulation campaign to provide good performance for both
algorithms (their universality is left for further study). The
hyperparameters were determined using a random grid search
followed by Bayesian optimization. The neural network ar-
chitecture was the same for both algorithms: one recurrent
long short-term memory layer followed by two dense layers
resulting in a 8 × 128 × 64 configuration. The size of the

4Frame aggregation was disabled to speed up the experiments at the
cost of throughput. This does not qualitatively affect the network behavior
because if frame aggregation was enabled, the improvement would have been
proportional to the gain in throughput.

TABLE I
CCOD’S DRL SETTINGS

Parameter Value

Interaction period 10 ms
History length ℎ 300

DQN’s learning rate 4 × 10−4

DDPG’s actor learning rate 4 × 10−4

DDPG’s critic learning rate 4 × 10−3

Batch size 32
Reward discount 𝛾 0.7

Replay buffer 𝐵 size 18,000
Soft update coefficient 𝜏 4 × 10−3
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Fig. 2. Network throughput for the static topology.

networks was determined in the same way as the other
hyperparameters. Using a recurrent layer with a wide history
window allowed the algorithms to take previous observations
into account. The preprocessing window length was set to ℎ

2
with a stride of ℎ

4 , where ℎ is the history length.
Randomness was incorporated into both agent behavior and

network simulation. Each experiment was run for 15 rounds
of 60-second simulations (the first 14 rounds constituted the
learning phase, the last round – the operational phase). Each
simulation consisted of 10 ms interaction periods, between
which Algorithm 1 was run.

V. RESULTS

CCOD was evaluated in two different topologies, for a
static and dynamic number of stations, to assess various
performance aspects. We used two baselines for comparison:
(a) the current operation of 802.11ax, denoted as standard
802.11, in which 𝐶𝑊𝑚𝑖𝑛 = 24 − 1 and 𝐶𝑊𝑚𝑎𝑥 = 210 − 1, and
(b) an idealized case of a look-up table in which 𝐶𝑊𝑚𝑖𝑛 =

𝐶𝑊𝑚𝑎𝑥 = 𝐶𝑊 and 𝐶𝑊 ∈ {2𝑥 − 1 | 𝑥 ∈ [4, 10]}, where 𝑥

depends on the number of stations currently in the network.
The look-up table (a mapping between the number of

stations and 𝐶𝑊) was prepared a priori by determining
(with simulations) which CW values provide best network
performance (for multiples of five stations). The first baseline
represents the current operation of 802.11ax, while the latter
estimates the upper bound (under the assumption that only

Table 2. DRL settings

algorithm to work optimally. They have been chosen like this by
means of trial and error after many simulations.

To help the agent explore more possible actions a certain random-
ization factor is added to the decision of the agent. This so-called
noise makes sure the agent does not get stuck on the first decision
it gets rewarded on. The noise decreases every step. When the noise
is zero the agent will always make the best-known decision.

4 RESULTS
Jitter (variation in time delay), Throughput (received bits by the AP
per second) and Delay (the time it takes for a packet to reach its
destination) are measured because it gives a good representation of
the performance of the network. DRL optimization time has been
measured to give an insight on how long it would take before the
network can perform optimally. In the simulations all devices stay
connected and are constantly sending data, this is different from real-
world networks. This means that the results may also be different
from real-world networks. A few extra connected devices that send
little to no data would however have comparable effects on standard
802.11ax as to an optimized network. This is because they would
rarely request channel access.

4.1 Throughput
As you can see figure 3 shows the network throughput for three
different situations. Throughput (no optimization), which is the
average throughput of the standard 802.11ax. Then Throughput
(total), which is the average throughput during and after training.
And Throughput (after training) which is the average throughput
after the training is done. At 50 stations the throughput is 23% higher
in the network with optimization after training.
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4.2 Optimization Time
Figure 4 shows how long it takes for the DRL agent to optimize the
CW in minutes. The training was done with a i7-9750H CPU at 2.60
GHz. The training time increases from 25 minutes for 5 stations to
173 minutes for 50 stations. These optimization times are high, but
once an agent is trained it does not need to be retrained until the
network topology changes a lot. This is because the neural network
is already optimal for that network topology.
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Fig. 5. Jitter in milliseconds
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4.3 Jitter and Delay
And figure 5 shows the average jitter in he network in milliseconds.
The jitter is approximately the same for 6 up to 40 stations. At 50
stations the optimized network has 45% less jitter.

Lastly, figure 6 shows the average of all end-to-end delays of the
received packets. As with jitter the delay is approximately the same
for 6 up to 40 stations. At 50 stations the delay is 30% less for the
optimized network.

5 ANALYSIS AND DISCUSSION
In this section, an example will be given of how a network admin-
istrator can reduce the cost of a network using CW optimization.
An example of a network with a lot of wirelessly connected sensors
and devices is the network of a hospital.

5.1 throughput
Table 3 shows some data rates of typical devices in such a network
according to [10]. Now as an example suppose a hospital floor uses 5
EMGs, 10 digital audio stethoscopes and 10 ECGs for their patients.
This would need only 4.35 Mb/s of throughput. If 5 physicians are
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Digital device Data rate

Digital audio stethoscope (heart sound) ∼120kbps
Electromyogram EMG ∼600kbps
Electrocardiogram ECG ∼15kbps
Medical video for teleconsultation
(e.g.,ophthalmoscope, proctoscope, etc.) ∼1.544Mb/s

Voice/video/chat communication of
commuting physicians 384kbps to 1.544Mb/s

Digital radiography (DICOM) 6MB (image size)
Mammogram (DICOM) 24MB (image size)

Table 3. Typical medical data rates

having a teleconsultation and 5 communicating over video, this
would need 15.44 Mb/s of throughput. Now suppose one of those
physicians wants to download a digital radiography (6 MB = 48
Mbits) at the same time within 4 seconds, this would need another
12 Mb/s of throughput. In total 31.79 Mb/s of throughput is needed
for 30 devices. From 3 we can conclude that this would need either
2 APs without CW optimization or one AP with CW optimization.

If instead of two physicians having a teleconsultation there would
be 22 extra ECGs, then the required throughput would be 30.601
Mb/s. This would be even less throughput, but because the user
density now has increased to 50 stations an AP without CW opti-
mization would have even more problems handling the data.
Given that the AP has the same bandwidth (maximum rate of

data transfer) as the AP from the simulation. This is of course a very
specific example but it does show how, if the CW optimization was
free, the cost of a network can be halved.

5.2 Jitter and delay
In this article [6], requirements for future healthcare applications
are given. Examples are "remote pervasive monitoring" and "Mobile-
health wearables" which both allow for a maximum jitter of 25
ms. The average jitter of an AP without CW optimization with 50
connected stations is 20.1 ms, but in some connections, jitter did
exceed 25 ms. For the optimized network, this was not the case
and the average jitter was 45% less. For 40 stations or less CW
optimization can not make a difference, but when the user density
grows and too much jitter is becoming a problem, CW optimization
can be considered as a solution.

The same goes for delay (30% improvement at 50 stations) which
could be of importance when it comes to telesurgery [12].

5.3 Cost reduction
From the example, it can be concluded that the number of APs can
be halved in some situations. Assume a network administrator has
to provide the wireless network of a hospital with three floors. He
could either choose two standard 802.11ax routers per floor which
are around €60 or one with a bit more computing power to better
handle the DRL training which would be around €80 at the time of
writing. For three floors this would give a cost reduction of €120
which is 33%

6 CONCLUSION
The IEEE 802.11ax network standard was designed to cope with
high-density networks. From this research, it may be concluded that
this network standard can be improved when it comes to through-
put, delay and jitter. This can be done with the help of Contention
Window optimization. Because of this improvement, the cost of
high-density networks can be reduced by 33%.
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