
Bit-packing and Hashing Evaluation in Explicit-state Model Checking
VALENTIJN HOL, University of Twente, The Netherlands

MCSTA is a model checking tool for models written in the Modest language.
It can be used to formally verify certain properties of a model. During model
checking a model’s state space needs to be (exhaustively) explored which
takes a significant amount of time and memory – depending on model
complexity. This research evaluates the impact of bit-packing state member
variables by examining the execution time and memory consumption. We
find that in all cases there is a decrease in memory usage, and in most cases a
minor decrease in execution time. Furthermore, we propose an algorithm for
selective field unpacking, to improve the performance of bit-packing, whilst
maintaining near-optimal state sizes. Lastly, we evaluate the current hash
function used in state space exploration based on hash-table bucket lengths,
and find it to be performing adequately with little room for improvement.

Additional Key Words and Phrases: Modest, MCSTA, Bit-packing, Hashing,
Optimisation, Modelling

1 INTRODUCTION
Software systems are incredibly prevalent in daily life. One can
hardly go anywhere without running into some of them, whether
they be public transport payment systems such as Oyster cards, or
traffic lights control systems. All of these systems should behave
predictably, and according to their specifications. There is therefore
a need to verify that these systems behave as expected. Accordingly,
several ways of ensuring these properties have sprung up, including
but not limited to peer review, software testing, and lastly formal
methods [2, pg. 3–4]. It is the latter of these three that is most
infrequently used, but is nonetheless essential for safety critical
systems such as medical technology or traffic control.
Formal methods are a way to establish system correctness with

“mathematical rigor” [2, pg. 7]. This can be accomplished through
the use of model checking. Model checking generally involves two
steps, first is creating the model in a modelling language such as
𝑀𝑜𝑑𝑒𝑠𝑡 [11, pg. 8–12], or in a tool like UPPAAL [19]. This model is
an abstract representation of the system’s behaviour, and describes
the states a system could be in. Subsequently, one can use a model
checking tool to verify whether certain properties hold (such as
“The system does not deadlock” or “What is the probability that
some event X happens”).

To calculate the values of the aforementioned properties a model
checking tool will need to explore all the states that the system
could find itself in (with a few exceptions when using more clever
approaches such as partial exploration). Unfortunately for real world
systems the total state count can quickly explode. Even a simple
model of exponential backoff can reach billions of states [8]. This
so-called state-space explosion can cause model checking to run
into real-world constraints of both memory and processor time.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1.1 Problem Description
Given the above description it is evident that models can quickly
become complex for real-world systems. This correspondingly in-
volves a state-space explosion and a correlated increase in run-time
and memory consumption for any model-checking tool.

It is therefore pertinent to examine what part of an existing model-
checker (in this case MCSTA, part of the Modest Toolset [9]) can
be optimised to improve both/either the run-time, and/or memory
consumption. The primary step that can take an inordinate amount
of time is state-space exploration. Here all states are (exhaustively)
explored and mapped, to be used later for further analysis. In case
of real-world models one can end up with several dozen million
individual states. These states are collected in a hash-table for dedu-
plication during future exploration steps.

This research is focused on evaluating the potential for improve-
ment of two distinct areas relevant for state-space exploration. First,
Section 2 will provide background information regarding MCSTA
and the way models are compiled. Secondly, Section 3 will give an
overview of the benchmark methodology used in both the hashing,
and bit-packing sections. Section 4 contains an evaluation of the
current hash function used in MCSTA, and a conclussion on the po-
tential for improvement drawn. Lastly, an in-depth examination of
the efficacy of bit-packing state variables is performed in Section 5.
Both the run-time and memory consumption effects are examined.

2 BACKGROUND
MCSTA is an explicit-state model checker, and part of the wider
Modest Toolset [9]. Explicit-state checkers work based on exploring
individual states, and using algorithms that act thereupon. This is in
contrast to symbolic model checking, where work is done on wider
sets of (more abstract) states instead [3, 6]. During this section a
brief overview of the main components relevant to this research is
given.

2.1 Variables and State Layout
In Modest models, variables can be declared in either the global or
process scope, where a process can be instantiated multiple times.
There are several primitive and non-primitive types that can be used
for variable declaration, but within the context of this research only
Boolean and (bounded) integer primitives are relevant. An example
of the two scopes in the Modest language can be seen in Listing 1.
The model will be parsed and compiled, where part of the com-

piled output is a State struct which keeps track of all variables
and their values for a particular state instance. During the state
space exploration a great many (depending on the complexity of the
model) state instances will be created and inserted into a hash-set.
For the model in Listing 1 the State struct would roughly look as
seen in Listing 2.

2.2 Checker Operation
After a model is compiled it will be model checked. This involves
two steps, the first of which is the state space exploration step. In

1

TScIT 37, July 8, 2022, Enschede, The Netherlands V.R.L Hol

1 / / G l o b a l s c o p e v a r i a b l e s
2 / / Bounded i n t e g e r i n t h e i n c l u s i v e range 0 . . 2
3 in t (0 . . 2) c l i e n t s ;
4 boo l i s _ s u c c e s s ;
5 / / What i s t h e p r o b a b i l i t y t h a t
6 / / some Hos t s e t i s _ s u c c e s s t o t r u e
7 p rope r t y Suc c e s s = Pmax(<> i s _ s u c c e s s) ;
8

9 p r o c e s s Host ()
10 {
11 / / P r o c e s s s c o p e d v a r i a b l e ,
12 / / m u l t i p l e p r o c e s s i n s t a n c e s can e x i s t .
13 in t (0 . . 3) a dd r e s s ;
14

15 i f (! i s _ s u c c e s s) {
16 {= i s _ s u c c e s s = t r u e = } ; s t op
17 } e l se {
18 s t op
19 }
20 }
21

22 / / C r e a t e two h o s t i n s t a n c e s .
23 par { : : Host () : : Host () }

Listing 1. Trivial Modest model

1 s t ruc t S t a t e
2 {
3 by te Hos t_add r e s s ;
4 by te Hos t_2_addre s s ;
5 by te c l i e n t s ;
6 boo l i s _ s u c c e s s ;
7 }

Listing 2. State struct layout generated for model in Listing 1

this step the declared processes are executed and for each transition
in one such process a new state is generated. These states are saved
in a hash-set to eliminate duplicate states, see subsubsection 4.1.1
for more. The second step is the property checking step, where all
declared properties are evaluated based on the results from the state
space exploration step. In the context of this research only the state
space exploration step will be evaluated and improved upon.
As an example, imagine that the model in Listing 1 is executed.

During the state space exploration three distinct states will be dis-
covered; the initial state, the state where Host 1 sets is_success, and
one where Host 2 does so instead. In the subsequent step the proba-
bility that is_success is set to true by some Host is calculated. In this
case it is trivial to determine, both ending states have is_success =
true, thus the probability would be 1.

3 BENCHMARK METHOD
This research will rely on an extensive benchmark suite in order to
increase the confidence in the observed results. These benchmarks
were sourced from the Quantitative Benchmark Set, which was
created to facilitate the reliable benchmarking of formal verification
tools and their relative improvements [12]. As this benchmark suite

is quite diverse a selection was made to ensure the observed results
were ran within some bounded time.

All models with at least one instance with a listed state space
between 2million and 140million states were used. The lower bound
was chosen to ensure changes in run-time would be measurable,
and the upper bound was chosen for practical execution of the
benchmarks. If a model could not be compiled, or crashed for a
reason unrelated to this research, then it was excluded. Most models
were ran with two to three instances of varying parameters, which
resulted in different state space sizes within the same model. An
instance is one combination of a model and a set of parameters. For
example, we can have a model named FMS, and provide two different
sets of parameters, namely {9} and {11}. This results in two instances.
In total, the benchmark suite contains 58 instances.

These instances will be grouped by their model type for plotting.
Each model is of a particular type, with 5 relevant for this research.
Markov decision processes (MDP [16]), probabilistic timed automata
(PTA [16]), discrete- and continuous time Markov chains (DTMC
and CTMC [1]), and Markov automata (MA [5]).
All benchmarks were ran on the same machine, containing a

Ryzen 5900X alongside 48 GB of DDR4 3200MT memory.

4 HASH TABLE
In this section we will evaluate the potential for improvement for
the hash table implementation used in MCSTA. At present, MCSTA
will insert every encountered state during state space exploration
into a hash-set for deduplication and cycle-detection. To manage a
large set of states MCSTA is equipped with the ability to selectively
offload states unlikely to be used again to disk [10]. The insertion of
a new state requires the computation of the hash-code of this state,
as well as an additional equality check in case a state with the same
hash code was found.

4.1 Background
A hash is a shortened representation of an object’s state, expressed
in a set amount of bits. Since hashes only have a finite number of
bits some objects will map to the same hash as a different, unique
object. This phenomenon is called a hash collision. These hashes
are frequently used for data structures such as hash-sets, where
an object’s hash is used to calculate into which bucket it must be
deposited. Buckets will frequently contain multiple objects, in part
due to the hash collisions, and also due to the finite amount of
buckets within a hash-table.
This leads to the problem of defining a hash function such that

one gets something close to a uniform distribution of objects across
the hash-table buckets. As shown by McKenzie et al [15], hash
functions – when not chosen carefully – can easily produce non-
uniform distributions. This would negatively affect the performance
of the data structure. The degradation is most easily explained by
imagining the buckets into which objects are deposited as linked
lists, where the list is appended to every time a new state gets pushed
into the same bucket. If the hash function used for this hash-table
is non-uniform certain buckets will get a disproportionate amount
of states, which all have to be looked at when accessing this bucket,
and thereby reduce performance.

2

MCSTA Optimisation TScIT 37, July 8, 2022, Enschede, The Netherlands

The use of the linked list mentioned above is one method of
collision resolution called separate chaining. There are two classes
of collision resolution, namely Open Addressing – where states are
always kept within the hash-table and searched for with various
methods – and Separate Chaining – where states can be stored in
external data-structures in case of conflict [4, pg. 237]. Examples
of the former are Linear Probing and Double Hashing, where the
latter can use various different data-structures.

4.1.1 MCSTA Hash Function. Within the context of MCSTA each
state will be hashed when it is inserted into the hash-table to check
for duplicate states. This hash-table uses separate chaining as col-
lision resolution. The hashing function is compiled alongside the
state object, and is based on a simple multiply-add approach. It is
defined as follows:

ℎ0 = 17, ℎ𝑘 = 486187739 ∗ ℎ𝑘−1 + 𝑖𝑘 , for 𝑘 > 0 (1)

where 𝑖𝑘 denotes the k-th variable in a State instance.
MCSTA’s hashing function had not yet been evaluated. If the

hashing function was producing poor hash codes then this would
significantly affect performance due to the duplication check men-
tioned before. Additionally, if there were a large amount of buckets
with a notable (> 5) amount of states in them, then the collision
resolution mechanism could be looked at for improvement.

4.1.2 DJB2 Hash Function. In order to evaluate the hash function
currently used in MCSTA some point of reference would be useful.
There are various hash functions one could pick, but for this evalu-
ation it does not need to be an exhaustive list. This evaluation does
not intend to find the best hash function, merely to verify whether
the current hash function performs adequately. DJB2 was chosen by
us for its simplicity of implementation, and acceptable performance
in other papers [17]. Its approach is much the same as the one of
MCSTA, but it uses different constants:

ℎ0 = 5381, ℎ𝑘 = 33 ∗ ℎ𝑘−1 + 𝑖𝑘 , for 𝑘 > 0 (2)

where 𝑖𝑘 denotes the k-th variable in a State instance.

4.2 Experimental Design
To evaluate the current hashing function an analysis has been per-
formed on the state of the hash table at the end of the state space
exploration step. The benchmarks defined in Section 3 have been
used. The primary evaluation is based on the average bucket length,
calculated according to Equation 3.

Average Bucket Length =
Num. stored items

Num. non-empty buckets
(3)

4.3 Results, Discussion, Conclusion
In Figure 1 the average bucket length is plotted on the 𝑦-axis. The
instance index is noted on the 𝑥-axis. As this is sorted based on
increasing order of bucket length, the largest DJB2 instance is not
necessarily the same as the largest Default instance. This nonethe-
less gives a good indication of how the hash functions perform over
a wide variety of cases. In most instances the two hash functions are
competitive, but at the extremes DJB2 can reach excessive bucket
lengths. The interval of average buckets lengths for the default hash
function is [1.14, 2.89], whereas it is [1.21, 239.10] for DJB2.

0 10 20 30 40 50

100

101

102

Instance

Av
er
ag
e
Bu

ck
et

Le
ng

th

DJB2
Default

Fig. 1. Average bucket size, increasing order

(a) Default hashcode (b) DJB2 hashcode

Fig. 2. Hilbert map displaying state distribution across the hash buckets
for the CLUSTER benchmark.

In Figure 2 two Hilbert maps are displayed, both based on the
Cluster benchmark. This benchmark was one of the worse in-
stances for DJB2 with an average bucket length of 16.45, compared
to 1.33 for the default hash function. These maps give a general
idea of how states might be spread out across the available buckets.
Ideally there is no white space, as every colored pixel represents
one bucket with one or more states inside. The colors of the pixels
are irrelevant, and merely used to make sparse distributions easier
to see. One can clearly see that the bucket distribution is cohesive
when using the default hash function, but incredibly sparse in the
case of the DJB2 hash function.
Based on this brief evaluation we can conclude that the current

hash function performs well enough. The vast majority of bench-
marks have average bucket lengths of near 1, with even the worst-
performing benchmark only just over 2. As a consequence there
is little reason to investigate further improvements when it comes
to the hash function or collision resolution. Note that this is not
to say there is no better hash function possible, as this evaluation
was merely comparing DJB2 to the current default. There were sev-
eral other hash functions which behave significantly worse, and
were excluded for their terrible performance. For example, the ’lose
lose’ [14, pg. 135] hash function would have bucket lengths in the
hundreds of thousands for most benchmarks.

3

TScIT 37, July 8, 2022, Enschede, The Netherlands V.R.L Hol

5 BIT-PACKING
In this section the effect of bit-packing state variables is evaluated.
MCSTA compiles a model and all its variables into various automata
and a state structure. This state structure will contain various vari-
ables with limited ranges, leading to opportunities for shrinking the
memory footprint of state space exploration.

5.1 Background
Bit-packing is the trimming of unused bits for integer variables
with defined value ranges smaller than existing aligned integer
types (bytes, shorts, ints, longs). By means of example, consider
the primitive used to represent a Boolean in most languages. In a
language such as C++ or Rust it is a full byte, where 0 commonly
means false, and any value not 0 means true. Since Booleans have
but two possible values (true, and false) all that would be needed is a
single bit to store the Boolean’s state. In general, ⌈log2 (𝑥)⌉ bits are
needed to hold a defined range’s type, where 𝑥 denotes the amount
of values a variable can be – 2 in the case of a Boolean. In the same
byte currently used to store a single Boolean one could instead store
8 Booleans packed together by making use of bit shifts and masks.

This is closely related to the current state layout used in MCSTA.
As can be seen in Listing 2, the smallest aligned integer type possible
is chosen for bounded integers. In case of the example model there
are two bounded integers declared: clients and address, with 3 and 4
possible values, respectively. Both currently use a full byte to hold
those values, but they could be expressed in as few as 2 bits each.
Likewise, is_success could be expressed in a single bit.
At present the full State struct uses a total of 4 bytes to track

the variables. It could, however, make do with roughly a fourth of
the bits, as shown in Equation 4.

BitsNeeded
BitsUsed

=
2 ∗ 2 + 2 + 1

4 ∗ 8 = 0.21875 (4)

By making use of the restrictive nature of the declared types
each state instance could be shrunk to use only a single byte for
all the variables, instead of 4, shrinking the memory footprint of
each individual state. This would, however, come at the cost of
additional instructions to extract the current value when using a
field (in most cases, a SHIFT and AND instruction). Whether bit-
packing would improve performance depends entirely on the access
patterns of the data, as a more cache-friendly access pattern might
gain performance for memory-constrained applications such as
model checking.

Normal State layout (4 bytes):
012345678910111213141516171819202122232425262728293031

is_success Host_address Host_2_address clients

Packed State layout (1 byte):
01234567

is_success Host_address Host_2_address clients

Fig. 3. Bit-packing example for the State layout in Listing 2

Algorithm 1: Bit-packing with Best Fit Decreasing
Input :fields← All variables of a model
Output :packedFields← All provided fields with bin info
𝑀𝐴𝑋 ← 32
/* Binary search tree with duplicates */

𝑏𝑖𝑛𝑠 ← ∅
Sort fields by bits needed, descending
foreach field ∈ fields in order do

/* searchFit finds the closest fitting bin */

fittingBin← bins.searchFit (field .Bits)
if fittingBin ≠ 𝑁𝐼𝐿 then

𝑏𝑖𝑛𝑠.remove(fittingBin)
fittingBin← fittingBin − field .Bits
field .setPackedInfo(fittingBin)
𝑏𝑖𝑛𝑠.insert(𝑓 𝑖𝑡𝑡𝑖𝑛𝑔𝐵𝑖𝑛)

else
𝑏𝑖𝑛𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑀𝐴𝑋 − field .𝐵𝑖𝑡𝑠)
field .setPackedInfo(fittingBin)

end
end
return fields

5.1.1 Bin Packing. While it is trivial to calculate the amount of bits
that could be saved in an optimal scenario, allocating these variables
into ‘bins’ is not. Bit-packing is merely a slight rephrasing of the
NP-complete bin-packing problem [7]. The bin-packing problem
poses the following conundrum: Given a set of numbers, as well as
a maximum bin-size, pack the set of numbers into as few bins as
possible – without having the sum of numbers in any particular bin
exceed the maximum capacity provided. It is clear that bit-packing is
a slight rephrasing of the former. The set of numbers is represented
by a model’s variables and their respective bit size requirements,
and the bins are represented by the fields which will contain all the
packed fields (referred to as the owner fields).

The bins and the allocation algorithm mentioned above are neces-
sary to ensure that no variable gets broken up across a bin boundary.
We want to avoid the case where a variable of 9 bits has the lower 5
bits in one bin, and the upper 4 bits in another, for example. This
would have adverse effects on performance due to the need for
additional bit shifts and masks to acquire the value that is requested.

There are various approximation algorithms for solving the bin-
packing problem in polynomial time [13]. Within these algorithms
two distinct classes can be formed, offline and online algorithms.
The former relies on the full set of numbers being provided ahead
of time, and the latter is based on items coming in one at a time.
Examples of such algorithms are First Fit Decreasing (FFD) and Best
Fit Decreasing (BFD) for the former, and First Fit (FF) and Best Fit
(BF) for the latter. The primary difference between the two classes is
that offline can provide closer to optimal results due to some slight
pre-processing of the input [13].
Based on the fact that MCSTA must compile complete models,

where all variables are already known, it is clear that an offline
variant is possible. We chose BFD as the algorithm for use within

4

MCSTA Optimisation TScIT 37, July 8, 2022, Enschede, The Netherlands

MCSTA, chiefly for its slightly closer to optimal results in certain
practical situations compared to FFD [13]. Both of these algorithms
can run in 𝑂 (𝑛 log𝑛) time, where 𝑛 is the length of the input list.
BFD works by sorting the input numbers in decreasing order, and
subsequently assigning each field to the fullest bin in which it fits.
If no such bin exists then a new one is created instead.

An implementation as defined for the bit-packing problem is listed
in Algorithm 1. The binary search tree keeps track of the remaining
capacities of the bins. Here the MAX is set to 32 to limit the size of
each bin, such that they can fit in a 32 bit integer. This maximum
was deliberately chosen to keep the hash code calculations – which
must return a 32 bit integer – mentioned in Section 4 cheap. At
present the hash code would be calculated by a simple ADD and MUL,
whereas a 64 bit integer would involve two of each, in addition to a
bit shift and mask.
The result that is received from Algorithm 1 contains various

bins with varying amounts of fullness. These bins are assigned the
closest fitting primitive type for saving in MCSTA’s State struct.
For example, were a bin to contain 14 bits worth of fields it would
be assigned a 16-bit integer.

5.1.2 Alignment. A consequence of the chosen MAX of 32 bits is
that the alignment of the generated State starts to matter. Once
we include a 4 byte integer the alignment of the State becomes 4
bytes. This means that if we were to create an array of States they
would all need to be a multiple of 4 bytes in size to ensure aligned
access to the integer used within [18]. This can have some important
effects on the final struct size due to padding. As an example, say
we have packed all variables of a model into 2 bins, of 32 and 6
bits, respectively. In ideal circumstances the total struct size would
be 5 bytes, but since the alignment of the struct will be 4 bytes an
additional 3 bytes of padding will be inserted by the compiler to
maintain the alignment.
An obvious solution to the above would be to eschew the usage

of any bin size larger than a single byte. This would ensure the
alignment of a struct would always remain 1 byte, and thus no
padding would ever be needed. This does, however, bring with it
certain complications when it comes to variables larger than a single
byte. A variable with a minimum of 9 bits would need additional
bit shifts and masks to acquire the value, reducing performance
and increasing complexity of implementation. Instead, we opted to
delve into making use of the above padding to provide performance
improvements for certain benchmarks as outlined below.

5.1.3 Performance Improvement. The result of running the bin-
packing algorithm listed in Algorithm 1 is a close to optimal, and in
most cases truly optimal, bin-packing of all variables. This packing
will ensure the smallest memory footprint possible, but can come at
a significant performance penalty in certain situations when ran for
real-world models. For an exact overview of possible performance
penalties refer to Section 5.3.1.

However, as there is usually some padding bytes involved, an al-
gorithm can be devised to unpack certain variables from the owner
fields to improve performance, whilst still maintaining a signifi-
cantly shrunk state size. As there is only limited padding bytes
available this unpacking would need to be based on a certain heuris-
tic to estimate the relative benefit of unpacking a certain field over

Algorithm 2: Bit-packing Performance Optimisation
Input :fields← All variables of a model
Output :packedFields← All packed fields with bin info
packed ← BinPacking(fields)
filtered ← ∅
alignedSize← 𝑝𝑎𝑐𝑘𝑒𝑑.𝐴𝑙𝑖𝑔𝑛𝑒𝑑𝑆𝑖𝑧𝑒;
wasteBits← alignedSize ∗ 8 − packed .BitsUsed
Sort location variables to top of packed, followed by bit
length descending.
foreach field ∈ 𝑝𝑎𝑐𝑘𝑒𝑑 in order do

if field .WasteBits ≤ 𝑤𝑎𝑠𝑡𝑒𝐵𝑖𝑡𝑠 then
𝑤𝑎𝑠𝑡𝑒𝐵𝑖𝑡𝑠 ← 𝑤𝑎𝑠𝑡𝑒𝐵𝑖𝑡𝑠 − field .WasteBits
filtered .insert(field)

end
end
while 𝑡𝑟𝑢𝑒 do

/* Bit-pack the symmetric difference */

𝑝𝑎𝑐𝑘𝑒𝑑 ← BinPacking(fields△filtered)
if filtered .𝐵𝑦𝑡𝑒𝑆𝑖𝑧𝑒 + 𝑝𝑎𝑐𝑘𝑒𝑑.𝐵𝑦𝑡𝑒𝑆𝑖𝑧𝑒 > alignedSize
then

filtered .removeLast()
else

return packed
end

end

another. This heuristic could range from more advanced analysis
of the abstract syntax tree to determine the likelihood of access, to
more simple estimates based on a field’s bit length. This research
followed the latter strategy, where the rationale flows forth from
the intuitive idea that fields with more bits allocated to them are
more likely to be updated frequently during state-space exploration.

In addition to the fields explicitly declared in a model MCSTA will
also create so called Location variables to keep track of a particular
system instance’s program counter. As the program progresses this
is constantly accessed, and in turn these variables are most likely to
provide performance improvements when unpacked. We therefore
decided to unpack these variables first, followed by user declared
fields in decreasing order of their bit length.

The full packing optimisation algorithm is outlined in Algorithm 2.
The core idea is to calculate the number of ‘wasted bits’ – bits which
are still unused due to padding or larger packed field allocations
– and selectively unpack fields in the order described prior in this
section. Individual field waste bits in turn refer to the amount of bits
that would remain unused if their primitive type representations
were used instead. For example, in the case of a Boolean this would
be 7 bits. Afterwards, bin-packing has to be ran again, as the remain-
ing fields might no longer pack as well as before, thereby increasing
the state size compared to the previously established optimal. So
long as that is the case filtered fields will be added back into the
packed fields list. Eventual resolution is ensured, as worst-case all
filtered fields will be unfiltered.

5

TScIT 37, July 8, 2022, Enschede, The Netherlands V.R.L Hol

≤ 3 18 108

≤ 3

18

108

≥ 400

≥ 400

No Bit-packing (Seconds)

Bi
t-
pa
ck
in
g
O
pt
im

is
ed

(S
ec
on

ds
)

MA MDP DTMC CTMC PTA

Fig. 4. Exploration time (seconds), grouped by model type

5.2 Experimental Design
Benchmarking is the core of the strategy for evaluating the efficacy
of bit-packing. The benchmarks measure run-time, and memory
usage at the end of the state-space exploration step. The bench-
mark suite as defined in Section 3 was used. All instances were
ran three times, and the results of variable fields (exploration time)
averaged to mitigate thermal noise or other processes interrupting
the benchmark.

An additional comparison is made between the unoptimised bit-
packingwhen only using Algorithm 1, and the optimised bit-packing
when using Algorithm 2. The evaluation of the efficacy of the latter
is based on run-time improvements, as memory usage remains the
same due to sticking within the allocated state size.

5.3 Results, Discussion, Conclusion
In this section the results of the benchmarks are listed. See Table 1
for a tabular overview of the results. Note that some benchmarks
with three instances had the smallest excluded to fit the table. In the
table every model and the parameters used to run them are listed.
The total amount of states for that particular instance, alongside
the respective state sizes (s. size) is displayed. Exploration time is
denoted as time; in the case of bit-packing there are two times listed,
the optimised algorithm (time (o)), and the unoptimised algorithm
(time (d)). Lastly, both total memory consumption (mem), and hash-
table memory consumption (h-mem) are listed as well. The latter is
where bit-packing shows its effects most clearly. Note that there is
no separate entries for the optimised and unoptimised bit-packing
memory consumption, as both are the same.
For comparing run-time and memory usage scatterplots with a

logarithmic scale are used. See Figure 4 and Figure 5. Each mark
represents one instance. The dotted lines around the main diagonal
line indicate a 2 fold change when comparing the 𝑥 and𝑦 axis. When
a mark lands in one particular half of the graph (separated by the
solid diagonal line) it indicates that the value that we are plotting
is larger for that axis. For example, in Figure 4 one can see three
PTA instances in the bit-packing half of the graph. This shows that
bit-packing was slower compared to no bit-packing for those cases.

≤ 0.1 0.6 3.6

≤ 0.1

0.6

3.6

≥ 8

≥ 8

No Bit-packing (GB)

Bi
t-
pa
ck
in
g
O
pt
im

is
ed

(G
B)

MA MDP DTMC CTMC PTA

Fig. 5. Memory usage (GB) of hash table, grouped by model type

Figure 4 gives an overview of the run-time performance of the
optimised bit-packing compared to no bit-packing. On this sample of
benchmarks aminor decrease in run-time is noted formost instances
in favour of bit-packing. A notable exception is WLAN-LARGE (visible
as PTA in Figure 4) where a 3.5 fold increase in run-time is visible
instead. The exact reason why this model performs so poorly is
difficult to ascertain, as it does not accesses a great amount of state
variables. However, the behaviour is consistent even across several
executions. Upon manual evaluation of the three outlier instances it
is noted that the execution time of bit-packing is gradually reduced
as more and more fields are unpacked. This indicates that there does
not seem to be one critical variable bottle-necking execution, and it
is instead the access pattern of the data that causes the slowdown.

We hypothesise that the run-time improvements that are noted in
other benchmarks are primarily caused by the shortened hash-code
calculation. The owner fields can be directly used in the hash code
calculation, without having to ADD and MUL each individual sub-field
like in the non bit-packing cases. Additionally, the smaller state sizes
may improve cache utilisation. Since the hash-table is accessed in a
largely random order – minimising potential cache hits – the effect
would be minor, however. Lastly, less memory bandwidth would be
needed due to the smaller state sizes, which might have an impact
if the model checking was bandwidth constrained.

In contrast, the memory footprint of all instances is consistently
smaller through the use of bit-packing, as can be seen in Figure 5
or Figure 6. In almost all cases the state instance size was reduced
by 50% or more, in the exceptional case 80%. This provides roughly
proportional gains when it comes to memory usage of the hash table,
where all the states are collected. However, while the hash table
saw a significant decrease in memory usage across the board, this
does not translate to a great decrease in total memory consumption
in Table 1. It is clear that most of the memory space is occupied by
other objects besides state instances. Be that as it may, benchmarks
with large states still see notable improvements as total state count
increases. This is best illustrated by the EGL benchmark, where a
decrease of 39% (10.66→ 6.5 GB) in total memory usage is noted.

6

MCSTA Optimisation TScIT 37, July 8, 2022, Enschede, The Netherlands

0 20 40 60
0

2

4

6

Instance

M
em

or
y
U
sa
ge

(G
B)

Default
Bit-packing

Fig. 6. Memory Usage (GB) of hash table, incrementing order

Based on the results of this sample of benchmarks we can con-
clude that bit-packing can decrease memory usage in models. Run-
time can also see a slight decrease depending on the model, but in
turn can also see explosive increases for some pathological cases.
These exceptions warrant caution for using bit-packing by default.

5.3.1 Discussion Optimised Algorithm. Visible in Table 1 are three
cases of performance regressions when looking at unoptimised bit-
packing, compared to no bit-packing. PACMAN, WLAN-LARGE, and
WLAN-DL saw regressions – with the former two being the most
severe. The optimised bit-packing contains regressions for the same
instances, but their severity was reduced. PACMAN saw a 50% de-
crease in run-time on its largest instance when compared to the
unoptimised bit-packing (96.8→ 47.8 seconds). WLAN-DL saw a 32%
decrease in run-time (13.1→ 8.9 seconds) on its largest instance.

The exception to the prior two is WLAN-LARGE, where no notable
decrease in run-time was noted for its largest instance. The reason
for this discrepancy is easily explained, however. The instances for
parameters 3 and 4 are tightly packed. No fields could be filtered out
following the rules in subsubsection 5.1.3. The compiled State was
in essence no different from the unoptimised version. The smallest
instance did, however, have several fields which could be unpacked,
netting a 25% decrease in run-time.

6 CONCLUSION
Explicit model checking can be an important tool for verifying sys-
tem behaviour. Complex models can, however run into practical
limits with regard tomemory and run-time. This paper evaluated the
potential for improvement in two key areas, state hashing and bit-
packing. In Section 4 we have shown that the current hash function
used for MCSTA performs adequately, and extracting additional per-
formance improvements from either the hash-table or hash function
could prove to be a difficult task.

Section 5 evaluated the potential of bit-packing a model’s state to
shrink memory usage and potentially run-time as well. The findings
of this section indicate that there is always a slight decrease in
memory usage, and usually a decrease in run-time as well. This
comes with the important caveat that the run-time can increase two
fold in some few instances as well. The addition of a value based
unpacking algorithm allowed several of these exceptional instances

to reduce their run-time back to near non-bitpacked performance.
This was not a panacea, however, as some instances still retain their
worst case behaviour.

Future work then naturally flows forth from the above. Further
evaluation of what value to assign each variable of a state instance
for potential unpacking can have important consequences for run-
time performance, as shown by the optimisation algorithm in Sec-
tion 5.1.3. Additionally, observing the run-time consequences of
allowing a more loose compression ratio to favour performance
could prove an interesting next step. For example, where currently
an instance’s state might optimally shrink from 36 to 12 bytes, what
are the performance implications if instead it was allowed to unpack
fields up to 20 bytes, and how best to determine that optimal ratio.
Alternatively, one could also examine the unpacking algorithm

itself. At the moment it is a rather naive implementation, but the
problem is closely related to the NP-complete Knapsack problem.
This is similar to the bin-packing problem. It differs in that one
would need to pack only a subset of the most high-value fields into
a single bin, instead of having to pack all variables into as few bins
as possible. In this case the State instance would be the knapsack,
with its max size being the aligned size. A new, optimised, solution
could be created to solve this more efficiently using the solutions
which already exist for the Knapsack problem.

REFERENCES
[1] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. 2003. Model-checking

algorithms for continuous-time Markov chains. IEEE Transactions on Software
Engineering 29, 6 (2003), 524–541. https://doi.org/10.1109/TSE.2003.1205180

[2] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Repre-
sentation and Mind Series). The MIT Press. 1–16 pages.

[3] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem
(Eds.). 2018. Handbook of Model Checking. Springer.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2001. Introduction to Algorithms (2nd ed.). The MIT Press.

[5] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. 2010. On Probabilistic
Automata in Continuous Time. In 2010 25th Annual IEEE Symposium on Logic in
Computer Science. 342–351. https://doi.org/10.1109/LICS.2010.41

[6] Cindy Eisner and Doron Peled. 2002. Comparing Symbolic and Explicit Model
Checking of a Software System. 230–239. https://doi.org/10.1007/3-540-46017-
9_18

[7] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman Co., USA.

[8] Arnd Hartmanns. 2018. QCOMP Bounded Exponential Backoff Benchmarks.
https://qcomp.org/benchmarks/#beb [Online; Accessed 28-April-2022].

[9] Arnd Hartmanns and Holger Hermanns. 2014. The Modest Toolset: An Integrated
Environment for Quantitative Modelling and Verification. In Tools and Algorithms
for the Construction and Analysis of Systems, Erika Ábrahám and Klaus Havelund
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 593–598.

[10] Arnd Hartmanns and Holger Hermanns. 2015. Explicit Model Checking of Very
Large MDP Using Partitioning and Secondary Storage. In Automated Technology
for Verification and Analysis - 13th International Symposium, ATVA 2015, Shang-
hai, China, October 12-15, 2015, Proceedings (Lecture Notes in Computer Science,
Vol. 9364), Bernd Finkbeiner, Geguang Pu, and Lijun Zhang (Eds.). Springer, 131–
147. https://doi.org/10.1007/978-3-319-24953-7_10

[11] Arnd Hartmanns and Holger Hermanns. 2019. A Modest Markov Automata
Tutorial. In Reasoning Web. Explainable Artificial Intelligence - 15th International
Summer School 2019, Bolzano, Italy, September 20-24, 2019, Tutorial Lectures (Lecture
Notes in Computer Science, Vol. 11810), Markus Krötzsch and Daria Stepanova
(Eds.). Springer, 250–276. https://doi.org/10.1007/978-3-030-31423-1_8

[12] Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann, and Enno Rui-
jters. 2019. The Quantitative Verification Benchmark Set. In Tools and Algorithms
for the Construction and Analysis of Systems - 25th International Conference, TACAS
2019, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 11427), Tomás Vojnar and Lijun Zhang
(Eds.). Springer, 344–350. https://doi.org/10.1007/978-3-030-17462-0_20

[13] David S. Johnson. 1973. Near-optimal Bin Packing Algorithms. Ph. D. Dissertation.
Massachusetts Institute of Technology.

7

https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1007/3-540-46017-9_18
https://doi.org/10.1007/3-540-46017-9_18
https://qcomp.org/benchmarks/#beb
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-030-31423-1_8
https://doi.org/10.1007/978-3-030-17462-0_20

TScIT 37, July 8, 2022, Enschede, The Netherlands V.R.L Hol

[14] Brian W. Kernighan and Dennis M. Ritchie. 1978. The C Programming Language.
Prentice Hall.

[15] B. J. McKenzie, R. Harries, and T. Bell. 1990. Selecting a hashing algorithm.
Software: Practice and Experience 20, 2 (1990), 209–224. https://doi.org/10.1002/spe.
4380200207 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380200207

[16] Gethin Norman, David Parker, and Jeremy Sproston. 2013. Model checking for
probabilistic timed automata. Formal Methods in System Design 43 (10 2013),
164–190. https://doi.org/10.1007/s10703-012-0177-x

[17] Vassil Roussev, Golden G. Richard, and Lodovico Marziale. 2007. Multi-resolution
similarity hashing. Digital Investigation 4 (2007), 105–113. https://doi.org/10.
1016/j.diin.2007.06.011

[18] Sergey Slotin. 2021. Alignment and Packing. https://en.algorithmica.org/hpc/cpu-
cache/alignment [Online; Accessed 08-June-2022].

[19] Frits Vaandrager. 2011. A First Introduction to Uppaal. https://www.mbsd.cs.ru.
nl/publications/papers/fvaan/uppaaltutorial.pdf [Online; Accessed 05-May-2022].

8

https://doi.org/10.1002/spe.4380200207
https://doi.org/10.1002/spe.4380200207
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380200207
https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1016/j.diin.2007.06.011
https://doi.org/10.1016/j.diin.2007.06.011
https://en.algorithmica.org/hpc/cpu-cache/alignment
https://en.algorithmica.org/hpc/cpu-cache/alignment
https://www.mbsd.cs.ru.nl/publications/papers/fvaan/uppaaltutorial.pdf
https://www.mbsd.cs.ru.nl/publications/papers/fvaan/uppaaltutorial.pdf

MCSTA Optimisation TScIT 37, July 8, 2022, Enschede, The Netherlands

model no bit-packing bit-packing
name params states s. size time mem h-mem s. size time (o) time (d) mem h-mem

(millions) (bytes) (sec) (GB) (GB) (bytes) (sec) (sec) (GB) (GB)

BEB 4, 8, 8 36.6 20 27.5 3.46 1.53 12 23.2 25.1 3.17 1.24
4, 8, 9 63.5 20 47.7 5.74 2.40 12 39.7 41.3 5.22 1.89

BRP 64, 12, 32, 256 56.8 36 60.5 6.68 3.13 12 53.3 62.7 5.30 1.74
64, 16, 32, 256 95.5 36 109.5 11.31 5.35 12 97.7 107.2 8.99 3.03

CABINETS 3, 2, 1 4.4 22 19.3 0.53 0.22 12 17.8 21.0 0.48 0.17

CLUSTER 700, 2000, 20 17.7 20 31.8 3.25 0.75 4 28.9 33.1 2.97 0.46
1024, 2000, 20 37.8 20 67.0 6.95 1.60 4 63.0 71.8 6.33 0.98

CONSENSUS 6, 4 2.4 19 9.7 0.52 0.12 8 9.1 11.1 0.49 0.09
6, 6 3.5 19 14.2 0.74 0.15 8 13.4 16.9 0.70 0.11

COUPON 9, 4, 5 21.1 14 9.1 1.85 0.75 4 7.4 8.9 1.63 0.53

CROWDS 6, 20 10.3 33 10.2 1.40 0.56 12 8.3 9.5 1.18 0.34
7, 20 45.4 33 45.0 6.16 2.43 12 38.1 43.0 5.19 1.47

CSMA 3, 6 84.9 19 87.5 8.95 3.35 8 90.3 86.0 8.02 2.41
4, 4 133.3 24 180.8 15.02 5.55 12 169.9 171.3 13.41 3.94

DPM
6, 6, 5 10.5 15 8.8 1.34 0.40 8 7.6 8.6 1.26 0.32
6, 7, 5 23.4 15 19.4 2.90 0.83 8 17.1 19.0 2.74 0.66
6, 8, 5 47.3 15 39.4 5.84 1.66 8 37.4 41.8 5.51 1.32

EAJS 5, 250, 11 3.0 21 4.2 0.38 0.13 8 3.7 4.4 0.34 0.09
6, 300, 13 3.7 24 4.8 0.48 0.17 8 4.3 4.9 0.41 0.11

ECHORING 512 4.4 46 6.6 0.61 0.35 16 6.5 7.8 0.46 0.19
1024 8.8 46 13.3 1.16 0.64 16 12.9 15.8 0.88 0.35

EGL 10, 1 24.1 87 41.3 3.96 2.57 12 37.8 38.6 2.15 0.76
10, 2 66.1 87 121.1 10.66 6.90 24 100.1 119.0 6.50 2.74

FIREWIRE 1, 36, 300 23.5 18 31.8 3.43 0.90 12 30.0 35.6 3.28 0.76
1, 36, 400 44.6 18 60.3 6.49 1.71 12 58.0 68.9 6.22 1.44

FIREWIRE-PTA 48, 7500 21.7 18 19.8 2.02 0.84 12 19.1 19.2 1.89 0.71
60, 7500 48.9 18 44.0 4.47 1.84 12 42.9 43.9 4.18 1.54

FMS 9 11.1 24 38.1 3.15 0.50 12 34.5 35.1 3.01 0.37
11 54.7 24 202.2 16.11 2.36 12 185.8 185.1 15.44 1.69

KANBAN 5 2.5 20 7.8 0.77 0.12 8 6.7 8.3 0.73 0.09
6 11.3 20 38.3 3.51 0.46 8 34.3 40.5 3.37 0.32

MAPK_CASCADE 7, 30 4.0 29 20.0 1.40 0.19 8 18.1 21.2 1.31 0.11
8, 30 10.3 29 55.3 3.77 0.52 12 50.7 57.3 3.59 0.34

NAND 60, 2 9.4 9 4.4 0.75 0.29 4 3.6 4.2 0.71 0.24
60, 4 18.8 9 9.1 1.51 0.58 8 8.6 9.0 1.49 0.56

PACMAN
40 2.8 15 18.7 0.25 0.11 8 18.7 37.5 0.23 0.09
50 5.0 15 33.7 0.44 0.19 8 33.2 67.6 0.40 0.15
60 7.3 15 48.2 0.60 0.24 8 47.8 96.8 0.55 0.19

PHILOSOPHERS 20, 1 45.2 81 349.0 19.78 4.65 12 184.5 210.4 16.60 1.47

POLLING 18, 16 7.1 39 42.5 2.26 0.42 8 36.7 42.5 2.04 0.19
19, 16 14.9 41 95.7 5.00 0.92 8 86.0 96.3 4.48 0.40

SF 2, 4 4.8 38 24.2 0.54 0.31 16 24.0 26.7 0.42 0.19

TANDEM 2047, 1000, 2 8.4 8 8.0 1.12 0.21 4 7.1 7.7 1.09 0.18
4095, 1000, 2 33.6 8 33.8 4.49 0.85 4 29.7 31.7 4.36 0.72

TIREWORLD 35 9.2 21 17.6 1.70 0.40 8 15.5 15.8 1.58 0.28
45 46.1 23 69.4 6.64 1.97 8 65.4 63.7 5.95 1.28

WLAN-DL
4, 80 7.0 17 5.6 0.69 0.26 8 4.5 5.9 0.63 0.19
5, 80 9.6 17 8.0 1.01 0.39 8 6.5 7.7 0.91 0.30
6, 80 10.1 17 8.5 1.05 0.39 8 8.9 13.1 0.95 0.30

WLAN-LARGE
2 3.3 16 4.8 0.45 0.14 8 14.6 19.5 0.41 0.11
3 7.3 16 10.7 0.91 0.25 8 39.7 43.1 0.85 0.19
4 16.7 16 24.0 2.00 0.56 8 86.6 93.8 1.87 0.43

Table 1. Benchmark results for bit-packing including state size, exploration time, memory, and hash-table memory used. Bit-packing has optimised (o) and
non-optimised (d) results listed for exploration time.

9

	Abstract
	1 Introduction
	1.1 Problem Description

	2 Background
	2.1 Variables and State Layout
	2.2 Checker Operation

	3 Benchmark Method
	4 Hash Table
	4.1 Background
	4.2 Experimental Design
	4.3 Results, Discussion, Conclusion

	5 Bit-Packing
	5.1 Background
	5.2 Experimental Design
	5.3 Results, Discussion, Conclusion

	6 Conclusion
	References

