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Pruning of neural networks is a technique often used to reduce the size of
a machine learning model, as well as to reduce the computation cost for
model inference. This research provides an analysis on four current pruning
techniques that theoretically efficiently reduce the machine learning model
size, where efficiency is defined by the relation between the compression of
the model and the accuracy of the model. Furthermore, this research will
assess in what way these four neural network pruning techniques affect the
total energy consumption during model inference on a Raspberry Pi 4B board,
applied to MobileNetV2, a machine learning model architecture optimized for
image classification on embedded devices. Lastly, the research will analyze
the trade-offs between energy consumption, model size and model accuracy
for each of the assessed pruning algorithms applied to one of the most
commonly used neural network architectures, MobileNetV2, on a Raspberry
Pi 4B prototyping board. The research is expected to provide engineers a
reference providing guidance upon deciding what pruning technique to use
for a machine learning model to be deployed on an embedded device.
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1 INTRODUCTION
1.1 Context and relevance

Machine learning models have grown increasingly large over the
past years [14], while at the same time increasingly often machine
learning models are used on embedded devices [22]. As embedded
devices often have very limited resources, pruning algorithms can
be used to effectively reduce the size of a model, as well as lower
the model inference time [2].

There are various novel pruning techniques proposed [30][8][24]
which allow for significant reduction of model size while keeping
the accuracy of a model acceptable.

Blalock et al. [2] show that existing work analyzing individual
pruning techniques, often has shortcomings, among other things
regarding the identification of experiment setups and metrics, the
usage of too few combinations of datasets and architectures as
well as failure to control confounding variables. As the scope of
this research is somewhat limited due to time constraints, it is not
possible to analyze a vast set of (dataset, architecture) combinations.
Regardless of this, the work of Blalock et al. still provides valuable
insights regarding the analysis of pruning methods.

While research has been done evaluating the energy consump-
tion of classification algorithms [26], as well as on minimizing the
energy consumption of embedded neural networks by introduc-
ing quantized neural networks (QNNs) [21], there appears to be
only little research done on the impact of algorithms on the energy
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consumption of embedded devices. The work that has been done
however, is laid out in section 3 of this paper.

Furthermore, Garcia-Martin et al. [9] have shown in their analysis
on the estimation of energy consumption in machine learning that
merely the number of weights in a machine learning model is too
simplistic and cannot be seen as a good estimator for the energy
consumption of a machine learning model. Something which was
also subscribed in research by Yang et al. [29], in which is stated
that not only computation, but also memory access affects the total
energy consumption of a neural network, where it is important to
note that fetching data from memory takes multiple order of mag-
nitudes more energy than the energy required for the computation
itself, as shown by Horowitz in 2014 [12].

Based on this, it appears reasonable to assume that the energy
consumption of a machine learning model does not only depend on
the model size size, and that further research into the real-world
energy consumption of different pruning algorithms on embedded
devices, among which this work covers, is relevant.

1.2 Objective

The objective of this research is to provide engineers a reference pro-
viding insight and guidance upon deciding what pruning technique
could for a machine learning model to be deployed on an embedded
device, depending on the accuracy, energy consumption and model
size requirements. The analysis of the results should contain infor-
mation about the trade-offs regarding energy consumption, model
size and accuracy that the four different pruning techniques entail
and try to generalize, where appropriate, the results to be able to
make a possible prediction about other, not touched upon pruning
techniques based on for example whether the pruning technique is
structured or unstructured.

1.3 Research question

The aforementioned objective can be reached by answering the fol-
lowing research question, which is the main question to be answered
for this research:

e RQ: What are the trade offs regarding accuracy, energy con-
sumption and model size between unstructured global magni-
tude pruning, network slimming, L1 norm structured pruning
and random pruning on MobileNetV2?

To be able to give a thorough answer to the main research question
however, it is necessary to first answer the following subquestions:

e Sub-RQ1: What neural network pruning techniques cur-
rently exist that efficiently reduce the model size? (efficiency
is in this case defined by the relation between the compression
of the model and the accuracy of the model)

e Sub-RQ2: How do current neural network pruning tech-
niques affect the total energy consumption during inference
when applied to MobileNetV2 on a Raspberry Pi 4B, indepen-
dent of model size?
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2 BACKGROUND

2.1 Preliminary knowledge

The idea of pruning neural networks, in the sense that one removes
parameters that are deemed unimportant, has been around for quite
some time since it was first proposed by Lecun et al in 1989 [16].
To obtain a better idea on how pruning exactly affect the neural
network, an example is given in Figure 1, which can originally be
found in [10].
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Fig. 1. Neural network before and after pruning [10]

As the pruning of parameters in a machine learning model gener-
ally results in the accuracy of a machine learning model decreasing,
pipelines have been devised to minimize this accuracy loss. In par-
ticular, model fine tuning is often applied as to regain a certain
degree of accuracy after pruning a model. This fine tuning entails
retraining the model after pruning the network, as proposed by Han
et al. in 2015 [10]. The retraining phase might be implemented in
several ways, among which the approach used in this work, which
was originally proposed by Frankle et al. in their 2019 work [7]. This
approach entails rewinding the weight values to those before the
pruning took place for those parameters left unpruned, and retrain
the model starting from those values rather than resetting them to
the values they had at the first iteration. A concise overview of a
typical pruning pipeline, which has also been used for this work,
can be seen in Figure 2, which was shown in a paper by Chen et al.
in 2022 [4].
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Fig. 2. Typical neural network pruning pipeline [4]

Furthermore, there is two main categories of pruning techniques:
unstructured pruning, which relies on the removal of individual
connections between neurons, and structured pruning, which relies
on the pruning of entire convolution channels, filters or layers. In
Figure 3, originally presented in [5], this difference between these
two fundamentally different pruning techniques is made clear.
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Fig. 3. a For unstructured pruning, individual connections between neurons
are removed. b The structured pruning example shows an entire convolution
filter being pruned [4]

As to obtain somewhat of an insight on the difference between
these two categories of pruning methods, this work analyses two
structured pruning techniques as well as two unstructured pruning
techniques.

Regarding the unstructured pruning techniques, the first pruning
technique to be analyzed is unstructured global magnitude pruning,
introduced by Han et al. in 2015 [10]. This pruning method relies
on pruning weights in a neural network based on their magnitude,
where the lowest magnitude weights are set to zero. The second
unstructured pruning technique that is analyzed in this work is
unstructured random pruning. This pruning method serves as a
baseline to compare other pruning techniques to and provides an
hence excellent sanity check when analyzing pruning techniques
(does a technique perform better than random pruning).

Regarding the structured pruning techniques, the first pruning
technique to be analyzed is structured L1-norm filter pruning, intro-
duced by Li et al. in 2016 [17], which relies on pruning CNN filters
that are identified as having only a very limited effect on the accu-
racy of the model. In their work, Li et al. mention that magnitude
based pruning of weights might not reduce the inference cost, and
hence the energy consumption, to a large enough extent despite
the significant pruning of weights due to the irregular nature of
its sparsity. The second structured pruning technique to be ana-
lyzed is network slimming, intoduced by Liu et al. in 2017 [18]. This
pruning method is based on automatically indentifying insignificant
channels and immediately pruning these during training. The sig-
nificance of channels is determined by analyzing the scaling factors
in batch normalization, and removing those channels with scaling
factors near zero. An example of this can be seen in Figure 4, which
is a graphic from the original paper by Liu et al. [18].

The choice of pruning techniques is not arbitrary, as disregarding
the random unstructured pruning baseline, the selected pruning
methods are among those referenced the most. With Han et al.
their global unstructured magnitude pruning [10] being referenced
almost five thousand times, L1-norm filter pruning introduced by
Li et al. [17] being referenced more than two and a half thousand
times and network slimming introduced by Liu et al. [18] being
referenced over one and a half thousand times.

As these pruning methods appear to be of such popularity, it
appears likely that these methods are among the most relevant
methods to analyze in this work.
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Fig. 4. The concept of network slimming. Channels with near-zero scaling factors are pruned. [18]

A number of neural network architectures optimized for edge
devices have been identified in recent work by Chen et al. in 2020 [5].
These compact architectures make use of specific design strategies,
such as but not limited to reducing the size of convolutional filters,
introducing shortcut connections to building blocks (as is the case
for MobileNetV2 [23]) and channel shuffling.

An overview of a selection of compact neural network architec-
tures as presented in [4] can be seen in Figure 5

The reason why for this work, MobileNetV2 was selected to apply
the analyzed pruning methods on is because the goal of this work
is to provide an analysis of the pruning methods that is as relevant
as possible. As MobileNetV2 has by far, the most citations out of all
architectures presented in Figure 5, with over ten thousand citations
to the original paper [23], and hence appears to be the most relevant
architecture to apply the pruning methods to.

3 RELATED WORK

Neural network pruning has been around since the late 1980s [13][15]
and much research has since been done in the field.

Blalock et al. [2] provides a very useful view into the state of
neural network pruning and its references provide an excellent
collection of novel pruning techniques [11][30][8][24]. The paper
furthermore looks into how one can systematically compare dif-
ferent pruning methods by laying out a list of best practices, and
shows that many novel pruning techniques have not been compared
according to these best practices.

A novel paradigm in neural network pruning is pruning at initial-
ization (Pal), which is well-covered by Wang et al.[28] in a recent
paper. This new paradigm does however currently underperform tra-
ditional pruning methods in practical performance [27], and hence
is not a suitable paradigm to consider as part of this research.

Research on the energy consumption of pruned neural networks
has mostly been done in a theoretical way, and seems to mainly
focus on estimating the overall energy consumption of a model as
a whole, as has been done in work by Cai et al. in 2017 [3], which
makes use of a regression based approach. An excellent overview of
the state of the art of such theoretical energy consumption models
can be found in the work of Garcid-Martin et al. in 2019 [9].

One of the few researches that focus on the energy consumption
of pruning algorithms however, is a very interesting paper by Yang

et al. [29], which proposes a novel pruning algorithm for Convolu-
tional Neural Networks, Energy-aware Pruning, and approximates
the energy consumption by means of a model which takes into
account the computation and memory accesses, and uses values for
energy which are extrapolated from hardware measurements in the
real-world, making the approximation for the energy usage more ac-
curate. In their research, their novel pruning algorithm is compared
to magnitude-based pruning [10] and using no pruning algorithm at
all. While it is still mostly theoretical and only compares the novel
pruning algorithm to one other, more common pruning algorithm,
this research is of great value for the research to be conducted and
provides a useful reference regarding the analysis of obtained data
for the energy consumption of different pruning algorithms.

Moreover, work from Mirmahaleh and Rahmani in 2019 [20]
proposes a novel pruning method for Deep Neural Networks which
relies on pruning weights, layers and neurons based on the minimum
distance error, and shows to speed up inference by approximately
22.56% — 77% and a reduction in energy consumption by 65.94% -
88.54% as compared to not utilizing the novel pruning algorithm
based on simulations. Even though Mirmahaleh and Rahmani their
work does not provide a comparison with other pruning algorithms,
it does show interest in the topic, which is of relevance to this work.

As the differences in the energy consumption and inference time
of different pruning algorithms on embedded devices seem to not
have been explored much, and as no thorough real-world analysis
has been composed that can be used by engineers as a reference
providing guidance upon deciding what pruning technique to use
for a machine learning model to be deployed on an embedded device,
there appears to be ample scientific value to presented work.

4 METHODOLOGY

In this section, the exact approach to answer the research question
posed will be laid out.

4.1 Implementing pruning algorithms

The pruning algorithms that have been analyzed in this work, global
unstructured random weight pruning, global unstructured magni-
tude pruning [10], L1-norm filter pruning [17] and network slim-
ming [18], as well as the MobileNetV2 network have all been imple-
mented in PyTorch. This is due to the fact that for two structured
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Fig. 5. An overview of compact neural network architectures as presented in [4]. a SqueezeNet, b MobileNet, c MobileNetV2, d ShuffleNet, e ShuffleNetV2, f

IGCNet, g IGCV2, h IGCV3

pruning methods, existing PyTorch implementations exist which
are based directly on their respective original papers. These imple-
mentations have been adapted for the purpose of this paper, and
can be accessed through a special GitHub repository.

4.2 Training and pruning MobileNetV2

MobileNetV2 has been trained on the CIFAR-10 dataset, in PyTorch,
through the Jupyter notebook hosted by the University of Twente.
It was chosen to use this Jupyter notebook as it gives access to
high-performance GPU equipment that is able to quickly and effi-
ciently train, convert and prune models CIFAR-10 was chosen as
a dataset to train MobileNetV2 on for this work, as it appears to
be widely used in literature, as shown in [2], as a dataset used to
train neural network architectures on for the purpose of assessing
the (theoretical) performance of pruning networks. Furthermore,
CIFAR-10 is a convenient as it is of a relatively manageable size
(163MB) and hence does not require extremely high-performance
equipment to utilize it for training neural networks, which is among
other things beneficial for the reproducability of this work. The
unpruned MobileNetV2 network trained on CIFAR10 acts as the
baseline of the experiment, to which all pruning algorithms have
been applied. After applying a pruning technique, fine-tuning is
used to improve the overall accuracy of the pruned model. This
fine-tuning entails retraining unpruned parameters from their final
trained values.

4.3 Determining model accuracy

To be able to determine the accuracy of the (pruned) models, the
model is evaluated by using PyTorch model inference on the CIFAR-

10 test set, and then use the standard formula for accuracy: Accuracy =
TruePositive+TrueNegative
TruePositive+TrueNegative+FalsePositive+FalseNegative

4.4 Exporting the model

The model is exported by first converting the model to an Open
Neural Network Exchange (ONNX) [6] format. The ONNX platform
allows one to interchange machine learning models between various
frameworks. In the case of this work, the ONNX platform is used to
export the original PyTorch model into a TensorFlow Lite [1] model.
TensorFlow Lite is a frame work that is often used to deploy machine

learning models on edge devices, and is the format to which the
PyTorch models are converted before being loaded on the testboard
in this work.

4.5 Energy consumption measurements

For measuring the energy consumed, the following setup will be
used: An arduino Uno, which is connected to an INA219 current
sensor [25], as well as the prototpying board, a Raspberry Pi 4B, of
which the VCC line from the power supply will be routed through
the INA219 chip by means of connecting it to the Vj, and Vp,,; of the
INA219 chip, hence connecting the INA219 chip in series with the
prototpying board. The Arduino Uno can then report the measured
values for the current and the voltage, together with a timestamp
to the computer that is connected by means of a Serial connection.
A schematic of the circuit can be seen in Figure 6.
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Fig. 6. Circuit of current measurement setup

The values for the voltage (which stays approximately constant)
and current, will provide one with a power consumption in mW for
each timestamp at which a measurement has been taken.

The INA219 chip has, according to its specification, a current
and bus voltage accuracy measurement error of typically +0.2%
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with a maximum of +0.5%. Furthermore, the chip has a 12-bit ADC
resolution.

5 EXPERIMENTS

Each pruning algorithm has been applied to the MobileNetV2 model
trained on CIFAR-10 with exactly five different sparsity levels, namely,
0.4, 0.5, 0.6 and 0.8 sparsity. It is important to define the sparsity
level, as the term has been ambiguously used throughout literature,
as pointed out by Blalock et al. [2]. In this work, the sparsity level is

referred to as the fraction of the network parameters that has been
Parameterspruned

Totalparameters
For each sparsity level of each pruning method, the pruned model

accuracy (after finetuning) is determined as described in subsec-
tion 4.3. Furthermore, the total energy consumed for exactly 2000
inferences is determined by taking a sample of the current energy
consumption, as described in subsection 4.5, every 0.5 second. The
start and end time of the inference (in miliseconds) is recorded, and
each energy consumption data point is tagged with a timestamp. By
means of this, it is possible to synchronize this data (required as the
energy consumption is recorded on a separate board) and determine
which energy consumption data points have been recorded during
inference. After this, trapezoidal numerical integration is used to
approximate the total amount of energy consumed during inference.
The trapezoidal integration for N points can be described by the fol-
lowing formula: /ab f(x)dx = % Zﬁlzl (n+1 —xn) [f () + f (xn+1)]
To give one a clearer insight into this method, Figure 7, a figure
originally published in the MATLAB software documentation [19],
shows an example of numerical integration by means of the trape-
zoidal method for a sine function.

pruned: Sparsitylevel =

-Trapezcids
O Data Paints
Exact Function

Fig. 7. Example of numerical integration by means of the trapezoidal method
for a sine function [19]

6 RESULTS

In this subsection, the experimental results shall be presented in
various graphs and tables. These results shall be analyzed in this
section, whereas further discussion based on results presented in
this section shall be made in section 7.

6.1 Analysis of results

Firstly, when analyzing Figure 8, it becomes apparent that when
increasing sparsity, global unstructured random pruning as well
as L1-norm pruning lose accuracy rather rapidly as compared to
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the Network Slimming and global unstructured magnitude pruning
approaches. Now, it is expected that the global unstructured random
pruning method loses accuracy rapidly, as to be pruned weights are,
as its name suggests, selected randomly. Hence for global unstruc-
tured random pruning, there is a possibility that weights closer to
one rather than those closer to zero are pruned, as is the case with
the unstructured magnitude pruning. Furthermore, from this fig-
ure it becomes apparent that when requiring a sparsity larger than
60% on MobileNetV2 and still requiring acceptable accuracy, which
we shall define as 50%, one might choose Network Slimming or
global unstructured magnitude pruning over the other two pruning
methods.

Model accuracy for various sparsities per pruning method
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Next, when analyzing Figure 9, it becomes apparent that the en-
ergy consumption of the unstructured pruning methods stays rather
constant, whereas the structured pruning methods significantly de-
crease the energy consumption when increasing the sparsity of
the model. A possible explanation for this could be, as previously
referred to in this paper, the theory by Li et al., who mentions that
magnitude based pruning of weights might not reduce the inference
cost, and hence the energy consumption, to a large enough extent
despite the significant pruning of weights due to the irregular nature
of its sparsity. This result obtained from real-world inference data
seems to support this theory. Another interesting pattern that can
be seen in Figure 9 is that the Network Slimming pruning methods
appears to converge around 100 mWh / 2000 inferences. It could
be a variation on the theory by Li et al. mentioned above for the
structure pruning methods, and that there might be a certain degree
of irregular sparsity of channels at which the phenomenon occurs,
which from this data appears to be before or around 40% sparsity.
Future research might give insight in this matter by pruning a model
at lower sparsity levels to see from what point this behaviour occurs,
and possibly find the cause of why the behaviour occurs.

Now, let us examine Figure 10, which shows the relation between
the model sparsity and the size of the model. It appears that all
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Model energy consumption for various sparsities per pruning method
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pruning methods except for the Network Slimming, have some sort
of linear relation between the sparsity of the model and the real-
world model size. This is of course expected as one is removing data
completely, or in the case of structured data, replacing near-zero
weights by zero, allowing for efficient compression of the model.
Like the apparent plateau that could be seen in Figure 9, again a
plateau can be seen for the Network Slimming pruning method.
As previously mentioned, a possible explanation for the observed
phenomenon could be the fact that there might be a certain degree
of irregular sparsity of channels at which the phenomenon occurs.
Again, this phenomenon would need to be investigated further to
be able to produce a theory that bears more certainty than the
speculation presented. Despite the cause for the plateau behaviour
not being known for certain, linking the graphs together, which
has been done in Figure 11, which compares the real-world model
size with the energy consumed per 2000 inferences. At first sight,
for the structured pruning methods, there appears to be evidence
for a linear relation existing between the size of the model and
the energy consumed by the model, however the data for the L1-
Norm pruning method in Figure 11 could also be considered to
be somewhat concave upward, which is a possibility somewhat
reinforced by the L1-Norm method data in Figure 12, which will be
discussed in a later part of this section. Furthermore, from this figure
it becomes clear that the energy consumption of models pruned with
the unstructured pruning methods, does not significantly change
when the model size changes as compared to the changes in model
energy consumption of models pruned with the structured pruning
methods when the model size changes. It seems to make intuitive
sense that a model uses less energy when its models size is smaller.
Especially for structured pruning methods, it would make sense
that when removing complete parts of the network, there is simply
less calculations to be done. Now, a possible explanation on why the
unstructured pruning algorithms do not use significantly less energy
when their model size decreases, could firstly be due to the theory by
Li et al., proposing that magnitude based pruning of weights might
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not reduce the inference cost, and hence the energy consumption, to
a large enough extent despite the significant pruning of weights due
to the irregular nature of its sparsity. Secondly, a possible reason
why the energy consumption does not decrease significantly when
the model size decreases, is that because the pruned weights are set
to be zero, they might be easily compressed, reducing the model
size, however the calculations that need to be done, might still cost
the same amount of energy i.e. the calculation 0 - 256 might cost the
same amount of energy as the calculation 42 - 256.

Next, figure Figure 12 shows an interesting relation between the
sparsity of the model against the energy consumption per Megabyte
of the model. This relation is interesting as it gives insight if pruning
the model to a higher sparsity, is more or less expensive in terms
of energy consumption per MB of the model size. To explain this
relation further, imagine a horizontal line in Figure 12. Such hor-
izontal line would mean that whenever the sparsity changes, the
amount of energy consumed for each MB of the model size stays
the same, or in other words, when the model size gets multiplied by
x, the energy consumption also gets multiplied by x Now, imagine a
line trending downwards. This would mean that when the sparsity
increases, the model uses less energy per MB of model size. In other
words, when the model size increases by x, the energy consumption
increasesby a-x | a > 1.

When looking at the data for the pruning methods in this figure,
the first observation is that it appears that the amount of energy
consumed per MB by the structured pruning methods increases
exponentially when the sparsity of the model increases. This is an
indication that, if one would like to reduce the energy consumption
of a model by means of decreasing its model size, this is not the best
approach for these two pruning methods when using MobileNetV2.

Furthermore, it appears that for the Network Slimming method,
the energy consumption per MB of model size is roughly constant.
As in the original data, the model size as well as the energy con-
sumption stay roughly constant when changing the sparsity of the
network, the ratio between these two variables also stays constant
when sparsity changes, hence the curve (or lack thereof) in the fig-
ure produced by the data on the Network Slimming pruning method
is trivial based on the original data. Lastly, and most interestingly,
the data in Figure 12 shows, after pruning (from 40% sparsity on-
wards), a possible, alebeit slight, negative linear relation. This would
mean that when the sparsity increases by say x, the the energy
consumption decreases by a - x | a < 1. This is additional evidence
to the previously mentioned idea that the relation between the en-
ergy consumption and actual model size in MB for the L1-Norm
pruning method is not strictly linear, but rather slightly upward
concave. This could be useful if one would want to decrease the
energy consumption of a model by means of decreasing its model
size, as a model size reduction would result in a reduction in energy
consumption greater than the magnitude by which the model size
was reduced. To be able to confirm this proposed theory however,
further research that focuses on this exact relation is required.

Now, when analyzing Figure 13, showing the energy consumption
per percentage point of accuracy for each of the sparsity levels used
for the experiments, it is apparent that the lowest amount of energy
consumed per percentage point gained is the Network Slimming
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Model size for various sparsities per pruning method
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method. The L1-Norm pruning method appears to consume some-
what more energy per accuracy percentage point gained as com-
pared to the Network Slimming method, however the global weight
pruning method consumes even more energy for each percentage
point of accuracy gained. Lastly, the global random unstructured
pruning method appears to firstly, consume significantly more en-
ergy per percentage point of model accuracy, and secondly appears
to consume more energy per percentage point of accuracy when
the sparsity of the model increases. A possible explanation for this
behaviour could be derived from Figure 8 and Figure 9. Namely, it
appears from Figure 9 that when the sparsity of the model pruned
with the global unstructured random pruning increases, the model
energy consumption does not decrease significantly, which could
be explained by the previously mentioned theory by Li et al. [17].
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Model energy consumption per MB for various sparsities per pruning method
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At the same time, when increasing the sparsity of the model, the
accuracy of the model appears to decrease drastically for the global
random unstructured pruning method, as can be seen in Figure 8. A
combination of both a drastically decreasing accuracy and a model
energy consumption that stays approximately the same with in-
creasing sparsity, results in relatively more energy being consumed
for each accuracy percentage point for higher sparsities as compared
to the energy consumption per percentage point of accuracy for
lower sparsities.

Next, when analyzing Figure 14, which gives insight in the model
accuracy percentage points for each MB of the model size for each
of the sparsities experimented with. This is an interesting insight
when one wants to maximize accuracy and minimize the model size
in MB. One can see that, until about 50% model sparsity, network
slimming provides the most accuracy percentage points per MB
of the model size. At the same time, around this level of sparsity,
L1-norm pruning and global unstructured magnitude pruning seem
to provide approximately the same amount of accuracy percentage
points per MB of their respective model sizes. All but the global
unstructured magnitude pruning method appear to be somewhat
constant (L1-Norm pruning and global unstructured random prun-
ing do appear to have more variance however, but they do not appear
to display a certain pattern). The global unstructured magnitude
pruning method does however appear to show an upward concave,
which would mean that for every scaling factor f the network size
gets multiplied by, the accuracy decreases with a factor p | p < f.
This would mean that if one wants to decrease the model size as
much as possible and keep the accuracy as high as possible at the
same time (keeping the energy consumption of the model out of the
equation), it would be beneficial to select the global unstructured
magnitude pruning as a pruning method from a set of the four meth-
ods analyzed in this work on MobileNetV2. Furthermore, the global
random unstructured pruning method consistently has a fraction of
the accuracy percentage points per MB of the model size compared
to the other pruning techniques analyzed.
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Lastly, in Table 1, average values over all tested sparsities have
been laid out regarding the energy consumption per percentage
point of accuracy of a pruned model, as well as the average amount
of percentage points of accuracy against the model size in MB of the
pruned model. Analyzing Table 1, provides one with similar insights
to those already mentioned above when analyzing Figure 13 and
Figure 14. It must be noted however that Table 1 does not provide one
insights into possible patterns in data, such as the apparent increase
of energy consumption per percentage point of accuracy when
the sparsity increases for the global unstructured random pruning
method and the increase in the amount of accuracy percentage
points for each MB of the model size for the global unstructured
magnitude pruning method.

Energy consumption per accuracy %. for various sparsities (lower is better)
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7 DISCUSSION

After thorough analysis of the figures presented in section 6, one can
come to a number of findings and hypotheses that shall be stated
below.

7.1 Key takeaways based on result analysis

From the obtained data it has become clear that each pruning method
that has been analyzed has its own trade offs regarding accuracy,
energy consumption and model size. Network Slimming appears to
be decreasing the model energy consumption by almost three times,
and has a consistently high model accuracy of about 91%, regardless
of the sparsity level. Although this method appears to reach some
plateau for firstly the model size, and to a certain extent the model
energy consumption from at least 40% sparsity onward. Due to these
plateaus, despite the method’s relatively constant high accuracy,
excellent average energy consumption per 2000 inferences as well
as a very acceptable average amount of accuracy percentage points
per MB of the model size and on the lowest energy consumption per
MB across almost all sparsity levels, it appears to not be possible
to prune the model to achieve a model size lower than 4MB or a
model energy consumption of less than approximately 100mWh per
2000 inferences. For this reason, if one’s main goal is to decrease
the model size as much as possible as well as if one’s main goal
is to achieve a minimal energy consumption, one has to take into
account that if one’s required model size or energy consumption is
lower than the plateau values, one should most likely consider an
alternative pruning approach. The relatively consistent high accu-
racy seen in the experiments conducted in this work, is similar to
the accuracy behaviour observed in experiments done on VGGNet,
DenseNet-40 and ResNet-164 trained on the CIFAR-10 dataset in
the paper in which the method was originally proposed [18]. The
model size and energy consumption plateauing behaviour is how-
ever not observed the the original paper, which does not report a
real-world energy consumption and model size, but rather reports
the theoretical number of float point operations and sparsity. From
this work, it appears that the theoretical sparsity and theoretical
amount of float-point-operations required for model inference does
not necessarily reflect the real-world model size and energy con-
sumption respectively. This could possibly be due to the framework
used for the real-world experiments in this work, Tensorflow Lite,
being unable to compress the network architecture further due to
for example a certain degree of irregular sparsity of channels, as
theorized above as a possible adaptation of the theory proposed by
Lietal. [17].

Next, L1-Norm pruning appears to be very effective in decreasing
the model energy consumption when model sparsity is increased,
even below the earlier mentioned Network Slimming plateau value
of around 100mWh per 2000 inferences. The energy consumption
of the L1-Norm pruning per MB, as can be seen in Figure 12, is
furthermore comparable to that of the Network Slimming pruning
method. The largest trade off of using the L1-Norm pruning method
however is the model accuracy, which as can be seen in Figure 8
decreases significantly more than all other pruning methods, with
the exception of the global unstructured random pruning method.
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Table 1. Average energy per accuracy percent point and average percent point per MB of model size

Pruning method Average mWh/2000 inferences per %. (lower is better) | Average %. per MB of model size (higher is better)
L1-Norm pruning 1.73 17.03
Network slimming 1.11 22.98
Global unstructured weight pruning 3.41 20.78
Global unstructured random weight pruning 21.94 3.79

Furthermore, the energy consumption appears to decrease approxi-
mately linearly with the model size and the energy consumption
per MB across all sparsity levels is not much higher than that of the
Network Slimming pruning method. It appears that if one would like
to effectively decrease model size and/or the energy consumption
beyond the plateau level to which the Network Slimming approach
seems to be constrained, and if a relatively low model accuracy
compared to Network Slimming and global unstructured magni-
tude pruning (< 60%) is not an issue for the implementation, then
using L1-Norm pruning to prune a MobileNetV2 model could be a
beneficial choice. The results obtained from the experiments in this
work regarding L1-Norm pruning appears to largely correspond
to the paper originally introducing the pruning method [17]. In
said paper, the curve describing the model accuracy compared to
the sparsity for VGG-16 trained on CIFAR-10 is largely similar in
its shape as to the curve seen in this work. The main difference
between this work and the original paper being the real-world ac-
curacy being lower, despite the trade-off curve between accuracy
and sparsity being of approximately the same shape. This could
possibly be due to a dissimilarity in the amount of training epochs
or hyperparameter values between the two papers. Furthermore,
the theoretical reduction in the number of float point operations
described in the original paper, seems to be of similar magnitude for
a given sparsity as the real-world reduction in energy consumption
seen in this work. From the similarities between the two works, it
appears that the theoretical performance of L1-Norm pruning is
somewhat similar to its performance in the real world and that real
world frameworks such as Tensorflow do not significantly seem to
affect the performance of said pruning technique.

Global unstructured magnitude pruning has shown to be highly
accurate even at high levels of sparsity, while not having the plateau
constraint that Network Slimming has. Furthermore, the method
appears to have a an upward concave relation between the amount
of accuracy percentage points per MB of the model size and the
sparsity of the model, making it an excellent pruning method for ef-
fectively reducing the size of a model, while retaining high accuracy.
The major downside to the global unstructured magnitude pruning
method is however its energy consumption, which appears to stay
unchanged at all tested sparsity levels as comapred to the unpruned
network. A possible explanation for the lack of energy consumption
reduction is the in section 6 previously mentioned theory by Li et
al. [17], in which it is proposed that possibly, magnitude pruning of
wights might not reduce energy consumption due to the irregular
nature of the sparsity. This appears to make the pruning method un-
suitable when one’s objective is to reduce the energy consumption.
The method is however of great use when one intends to decrease
the size of a model by the largest possible amount, while retaining
a relatively high accuracy on MobileNetV2. In the paper in which

the pruning method was originally proposed [10], one can see that
the amount by which the number of weights decrease when the
sparsity decreases, is three times as large as the amount by which
the inference cost in float point operations drops when the sparsity
increases by the same amount when applied to AlexNet trained on
ImageNet. This behaviour would in itself lead to an increase in en-
ergy consumption per MB of model size when the sparsity increases,
and is observed in the results of this work. It appears that in this
work however, the behaviour that can be seen in Figure 12 is, despite
it appearing a reasonable possibility when looking at the theoretical
results from the original paper, not only due to the nature of the
model as can be seen from its theoretical behaviour in [10], but also
due to the theory by Li et al. described above as there appears to
not simply be a smaller decrease in model energy consumption as
compared to the decrease in model size when sparsity increases, but
there seems to be no decrease in energy consumption at all.

Global unstructured random pruning, shows similar energy con-
sumption concerns as global unstructured magnitude pruning. It
seems plausible that, looking at the data regarding energy consump-
tion for each of the tested sparsity levels as well as looking at the
previously mentioned theory by Li et al. [17], that this might be
the case for all unstructured pruning methods on MobileNetV2,
and possibly other networks as well. To confirm such hypothesis
however, further research into this matter is required. Furthermore,
global unstructured random pruning appears to decrease in accu-
racy very significantly, with at a sparsity level of 40%, the model
accuracy being 58%. less accurate than the pruning method with the
next lowest accuracy at 40% sparsity, L1-Norm pruning. The model
accuracy loss for global unstructured random pruning is of such
magnitude, that it appears that beyond 60% sparsity, the method
converges to an accuracy of approximately 10%, which for CIFAR-10,
with 10 different classes to identify, means that the performance of
the pruning method is as good as simply guessing of what category
an image might be. As, when increasing the sparsity, the accuracy
drops significantly while the energy consumption stays approxi-
mately constant, the energy consumption per accuracy percentage
point, as is shown in Figure 13 increases in a concave down fashion
(as the model accuracy eventually converges to 10%) and is almost
an order of magnitude worse performing as compared to all other
pruning methods.

Now, global unstructured random pruning was introduced as a
baseline for other pruning techniques to compare to. After all, if a
pruning method would perform worse than random pruning, it is
likely not a very useful pruning method. Therefore, it was expected
that all other pruning techniques would outperform this global
unstructured random pruning method.

As there appears to be a number of similarities between the theo-
retical performance of the analyzed pruning techniques on network
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architectures other than MobileNetV2 and their real-world perfor-
mance obtained from the results of this work, there is reason to
believe that similar real-world behaviour might be observed on mod-
els other than MobileNetV2, especially those with relatively similar
network structures, as can be seen in Figure 5, such as MobileNet,
Shufflenet and ShuffleNetV2. The effect of the pruning methods
analyzed in this work on networks that are more dissimilar to Mo-
bileNetV2 might still behave similar to the behaviour seen in this
work, although there might be more dissimilarities due to differ-
ences in the ability of TensorFlow Lite to compress pruned models
in the real world caused by the nature of the sparsity induced by
the pruning method on a specific network architecture, which is
behaviour that is theorized to be observed in this work when apply-
ing Network Slimming on MobileNetV2. Further research on this
topic, analyzing the real-world trade-offs of the pruning methods
analyzed in this work on network architectures other than Mo-
bileNetV2 would however be required to confirm this hypothesis
and to possibly generalize any conclusions across multiple network
architectures.

8 CONCLUSION AND FUTURE WORK

Firstly, the conducted research has been able to provide one with
highly useful insights regarding the trade-offs between accuracy,
energy consumption and model size between unstructured global
magnitude pruning, Network Slimming, L1-Norm structured prun-
ing and random pruning on MobileNetV2, and hence has been suc-
cessful in answering the research question at hand. Despite this
however, there is a number of questions that are still left to be an-
swered. Firstly, the behaviour observed for the Network Slimming
pruning method, where a plateau is reached for both the model
size as well as the model energy consumption, should be further
investigated. A possible explanation for the observed phenomenon
could be, as mentioned before in this work, an adaptation of the
theory posed by Li et al. [17] regarding the inference cost of models
pruned with a structured pruning methods, namely the possibility
that there might be a certain degree of irregular sparsity of channels
at which the phenomenon occurs. As compared to the unpruned
model, the energy consumption and model size has significantly de-
creased at 40% sparsity. A possible experiment would be to measure
the model energy consumption as well as the model size starting
from 0% sparsity and iteratively increase the sparsity by a small
percentage, say for example, 2%. The original theory posed by Li et
al. regarding the inference cost of models pruned with structured
pruning methods could furthermore be investigated further. This
work adds a certain degree of credibility to this theory as no sig-
nificant decrease in model energy consumption is observed when
increasing the sparsity of the network for models pruned with any
of the two unstructured pruning methods analyzed in this work.

In addition, by conducting the experiments carried out in this
work on other model architectures as well, it might be possible to
generalize conclusions based on observations done to a large range
of architectures, as discussed in section 7.

Lastly, by conducting the experiments carried out in this work
a large number of times (i.e. measure the energy consumption of
a certain model pruned with a certain pruning method 50 times),
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which due to the time frame of this research was not possibles,
based on the variance of the data, conclusions presented in this
work might become more sound and statistically valid.
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