

Author: Jesse W. Visser

Supervisors: Dr. Jacob W. Kamminga, Dr. Emily R. Burdfield-Steel

Critical Observer: Dr. Andreas Kamilaris

Affiliation: University of Twente, Faculty EEMCS

Location: Enschede, The Netherlands

Email: j.w.visser-3@student.utwente.nl

Automated Detection of

Provisioning Events and Prey in

Nestbox Video Footage

1

I. INTRODUCTION

Human actions drive a decline in biodiversity. In response,

many societal organisations around the world have set

conservation and preservation targets [1]. However, these

targets cannot be achieved without knowledge of the current

state of the ecosystem. For this purpose, various wildlife

monitoring projects are started around the world to monitor

biodiversity.

One such project includes new and existing ‘smart’

nestboxes for small cavity breeding bird species. These

nestboxes are enhanced with cameras to monitor the birds

and their nestlings. Often these cameras are set up to record

for extended periods of time, collecting enormous amounts

of data. This data is precious to researchers, as it contains

valuable information about the behaviour of the monitored

birds, their prey, and their nestlings. Most interesting to

researchers are the moments when a parent enters the nest

to feed their young, so-called provisioning events. These

moments contain information about the feeding behaviour

of the birds and the prey they bring into their nest.

From interviews with researchers in the field, the current

workflow for analysing nestbox video footage was

experienced as tedious by the researchers. Currently the

processing of this data is a manual and labour-intensive task.

They must manually sift through every minute of recorded

video to find clips that contain interesting information. After

finding these parts of the footage they will have to analyse

the footage to find out what prey the parent brings into the

nest. This process however is also prone to error, as it is

often hard to see the difference between species of prey

when footage can be short and/or blurry. Overall, the

process is tedious and prone to human error.

Therefore, this paper sets out to propose a solution to

significantly reduce the effort of analysing nestbox video

footage. To achieve this the following research questions,

need to be answered:

1. What is the fastest and most accurate method to

find provisioning events in nestbox video footage?

2. What is the fastest and most accurate method to

detect and classify prey in nestbox video footage?

To answer these research questions the solution proposed in

this paper applies two algorithms. The first algorithm

detects the provisioning events. While the second model

detects and classifies the prey visible in the footage of the

provisioning events. The algorithms return whether a

provisioning event is happening in the frames of the nestbox

video footage, and the general category of the prey

provisioned by the parent.

This paper starts with an explanation of concepts that are

key to understanding the algorithms used in the related work

and proposed solution. Then, related work is surveyed to

find out what work other researchers have done on this

topic. The Dataset used in this research is introduced and the

annotations are explained. This is followed by the proposed

solution and experimental setup. Finally, the results are

discussed, and a conclusion is made.

II. CONCEPTS AND TECHNIQUES

A. Convolutional Neural Networks

With the introduction of Convolutional Neural Networks

(CNN) the accuracy of classification of image data has

quickly increased compared to previous methods. First

introduced by Yann Lecun and Yoshua Bengio in 1998,

CNN are a type of Artificial Neural Network (ANN) [2].

These networks are especially good at processing grid-like

data, such as time-series and images. A CNN consists of

layers of ‘neurons’, which each have learnable parameters

and in sequence execute computations on the input data. A

CNN often include several basic layers but are not limited

to these basic building blocks. A CNN classically contains

the following layers:

• An input layer consists of a matrix of neurons

representing the raw image data. This matrix has

the dimensions W×H×C, where in relation to the

image, W is width, H is height and C is colour.

Colour will consist of one or more channels for

each colour value of the pixels in the image. Most

common are RGB images, which have three colour

channels.

• A convolution layer consists of neurons that each

take the dot product of a restricted section of values

from the preceding layer (the receptive field) and a

matrix of learnable parameters (the kernel). By

arranging the layers in a certain way, the network

can first detect simple features, such as shapes, and

then more high-level features, such as object,

animals, or plants.

• A non-linearity layer, also known as an activation

function, helps introduce non-linearity to the linear

convolutional operations, which is needed to create

non-linear decision boundaries. Without this layer

a deep CNN network would perform as if it were

an equivalent single convolutional layer.

• A pooling layer derives a summary statistic of the

output of preceding layers and can be placed in

various locations in a network to help reduce the

spatial size of the representation. This decreases

the number of weights and the subsequent

computation needed for a network.

2

• A flatten layer can fit the multi-dimensional output

from the preceding layers into a one-dimensional

vector which can be used as the input for a fully

connected layer.

• A fully connected layer is often the last layer of a

network. The layer is fully connected, which

means that every neuron on this layer is connected

to all the neurons in the preceding layer. This layer

maps the input to the required output, such as a

classification.

B. Hyperparameters

In the training process of a Neural Network there are various

hyperparameters which can be tuned to reach the optimal

performance of a model as quickly as possible. Using an

optimizer algorithm during training, local minima in the

weight values can be reached faster. Algorithms such as

Stochastic Gradient Decent (SGD) or Adaptive Moment

Estimation (Adam) are common algorithms to optimize

CNN training. It has also become common to use

momentum to reach local minima in the optimization

algorithm. As recommended by Sutskever in [3],

specifically using the Nesterov algorithm [4] can

significantly speed up the learning process. Another

hyperparameter is learning rate, which can be either

constant or varied. Which means that there is either a set

learning rate to use during the entire training process or

changing the learning rate during the training process.

C. Transfer Learning

Transfer learning [5] is a technique which has been used in

recent years to increase the training speed and performance

of CNN models. Instead of initialising the model with

random weight, the model is ‘pre-training’ on a large

dataset, such as ImageNet [6]. This way the model will learn

generalisable feature representations. By ‘re-training’ the

network on a more specific dataset the training process will

require less data and time. On small datasets, this technique

also helps against overfitting. A model that is overfitting is

extremely accurate on the trained data but does not perform

well on new testing data. The process of transfer learning

does require the training data of the new dataset to be similar

in dimensions to the dataset the model was pre-trained on.

D. Tensorflow

With the release of TensorFlow [7] around 2015, the

implementation of CNN and other Machine Learning (ML)

techniques became more accessible. TensorFlow is an open-

source project built at Google. It features an interface to

express ML algorithms and an implementation to execute

these algorithms in various programming environments. For

this reason, it has often been used by researchers and in

various application to implement CNN architectures.

Popular architectures are implemented in the TensorFlow

API and come with the install of the package. For fast

comparisons of different architectures, the TensorFlow

Python package is used for the implementation and training

of the CNN models tested in this research paper.

E. Architectures

Various CNN architectures have been designed for the task

of classifying image data. AlexNet [6] is often cited as one

of the first network architectures to reach human

classification accuracy when it won the ImageNet

classification challenge in 2012. Subsequent architectures

kept adding layers, but ultimately suffered from the

exploding/vanishing gradient problem, where the weight

gradient quickly approaches zero or explodes into extremely

large values. However, in 2016, the authors of [8]

introduced ResNet, a deep neural network which no longer

suffered from the exploding/vanishing gradient problem by

implementing ‘residual blocks’. More recent model

architectures such as MobileNet [9]–[11], YOLO [12]–[15]

and EfficientNet [16], [17] combine various techniques to

further increase accuracy while reducing model size and

even achieving real time performance on smartphones and

other edge devices.

III. RELATED WORK

Classically, nestbox video footage is annotated manually.

Which can be read from the methods sections of many

papers published on the analysis of these types of footage.

This was further confirmed by interviews with authors of

some of these papers.

In [18] E. Pagani-Núñez and J.C. Senar monitored 182

nestboxes inhabited by Great Tits (Parus Major) near

Barcelona, Spain. They installed camouflaged Micro-D

cameras inside the nestboxes when nestlings were 10-16

days old. Starting recording one day after installing and

comprising footage between 07:00 and 14:00. The amount

of recorded data was limited using a motion sensor to detect

movement at the entrance of the nestbox. The footage was

then manually analysed, and the prey type, size and time of

provisioning was recorded. They identified three categories

of prey: caterpillars, spiders, and others. The prey size was

categorised according to a semi-quantitative scale: small,

medium, or large. From interviews with one of the authors,

J.C. Senar, it became clear that the analysis process took

several months. Where they had to tediously go through the

large amount of data collected during the monitoring period.

From interviews with doctoral researcher at the University

of Helsinki T.M. Abaurrea it became clear that they too

faced similar problems with the analysis of their nestbox

video datasets. Having to manually go through hours of

continuous recorded footage to find provisioning events and

annotate information relevant to their research.

3

Fig. 1 Example frame from the dataset labeled as provisioining.

More research is done on automated analysis of camera

traps for mammals and other larger wildlife. In [19] M. Willi

R. Pitman, R. Cardoso et al. implemented two model. First,

they managed to identify whether an animal was spotted in

an image from savanna and forest snapshots with 91.2%

accuracy. Then they were able to classify specific species

from a total of 17 species with accuracies between 88.7%

and 92.7% depending on the species.

Similarly, in [19] S. Schneider, G. Taylor and S. Kremer

created the Gold Standard Snapshot Serengeti dataset, based

on the Snapshot Serengeti dataset [20], which contains forty

mammalian species of the African savanna. On this dataset

they were able to achieve a 76.7% (±8.3) detection accuracy

with a Faster R-CNN [21] model. Using a detection model

instead of simple classification allows for the identification

of multiple animals in the same image but required more

detailed annotations.

In [22] S. Kennelly and R. Green try to solve a problem

similar to the detection of provisioning events in nestbox

video footage. They implemented a CNN model to detect

whenever a bird is sitting at a bird feeder. They collected a

dataset of 5,375 images from two different bird feeders. The

data was labelled either: Parakeet, Other Bird, Empty or

Other. Because the dataset is small the authors used data

augmentation and transfer learning to avoid overfitting the

model. Using a two-pipeline approach with the ResNet18

and VGG16 [23] architecture, the authors reached a 99.12%

true positive accuracy on the Parakeet class.

Most relevant is the paper by H. Williams, L. Matott and R.

DeLeon [24], where they detect whenever a Purple Martin

(Progne subis) provisions its nest. They collected a dataset

of 83.254 images taken from a total of 13,000 hours of full

colour footage from twenty different nestboxes. The

original images were 1920×1080 pixels but were reduced to

0.1 times the size to speed up the training process. The

images were annotated either: Zero Birds, One Bird, or Two

Birds. Although, they found it rare for two birds to provision

at the same time and even more rare for a parent to enter the

nest and not provision its young. With this data the authors

trained a CNN model based on the VGG16 architecture and

reached an accuracy between 77% and 88% for the analysis

Fig. 2 Example frame from the dataset labeled as not-provisioining

of the provisioning data. Although technically performing

worse than a human could, the accuracy is sufficient to

determine the feeding frequency according to their Monte

Carlo simulation [25].

In researching related work, it became apparent that at this

point little research has been done regarding object

detection and classification in relation to the analysis of

smart nestbox video footage. Despite this, knowledge

gained in research in related fields is transferable to this

application.

IV. DATASET

To the best of our knowledge, there is no benchmark dataset

containing images of nestbox cameras. The dataset used in

this paper was shared by doctoral researcher T.M. Abaurrea.

The dataset contains 48 hours of 2304×1296 pixels,

greyscale nestbox camera video of Redstarts (Phoenicurus

phoenicurus) and their young. At roughly 30 frames per

second (fps), this is a total of 5,230,110 images. It is

important to note that the dataset is limited to only one bird

species and that the footage is taken with a specific angle

relative to the inside of the nestbox. This might limit the

generalisability of the final trained model. An

accompanying spreadsheet contains annotations of the

footage with the entry time of the parent bird and the

duration of the provisioning event. Additional labelling files

contain a bounding box and category of the prey the parent

brings into the nest when provisioning their young. The

following sections explain how the data was processed to be

used in the training process of the proposed models.

A. Preprocessing

The models include pre-processing steps that resize the

images to the appropriate size specified by the model

architecture and pre-training dataset used for transfer

learning. This is 224×224 pixels for the classification

models and 640×640 pixels for the detection model.

B. Provisioning event classification dataset

The MoviePy [26] library was used to load the source videos

in a Python script, where the video was split into individual

4

Fig. 3 Video frame with bounding box and label Caterpillar for prey.

Fig. 4 Video frame with bounding box and label Moth for prey.

frames. This step is needed to be able to create a static

dataset of images to train the CNN models on. The script

loops over the number of frames in a video and exports the

frames to specific directories based on the provisioning

event time annotations.

The frames within the range of a provisioning event time

annotation are exported to a directory named provisioning

and all other frames are exported to a directory named non-

provisioning. An example of what frames are annotated as

either provisioning or not-provisioning can be seen in

Fig. 1 and Fig. 2, respectively.

To compensate for inaccuracy in the annotations the five

seconds of footage before and the 5 second after each

provisioning event are discarded. This is a total of 300

discarded frames per provisioning event, which could have

otherwise been ambiguous to which class they should

belong. Finally, the annotations are manually checked for

erroneous categorization. The raw dataset is imbalanced as

the provisioning events take up only a small section of the

total videos. Therefore, the number of images in each class

is equalized by randomly sampling an equal number of

images from each class.

The final dataset for the binary classification of provisioning

event frames consists of 80,000 images evenly split over the

provisioning and not-provisioning classes. The images are

split into 80% training, 15% validation and 5% test sets. The

final division of the provisioning event dataset can be seen

in Table I.

Fig. 5 Video frame with bounding box and label Other for prey.

Fig. 6 Video frame with bounding box and label Spider for prey.

TABLE I PROVISIONING EVENT CLASSIFICATION DATASET SPLIT

Class Total Training Validation Test

Provisioning 40,000 32,000 6,000 2,000

Not-provisioning 40,000 32,000 6,000 2,000

C. Prey detection dataset

For the detection and classification of prey images from the

provisioning class of the provisioning event dataset are

annotated further. VOTT [27] is an image and video

annotation tool developed by Microsoft. It was used to

annotate a subset of 1270 frames from the nestbox video

dataset with a bounding box for the location of the prey and

a label for the class of the prey. The label classes consist of

the three most frequently provisioned prey: Caterpillar,

Moth, and Spider. All other prey type annotations are

grouped into the class Other. The annotations are split into

80% training, 15% validation and 5% test sets. The final

division of the prey annotations can be seen in Table II.

Examples of the annotated images can be seen in Fig. 3. The

VOTT label export files are then converted to the YOLO

annotation format for compatibility with the detection

model training setup. The YOLO annotation format consists

of text files accompanying the image dataset. Each row in

the annotation files contains the coordinates of a bounding

box of an object in the image.

TABLE II PREY DETECTION DATSET SPLIT

Class Total Training Validation Test

Caterpillar 332 258 58 15

Moth 203 157 33 13

Spider 489 390 69 30

Other 246 208 31 7

5

V. METHODS

The proposed solution combines two models to analyse the

nestbox video footage. The first model classifies the

provisioning event frames while the second model detects

and classifies the prey in the provisioning event frames.

A. Classification of Provisioning Events

To detect the provisioning events in the dataset, a CNN

model was trained to classify the individual frames of the

footage as either provisioning or not-provisioning,

representing whenever the parent bird is in the nestbox or

not. It was found that during the period the video was taken

it is unlikely for the parent bird to enter the nest without

provisioning its young. It was also found to be unlikely for

there to be more than one parent in the nest at the same time.

With these assumptions a provisioning events can be

determined simply by the presents of a parent bird.

Therefore, a binary classification model suffices for

detecting provisioning events in this dataset.

To answer the first research question and find the fastest and

most accurate CNN architecture for the provisioning event

classification model, five CNN architectures are compared.

Different generations of the EfficientNet and MobileNet

architecture are trained on the provisioning event dataset to

compare their accuracy and inference speed. From the

EfficientNet architectures the first and second version were

tested. Choosing the smallest version labelled B0 to be more

similar in computational size to the different generations of

MobileNet. From the MobileNet architectures the first,

second and third generation were tested. Using the smallest

version of the third-generation architecture, which is also

more similar in computational size to the other tested

models.

The training and evaluation setup for the classification

models is implemented using the TensorFlow API in Python

using GPU acceleration. The model architectures are loaded

from the TensorFlow Keras API [28]. The models include a

pre-processing layer to resize images to 224×224 pixels and

are initialized with weights pre-trained on the ImageNet

dataset [6]. The models were then trained on the

provisioning event frames.

All the binary classification models have been trained for

100 epochs or until validation metrics were no longer

improving. Each training epoch consisting of 500 steps with

batches of 128 images per step. The training procedure used

the NAdam optimizer, which incorporates Nesterov

momentum into the Adam optimizer. With the following

hyperparameter values: learning rate=0.001, β1=0.9,

β2=0.999 and ε=1e-6.

B. Detection and Classification of Prey

Introduced in 2021 by Chien-Yao Wang et al., You Only

Learn One Representation (YOLOR) is a cutting-edge real-

time detection model architecture. This model architecture

was chosen as it is shown to have significantly faster

interference compared to other state of the art architectures,

while reaching similarly competitive accuracy on

benchmark datasets [29].

To answer the second research question a model with the

YOLOR-P6 architecture is trained to predict the location

and class of the prey in provisioning event frames. The

model is trained and evaluated using the implementation by

the authors themselves [30]. The model includes a pre-

processing step to resize images to 640×640 pixels. The

model is initialized with weights pretrained on the Common

Objects in Context (COCO) dataset [31], consisting of over

200,000 images and 1.5 million object instances categorized

into 80 object categories (such as person, bicycle, bird, etc.).

The model is then trained on the prey annotations using the

finetuned hyperparameters from the authors themselves

which can be found included in the training code repository.

C. Evaluation Metrics

There are various metrics that can be used to evaluate the

performance of a trained model. The metrics used between

classification models and detection models differ slightly.

The metrics used in this research paper are explained below.

1) General model metrics

• Precision is the proportion of all examples above a

given rank which are from the positive class and

can be written as Precision =
TP

(TP+FP)
. Where TP

is True Positive, and FP is False Positive.

• Recall is defined as the proportion of all positive

examples ranked above a given rank and can be

written as Recall =
TP

(TP+FN)
. Where TP is True

Positive, and FN is False Negative.

• Inference speed measures how quickly a model

can classify a given image. This is often measured

in frames per second (fps). This measure depends

on the implementation of the model and the

hardware it is running on.

2) Classification model metrics

• Accuracy is calculated as the ratio between the

number of correct predictions and the total number

of predictions and can be written as

Accuracy =
TP + TN

(TP+TN+FP+FN)
.Where TP is True

Positive, TN is True Negative, FP is False Positive,

and FN is False Negative.

6

Fig. 7 Training and validation accuracy of MobileNetV3Small

classification model on the provisioning event annotations.

Fig. 8 Training and validation loss of MobileNetV3Small classification

model on the provisioning event annotations.

• Receiver Operator Characteristic curve (ROC) is a

graph of the performance of a model at all

confidence score thresholds. Plotting the True

Positive Rate (TPR) against the False Positive Rate

(FPR) at different thresholds.

• Area Under Curve (AUC) of the ROC is the entire

two-dimensional area underneath the ROC curve.

This metric provides an aggregate measure of

performance across every classification threshold.

3) Detection model metrics

• Intersection over Union (IoU) gives the accuracy

of the prediction of bounding boxes by the ratio

between the intersection and the union of the

predicted boxes and the annotated boxes.

• Precision/Recall curve is a graph that shows the

trade-off between precision and recall as a function

of the model confidence score threshold.

• Mean Average Precision (mAP) was formalized in

the 2007 PASCAL Visual Objects Classes (VOC)

challenge [32]. First the Average Precision (AP) is

calculated, taking the AUC of the precision/recall

curve using an IoU value of 0.5 as the confidence

score threshold. The mAP is then calculated as the

average AP over all classes. Notably, the MS

COCO challenge [31] uses the average mAP over

10 different IoU thresholds from 0.5 to 0.95.

Fig. 9 The mAP at IoU@0.5 and IoU@0.5:0.95 during training of

YOLOR detection model on the prey annotations.

Fig. 10 The precision/recall curve of YOLOR trained on the prey

annotations.

VI. RESULTS

A. Experiment Hardware

The experiments are caried out in Windows Subsystem for

Linux (WSL) using CUDA 11.7 drivers on a Windows

system featuring an Nvidia RTX2080 maxQ GPU, an Intel

core i7-9750H CPU at 2.60GHz and 32 GB of random-

access memory. The models are implemented and run using

Python version 3.8 in Anaconda3 for Linux.

B. Detection of Provisioning Events

Table III summarizes the results of the experiment. The

first results column shows the accuracy on the evaluation

split of the dataset. The second column shows the AUC of

the ROC curve of the model predictions on the evaluation

split of the dataset. The last column shows the inference

speed of the models per image with batches of 128 on the

evaluation split of the dataset using the experiment

hardware.

TABLE III PROVISIONING EVENT MODEL METRICS

Model Accuracy AUC Inference

EfficientNetV2-B0 99.04% 99.51% 135fps

MobileNetV3Small 98.75% 99.29% 290fps

EfficientNetB0 98.73% 99.49% 94fps

MobileNet 96.81% 98.02% 181fps

MobileNetV2 95.77% 95.22% 151fps

Although EfficientNetV2-B0 technically reached the

highest accuracy, MobileNetV3Small reached significantly

faster inference speed while getting extremely close to the

7

Fig. 11 Example of double detection fault.

accuracy of EfficientNetV2-B0. Fig. 7 and Fig. 8 show that

the performance of the model on the evaluation split of the

dataset is just as good as the performance on the training

split of the dataset. This means that the model is not

overfitting or underfitting.

C. Detection and Classification of Prey

In the experiment YOLOR initialised with weights pre-

trained on the COCO dataset was re-trained on the prey

annotations. The training mAP at an IoU threshold equal to

0.5 and between 0.5 and 0.95 is shown in Fig. 9. The final

model reached a mAP of 83.6% at an IoU threshold equal

to 0.5 and 51.4% at IoU between 0.5 and 0.95. This can also

be seen in the precision/recall graph in Fig. 10. Table IV

shows the precision, recall and mAP for each class

individually. The model can run detections at 90fps on the

experiment hardware.

TABLE IV PREY MODEL METRICS

Class Precision Recall mAP@0.5 mAP@0.5:0.95

All 0.529 0.861 0.836 0.514

Caterpillar 0.576 0.833 0.826 0.506

Moth 0.674 0.939 0.947 0.649

Spider 0.553 0.824 0.800 0.399

Other 0.314 0.846 0.770 0.503

VII. DISCUSSION

By the AUC value of the ROC of the classification models,

it is shown that the models have both very hight precision

and recall. Meaning the models will correctly classify most

samples while finding little to no false positives or false

negatives. In the application of analysing nestbox video

footage it is most important that all occurrences are detected

correctly. It is easier to remove false positives than to find

missing occurrences.

Similarly, Table IV shows that the prey detection model has

quite high recall, but low precision. Which means it will

correctly classify most samples but will give some false

positives. Which in the case of detection might also mean a

correct classification but at an incorrect location relative to

the IoU threshold. Which can be seen in the mAP@0.5:0.95,

where the average it taken from 10 thresholds of IoU. In

case the model would be used to find the exact location of

the prey in the frame it would not be precise enough to

correctly segment the prey.

Table IV also shows that the Other class has a significantly

lower mAP than the other classes, which may be explained

by the greater variance compared to the other classes. The

Spider class also has low accuracy at mAP@0.5:0.95. This

may be explained by the low contrast with the background

but requires more research. Sometimes the model also

confuses two halves of a prey for multiple separate prey.

This can be seen in Fig. 11.

The number of prey annotations is low. Overall, the

detection model should improve significantly with more

annotation data and more balanced classes for training.

VIII. CONCLUSION

The MobileNetV3Small architecture was trained on nestbox

video footage and was found to be a fast and accurate model

to classify provisioning event frames. Reaching an accuracy

of 98.75% and running inferences at 290fps on the

experiment hardware. This means that the trained model can

quickly and accurately predict provisioning events in

nestbox video footage. By integrating this model into an

analysis software, the feeding events from a video of an hour

at 30fps could be correctly detected in just over 6 minutes.

Work which would take a researcher at least an hour, if not

more.

The YOLOR model architecture trained for the detection

and classification of the prey in the provisioning frames into

four broad categories reaches a mAP of 83.6% at an IoU

threshold equal to 0.5 and processing at 90fps on the

experiment hardware. This means that when the model is

integrated in an analysis software it could process

provisioning event footage at 30 fps 3 times faster than real-

time. Finding the general location of the prey and

classifying it into one of 5 broad classes. This further

reduces the work researchers would need to do to analyse

nestbox video footage.

By combining the two models presented in this paper into

an analysis software, the solution could quickly and

accurately classify provisioning event frames and predict

the broad class and general location of the prey provisioned.

Greatly improving the workflow of analysis nestbox video

footage for researchers.

IX. FUTURE WORK

There are various steps that could be taken to create an even

better solution. Especially the dataset and annotations could

be improved.

Future research should be done on the amount of data

needed to train the provisioning event classification model.

The number of images used to train the provisioning event

classification model is relatively large and it would be useful

8

to know the minimum amount of data needed to reach a

satisfying accuracy.

With more prey annotation it might also be possible to get

more specific classification and segmentations of the prey.

Finding more specific species and adding more fine-grained

classes. Colour information might also help to define more

fine-grained prey classes.

Lastly, the dataset is limited in its variance. The footage is

only recorded for one species of birds and does not include

much variation in filming angle and lighting conditions. An

effort could be made to create a more varied benchmark

dataset from nestbox video footage from many different

nestboxes and bird species.

ACKNOWLEDGMENTS

I would like to thank: Dr. Jacob W. Kamminga and Dr.

Emily R. Burdfield-Steel for actively supervising this thesis.

Dr. Andreas Kamilaris for being the critical observer of this

thesis. Doctoral researcher Teresa M. Abaurrea for meeting

me and sharing her video dataset and annotations. Justine

Loof for adding additional annotations to the dataset. Dr.

Juan C. Senar for meeting me and sharing further

information about their research methods.

REFERENCES

[1] S. Díaz et al., “Pervasive human-driven decline of

life on Earth points to the need for transformative

change,” Science (1979), vol. 366, no. 6471, Dec.

2019, doi: 10.1126/science.aax3100.
[2] Y. Lecun, Y. Bengio, and G. Hinton, “Deep

learning,” Nature, vol. 521, no. 7553, pp. 436–444,

May 2015, doi: 10.1038/NATURE14539.

[3] I. Sutskever, J. Martens, G. Dahl, and G. Hinton,

“On the importance of initialization and momentum

in deep learning,” 2013.

[4] Z. Yang, W. Bao, D. Yuan, N. H. Tran, and A. Y.

Zomaya, “Federated Learning with Nesterov

Accelerated Gradient Momentum Method,” Sep.

2020, [Online]. Available:

http://arxiv.org/abs/2009.08716

[5] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson,

“How transferable are features in deep neural

networks?,” Nov. 2014, [Online]. Available:

http://arxiv.org/abs/1411.1792

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and

Li Fei-Fei, “ImageNet: A large-scale hierarchical

image database,” in 2009 IEEE Conference on

Computer Vision and Pattern Recognition, Jun.

2009, pp. 248–255. doi:

10.1109/CVPR.2009.5206848.

[7] M. Abadi et al., “TensorFlow: Large-Scale

Machine Learning on Heterogeneous Distributed

Systems,” Mar. 2016, Accessed: Apr. 26, 2022.

[Online]. Available:

http://arxiv.org/abs/1603.04467

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep

Residual Learning for Image Recognition,” 2016.

[Online]. Available: http://image-

net.org/challenges/LSVRC/2015/

[9] A. G. Howard et al., “MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision

Applications,” Apr. 2017, [Online]. Available:

http://arxiv.org/abs/1704.04861

[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov,

and L.-C. Chen, “MobileNetV2: Inverted Residuals

and Linear Bottlenecks,” 2018.

[11] A. Howard et al., “Searching for MobileNetV3,”

May 2019, [Online]. Available:

http://arxiv.org/abs/1905.02244

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You Only Look Once: Unified, Real-Time Object

Detection,” Jun. 2016. doi:

10.1109/CVPR.2016.91.

[13] J. Redmon and A. Farhadi, “YOLO9000: Better,

Faster, Stronger,” 2017. [Online]. Available:

http://pjreddie.com/yolo9000/

[14] J. Redmon and A. Farhadi, “YOLOv3: An

Incremental Improvement,” Apr. 2018, [Online].

Available: http://arxiv.org/abs/1804.02767

[15] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao,

“YOLOv4: Optimal Speed and Accuracy of Object

Detection,” Apr. 2020, doi:

10.48550/arxiv.2004.10934.

[16] M. Tan and Q. v. Le, “EfficientNet: Rethinking

Model Scaling for Convolutional Neural

Networks,” 36th International Conference on

Machine Learning, ICML 2019, vol. 2019-June, pp.

10691–10700, May 2019, doi:

10.48550/arxiv.1905.11946.

[17] M. Tan and Q. v. Le, “EfficientNetV2: Smaller

Models and Faster Training,” Apr. 2021, doi:

10.48550/arxiv.2104.00298.

[18] E. Pagani-Núñez and J. C. Senar, “One Hour of

Sampling is Enough: Great Tit Parus major Parents

Feed Their Nestlings Consistently Across Time,”

Acta Ornithologica, vol. 48, no. 2, pp. 194–200,

Jun. 2013, doi: 10.3161/000164513X678847.

[19] M. Willi et al., “Identifying animal species in

camera trap images using deep learning and citizen

science,” Methods in Ecology and Evolution, vol.

10, no. 1, pp. 80–91, Jan. 2019, doi: 10.1111/2041-

210X.13099.

[20] S. Schneider, G. W. Taylor, and S. Kremer, “Deep

Learning Object Detection Methods for Ecological

Camera Trap Data,” in 2018 15th Conference on

Computer and Robot Vision (CRV), May 2018, pp.

321–328. doi: 10.1109/CRV.2018.00052.

[21] A. Swanson, M. Kosmala, C. Lintott, R. Simpson,

A. Smith, and C. Packer, “Snapshot Serengeti,

high-frequency annotated camera trap images of 40

mammalian species in an African savanna,”

Scientific Data, vol. 2, no. 1, p. 150026, Dec. 2015,

doi: 10.1038/sdata.2015.26.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-

CNN: Towards Real-Time Object Detection with

Region Proposal Networks.” [Online]. Available:

http://image-

net.org/challenges/LSVRC/2015/results

9

[23] S. Kennelly and R. Green, “Classifying Bird Feeder

Photos,” in 2020 35th International Conference on

Image and Vision Computing New Zealand

(IVCNZ), Nov. 2020, pp. 1–6. doi:

10.1109/IVCNZ51579.2020.9290682.

[24] K. Simonyan and A. Zisserman, “Very Deep

Convolutional Networks for Large-Scale Image

Recognition,” 2015. [Online]. Available:

http://www.robots.ox.ac.uk/

[25] H. M. Williams, L. S. Matott, and R. L. DeLeon,

“Automated Deep Learning Analysis of Purple

Martin Videos Depicting Incubation and

Provisioning,” in Proceedings of the Practice and

Experience in Advanced Research Computing on

Rise of the Machines (learning), Jul. 2019, pp. 1–7.

doi: 10.1145/3332186.3332194.

[26] R. L. Harrison, “Introduction To Monte Carlo

Simulation,” AIP Conf Proc, vol. 1204, p. 17, 2010,

doi: 10.1063/1.3295638.

[27] “Zulko/moviepy: Video editing with Python.”

https://github.com/Zulko/moviepy (accessed Jul.

10, 2022).

[28] “microsoft/VoTT: Visual Object Tagging Tool: An

electron app for building end to end Object

Detection Models from Images and Videos.”

https://github.com/Microsoft/VoTT (accessed Jul.

10, 2022).

[29] “keras-team/keras: Deep Learning for humans.”

https://github.com/keras-team/keras (accessed Jul.

10, 2022).

[30] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You

Only Learn One Representation: Unified Network

for Multiple Tasks,” May 2021, [Online].

Available: http://arxiv.org/abs/2105.04206

[31] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao,

“WongKinYiu/yolor: implementation of paper -

You Only Learn One Representation: Unified

Network for Multiple Tasks,” 2021.

https://github.com/WongKinYiu/yolor (accessed

Jul. 10, 2022).

[32] T.-Y. Lin et al., “Microsoft COCO: Common

Objects in Context,” May 2014, [Online].

Available: http://arxiv.org/abs/1405.0312

[33] M. Everingham et al., “The PASCAL Visual

Object Classes (VOC) Challenge”.

