
Using 𝛿-NFGs to identify and eliminate dead code in C# programs

Dead code is any code in a computer program which does not affect the
application. It is prevalent in computer programs, can be harmful and pose
significant risks. This research aims to detect and eliminate dead code. To do
this, we used a newly introduced data structure, called 𝛿-NFG, derived from
the Program Dependency Graph (PDG). To fulfil our objective, we created a
𝛿-NFG for each commit of a code repository and then identified two types of
dead code: unreachable code and unused variables. This was done by using
an altered Breadth-First Search (BFS) and by analyzing the graph’s data and
name flow. We have found that 𝛿-NFGs are useful in the detection of revived
code and can be helpful in future projects. For standard dead code detection,
a simple PDG is sufficient.

Additional Key Words and Phrases: 𝛿-NFG, dead code detection, dead code
elimination, data flow analysis

1 INTRODUCTION
Dead or inactive code is any code that has no effect on the applica-
tion’s behavior [14]. If executed, it could impact performance and
create security risks [3, 18]. Furthermore, it impedes the compre-
hension of the rest of the source code [14, 17, 18]. It is thus a severe
problem during the development and the publishing of the appli-
cation. However, it occurs surprisingly often [3, 18] and research
shows it matters to software professionals [20].

Some methods exist to detect and eliminate the presence of dead
code. For example, Boomsma et al [2] researched how to eliminate
dead code from PHP systems. Unlike static systems, PHP systems are
dynamic, meaning that the identification of dead code is more diffi-
cult. To identify dead code in PHP or dynamic systems, Boomsma
et al analyzed which files were used over time, and removed the
unused files, classifying them as “potentially dead”.

Another approach is by using program dependency graphs (PDG),
introduced by Ferrante et al in 1984 [5]. A program dependence
graph (PDG) shows both the data and control flow for each operation
in a program [5]. Ferrante et al also describe how to identify and
eliminate dead code using PDGs [5].

In 2018, Dash et al used the concept of PDG to create a new data
structure, the NFG (Name Flow Graph) [4], used in their tool called
RefiNym1. A name flow graph, or NFG, is a standard data flow graph,
with the edges annotated with lexemes that flow across them. A
data flow graph is a graph that shows data dependencies in code.
The purpose of its creation was to separate common types, such
as a string, into multiple types, such as “Password” or “Username",
in order to have fewer errors and bugs during the development
of an application. Two years later, Pârtachi et al [16] created the
𝛿-NFG in their tool called Heddle, where they use the 𝛿-NFG in their
technique called Flexeme2. The 𝛿-NFGp,q is the disjoint union of all
1https://github.com/askdash/refinym
2https://github.com/PPPI/Flexeme/tree/0.2

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

(a) 𝛿-NFG generated from the code in (b)

(b) Code with the changes annotated from a
commit

Fig. 1. A small example of a 𝛿-NFG

nodes and edges across all code versions in [p,q] [16]. An example
can be found in Figure 1. In Figure 1(a), a 𝛿-NFG is shown, generated
from the code in Figure 1(b). In this 𝛿-NFG, we can observe the name
and data flow with the dashed edges while the control flow is shown
with bold edges. Green and red elements of the graph represent the
different code versions. We will explain 𝛿-NFGs more thoroughly
in Section 3. Heddle was created to untangle commits. For example,
if a commit contains both a refactoring and a bug fix, Heddle will
separate the issues into different commits.

We will use Heddle to create the 𝛿-NFG. As both tools currently
only work on C# code, we will focus on dead code elimination in
C# code.

In this research, we will explore the newly introduced data struc-
ture to create a solution to the widespread problem of the presence
of dead code.

Our goal can then be defined as using the 𝛿-NFG to identify and
eliminate dead code in C# programs.

The following research questions (RQ) will help achieve our goal:
• RQ 1: How can 𝛿-NFGs be used to identify and eliminate dead
code?

• RQ 2: What are the characteristics of a 𝛿-NFG that make it
easier to use than a standard program dependency graph?

1



TScIT 37, July 8, 2022, Enschede, The Netherlands C. de Kruif

This research is structured as follows. First, we will discuss related
work in the fields of multiversion code representation and dead
code identification and elimination. Then, we will explain how we
retrieved the 𝛿-NFG from Heddle before going into the details of
our implementation. Lastly, we will describe the threats to validity
of our research and conclude by answering our research questions.

2 RELATED WORK
In this section, we will discuss the previous work related to our
research project. First, we will consider the representation of multi-
version code. Then, we will discuss PDG-based techniques before
conferring dead code detection.
Software analytics is the general area on which our research is

focused. It considers source code, static and dynamic characteristics
as well as related processes of their development and evolution. It is
a critical area to research as the cost for maintaining all lifecycles of
software must be low. Many techniques exist in this area. For exam-
ple, dead code detection and clone detection are software analytics
techniques.
To track the evolution of code, software repositories are often

used. An interesting application of using software repositories is the
multiversion representations of code. Le et al [12] proposed a Multi-
version Interprocedural Control Flow Graph (MVICFG) for patch
verification. This graph integrates and compares the control flow of
multiple versions of programs. Five years later, in 2019, Alexandru
et al [1] proposed using the MVICFG to produce the Lean Language-
Independent Software Analyzer (LISA), a generic framework for
representing and analyzing multi-revisioned software artifacts. Un-
like them, our research uses another novel technique, the 𝛿-NFG
[16], representing both control and data flow.
As we have seen before, PDGs are relatively old as they were

created in 1984 by Ferrante et al [5]. These are important to this
research as the 𝛿-NFG was derived from it. So which techniques did
program dependency graphs help develop? In 2006, Liu et al used
PDGs to detect software plagiarism [13], since PDGs are invariant
during plagiarism. PDGs are also often used for clone detection
[6, 8–10, 15, 21], which is a form of software analytics. As NFGs are
simply PDGs augmented with lexemes, all those techniques will
also work with NFGs.

Graphs are often used for the detection of dead code. An example
is the data flow graph. Data flow analysis is performed by creating
a data flow graph and then analyzing this graph to find, in our case,
dead code. In 1994, Knoop et al [11] implemented a new technique
based on data flow analysis called assignment sinking to determine
and eliminate partially dead code. Partially dead code is code that is
dead on some branch of the code but not on another. Assignment
sinking eliminates assignments that compute values that are dead.
In 1997, Gupta et al [7] improved this technique by adding resource
availability and path profiling information.
Techniques to detect and eliminate dead code without using

graphs exist as well. A previously discussed example is Boomsma et
al’s work [2], which is an example of accessibility analysis. Further-
more, in 2017, Wang et al [19] detected dead code using program
slicing, which is the computation of the set of program statements,

the program slice, that may affect the values at some point of in-
terest, referred to as a slicing criterion. If graphs are used, then
slicing-based approaches still work, but become reachability analy-
sis problems.

3 𝛿-NFG CONSTRUCTION
We had to retrieve the 𝛿-NFG from the source code of Heddle. As the
source code was on the GitHub repository, it was easy to retrieve
all the code. Before going into the details of what we changed, we
will first explain how Heddle created its 𝛿-NFG.

3.1 Heddle’s 𝛿-NFG construction
Heddle created its𝛿-NFG by first extracting both name flow and PDG
(Program Dependency Graph) in Roslyn, the open-source compiler
for C# and Visual Basic from Microsoft. The NFGs are stored in
GraphViz Dot format, in a temporary folder. Then, Heddle marks
each NFG. This is done by considering each node in it, and if it
was removed or added by a commit, the node is colored in red or
green respectively. The same is done with each edge. Finally, Heddle
merges the NFGs belonging to certain commits into one NFG for
each file, creating a 𝛿-NFG per file.

In the 𝛿-NFG, each node has the following information:
• Cluster: typically, it consists of the form “[namespace].-
[class].[method]”. It shows where in the file it belongs.

• Label: code expression. It is also the text shown on the node in
the graph. Often does not show the entirety of the expression.

• Span: line-span. It represents the line number(s) on which
the corresponding expression is.

• Color: a node can have three colors. If a node is black (default),
the node is in all versions of the code. If a node is green, the
node was added in one version of the code. If a node is red,
the node was removed in one version of the code.

Furthermore, each edge has the following information:
• Style: an edge can be solid, dotted, dashed or bold. A solid
edge shows the control flow of the graph. A dashed edge
shows the data flow of the graph. A dotted edge connects
an expression to the entry node of its corresponding called
method. A bold edge connects the entry and exit nodes of a
method.

• Label: often represents the name flows. It can also show
other information such as names of local variables or return
statements.

• Color: an edge can have five colors. If an edge is green, one
of the nodes it is incident to was added in one code version. If
an edge is red, one of the nodes it is incident to was removed
in one version of the code. A purple edge is similar to a bold
edge. A blue edge connects the exit and entry nodes of each
method. Black is the default edge color.

The 𝛿-NFGs are also stored in GraphViz Dot format so that they
can be easily accessible. This is done via the NetworkX library3. The
GraphViz Dot format also helps visualizing the graphs, so it is easy
to manually spot mistakes.

3https://networkx.org/

2



Using 𝛿-NFGs to identify and eliminate dead code in C# programs TScIT 37, July 8, 2022, Enschede, The Netherlands

(a) 𝛿-NFG generated from the code in (b) (b) Code with the changes annotated from a commit

Fig. 2. An example of a 𝛿-NFG

An example of 𝛿-NFG can be found in Figure 2. In Figure 2(b) we
can find the code that is represented in the 𝛿-NFG found in Figure
2(a). The code is taken from Git where the addition and removal
of lines of the corresponding commit are displayed. Here, we can
see that line 23 has been changed to add + dead_function(). This is
represented in the graph by coloring the node representing the
removed line in red and coloring the node representing the added
line in green. The changes in control flow are also colored in their
respective color. We also notice that for each method, entry and exit
nodes exist. These are nodes that help visualize when we enter or
exit a method. On the bottom left side of the graph, we can see two
examples of data flow. These edges are represented in dashed style
and have a variable name as the label. For example, the integer a is
used to define the integer c, so there is a data flow connecting these
two variables.

3.2 Our changes to Heddle’s implementation
Heddle considers commits that: “

(1) Have been committed by the same developer within 14 days
of each other with no other commit by the same developer in
between them.

(2) Change namespaces whose names have a large prefix match.
(3) Contain files that are frequently changed together.
(4) Do not contain certain keywords (such as ‘fix’, ‘bug’, ‘feature’,

‘implement’) multiple times.” [16]

Our implementation considers all commits as we do not need the
conditions (unlike Heddle).

Fig. 3. Dead code’s broad definition. Source: Boomsma et al, 2012 [2]

Furthermore, Heddle uses chains of SHAs while computing their
𝛿-NFGs, while we use one commit per 𝛿-NFG. We did this as it is eas-
ier to work with since for revived code detection, we need to know
exactly which changes belong to which commits, something that is
more difficult to discern when working with chains of commits.

4 IMPLEMENTATION
In this section we will describe our implementation of dead and
revived code detection, as well as dead code elimination.

3



TScIT 37, July 8, 2022, Enschede, The Netherlands C. de Kruif

4.1 Dead code detection
Dead code is any code that has no effect on the application’s behavior
[14]. There are several types of dead code (Figure 3). First, redundant
code is code that is unnecessarily executed. Inside this set is a subset
called partially dead code. That is code that is dead only on some
program paths, such as a variable that is only used in the “else” part
of an if-statement. Then, unreachable code is code that is never
reached or executed by the program, which is a subset of unused
code, which is code that is never triggered.
Our implementation does not consider all types of dead code.

Instead, we only detect unreachable code and unused variables.
For example, when only considering the red and black elements of
the graph in Figure 2, the top left cluster is unreachable code as it
will never be reached. In practice, this is a function that is never
called, dead_function. When only considering the green and black
elements, the function dead_function is not dead as it is called in the
“main” method. Furthermore, the integer deadVariable is an unused
variable, as it is never used in the rest of the code. This can be seen
with the data flow: there is no data flow edge coming out of the
corresponding node.

1 def bfs(graph , start):

2 """

3 Breadth -first search algorithm that only visits green

and black nodes and edges

4 :param graph: delta -NFG

5 :param start: starting node

6 :return: set of reachable nodes

7 """

8

9 visited , queue = dict(), [start]

10 while queue:

11 vertex = queue.pop(0)

12 if vertex not in visited and ('color ' not in

graph.nodes[vertex ].keys() or not graph.nodes[vertex

]['color '] == "red"):

13 visited[vertex] = len(visited)

14 queue.extend(set(graph[vertex ]) - set(visited

))

15 return visited

Listing 1. Breadth-first search algorithm

We implemented the detection of unreachable code by using a
breadth-first search (BFS), altered such that we only consider green
and black elements. If we also considered red elements, we might
detect unreachable code that is dropped in the newest commit, thus
falsely detecting unreachable code. In Listing 1 we can find our
implementation of the breadth-first search algorithm. To find the
starting node for the BFS, we take the entry node of the “main”
method. If that method does not exist, we use a random entry node
in the biggest connected component of the graph. Currently, the
detection algorithm only works on files in which methods are not
called in other files. We therefore only detect unreachable code in a
file itself and not in the whole codebase.

1 def unused_variables(G):

2 """

3 Detect unused variables of given delta -NFG G

4 :param G: delta -NFG

5 :return: array of nodes whose labels are unused

variables

6 """

7

8 labels = nx.get_node_attributes(G, "label")

9

10 # Get all variables in the delta -NFG

11 variables = []

12 for vertex in G:

13 try:

14 label_split = labels[vertex ].split(" ")

15 if label_split [2] == "=":

16 variables.append(vertex)

17 except IndexError:

18 pass

19

20 # Find all used variables

21 used_variables = []

22 for variable in variables:

23 out_ = G.out_edges(variable , data="style",

default="pink")

24

25 for edge in out_:

26 if edge [2] == "dashed":

27 used_variables.append(variable)

28 elif edge [2] == "solid":

29 out_node = edge [1]

30 label_split = labels[variable ].split(" ")

31 if label_split [1] in labels[out_node ]:

32 used_variables.append(variable)

33

34 unused = set(variables) - set(used_variables)

35 return unused

Listing 2. Unused variables detection

The implementation of the detection of unused variables is shown
in Listing 2. We first identify all the variables in one file using the
label attribute of each node. We then find which of them are used.
This is done by first checking if there is data flow coming out of the
corresponding node. Data flow edges are dashed while control flow
edges are solid. If there is, it is used. If there is not, we check if the
next node following control flow uses the variable. If that is not the
case, the variable is unused. Data flow edges between two nodes are
only shown when there is at least one node between those nodes.

4.2 Revived code detection
The detection of revived code is more complex than the detection of
dead code. We first compute unused variables and unreachable code
as described in the previous subsection. Then, we calculate for each
piece of dead code in which commit it is found dead. Finally, we
construct two graphs. The first graph is the 𝛿-NFG of the file and
commit in which the corresponding variable or code is found dead.
The second graph is the 𝛿-NFG of the newest commit for which
the corresponding file is present. When the graphs are constructed,
we find a node in the second graph that is equivalent to the dead
node in the first graph. If the found node is in the list of dead code
previously computed, the piece of code is still dead. If not, it has
been revived. The algorithm returns two arrays: one containing
the revived variables, and one containing the variables that are still
dead in the newest commit.
For example, in Figure 2, the top left cluster is revived code in

that commit.

4



Using 𝛿-NFGs to identify and eliminate dead code in C# programs TScIT 37, July 8, 2022, Enschede, The Netherlands

4.3 Dead code elimination
We thus obtain four distinct types of code: dead variables that have
not been revived, unreachable code that has not been revived, re-
vived variables and revived code (code that was previously unreach-
able). For this part of the implementation, we only used the dead
variables.

Suppose we have retrieved the array of the still dead variables
from the revived code detection algorithm. We then iterate through
each variable in that array to find the line span and we compute the
path to the file using information stored in the corresponding node.
After determining all necessary information, we delete the lines in
the file.
It is more challenging to eliminate dead code in general, such

as methods. Indeed, each method has its own entry and exit nodes
which are not specified in the files. Due to time constraints, we have
not implemented the elimination of dead code in general.

5 TESTING
In this section we will discuss the tools we used for testing our
implementation of the detection and elimination of dead code.

5.1 Dead and revived code detection
To test the implementation of dead and revived code detection, we
artificially created a Git repository having revived variables, revived
methods, and dead code. It is a small repository, so it is easy to
manually check whether the 𝛿-NFGs are correct. It is also easier to
manually detect all types of dead code.
We then wrote four unit tests to confirm whether the detection

functions gave the correct results. One of such tests is found in
Listing 3.

1 def test_revived_functions ():

2 """

3 Check whether the function reports the correct

revived nodes

4 """

5

6 # Get revived nodes

7 repository_name = "Example"

8 revived_functions = revived_code(repository_name , 2)

[0]

9

10 assert len(revived_functions) == 3

11

12 # These should be the labels of the nodes that are

revived

13 correct_labels = [

14 '"return 21;"',

15 '"Entry Example.Program.dead_function ()"',

16 '"Exit Example.Program.dead_function ()"'

17 ]

18

19 for var in revived_functions:

20 commit = var[0]

21 node = var[1]

22 dot = var[2]

23

24 # Construct graph to get the cluster and line

span of each node

25 graph = get_graph(repository_name , commit , dot)

26

File Line coverage
dead_code_detection.py 92%
dead_code_elimination.py 100%

dead_util.py 87%
Table 1. Line coverage of each file used for dead code elimination and
detection

27 # Get node label

28 label = graph.nodes[node]["label"]

29

30 assert label in correct_labels

31 correct_labels.remove(label) # Remove it so no

other node can use the label

Listing 3. Revived code test

In this test, we first compute code that was unreachable but is
now revived. We manually check in the 𝛿-NFGs what they should
be and save the labels of the corresponding nodes in an array called
correct_labels. First, we assert the number of unreachable nodes.
Then, for each computed revived node, we check whether its label
is in correct_labels. If all labels in that array have been used, the test
passes successfully.

Similar tests have been written for revived variables, unreachable
nodes, and unused variables. Every unit test tests one of the four
outcomes of the method revived_code which uses all other methods
used for revived and dead code detection.

5.2 Dead code elimination
To test our implementation of dead code elimination, we used the
same repository as for the testing of our implementation of dead
and revived code detection. We wrote one unit test for this part of
the implementation.

First, from the tests done before, we know that there is only one
dead variable in the latest commit. This variable is represented in
the node labeled int deadVariable2 = 20. In the actual .cs file, the line
is int deadVariable2 = 20;, so we first check if that line is in the file.
Then, we call the elimination method and check whether that line
is still in the .cs file. If not, the test continues. Finally, we check
whether no other line has been removed and then we reinsert the
deleted line so we can run the test multiple times.

The line coverage of all unit tests combined can be found in Table
1.

6 THREATS TO VALIDITY
In this section we will discuss both internal and external threats to
the validity of our research.
Our implementation faces an important threat to its external

validity: our testing conditions. To test our implementation, we use
one repository that is self-made. This impacts the testing results,
first because it is small, and second because it might not reflect
the ground truth. We did not validate our implementation against
real-world repositories. This is mostly because our implementation
can only accurately detect dead code in the file in which that code
is present: it will falsely detect dead code when it is dead in the file
itself but is used in another file. Since most repositories use methods

5



TScIT 37, July 8, 2022, Enschede, The Netherlands C. de Kruif

(a) Incorrect 𝛿-NFG generated from the code in (b) (b) Code with the changes annotated from a commit

Fig. 4. An example of an incorrect 𝛿-NFG

in multiple files, we could not use them. However, this could be fixed
by merging all 𝛿-NFGs of a commit into one file and performing the
detection on the merged file.
Furthermore, our implementation faces a threat to its internal

validity, namely the generation of the 𝛿-NFGs. Indeed, Pârtachi et
al’s implementation can generate wrong 𝛿-NFGs for some reposito-
ries. The artificially created repository we currently use for testing
does not create errors. However, it generated wrong 𝛿-NFGs for
previously used repositories. An example can be found in Figure 4.
In this commit, we have copied the method function and gave it the
name function2. We have changed the variables a, b, and c to d, e, and
f respectively. However, the 𝛿-NFG generated wrong edges. Indeed,
we can see that the bold edges with the labels "Local variable int d"
and "Local variable int e" point towards the wrong nodes. Due to
time constraints, we have not been able to fix issues related to the
generation of the 𝛿-NFGs.

7 CONCLUSION
We have presented a novel way to detect and eliminate dead code,
using a new data structure called 𝛿-NFG, taken from Flexeme [16].
To answer our first research question, we can conclude that 𝛿-

NFGs can be used to detect and eliminate dead code by using a
breadth-first search with the control flow, and the data flow helped
us find dead variables. These are properties that a standard PDG
(Program Dependency Graph) also has, which brings us to our
second research question. The 𝛿-NFG’s most valuable property is
that it combines distinct code versions, which we have used to find
revived code. Furthermore, the elimination of dead code is with
fewer risks, since if the code makes a mistake and removes the
wrong code, the user can simply roll back the code.

We conclude by suggesting that the 𝛿-NFG has much potential in
future projects using repositories. However, for standard dead code
detection, a PDG is sufficient.

REFERENCES
[1] C.V. Alexandru, S. Panichella, S. Proksch, and H.C. Gall. 2019. Redundancy-free

analysis of multi-revision software artifacts. Empirical Software Engineering 24
(2019), 332–380. Issue 1. https://doi.org/10.1007/s10664-018-9630-9

[2] H. Boomsma andH.-G. Gross. 2012. Dead code elimination forweb systemswritten
in PHP: Lessons learned from an industry case. IEEE International Conference on
Software Maintenance, ICSM, 511–515. https://doi.org/10.1109/ICSM.2012.6405314

[3] D. Caivano, P. Cassieri, S. Romano, and G. Scanniello. 2021. An exploratory
study on dead methods in open-source java desktop applications. International
Symposium on Empirical Software Engineering and Measurement. https://doi.org/
10.1145/3475716.3475773

[4] S.K. Dash, M. Allamanis, and E.T. Barr. 2018. RefiNym: Using names to refine
types. ESEC/FSE 2018 - Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 107–117. https://doi.org/10.1145/3236024.3236042

[5] J. Ferrante, K.J. Ottenstein, and J.D. Warren. 1984. The program dependence graph
and its use in optimization. Vol. 167 LNCS. 125–132 pages. https://doi.org/10.
1007/3-540-12925-1_33

[6] P. Gautam and H. Saini. 2017. Non-trivial software clone detection using program
dependency graph. International Journal of Open Source Software and Processes 8
(2017), 1–24. Issue 2. https://doi.org/10.4018/IJOSSP.2017040101

[7] Rajiv Gupta, David A. Berson, and Jesse Z. Fang. 1997. Resource-sensitive profile-
directed data flow analysis for code optimization. Proceedings of the Annual
International Symposium on Microarchitecture, 358–368. https://doi.org/10.1109/
MICRO.1997.645834

[8] Y. Higo and S. Kusumoto. 2009. Enhancing quality of code clone detection with
Program Dependency Graph. Proceedings - Working Conference on Reverse Engi-
neering, WCRE, 315–316. https://doi.org/10.1109/WCRE.2009.39

[9] Y. Higo and S. Kusumoto. 2011. Code clone detection on specialized PDGs with
heuristics. Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR, 75–84. https://doi.org/10.1109/CSMR.2011.12

[10] C.M. Kamalpriya and P. Singh. 2017. Enhancing program dependency graph
based clone detection using approximate subgraph matching. IWSC 2017 - 11th
IEEE International Workshop on Software Clones, co-located with SANER 2017.
https://doi.org/10.1109/IWSC.2017.7880511

[11] J. Knoop, O. Rüthing, and B. Steffen. 1994. Partial dead code elimination. ACM
SIGPLAN Notices 29 (1994), 147–158. Issue 6. https://doi.org/10.1145/773473.

6

https://doi.org/10.1007/s10664-018-9630-9
https://doi.org/10.1109/ICSM.2012.6405314
https://doi.org/10.1145/3475716.3475773
https://doi.org/10.1145/3475716.3475773
https://doi.org/10.1145/3236024.3236042
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.4018/IJOSSP.2017040101
https://doi.org/10.1109/MICRO.1997.645834
https://doi.org/10.1109/MICRO.1997.645834
https://doi.org/10.1109/WCRE.2009.39
https://doi.org/10.1109/CSMR.2011.12
https://doi.org/10.1109/IWSC.2017.7880511
https://doi.org/10.1145/773473.178256
https://doi.org/10.1145/773473.178256


Using 𝛿-NFGs to identify and eliminate dead code in C# programs TScIT 37, July 8, 2022, Enschede, The Netherlands

178256
[12] W. Le and S.D. Pattison. 2014. Patch verification via multiversion interprocedural

control flow graphs. Proceedings - International Conference on Software Engineering,
1047–1058. Issue 1. https://doi.org/10.1145/2568225.2568304

[13] C. Liu, C. Chen, J. Han, and P.S. Yu. 2006. GPLAG: Detection of software plagia-
rism by program dependence graph analysis. Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining 2006, 872–881.

[14] M. Mäntylä, J. Vanhanen, and C. Lassenius. 2003. A Taxonomy and an Initial
Empirical Study of Bad Smells in Code. IEEE International Conference on Software
Maintenance, ICSM, 381–384. https://doi.org/10.1109/icsm.2003.1235447

[15] H. Nasirloo and F. Azimzadeh. 2018. Semantic code clone detection using abstract
memory states and program dependency graphs. 2018 4th International Conference
on Web Research, ICWR 2018, 19–27. https://doi.org/10.1109/ICWR.2018.8387232

[16] P.-P. Pârtachi, S.K. Dash, M. Allamanis, and E.T. Barr. 2020. Flexeme: Untangling
commits using lexical flows. ESEC/FSE 2020 - Proceedings of the 28th ACM Joint
Meeting European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, 63–74. https://doi.org/10.1145/3368089.3409693

[17] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk. 2016. Are unreachable
methods harmful? Results from a controlled experiment. IEEE International
Conference on Program Comprehension 2016-July. https://doi.org/10.1109/ICPC.
2016.7503723

[18] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk. 2020. A Multi-Study
Investigation into Dead Code. IEEE Transactions on Software Engineering 46 (2020),
71–99. Issue 1. https://doi.org/10.1109/TSE.2018.2842781

[19] X. Wang, Y. Zhang, L. Zhao, and X. Chen. 2017. Dead Code Detection Method
Based on Program Slicing. Proceedings - 2017 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, CyberC 2017 2018-Janua,
155–158. https://doi.org/10.1109/CyberC.2017.69

[20] A. Yamashita and L. Moonen. 2013. Do developers care about code smells? An
exploratory survey. Proceedings - Working Conference on Reverse Engineering,
WCRE, 242–251. https://doi.org/10.1109/WCRE.2013.6671299

[21] Y. Zou, B. Ban, Y. Xue, and Y. Xu. 2020. CCGraph: a PDG-based code clone
detector with approximate graph matching. Proceedings - 2020 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2020, 931–942.
https://doi.org/10.1145/3324884.3416541

7

https://doi.org/10.1145/773473.178256
https://doi.org/10.1145/2568225.2568304
https://doi.org/10.1109/icsm.2003.1235447
https://doi.org/10.1109/ICWR.2018.8387232
https://doi.org/10.1145/3368089.3409693
https://doi.org/10.1109/ICPC.2016.7503723
https://doi.org/10.1109/ICPC.2016.7503723
https://doi.org/10.1109/TSE.2018.2842781
https://doi.org/10.1109/CyberC.2017.69
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1145/3324884.3416541

	Abstract
	1 Introduction
	2 Related work
	3 -NFG construction
	3.1 Heddle's -NFG construction
	3.2 Our changes to Heddle's implementation

	4 Implementation
	4.1 Dead code detection
	4.2 Revived code detection
	4.3 Dead code elimination

	5 Testing
	5.1 Dead and revived code detection
	5.2 Dead code elimination

	6 Threats to Validity
	7 Conclusion
	References

