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I. INTRODUCTION 

Human actions drive a decline in biodiversity. In response, 

many societal organisations around the world have set 

conservation and preservation targets [1]. However, these 

targets cannot be achieved without knowledge of the current 

state of the ecosystem. For this purpose, various wildlife 

monitoring projects are started around the world to monitor 

biodiversity. 

One such project includes new and existing ‘smart’ 

nestboxes for small cavity breeding bird species. These 

nestboxes are enhanced with cameras to monitor the birds 

and their nestlings. Often these cameras are set up to record 

for extended periods of time, collecting enormous amounts 

of data. This data is precious to researchers, as it contains 

valuable information about the behaviour of the monitored 

birds, their prey, and their nestlings. Most interesting to 

researchers are the moments when a parent enters the nest 

to feed their young, so-called provisioning events. These 

moments contain information about the feeding behaviour 

of the birds and the prey they bring into their nest. 

From interviews with researchers in the field, the current 

workflow for analysing nestbox video footage was 

experienced as tedious by the researchers. Currently the 

processing of this data is a manual and labour-intensive task. 

They must manually sift through every minute of recorded 

video to find clips that contain interesting information. After 

finding these parts of the footage they will have to analyse 

the footage to find out what prey the parent brings into the 

nest. This process however is also prone to error, as it is 

often hard to see the difference between species of prey 

when footage can be short and/or blurry. Overall, the 

process is tedious and prone to human error. 

Therefore, this paper sets out to propose a solution to 

significantly reduce the effort of analysing nestbox video 

footage. To achieve this the following research questions, 

need to be answered: 

1. What is the fastest and most accurate method to 

find provisioning events in nestbox video footage? 

2. What is the fastest and most accurate method to 

detect and classify prey in nestbox video footage? 

To answer these research questions the solution proposed in 

this paper applies two algorithms. The first algorithm 

detects the provisioning events. While the second model 

detects and classifies the prey visible in the footage of the 

provisioning events. The algorithms return whether a 

provisioning event is happening in the frames of the nestbox 

video footage, and the general category of the prey 

provisioned by the parent. 

 

This paper starts with an explanation of concepts that are 

key to understanding the algorithms used in the related work 

and proposed solution. Then, related work is surveyed to 

find out what work other researchers have done on this 

topic. The Dataset used in this research is introduced and the 

annotations are explained. This is followed by the proposed 

solution and experimental setup. Finally, the results are 

discussed, and a conclusion is made. 

II. CONCEPTS AND TECHNIQUES 

A. Convolutional Neural Networks 

With the introduction of Convolutional Neural Networks 

(CNN) the accuracy of classification of image data has 

quickly increased compared to previous methods. First 

introduced by Yann Lecun and Yoshua Bengio in 1998, 

CNN are a type of Artificial Neural Network (ANN) [2]. 

These networks are especially good at processing grid-like 

data, such as time-series and images. A CNN consists of 

layers of ‘neurons’, which each have learnable parameters 

and in sequence execute computations on the input data. A 

CNN often include several basic layers but are not limited 

to these basic building blocks. A CNN classically contains 

the following layers: 

• An input layer consists of a matrix of neurons 

representing the raw image data. This matrix has 

the dimensions W×H×C, where in relation to the 

image, W is width, H is height and C is colour. 

Colour will consist of one or more channels for 

each colour value of the pixels in the image. Most 

common are RGB images, which have three colour 

channels. 

• A convolution layer consists of neurons that each 

take the dot product of a restricted section of values 

from the preceding layer (the receptive field) and a 

matrix of learnable parameters (the kernel). By 

arranging the layers in a certain way, the network 

can first detect simple features, such as shapes, and 

then more high-level features, such as object, 

animals, or plants. 

• A non-linearity layer, also known as an activation 

function, helps introduce non-linearity to the linear 

convolutional operations, which is needed to create 

non-linear decision boundaries. Without this layer 

a deep CNN network would perform as if it were 

an equivalent single convolutional layer. 

• A pooling layer derives a summary statistic of the 

output of preceding layers and can be placed in 

various locations in a network to help reduce the 

spatial size of the representation. This decreases 

the number of weights and the subsequent 

computation needed for a network.  



2 

 

• A flatten layer can fit the multi-dimensional output 

from the preceding layers into a one-dimensional 

vector which can be used as the input for a fully 

connected layer. 

• A fully connected layer is often the last layer of a 

network. The layer is fully connected, which 

means that every neuron on this layer is connected 

to all the neurons in the preceding layer. This layer 

maps the input to the required output, such as a 

classification. 

B. Hyperparameters 

In the training process of a Neural Network there are various 

hyperparameters which can be tuned to reach the optimal 

performance of a model as quickly as possible. Using an 

optimizer algorithm during training, local minima in the 

weight values can be reached faster. Algorithms such as 

Stochastic Gradient Decent (SGD) or Adaptive Moment 

Estimation (Adam) are common algorithms to optimize 

CNN training. It has also become common to use 

momentum to reach local minima in the optimization 

algorithm. As recommended by Sutskever in [3], 

specifically using the Nesterov algorithm [4] can 

significantly speed up the learning process. Another 

hyperparameter is learning rate, which can be either 

constant or varied. Which means that there is either a set 

learning rate to use during the entire training process or 

changing the learning rate during the training process. 

C. Transfer Learning 

Transfer learning [5] is a technique which has been used in 

recent years to increase the training speed and performance 

of CNN models. Instead of initialising the model with 

random weight, the model is ‘pre-training’ on a large 

dataset, such as ImageNet [6]. This way the model will learn 

generalisable feature representations. By ‘re-training’ the 

network on a more specific dataset the training process will 

require less data and time. On small datasets, this technique 

also helps against overfitting. A model that is overfitting is 

extremely accurate on the trained data but does not perform 

well on new testing data. The process of transfer learning 

does require the training data of the new dataset to be similar 

in dimensions to the dataset the model was pre-trained on. 

D. Tensorflow  

With the release of TensorFlow [7] around 2015, the 

implementation of CNN and other Machine Learning (ML) 

techniques became more accessible. TensorFlow is an open-

source project built at Google. It features an interface to 

express ML algorithms and an implementation to execute 

these algorithms in various programming environments. For 

this reason, it has often been used by researchers and in 

various application to implement CNN architectures. 

Popular architectures are implemented in the TensorFlow 

API and come with the install of the package. For fast 

comparisons of different architectures, the TensorFlow 

Python package is used for the implementation and training 

of the CNN models tested in this research paper. 

E. Architectures 

Various CNN architectures have been designed for the task 

of classifying image data. AlexNet [6] is often cited as one 

of the first network architectures to reach human 

classification accuracy when it won the ImageNet 

classification challenge in 2012. Subsequent architectures 

kept adding layers, but ultimately suffered from the 

exploding/vanishing gradient problem, where the weight 

gradient quickly approaches zero or explodes into extremely 

large values. However, in 2016, the authors of [8] 

introduced ResNet, a deep neural network which no longer 

suffered from the exploding/vanishing gradient problem by 

implementing ‘residual blocks’. More recent model 

architectures such as MobileNet [9]–[11], YOLO [12]–[15] 

and EfficientNet [16], [17] combine various techniques to 

further increase accuracy while reducing model size and 

even achieving real time performance on smartphones and 

other edge devices. 

III. RELATED WORK 

Classically, nestbox video footage is annotated manually. 

Which can be read from the methods sections of many 

papers published on the analysis of these types of footage. 

This was further confirmed by interviews with authors of 

some of these papers. 

In [18] E. Pagani-Núñez and J.C. Senar monitored 182 

nestboxes inhabited by Great Tits (Parus Major) near 

Barcelona, Spain. They installed camouflaged Micro-D 

cameras inside the nestboxes when nestlings were 10-16 

days old. Starting recording one day after installing and 

comprising footage between 07:00 and 14:00. The amount 

of recorded data was limited using a motion sensor to detect 

movement at the entrance of the nestbox. The footage was 

then manually analysed, and the prey type, size and time of 

provisioning was recorded. They identified three categories 

of prey: caterpillars, spiders, and others. The prey size was 

categorised according to a semi-quantitative scale: small, 

medium, or large. From interviews with one of the authors, 

J.C. Senar, it became clear that the analysis process took 

several months. Where they had to tediously go through the 

large amount of data collected during the monitoring period. 

From interviews with doctoral researcher at the University 

of Helsinki T.M. Abaurrea it became clear that they too 

faced similar problems with the analysis of their nestbox 

video datasets. Having to manually go through hours of 

continuous recorded footage to find provisioning events and 

annotate information relevant to their research. 
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Fig. 1 Example frame from the dataset labeled as provisioining. 

More research is done on automated analysis of camera 

traps for mammals and other larger wildlife. In [19] M. Willi 

R. Pitman, R. Cardoso et al. implemented two model. First, 

they managed to identify whether an animal was spotted in 

an image from savanna and forest snapshots with 91.2% 

accuracy. Then they were able to classify specific species 

from a total of 17 species with accuracies between 88.7% 

and 92.7% depending on the species. 

Similarly, in [19] S. Schneider, G. Taylor and S. Kremer 

created the Gold Standard Snapshot Serengeti dataset, based 

on the Snapshot Serengeti dataset [20], which contains forty 

mammalian species of the African savanna. On this dataset 

they were able to achieve a 76.7% (±8.3) detection accuracy 

with a Faster R-CNN [21] model. Using a detection model 

instead of simple classification allows for the identification 

of multiple animals in the same image but required more 

detailed annotations. 

In [22] S. Kennelly and R. Green try to solve a problem 

similar to the detection of provisioning events in nestbox 

video footage. They implemented a CNN model to detect 

whenever a bird is sitting at a bird feeder. They collected a 

dataset of 5,375 images from two different bird feeders. The 

data was labelled either: Parakeet, Other Bird, Empty or 

Other. Because the dataset is small the authors used data 

augmentation and transfer learning to avoid overfitting the 

model. Using a two-pipeline approach with the ResNet18 

and VGG16 [23] architecture, the authors reached a 99.12% 

true positive accuracy on the Parakeet class. 

Most relevant is the paper by H. Williams, L. Matott and R. 

DeLeon [24], where they detect whenever a Purple Martin 

(Progne subis) provisions its nest. They collected a dataset 

of 83.254 images taken from a total of 13,000 hours of full 

colour footage from twenty different nestboxes. The 

original images were 1920×1080 pixels but were reduced to 

0.1 times the size to speed up the training process. The 

images were annotated either: Zero Birds, One Bird, or Two 

Birds. Although, they found it rare for two birds to provision 

at the same time and even more rare for a parent to enter the 

nest and not provision its young. With this data the authors 

trained a CNN model based on the VGG16 architecture and 

reached an accuracy between 77% and 88% for the analysis  

 

Fig. 2 Example frame from the dataset labeled as not-provisioining 

of the provisioning data. Although technically performing 

worse than a human could, the accuracy is sufficient to 

determine the feeding frequency according to their Monte 

Carlo simulation [25].  

In researching related work, it became apparent that at this 

point little research has been done regarding object 

detection and classification in relation to the analysis of 

smart nestbox video footage. Despite this, knowledge 

gained in research in related fields is transferable to this 

application. 

IV. DATASET 

To the best of our knowledge, there is no benchmark dataset 

containing images of nestbox cameras. The dataset used in 

this paper was shared by doctoral researcher T.M. Abaurrea. 

The dataset contains 48 hours of 2304×1296 pixels, 

greyscale nestbox camera video of Redstarts (Phoenicurus 

phoenicurus) and their young. At roughly 30 frames per 

second (fps), this is a total of 5,230,110 images. It is 

important to note that the dataset is limited to only one bird 

species and that the footage is taken with a specific angle 

relative to the inside of the nestbox. This might limit the 

generalisability of the final trained model. An 

accompanying spreadsheet contains annotations of the 

footage with the entry time of the parent bird and the 

duration of the provisioning event. Additional labelling files 

contain a bounding box and category of the prey the parent 

brings into the nest when provisioning their young. The 

following sections explain how the data was processed to be 

used in the training process of the proposed models. 

A. Preprocessing 

The models include pre-processing steps that resize the 

images to the appropriate size specified by the model 

architecture and pre-training dataset used for transfer 

learning. This is 224×224 pixels for the classification 

models and 640×640 pixels for the detection model. 

B. Provisioning event classification dataset 

The MoviePy [26] library was used to load the source videos 

in a Python script, where the video was split into individual 
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Fig. 3 Video frame with bounding box and label Caterpillar for prey. 

 

Fig. 4 Video frame with bounding box and label Moth for prey. 

frames. This step is needed to be able to create a static 

dataset of images to train the CNN models on. The script 

loops over the number of frames in a video and exports the 

frames to specific directories based on the provisioning 

event time annotations. 

The frames within the range of a provisioning event time 

annotation are exported to a directory named provisioning 

and all other frames are exported to a directory named non-

provisioning. An example of what frames are annotated as 

either provisioning or not-provisioning can be seen in  

Fig. 1 and Fig. 2, respectively.  

To compensate for inaccuracy in the annotations the five 

seconds of footage before and the 5 second after each 

provisioning event are discarded. This is a total of 300 

discarded frames per provisioning event, which could have 

otherwise been ambiguous to which class they should 

belong. Finally, the annotations are manually checked for 

erroneous categorization. The raw dataset is imbalanced as 

the provisioning events take up only a small section of the 

total videos. Therefore, the number of images in each class 

is equalized by randomly sampling an equal number of 

images from each class. 

The final dataset for the binary classification of provisioning 

event frames consists of 80,000 images evenly split over the 

provisioning and not-provisioning classes. The images are 

split into 80% training, 15% validation and 5% test sets. The 

final division of the provisioning event dataset can be seen 

in Table I. 

 

Fig. 5 Video frame with bounding box and label Other for prey. 

 

Fig. 6 Video frame with bounding box and label Spider for prey. 

TABLE I PROVISIONING EVENT CLASSIFICATION  DATASET SPLIT 

Class Total Training Validation Test 

Provisioning 40,000 32,000 6,000 2,000 

Not-provisioning 40,000 32,000 6,000 2,000 

C. Prey detection dataset 

For the detection and classification of prey images from the 

provisioning class of the provisioning event dataset are 

annotated further. VOTT [27] is an image and video 

annotation tool developed by Microsoft. It was used to 

annotate a subset of 1270 frames from the nestbox video 

dataset with a bounding box for the location of the prey and 

a label for the class of the prey. The label classes consist of 

the three most frequently provisioned prey: Caterpillar, 

Moth, and Spider. All other prey type annotations are 

grouped into the class Other. The annotations are split into 

80% training, 15% validation and 5% test sets. The final 

division of the prey annotations can be seen in Table II. 

Examples of the annotated images can be seen in Fig. 3. The 

VOTT label export files are then converted to the YOLO 

annotation format for compatibility with the detection 

model training setup. The YOLO annotation format consists 

of text files accompanying the image dataset. Each row in 

the annotation files contains the coordinates of a bounding 

box of an object in the image. 

TABLE II PREY DETECTION DATSET SPLIT 

Class Total Training Validation Test 

Caterpillar 332 258 58 15 

Moth 203 157 33 13 

Spider 489 390 69 30 

Other 246 208 31 7 
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V. METHODS 

The proposed solution combines two models to analyse the 

nestbox video footage. The first model classifies the 

provisioning event frames while the second model detects 

and classifies the prey in the provisioning event frames. 

A. Classification of Provisioning Events 

To detect the provisioning events in the dataset, a CNN 

model was trained to classify the individual frames of the 

footage as either provisioning or not-provisioning, 

representing whenever the parent bird is in the nestbox or 

not. It was found that during the period the video was taken 

it is unlikely for the parent bird to enter the nest without 

provisioning its young. It was also found to be unlikely for 

there to be more than one parent in the nest at the same time. 

With these assumptions a provisioning events can be 

determined simply by the presents of a parent bird. 

Therefore, a binary classification model suffices for 

detecting provisioning events in this dataset. 

To answer the first research question and find the fastest and 

most accurate CNN architecture for the provisioning event 

classification model, five CNN architectures are compared. 

Different generations of the EfficientNet and MobileNet 

architecture are trained on the provisioning event dataset to 

compare their accuracy and inference speed. From the 

EfficientNet architectures the first and second version were 

tested. Choosing the smallest version labelled B0 to be more 

similar in computational size to the different generations of 

MobileNet. From the MobileNet architectures the first, 

second and third generation were tested. Using the smallest 

version of the third-generation architecture, which is also 

more similar in computational size to the other tested 

models. 

The training and evaluation setup for the classification 

models is implemented using the TensorFlow API in Python 

using GPU acceleration. The model architectures are loaded 

from the TensorFlow Keras API [28]. The models include a 

pre-processing layer to resize images to 224×224 pixels and 

are initialized with weights pre-trained on the ImageNet 

dataset [6]. The models were then trained on the 

provisioning event frames. 

All the binary classification models have been trained for 

100 epochs or until validation metrics were no longer 

improving. Each training epoch consisting of 500 steps with 

batches of 128 images per step. The training procedure used 

the NAdam optimizer, which incorporates Nesterov 

momentum into the Adam optimizer. With the following 

hyperparameter values: learning rate=0.001, β1=0.9, 

β2=0.999 and ε=1e-6. 

B. Detection and Classification of Prey 

Introduced in 2021 by Chien-Yao Wang et al., You Only 

Learn One Representation (YOLOR) is a cutting-edge real-

time detection model architecture. This model architecture 

was chosen as it is shown to have significantly faster 

interference compared to other state of the art architectures, 

while reaching similarly competitive accuracy on 

benchmark datasets [29].  

To answer the second research question a model with the 

YOLOR-P6 architecture is trained to predict the location 

and class of the prey in provisioning event frames. The 

model is trained and evaluated using the implementation by 

the authors themselves [30]. The model includes a pre-

processing step to resize images to 640×640 pixels. The 

model is initialized with weights pretrained on the Common 

Objects in Context (COCO) dataset [31], consisting of over 

200,000 images and 1.5 million object instances categorized 

into 80 object categories (such as person, bicycle, bird, etc.). 

The model is then trained on the prey annotations using the 

finetuned hyperparameters from the authors themselves 

which can be found included in the training code repository. 

C. Evaluation Metrics 

There are various metrics that can be used to evaluate the 

performance of a trained model. The metrics used between 

classification models and detection models differ slightly. 

The metrics used in this research paper are explained below. 

1) General model metrics 

• Precision is the proportion of all examples above a 

given rank which are from the positive class and 

can be written as Precision =
TP

(TP+FP)
. Where TP 

is True Positive, and FP is False Positive. 

• Recall is defined as the proportion of all positive 

examples ranked above a given rank and can be 

written as Recall =
TP

(TP+FN)
. Where TP is True 

Positive, and FN is False Negative. 

• Inference speed measures how quickly a model 

can classify a given image. This is often measured 

in frames per second (fps). This measure depends 

on the implementation of the model and the 

hardware it is running on. 

2) Classification model metrics 

• Accuracy is calculated as the ratio between the 

number of correct predictions and the total number 

of predictions and can be written as  

Accuracy =
TP + TN

(TP+TN+FP+FN)
.Where TP is True 

Positive, TN is True Negative, FP is False Positive, 

and FN is False Negative.  
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Fig. 7 Training and validation accuracy of MobileNetV3Small 

classification model on the provisioning event annotations. 

 

Fig. 8 Training and validation loss of MobileNetV3Small classification 

model on the provisioning event annotations. 

• Receiver Operator Characteristic curve (ROC) is a 

graph of the performance of a model at all 

confidence score thresholds. Plotting the True 

Positive Rate (TPR) against the False Positive Rate 

(FPR) at different thresholds.  

• Area Under Curve (AUC) of the ROC is the entire 

two-dimensional area underneath the ROC curve. 

This metric provides an aggregate measure of 

performance across every classification threshold. 

3) Detection model metrics 

• Intersection over Union (IoU) gives the accuracy 

of the prediction of bounding boxes by the ratio 

between the intersection and the union of the 

predicted boxes and the annotated boxes. 

• Precision/Recall curve is a graph that shows the 

trade-off between precision and recall as a function 

of the model confidence score threshold. 

• Mean Average Precision (mAP) was formalized in 

the 2007 PASCAL Visual Objects Classes (VOC) 

challenge [32]. First the Average Precision (AP) is 

calculated, taking the AUC of the precision/recall 

curve using an IoU value of 0.5 as the confidence 

score threshold. The mAP is then calculated as the 

average AP over all classes. Notably, the MS 

COCO challenge [31] uses the average mAP over 

10 different IoU thresholds from 0.5 to 0.95. 

 

Fig. 9 The mAP at IoU@0.5 and IoU@0.5:0.95 during training of 

YOLOR detection model on the prey annotations. 

 

Fig. 10 The precision/recall curve of YOLOR trained on the prey 

annotations. 

VI. RESULTS 

A. Experiment Hardware 

The experiments are caried out in Windows Subsystem for 

Linux (WSL) using CUDA 11.7 drivers on a Windows 

system featuring an Nvidia RTX2080 maxQ GPU, an Intel 

core i7-9750H CPU at 2.60GHz and 32 GB of random-

access memory. The models are implemented and run using 

Python version 3.8 in Anaconda3 for Linux. 

B. Detection of Provisioning Events 

Table III summarizes the results of the experiment. The 

first results column shows the accuracy on the evaluation 

split of the dataset. The second column shows the AUC of 

the ROC curve of the model predictions on the evaluation 

split of the dataset. The last column shows the inference 

speed of the models per image with batches of 128 on the 

evaluation split of the dataset using the experiment 

hardware. 

TABLE III PROVISIONING EVENT MODEL METRICS 

Model Accuracy AUC Inference 

EfficientNetV2-B0 99.04% 99.51% 135fps 

MobileNetV3Small 98.75% 99.29% 290fps 

EfficientNetB0 98.73% 99.49% 94fps 

MobileNet 96.81% 98.02% 181fps 

MobileNetV2 95.77% 95.22% 151fps 

Although EfficientNetV2-B0 technically reached the 

highest accuracy, MobileNetV3Small reached significantly 

faster inference speed while getting extremely close to the  
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Fig. 11 Example of double detection fault. 

accuracy of EfficientNetV2-B0. Fig. 7 and Fig. 8 show that 

the performance of the model on the evaluation split of the  

dataset is just as good as the performance on the training 

split of the dataset. This means that the model is not 

overfitting or underfitting. 

C. Detection and Classification of Prey 

In the experiment YOLOR initialised with weights pre-

trained on the COCO dataset was re-trained on the prey 

annotations. The training mAP at an IoU threshold equal to 

0.5 and between 0.5 and 0.95 is shown in Fig. 9. The final 

model reached a mAP of 83.6% at an IoU threshold equal 

to 0.5 and 51.4% at IoU between 0.5 and 0.95. This can also 

be seen in the precision/recall graph in Fig. 10. Table IV 

shows the precision, recall and mAP for each class 

individually. The model can run detections at 90fps on the 

experiment hardware. 

TABLE IV PREY MODEL METRICS 

Class Precision Recall mAP@0.5 mAP@0.5:0.95 

All 0.529 0.861 0.836 0.514 

Caterpillar 0.576 0.833 0.826 0.506 

Moth 0.674 0.939 0.947 0.649 

Spider 0.553 0.824 0.800 0.399 

Other 0.314 0.846 0.770 0.503 

VII. DISCUSSION 

By the AUC value of the ROC of the classification models, 

it is shown that the models have both very hight precision 

and recall. Meaning the models will correctly classify most 

samples while finding little to no false positives or false 

negatives. In the application of analysing nestbox video 

footage it is most important that all occurrences are detected 

correctly. It is easier to remove false positives than to find 

missing occurrences. 

Similarly, Table IV shows that the prey detection model has 

quite high recall, but low precision. Which means it will 

correctly classify most samples but will give some false 

positives. Which in the case of detection might also mean a 

correct classification but at an incorrect location relative to 

the IoU threshold. Which can be seen in the mAP@0.5:0.95, 

where the average it taken from 10 thresholds of IoU. In 

case the model would be used to find the exact location of 

the prey in the frame it would not be precise enough to 

correctly segment the prey. 

Table IV also shows that the Other class has a significantly 

lower mAP than the other classes, which may be explained 

by the greater variance compared to the other classes. The 

Spider class also has low accuracy at mAP@0.5:0.95. This 

may be explained by the low contrast with the background 

but requires more research. Sometimes the model also 

confuses two halves of a prey for multiple separate prey. 

This can be seen in Fig. 11.  

The number of prey annotations is low. Overall, the 

detection model should improve significantly with more 

annotation data and more balanced classes for training. 

VIII. CONCLUSION 

The MobileNetV3Small architecture was trained on nestbox 

video footage and was found to be a fast and accurate model 

to classify provisioning event frames. Reaching an accuracy 

of 98.75% and running inferences at 290fps on the 

experiment hardware. This means that the trained model can 

quickly and accurately predict provisioning events in 

nestbox video footage. By integrating this model into an 

analysis software, the feeding events from a video of an hour 

at 30fps could be correctly detected in just over 6 minutes. 

Work which would take a researcher at least an hour, if not 

more. 

The YOLOR model architecture trained for the detection 

and classification of the prey in the provisioning frames into 

four broad categories reaches a mAP of 83.6% at an IoU 

threshold equal to 0.5 and processing at 90fps on the 

experiment hardware. This means that when the model is 

integrated in an analysis software it could process 

provisioning event footage at 30 fps 3 times faster than real-

time. Finding the general location of the prey and 

classifying it into one of 5 broad classes. This further 

reduces the work researchers would need to do to analyse 

nestbox video footage. 

By combining the two models presented in this paper into 

an analysis software, the solution could quickly and 

accurately classify provisioning event frames and predict 

the broad class and general location of the prey provisioned. 

Greatly improving the workflow of analysis nestbox video 

footage for researchers. 

IX. FUTURE WORK 

There are various steps that could be taken to create an even 

better solution. Especially the dataset and annotations could 

be improved. 

Future research should be done on the amount of data 

needed to train the provisioning event classification model. 

The number of images used to train the provisioning event 

classification model is relatively large and it would be useful 
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to know the minimum amount of data needed to reach a 

satisfying accuracy. 

With more prey annotation it might also be possible to get 

more specific classification and segmentations of the prey. 

Finding more specific species and adding more fine-grained 

classes. Colour information might also help to define more 

fine-grained prey classes. 

Lastly, the dataset is limited in its variance. The footage is 

only recorded for one species of birds and does not include 

much variation in filming angle and lighting conditions. An 

effort could be made to create a more varied benchmark 

dataset from nestbox video footage from many different 

nestboxes and bird species. 
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