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The analysis of DNA sequence data of a sampled population allows us to

determine what mutations provided an organism or virus with an advantage

and caused positive selection. By determining accurately, what part of a

DNA sequence is responsible for mutating the organism, we can better un-

derstand the world around us, allowing us to find solutions for modern world

challenges like finding a more efficient COVID-19 vaccine. The detection

of selective sweeps, an indicator for recent positive selection, is done with

time consuming software tools. Other research has touched upon filtering

techniques to filter out measurement errors in the input data. This research

explores whether filtering can be used for input data without errors to speed

up execution time. In this paper, ’SNP-processor’, a software tool, that tests

filtering techniques for the pre-processing of whole-genome datasets is in-

troduced. Three techniques are introduced that speed up execution time up

to 1.28 times at the cost of the TPR and accuracy.

Additional Key Words and Phrases: Positive Selection, Selective Sweep,

Detection, Pre-Processing, Filtering

1 INTRODUCTION
The world around us is constantly changing. Plants, humans, ani-

mals and other organisms evolve and adapt to their environment.

The set of instructions for an organism, the DNA, mutates to allow

this change. This mechanism can be seen when looking at a popula-

tion’s genetics. In population genetics, detecting a pattern, called a

selective sweep, in a DNA sequence allows researchers to discover

why an organism thrives in an environment and performs better

than similar organisms. Understanding what change in the DNA

of a virus caused a beneficial mutation allows for faster and more

effective drug treatments [13], but can also be used to analyze: the

evolution of plants and fruit [28], the genetics of animals [7], and

human evolution [24]. In the case of COVID-19, detecting selective

sweeps was used to explain adaptability mechanisms, and to locate

regions that had undergone strong positive selection [25].

When an organism has a higher chance of survival due to an

advantage, it has a higher chance of becoming the dominant variant

over time. The mutation that causes this advantage will fixate itself

in the genetics of a population. In some cases, the positive selection

of a genome leaves a particular data pattern over time, due to the

hitch-hiking effect [23]. The hitch-hiking effect occurs parallel to

positive selection. When an advantageous allele, a variant of a given

gene, fixates in a population’s DNA other alleles will hitchhike. Only

after multiple generations or mutations these hitchhikers will mu-

tate out of the DNA. The pattern that is created by this hitchhiking

and the disappearance of hitchhikers over time is what we call a

selective sweep.
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This specific pattern can be used the other way around for detec-

tion. By detecting a selective sweep we can detect where an allele

mutated and provided the organism with an advantage. Simply, be-

cause this allele caused this pattern. For the detection of selective

sweeps, multiple statistical tests and software packages are avail-

able [4, 8, 27, 6, 16]. DNA data is used as input, and the software

outputs a list of locations in the DNA with a likelihood score. The

likelihood score represents how likely there is a selective sweep at

that position according to the tool. Different tools can be used to

detect sweeps based on different characteristics.

With a neutrality test, genome data can be tested [19]. This tests

whether the genome data is neutral and contains only normal de-

mographic change, not a selective sweep. Detecting a sweep is done

by performing a neutrality test on the data and rejecting the null

hypothesis. This genome data has a significant size because every

single allele in the DNA string is present in the dataset. A real-world

example is the 1000 genome project [3]. With a sample size of 2,184,

the first chromosome already contains 2,896,960 single nucleotide

polymorphisms (SNPs). An SNP represents a difference in a single

nucleotide between generations, another word for mutation as used

before. In terms of memory storage, this comes down to 87 GBs of

data, according to the experiment used to validate SweeD [20]. On

one hand, detecting selective sweeps in large datasets significantly

increases processing time, and can even make the software package

fail execution. On the other hand, however, distinguishing selective

sweeps becomes easier when the sample size increases [12].

1.1 Aim
Although research has been done on statistical tests and tools to

detect selective sweeps effectively and accurately, filtering the data

before processing is an unexplored field. Existing detection tools can

only process a limited number of sequences or are extremely time-

consuming. In this paper, we will treat the existing selective sweep

software packages as black boxes. This paper will focus on the phase

before processing, and seek possible optimizations by re-scaling

error free input data, such that fewer data needs to be analyzed while

having a limited effect on the accuracy. Where existing research

filters the data with the aim of finding more accurate results [22, 18],

our research explores filtering aiming to speed up the processing

time.

The following research question is raised: How canwhole-genome

datasets be pre-processed to improve the execution time of selective

sweep detection tools?

We can answer this question with the help of the following sub-

questions:

(1) What pre-processing techniques can be applied to the se-

quence data?

(2) What is the result in terms of file-size, execution time, and

accuracy of these pre-processing techniques?
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1.2 Contribution
First, this paper will introduce a software tool, ’SNP-processor’, that

implements and tests filtering techniques that pre-process whole-

genome datasets before selective sweep detection. Secondly, we will

test this tool with three different filtering techniques, analyze their

effectiveness and draw conclusions accordingly. And finally, we will

make recommendations for future work.

2 RELATED WORK
In the field of population genetics, selective sweep detection is seen

as an effective way to detect changes in a population, and to pin-

point what changes in its DNA caused this. Summary statistics are

used as a neutrality test for whole-genome data to limit the com-

putational complexity and processing time [19]. Software packages

like SweepFinder, SweepFinder2, SweeD, OmegaPlus and RAiSD

[17, 5, 20, 1, 2] calculate test statistics for the input data, and report

on the likelihood of a sweep in the data.

These software tools detect a selective sweep based on one or a

selection of the three characteristics of a selective sweep: 1. Around

a selective sweep a reduced variation of SNPs can be detected [23],

2. The Site Frequency Spectrum (SFS) shifts towards high- and

low- frequencies [4], and 3. A specific Linkage Disequilibrium (LD)

pattern between SNPs on the different sides of the favored allele

can be detected [15, 21].

When a selective sweep occurs an allele in the DNA sequence

causes an advantage for the organism in comparison to other alleles.

This means that over time we will find this allele more often in a

sample of the population, alleles around the favored allele tend to

hitchhike [23]. In other words at the location and around the loca-

tion of the favored allele a reduction in SNPs can be detected. The

second characteristic describes the distribution of allele frequencies

in the DNA sample. This distribution shifts towards higher- and

lower- frequencies when a selective sweep has occurred. Lastly, as

mentioned before when an allele is favored on the left and right

side other alleles will hitchhike. The specific pattern that can be

observed is that alleles on the same side are strongly linked to each

other, meaning if one disappears due to mutation the other allele

has likely also disappeared. These alleles are, however, not linked to

the other side of the favored allele. This can be explained by the fact

that the hitchhiking alleles bring no advantage to the organism and

will disappear eventually. Removing one does not affect the other.

The observation of this, can also be used as a characteristic to detect

a sweep.

The different software packages detect a sweep based on different

characteristics. SweepFinder [17], SweepFinder2 [5] and SweeD [20]

for example relie on the SFS and implement a Composite Likelihood

Ratio as introduced by [16]. OmegaPlus on the other hand detects

selective sweeps with the help of a statistic also introduced by [16]

that uses the Linkage Disequilibrium instead of the Site Frequency

Spectrum. Tools like SweeD and OmegaPlus that test for different

characteristics of a sweep cannot substitute one another, because

they work differently. They can be used to complement each other

and detect more selective sweeps in a whole-genome data-set [20].

Tools that take all three characteristics into account, like RAiSD

[2] also exist. When comparing this tool to SweeD and OmegaPlus

it outperforms them, and is more effective in detecting selective

sweeps, in terms of processing time.

Detecting sweeps is difficult because of a number of reasons. Two

of which are normal demographic effects and bottlenecks. Normal

demographic effects refer to mutations in a DNA string that pro-

vide no advantage. Organisms mutate, but most mutations have no

effect on the chance of survival. When detecting sweeps this can

be seen as white noise, the detection tools will detect normal demo-

graphic effects and label them as sweeps, because of the similarity

in characteristics of the two, increasing the False Positive Rate of the

tools. Background selection also lowers the local diversity of alleles,

thus additional correlation tests have to be performed to determine

which of the two it is [19]. The second difficulty is the presence of

bottlenecks, a series of mutations that need to occur first before

evolution can continue. A bottleneck leaves a very similar pattern as

a selective sweep, and occurs in three phases; We first have a large

effective population size after which we have a smaller population

size and finally a large population size again. the bottleneck is the

phase where we have a small population size. When this occurs

this produces a very similar pattern to a selective sweep. The paper

that introduces RAiSD [2] also mentions migration models, recom-

bination hot-spots and soft selective sweeps as challenges for the

sweep detection software. This shows that detecting sweep is more

challenging than recognizing the three characteristics mentioned

above.

3 METHODOLOGY AND APPROACH

Fig. 1. Structure of objects within SNP-processor

Conducting the research to answer the research question consists

out of multiple steps. First, sample data needs to be generated that

can be used to test the detection tools. This data needs to be parsed

by our software after generation so we can filter it later. After that,

new filter code needs to be written and the filter needs to be applied

to the simulated datasets. The next step is to export the filtered data

and feed that data to detection tools. For this project we will use

two different detection tools to analyze the results: 1. OmegaPlus

[1] detecting sweep based on the Linkage Disequilibrium [16], 2.

SweeD [20] detecting sweeps based on the Site Frequency Spectrum

and Composite Likelihood Ratio. By including multiple tools we do

not only evaluate tools that rely on one of the three characteristics

of a selective sweep. The next step is to parse the output reports

to analyze the difference in execution time, the distance between

the detected and theoretical position of the sweep and the True

Positive Rate of the detection tool. The final step is analyzing the
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outcomes and making recommendations for the future. All these

steps were integrated in a new software tool which will be labelled

as ’SNP-processor’ from now on. The tool is structured in such a

way that all functionalities can be used separately, by using the right

parameters. The data generation, filtering, detection andmetrics part

are all split. Through this design different filter approaches could

be tested, while generating the sample file only once. A thorough

explanation on how to use the tool and the tool itself can be found

here: (https://gitlab.utwente.nl/s2396041/snp-preprocessing).

3.1 Tool Creation and Execution
SNP-processor was written using the Windows operating system

and executed with Windows Subsystem for Linux. The final ex-

ecution was done on a native Linux machine with the following

specifications:

• Operating System: Ubuntu 22.04 LTS

• Processor: Intel i7-4710HQ 2.50 GHZ

• Internal Memory: 8 GB DDR3

• Graphics Card: NVIDIA® GeForce® GTX 850M

3.2 Data Generation and Parsing
For the generation of sample data we used Hudson’s ms and mssel

[11, 10] software tools, ms is used to generate neutral sets of SNPs

and mssel is used to generate a dataset with selection at the center

of the simulated SNP data. These software tools generate a binary-

like file with a relative position and a 0 or 1 representation of an

allele. Where a 1 represents a mutation. The ms format is accepted

by OmegaPlus and SweeD. The convenience of the ms software

is that the theoretical location of the sweep is located exactly at

the center of the DNA sequence. This allows us to easily calculate

performance metrics later on. SNP-processor reads the data from an

external file and loads it into variables and lists, such that we can

edit the data with filters later. The same ms and mssel commands

from the evaluation set-up by Alachiotis et al.[2].

3.3 Data Filtering
Although there are endless ways to filter data, for the sake of show-

ing the functionality of our software tool we will only focus on a

few in this paper. A total number of three filter groups were tested

with in total seven different filter variations in an iterative process.

An overview of the different filters can be found in Table 1. The way

we filter the ms input file is by removing rows from the input data

file. This way we will be decreasing the number of SNP sequences

as input.

3.3.1 Hamming Distance Filter. For the first filter we aim at merging

DNA sequences, to decrease the number of sequences used as input.

In a real world scenario measuring errors can be decreased when

using this approach. In case sequences are actually similar, but

because of errors appear different merging them into one would

reverse this error. Before we can merge sequences we need to cluster

them in groups and for that we need an evaluation metric. The

evaluation metric decides when sequences are similar. For this we

use the Hamming Distance [9], which originally was introduced to

detect errors. The Hamming distance where 𝑆𝑝 and 𝑆𝑞 represent an

SNP sequence of length 𝑛 is calculated as follows:

𝑑𝐻 (𝑆𝑝 , 𝑆𝑞) =
𝑛∑︁
𝑖=1

𝐼 (𝑆𝑖𝑝 ≠ 𝑆𝑖𝑞) (1)

In a paper by Wang et al. [26] they use a metric based on the Ham-

ming distance to cluster SNP sequences and perform a population

study. We use a metric that calculates the average Hamming Dis-

tance between clusters to determine their similarity:

𝑑 (𝐶1,𝐶2) =
1

𝑛(𝐶1) × 𝑛(𝐶2)
∑︁

𝑆𝑝 ∈𝐶1

𝑆𝑞 ∈𝐶2

𝑑𝐻 (𝑆𝑝 , 𝑆𝑞) (2)

Where,

𝐶𝑘 = (𝑆1, 𝑆2, ..., 𝑆𝑛) (3)

,𝐶𝑘 is a cluster that contains 𝑛 SNP sequences. Each sequence in

a population is added to an empty cluster at the start. After the

Hamming Distance of all possible unique combinations is calcu-

lated, all combinations with a distance below a certain threshold

are clustered. SNP-processor stops clustering sequences when every

possible combination falls below this threshold. For our research we

set the Hamming Distance threshold to be 5% of the length of one

SNP sequence. This means that if 95% of two sequences or clusters

match they will be clustered. After all possible combinations fall

below the threshold all remaining clusters will be merged into a

single sequence. We tested three different ways of merging clusters

to see in what way they affect the results. 1. Frequency merge: if

more than half of all sequences contain a mutation in a column the

resulting sequence will too, 2. AND merge: if all sequences contain

a mutation in a column the resulting sequence will too, and 3. OR

merge: if one of the sequences contains a mutation in a column the

resulting sequence will too.

3.3.2 Allele Mutation Frequency. With this filter we aim to remove

sequences from a population. For every population in our dataset

we will look at every sequence in the population and calculate the

number of alleles that have mutated. In ms / mssel format this means

there is a
′
1
′
at that position, this results in the following formula:

𝑓𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑆𝑛) =
∑︁
𝑛∈𝑆𝑛

𝐼 (𝑛) (4)

, where 𝑆𝑛 is a sequence of size 𝑛. After calculating the Allele Mu-

tation Frequency for each sequence the sequences will be sorted

from highest to lowest frequency. We, once again, tested multiple

variations of this filter: 1. The sequences with the lowest frequency

are removed from the population, and 2. The sequences with the

highest frequency are removed from the population. For this re-

search we removed 5% from the bottom or top of the sorted list of

sequences. Meaning the resulting dataset contains the most or least

mutated sequences of the original dataset and is 95% of the original

size.

3.4 A Combination of Filters
The final experiment we carried out was chaining different filters.

The two best performing variations of the Hamming Distance Filter

and Allele Mutation Frequency Filter were used. There are two

possible variations: 1. Allele Frequency -> Hamming Distance, and

3
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Table 1. Overview of filters researched

Filter Group Variation Label
(1) Hamming Distance Frequency Merge HF

AND Merge HA

OR Merge HO

(2) Allele Mutation Frequency Low Frequency ML

High Frequency MH

(3) Filter Chaining (1) Hamming, (2) Mutation C-HM

(2) Mutation, (1) Hamming C-MH

2. Hamming Distance -> Allele Frequency. The order matters, since

the Hamming Distance filter creates new sequences by merging

others.

3.5 Exporting and Processing
The filtered data is loaded from memory and saved as an external

file with the exact same format as Hudson’s ms. To test if the file

exported by Hudson’s ms has the exact same format as the file

exported by SNP-processor the Linux ’diff’ command was used.

This is a built-in method that compares two files and reports what

the exact differences are between the two. Running this with a not

parsed, unfiltered ms file and a parsed, but unfiltered ms file resulted

in no differences. After the file is exported our code runs one of

the three detection tools. In order to run the detection tools the

right parameters have to be provided by SNP-processor. SweeD

requires the following parameters: -name (not relevant), -input (the

exported file), -length (the length of the analyzed DNA sequence),

and -grid (number of positions the likelihood will be calculated). For

the length of our input file we used 100,000 for all code executions.

The grid size was set to 1000. OmegaPlus uses the same parameters,

but also requires: -minwin, and -maxwin (minimum and maximum

window for calculating the linkage disequilibrium between SNP

values). In this paper we set the -minwin to 1,000 and the -maxwin

to 5,000. The output files generated by the tools are moved into the

Output folder after the tool completes running.

3.6 Output Analysis
The filtered and unfiltered datasets are processed by the detection

tools and as mentioned above a report is generated. SNP-processor

parses this report and calculates performance metrics according

to this report. For this we use a similar approach as was used by

Alachiotis et al. [2]. Hudson’s ms is used to generate neutral sets

of SNPs that do not contain selection and Hudson’s mssel is used

to generate datasets that do contain a sweep [11, 10]. In this paper

we use an edited version of ms and mssel, such that it prints out

the relative position of SNPs more accurately as described in the

SweeD 3.0 manual [20]. We calculate two metrics for our filtered and

unfiltered datasets: 1. The distance from the observed position to the

actual position, and 2. The True Positive Rate of the detected sweeps.

For the first metric, distance, we read the report of the detection tool.

This report lists for each population (we used 100 populations) all

observed positions and their likelihood score. SNP-processor takes

the position for each population with the best likelihood score. We

end up with one score for each population (100 likelihood scores).

These scores are saved in a new text file, ’summary_report.txt’, with

their position. When we calculate the distance metric we use the

following formulas:

𝑑 (𝑃𝑘 ) = |𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥) | (5)

𝑥 =𝑚𝑎𝑥 (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝑃11), ..., 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝑃𝑖 𝑗 )) (6)

, where 𝑃𝑘 = (𝑆1, 𝑆2 ..., 𝑆𝑛) represents a population consisting of

𝑛 sequences 𝑆 , and where 𝑃𝑖 𝑗 is the 𝑗th location of population 𝑖

for which the likelihood score was calculated. The final score of a

dataset 𝐷𝑘 = (𝑃1, 𝑃2, ..., 𝑃𝑛) is calculated as follows:

𝑑 (𝐷𝑘 ) =
1

𝑛(𝐷𝑘 )
∑︁

𝑃𝑧 ∈𝐷𝑘

𝑑 (𝑃𝑧) (7)

For this paper the lengthwas set to 100,000 thus the 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

is at position 50,000. The second performance metric, True Positive

Rate, is calculated with the help of ms and mssel commands from

the paper by Alachiotis et al. [2] and the following formula:

𝑇𝑃𝑅(𝑑𝑎𝑡𝑎𝑠𝑒𝑡) = 1

𝑛

𝑛∑︁
𝑖=1

𝐼 (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝑖) > 𝐹𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ) (8)

, where 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 is a list of positions with the maximum likelihood

score for each population. First a BASE dataset is generated with

Hudon’s ms. This is our neutral set. We generate 100 populations

containing 20 sequences, and feed this into the detection tools. From

the output report we generate, as mentioned before, the summary

file ’summary_report.txt’. Which contains the highest likelihood

score for each population. For this paper, we assumed a FPR (False

Positive Rate) of 5% for the detection tools. This means, that we

assume that 5% of the sweeps detected by one of the tools is wrongly

classified. From our summary report we remove the top 5% with

the highest likelihood scores. The now highest likelihood score is

our 𝐹𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 which we will use later on. After that, a dataset

containing a sweep is generated with Hudson’s mssel. Mssel uses a

trajectory file, which was also used from the RAiSD paper. Now that

we have a data file containing a sweepwewill run the detection tools

for the unfiltered and filtered datasets. The summary report of these

sets is parsed, leaving us once again with the highest likelihood score

and position of all 100 populations. To calculate the True Positive

Rate we compare each likelihood score with the threshold from the

BASE file. If the score is higher it is a True Positive detection. We

count all the scores that are higher than the threshold leaving us

with the True Positive Rate of the sweep detection. The execution

time, number of populations, number of sequences removed, the
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distance (eq. 7) and the TPR (eq. 8) are all saved in a metric report

file.

3.7 Test Data Selection
For this paper, ms and mssel commands from the RAiSD paper [2]

were used to generate 3 datasets. The datasets picked are 1, 20 and 60.

These three datasets all contain hard sweeps and have a bottleneck

as confounding factor. Set 60 was included because it has a low True

Positive Rate and set 1 and 20 were included as sets that have an

average TPR.

4 RESULTS
The results of the different filtering approaches are displayed in

table 2. The tabel shows for each dataset (1, 20 and 60): 1. The

detection tool used (SweeD or OmegaPlus), 2. the filter used (the

’label’ column corresponds to table 1), 3. the processing time of this

run in seconds, 4. the distance to the theoretical sweep position

(calculated according to eq 7), 5. the True Positive Rate (calculated

according to eq 8), 6. the number of filtered sequences from the

entire dataset, and 7. a relative column for Time, Distance, TPR and

filtered. We validated the software tool ’SNP-processor’ by using

it to execute all steps required for testing the pre-processing of

detection tool input data. The results are graphed in figure 2, to

compare the results of filter variations with the unfiltered dataset.

4.1 Hamming Distance Filter
The results in table 2 show that the variations of the Hamming

Distance Filter do not affect the results of OmegaPlus a lot. The

maximum change in TPR was -0.07% for dataset 60. The execution

time for OmegaPlus did only improve 1.01 times as a maximum.

For SweeD this filter performed better by speeding up execution

time by 1.02 - 1.17 times, while increasing the distance only slightly

(3.44% at most). The TPR rate did decrease between 0 and 8.64%.

The variation with AND-merge shown in table 1, performed best

out of the three variations and was thus used for the chained filter.

4.2 Allele Mutation Frequency
This filter did improve execution time for OmegaPlus for all three

tested datasets. Removing sequences with a high frequency of mu-

tations improved the distance for two out of three datasets, and im-

proved the TPR for one. Removing sequences with a low frequency

of mutations appears to have the exact opposite effect, increasing

the distance between 1 - 10%. This filter interestingly enough affects

the execution time of SweeD negatively, but increases its accuracy

in distance in almost all cases. Since, our goal is to improve the

execution time we will use the filter that filters out high frequencies

for our chained filter.

4.3 Chaining Filters
Chaining the two filters discussed prior had the most impact on

execution time out of the three categories of filters. At the same time,

it influenced the TPR and distance the most. Especially for SweeD

and dataset 20, this can be seen in fig 2l. It appears the filter removed

too many sequences resulting in a significant loss of accuracy.

4.4 Overall Comparison
Overall it is clear that the filters applied to the datasets at themoment

are not that effective. The execution time is sped up between 0.99

- 1.25 times. Meanwhile, the distance and TPR change quite a lot.

Introducing a trade off, where the researcher needs to decide what is

more important: accuracy, or execution time. It becomes clear that

filtering based on mutation frequency affects OmegaPlus [1], a LD

based detection tool, more than SweeD [20], a SFS based detection

tool in terms of execution time. And that filtering based on hamming

distance affects SweeD more than OmegaPlus.

5 DISCUSSION
In this paper, many choices had to be made for the methodology.

The main choices being the data generation commands, the FPR, the

population size and filter thresholds. The data generation commands

were used from the RAiSD [2] paper. This paper aimed to prove

that RAiSD was better than comparable tools. The datasets used for

this might not have been effective for our research, because each

population only contains 20 sequences. After filtering a population

we are left with less than 20 sequences per population. The detec-

tion of sweeps is easier for larger populations [12]. Thus, picking a

different data generation command or test set with moderate size

populations (>50), might have far better results, as removing the

same percentage of sequences would still leave us with a moderate

size sample. We expect that filtering datasets of moderate size sam-

ples improves execution time more in relation to the decrease in

TPR and distance. Execution time does not grow linearly for larger

datasets, the relative saved time likely grows with it. To save time,

as the experiments had to be performed in 10 weeks time, we gener-

ated only 100 instead of 1000 populations. Affecting the accuracy of

our results. The FPR is assumed at 5% for this paper, which directly

affects the observed TPR. Assuming a higher FPR would increase

the TPR and limit the effect of filtering on the TPR. The relative

and absolute filter thresholds used for this paper (see Methodol-

ogy), are not supported by any research. Tuning these thresholds

likely improves the effectiveness of the filters and their effect on

detection tool accuracy. Dataset 1, 20 and 60 are all hard sweeps

with a bottleneck as confounding factor. Filtering soft sweeps or

datasets with a different confounding factor would likely affect the

outcome of the filtering technique. This paper used altered versions

of Hudson’s ms, mssel and SweeD [11, 10, 20]. Ms and mssel were

changed such that the relative position of the SNPs was printed out

more accurately. SweeD contained a bug where it would not work

for filtered binary like files. The source code had to be altered to

prevent wrong memory allocation and fail running. Lastly, the time

it took to filter the data was not taken into consideration. For the

hamming distance filters this took a maximum of 8.0 seconds, but

for larger datasets and populations this could increase significantly

due to the use of combinations in the clustering process.

6 CONCLUSIONS
In this paper, we successfully introduced a software tool, SNP-

processor, that tests filtering techniques for the pre-processing of

whole-genome datasets. This tool integrates sample data generation,
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Table 2. Overview of filter results. Underlined are the best execution time, distance and TPR values for each combination of dataset. The label column provides
info on the filter and filter variation used, see Table 1. Time is reported in speedups. Distance and TPR as a percentage change from the unfiltered dataset. The
number of rows filtered is out of the entire dataset, containing 2,000 rows

Set Tool Label Time Distance TPR Filtered x Time % Distance % TPR % Filtered

1

OmegaPlus

- 00:48.2 1235.9085 1.00 0 1.00 0.00% 0.00% 0.00%

ML 00:46.3 1380.1005 1.00 100 1.04 11.67% 0.00% 5.00%

MH 00:46.1 1259.8077 1.00 100 1.04 1.93% 0.00% 5.00%

HA 00:48.2 1243.9171 1.00 19 1.00 0.65% 0.00% 0.95%

HF 00:48.0 1243.9171 1.00 19 1.00 0.65% 0.00% 0.95%

HO 00:47.7 1243.9171 1.00 19 1.01 0.65% 0.00% 0.95%

C-HM 00:46.1 1291.4548 1.00 119 1.05 4.49% 0.00% 5.95%
C-MH 00:46.0 1291.4548 1.00 119 1.05 4.49% 0.00% 5.95%

SweeD

- 07:17.0 3194.110604 0.97 0 1.00 0.00% 0.00% 0.00%

ML 07:16.2 3623.019722 0.97 100 1.00 13.43% 0.00% 5.00%

MH 07:20.4 3114.35618 0.96 100 0.99 -2.50% -1.03% 5.00%

HA 07:03.4 3304.18837 0.95 19 1.03 3.45% -2.06% 0.95%

HF 07:05.7 3234.128113 0.95 19 1.03 1.25% -2.06% 0.95%

HO 07:03.9 3234.128113 0.95 19 1.03 1.25% -2.06% 0.95%

C-HM 07:03.4 3167.496 0.95 119 1.03 -0.83% -2.06% 5.95%
C-MH 07:05.5 3167.496 0.95 119 1.03 -0.83% -2.06% 5.95%

20

OmegaPlus

- 00:28.2 1759.9884 0.99 0 1.00 0.00% 0.00% 0.00%

ML 00:27.4 1940.1788 0.99 100 1.03 10.24% 0.00% 5.00%

MH 00:27.4 1569.9925 1.00 100 1.03 -10.80% 1.01% 5.00%

HA 00:28.4 1819.0816 0.99 13 0.99 3.36% 0.00% 0.65%

HF 00:28.2 1819.0816 0.99 13 1.00 3.36% 0.00% 0.65%

HO 00:28.2 1819.0816 0.99 13 1.00 3.36% 0.00% 0.65%

C-HM 00:27.3 1570.0327 1.00 113 1.03 -10.79% 1.01% 5.65%
C-MH 00:27.3 1569.9925 1.00 112 1.03 -10.80% 1.01% 5.60%

SweeD

- 06:35.4 2849.788046 0.81 0 1.00 0.00% 0.00% 0.00%

ML 06:35.6 3125.61169 0.85 100 1.00 9.68% 4.94% 5.00%

MH 06:36.9 2841.340105 0.83 100 1.00 -0.30% 2.47% 5.00%

HA 06:29.3 2947.713283 0.74 13 1.02 3.44% -8.64% 0.65%

HF 06:28.9 2947.713283 0.74 13 1.02 3.44% -8.64% 0.65%

HO 06:28.8 2947.713283 0.74 13 1.02 3.44% -8.64% 0.65%

C-HM 05:08.9 3193.884 0.28 113 1.28 12.07% -65.43% 5.65%
C-MH 05:08.8 3192.843 0.29 112 1.28 12.04% -64.20% 5.60%

60

OmegaPlus

- 00:07.7 15898.0197 0.07 0 1.00 0.00% 0.00% 0.00%

ML 00:07.6 16112.343 0.00 100 1.01 1.35% -100.00% 5.00%

MH 00:07.6 15786.1492 0.00 100 1.02 -0.70% -100.00% 5.00%

HA 00:07.7 14271.8764 0.00 159 1.00 -10.23% -100.00% 7.95%

HF 00:07.7 15981.049 0.00 159 1.01 0.52% -100.00% 7.95%

HO 00:07.7 16689.927 0.00 159 1.00 4.98% -100.00% 7.95%

C-HM 00:07.5 14280.5412 0 258 1.04 -10.17% -100.00% 12.90%
C-MH 00:07.5 14398.7967 0 255 1.04 -9.43% -100.00% 12.75%

SweeD

- 03:26.4 27121.06642 0.00 0 1.00 0.00% 0.00 0.00%

ML 03:33.7 28156.57746 0.01 100 0.97 3.82% 0.01 5.00%

MH 03:25.3 27430.2857 0.02 100 1.01 1.14% 0.02 5.00%

HA 02:59.9 26885.7069 0.00 159 1.15 -0.87% 0.00 7.95%

HF 02:55.7 26875.2479 0.00 159 1.17 -0.91% 0.00 7.95%

HO 02:56.3 26893.26233 0.00 159 1.17 -0.84% 0.00 7.95%

C-HM 02:45.0 26408.96844 0.01 258 1.25 -2.63% +0.01 12.90%
C-MH 02:45.1 26895.50368 0.01 255 1.25 -0.83% +0.01 12.75%
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 2. Comparison of Distance and TPR, for datasets 1 (2a,2b,2c,2d,2e,2f), 20 (2g,2h,2i,2j,2k,2l) and 60 (2m,2n,2o). The TPR of dataset 60 is not shown, because
of the small differences in TPR, providing no visual difference
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sample data parsing, data filtering, exporting of filtered data, de-

tection tool execution and result evaluation all in one package. We

introduced three possible filtering techniques and explained their

underlying theory. And we presented the results of filtering whole-

genome datasets with these filters and analyzed their effectiveness.

We found that for a small population size of 20 these filters:

• Speed up the execution time up to 1.28 times.

• Increase the distance between observed and actual position

up to 13.43%.

• Decrease the True Positive Rate up to 52 percentage points.

Filtering whole-genome datasets based on hamming distance, allele

frequency, or both does not reliably decrease execution time while

retaining TPR and distance at the same level. The benefits of a faster

execution time need to be weighed carefully against the downsides

of decreased distance accuracy and TPR. Lastly, we found for the

filtering techniques in this paper that:

• A filtering technique based on Hamming Distance has more

effect on a detection tool relying on the SFS characteristic of

a sweep.

• A filtering technique based on Allele Mutation Frequency has

more effect on a detection tool relying on the LD characteristic

of a sweep.

7 FUTURE WORK
This paper made a first attempt to filter whole-genome datasets by

introducing ’SNP-processor’. As this was exploratory research into

filtering error free SNP data many things have not been explored

yet. Possible future work can be categorized into three different

categories: 1. The extension of SNP-processor, 2. Using different

sample data, 3. Finding new filtering techniques. Extending SNP-

processor can be done by adding new detection tools. DiploSHIC

[14] would be a good addition, as it is a machine learning approach

to selective sweep detection instead of an SFS or LD approach,

like SweeD [20] and OmegaPlus [1]. Including diploSHIC would

ensure SNP-processor tests techniques for more use cases. The

effectiveness of the proposed filtering techniques should be tested

for a sample dataset that contains more populations (e.g. 1000) to

improve accuracy and populations that consist of many sequences

(50+) to limit the effect of filtering on the results of the detection tools

[12]. Datasets with different confounding factors than a bottleneck

could be explored, together with datasets that contain soft sweeps.

Filtering possibly affects the results differently in those cases. Lastly,

in future work different filtering techniques should be explored with

the help of SNP-processor.
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