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CAD model reconstruction from the LiDAR 
scan of the catenary arch 
BARTOSZ PRZADKA , University of Twente, The Netherlands  

 

 
Fig. 1 Exemplary LiDAR-based scans of the catenary arches [1] 

The railway industry sees a chance to improve its operations both in terms 
of security and efficiency by digitalizing the railway tracks and nearby 
structures. Strukton Rail in collaboration with the University of Twente and 
the Saxion University of Applied Science began the digitalization of its 
resources as the necessity for such a process began emerging worldwide. 
The main focus in this process is the catenary arch as it plays a crucial role 

fundamental functionality. Such an arch consists of poles, 
insulators and many more elements. Currently, the companies managing 
the network do not have an overview of their infrastructure or the 
inventory of the elements. Moreover, it can contain both legacy and new 
elements, which requires trained professionals to perform a manual on-site 
state assessment and therefore makes the operations cumbersome and time-
consuming. This is why there is a need for digital twins (virtual 
representations) of those, allowing for faster and more reliable repairs and 
improvements. 
This paper explores the process of matching the LiDAR-produced point 
clouds of the catenary arches to its CAD template stored in the catalogue 
form. It omits the semantic segmentation in its core as it is perceived as 
unnecessary and focuses on a deep convolutional neural network (CNN) to 
extract the features from a scan. Such an approach ensures the labelling task 
and retraining of the semantic segmentation network are unnecessary. This 
research is a proof of concept and confirms that the proposed method is 
feasible and provides numerous improvements over the existing one. To 
find the best interest point detection method for the given dataset, multiple 
methods were compared. In the last phase, it was compared to the existing 
method and provided an overall 250 times speed improvement in terms of 
adding a new CAD template to the models' catalogue. 

Additional Key Words and Phrases: CAD, point cloud, deep learning, 
catenary arch, feature extraction, CNN, digital twin, railway, reconstruction 

1 INTRODUCTION 
There is about 3055 km[2] of the railroad network in the 
Netherlands alone. In this network, there are catenary arches, 
placed at 50 - 70 m intervals, which give around 43 642  61 100 
pieces in total. They are fundamental to this system as they carry 
the power lines, insulators and many more elements above the 
traction, safely from the users. This study disregards the electric 
wires and focuses on the construction elements such as poles and 
arches with the elements assembled upon them.  

Those structures are a mixture of both new elements and their 
legacy equivalents, which makes it difficult for the maintenance 
team to conduct necessary repairs and improvements in a fast and 
efficient manner. Currently, the state of the elements and the need 
for repair are assessed by the specialised workers manually by the 
means of visual inspection. As the state of the elements is crucial to 
the safety of the entire network and carried passengers it is 
essential to explore new methods to map the infrastructure to its 
digital equivalent (twin). Digital twins are the virtual 
representations of physical objects with respect to their size, shape 
and orientation[3]. A new method would allow workers to scan the 
environment from the train using for instance LiDAR and to find 
correct elements from its library quickly. This necessity was 
noticed by Strukton Rail, who in collaboration with the University 
of Twente and the Saxion University of Applied Science began the 
digitalization process of the railway network infrastructure. 

In the mentioned digitalization phase a new inventory system 
needs to be proposed. This paper explores the deep learning-based 
procedure to reconstruct the CAD models, stored in the library 
form from the point cloud scans of the real-life catenary arches, 
using deep learning feature extraction. Deep learning is a subtype 
of the machine learning method. It consists of multiple 
convolutional layers, each, transforming the input data into a more 
abstract form, which in the end allows its program to detect objects, 
features and many more[4]. This study focuses mainly on the point 
clouds generated by the LiDAR installed on the service train and 
CAD templates catalogue. 
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In the following sections, we will provide a problem with the 
current situation and research questions, supporting the search for 
solutions. Next, the results of a performed literature review will be 
provided with relevant information and possible solutions. From 
the given information the proposed method is derived and will be 
described in-depth. In the next section, the implementation of the 
pipeline is provided, all experiments and their results. In the end, 
we will provide conclusions and information on which aspects of a 
new method need improvement. 

2 PROBLEM STATEMENT 
In 2022, there was already performed a study about matching the 
catenary arch s point cloud-based scan to its CAD templates [5]. 
However, it requires labelled data in the semantic segmentation 
part of the pipeline. By using semantic segmentation, when a new 
element is added to the library it needs to be labelled first and later 
the network needs to be re-trained, which could cause delays and 
higher costs for the companies. The proposed improvement is to 
omit the middle step (semantic segmentation) and to train the deep 
learning model directly to extract the point cloud  features. Those 
could be used later to find the corresponding CAD model from the 
catalogue. Such a change would make the labelling task 
unnecessary and generate a much simpler and straightforward 
process. 

2.1 Research question 
From the above problem the following research questions arise: 

RQ.1 What deep-learning methods are available to extract the 
key features? 

RQ.2 How closest point pairs and corresponding transition 
matrix can be calculated? 

RQ.3  Is the matching process with no semantic segmentation 
faster than the previous approach [5] in terms of 
modifying the template library? 

3 RELATED WORK 
To find the relevant literature Scopus, Google Scholar, and IEEE 
Explore sources were used. 

Although CAD template matching from the point cloud is a 
relatively common topic within the academic area, the processing 
pipeline similar to the proposed one is not. The main difference 
being most papers use semantic segmentation as a tool to class the 
labelled points into multiple segments. Such examples are 
PointNet++[6], introduced in 2017 and RandLA-Net[7] published in 
2019. Next, those segments are matched to the sampled point cloud. 
The most common algorithm to match the template with the cloud 
is the point pair feature-based matching. Although it works well 
without template matching involved, it is perceived as a redundant 
step in the application  context, as mentioned previously.  

Other solutions use normal orientation detection or outlier 
detection in the pre-processing phase and later on a feature 
description[8]. This could have worked in the scope of the 
application, however, using deep convolutional neural networks 
(DCNN) ensures a higher amount of key features found and higher 
accuracy in the end. 

If we consider the feature derivation standalone most algorithms 
use the density[9] or edge feature extraction[10] to get the 
representative vectors. Others, less popular ones draw geometrical 
figures anchoring to the points and generate data from those[11]. 

According to the performance comparison conducted by 
Stancelova et al. [12] among the most common detector-descriptor 
combinations, the most stable detector is Intristric Shape Signatures 
3D (ISS3D) and the most performant descriptor is the Fast Point 
Feature Histogram (FPFH)[13]. Even though those can provide 
useful matching metrics it provides too little information to match 
the elements effectively and accurately enough. Therefore, this 
method is not implemented in this paper. 

3.1 Deep feature extraction 
In the field of the point cloud, and deep network descriptors very 
little research can be found. Most methods omit feature extraction 
standalone and use it inside the neural network itself to segment 
points [14] for instance.  

Others use the network for point cloud registrations[15] or 
reconstructions [16]. Some of the methods used in the mentioned 
tasks are relevant to our reconstruction pipeline. One of the 
examples could be an interest point detection for the point clouds. 
However, the detection methods used for registration purposes 
would provide worse performance in our pipeline. The main reason 
being those networks require multiple fragments of the same point 
cloud to generate overlap between point neighbourhoods. If it was 
used with our dataset, the fragments would be required to be 
generated and therefore the key points detected within those 
fragments would be random points based on the probability of 
sampling the same points multiple times. Therefore, the detectors 
and descriptors with the aim to solve the registration or 
reconstruction tasks are not adequate in this work.  

The most promising work providing both key points detection 
and description for our point clouds is the Unsupervised Stable 
Interest Point (USIP)[17]. In the paper, the authors argue their 
method is the most stable algorithm among random, SIFT-3D[18], 
ISS[19], Harris-3D[20] and 3DFeatNet[21]. It can be used to register 
point clouds or classify them, however, the method  purpose is to 
be used as a standalone network.  
All information combined provides an answer to the RQ. 1. 

3.2 Mesh reconstruction 
In order to reconstruct the CAD model from the scan, one could use 
a mesh reconstruction instead of template matching. This method 
uses a point cloud surface to generate geometric figures such as 
triangles or spheres [22], which combined create a mesh. 

In this field, a high amount of research can be found, but most 
of the papers use a deep neural network to train the model from 
numerous exemplary meshes and reconstruct the point cloud based 
on those. Unfortunately, the given output does not provide high 
accuracy in terms of positioning or surface structure. Hereafter, this 
method is not a valid proposition for our pipeline.  

3.3  CAD template matching 
In terms of pipelines for CAD template matching a few works can 
be found. The most promising is the one introduced by Verga et al. 
[23]. It starts with a pre-processing module, where outliers are 
removed and surface normal is estimated. Next, it detects key points 
and extracts features. Later, it uses the K-Nearest Neighbour (K-
NN) algorithm to find pairs of points between the template and 
scene point cloud. Those pairs are clustered using the DBSCAN 
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method and then it tries to find the minimum-weight matches. In 
the last stage, the output from the module is used in the Iterative 
Closest Point (ICP) algorithm to generate the transformation 
matrix.  
 The mentioned algorithm provides flexibility in terms of 
modifying the template library and matching accuracy.  

4 DATASET 
The data used to provide the results in this study is a dataset, 
consisting of 15 distinct, high-density terrestrial point cloud scans 
of the catenary arches (Fig.1) [1]. Those scans were produced using 
a Trimble TX8 laser scanner placed on the moving maintenance 
train. It contained single or multiple arches within a single file and 
all points were manually labelled with one of the 14 classes. It did 
not contain many outliers as it was previously prepared for the 
training using the PointNet++[6] network. 

In addition to the point clouds, 60 CAD models were used in the 
models' library. It contained mostly drawings of the arches, poles, 
insulators, connectors and rods. Examples of used elements are 
present in Fig. 9. All those elements were distinct, with some having 
only small discrepancies.  

5 PROPOSED METHOD 
In this section, we will introduce our method to reconstruct the 
CAD models. It consists of multiple modules such as preprocessing, 
correspondence estimation and transformation estimation as 
depicted in Fig.2. 

When referenced to the random transformation of the point 
cloud its transformations are limited to the rotations and 
translations in all three axes (x, y, z). The resulting pipeline is 
inspired by the one proposed by Verga et al. [23]. 

5.1 CAD template preprocessing 
Every model added to the library is processed beforehand. It starts 
with a uniform random sampling of the mesh with 100 000 or 500 
000 points. Next, it goes through the pre-processing pipeline (with 
the exception of outliers removal) to extract the features, which will 

be used to match the template with other point clouds. When 
features are generated, they are saved in files to save the 
computational time needed to generate those.  

5.2 Pre-processing 

5.2.1 Outlier detection and normal estimation. To detect the outliers 
the point cloud is down-sampled using the voxels. Then, the 
resulting voxels are down sampled again for the specific number of 
points and outliers are calculated for 15 nearest neighbours and 
standard deviation equal to 3.  

From the processed point cloud surface normal is estimated by 
querying the k-dimensional tree (KDTree) with a given radius and 
maximum neighbours number. The default parameters used were a 
radius of 0.1 and a maximum neighbour number set at 30. 

5.2.2 Keypoint generation. Two distinct methods are used to 
generate the interest points. The first one is random uniform points 
sampling and the second one is the Unsupervised Stable Interest 
Point (USIP) [17] method. 

The first method provides the best performance among the two 
and when given a high number of input points ensures samples 
from all scene elements are present and can be matched in later 
stages. Moreover, it is the only method ensuring the key points can 
be found in the initial point cloud. 

Contrary to random sampling the USIP uses the deep 
convolutional network to calculate the key points. It provides 
higher stability and reproducibility of the selected points but does 
so in a long time. In essence, it takes an input point cloud and 
creates a randomly transformed copy of it. Next, given points are 
convoluted with multiple layers, including two of the PointNet [14] 
layers and normalized to the desired size. Based on the returned 
points from the normal point cloud and transformed one the 
Probabilistic Chamfer Loss is calculated to establish the 
performance. The main advantage of this method in comparison to 
similar solutions [21], [24], [25] is higher point stability and 
distinctiveness. To find the representative features it performs a 

Fig. 2 The overview of the proposed reconstruction pipeline. The green-dotted arrow between uniform sampling and CAD models 
library indicates that point cloud is prepocessed in the part of the preprocessing modules (green-dotted lines) and later output is added to 

the library. 
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ball query of radius 2, which provides a significant amount of the 
surface information. 

5.2.3 Feature description. After extensive research on the subject of 
deep convolutional network generating point descriptors, we 
decided to use the USIP descriptor implementation (Fig.3). This 
unsupervised deep learning algorithm is similar in its functionality 
to the 3DFeat-Net [21]. However, according to the paper it 
outperforms it in terms of speed and flexibility. At its core, it differs 
from the USIP keypoint detector slightly. The main difference 
between those in the data input used to train it, is the normal point 
cloud and its key points, randomly transformed point cloud and its 
key points and negative samples of the original point cloud. To 
provide negative samples a random normal point cloud from the 
data batch (excluding itself by comparing the provided index) is 
selected as all dataset elements are distinct. Both algorithms use the 
k-nearest points at their core to find representative features of the 
points such as density or noise amount. The USIP network uses a 
ball-search to find the nearest neighbours of the point and based on 
the output, generates the local descriptor. 

In the training phase, random points are selected from the point 
cloud as it would be computationally impossible to fit the entire 

with other necessary data. To 
select those points two methods are used. The first is random 
uniform sampling and the second is K-th nearest neighbours of a 
random point. The second method ensures no information is lost 
from the local environment of the point and density is kept intact. 
However, for the descriptor to learn efficiently it requires a high 
number of epochs used in the process. The default size of the 
selected sample is 15 000 vectors. 

 
Fig. 3 USIP descriptor network architecture [17]. 

5.3 Correspondence estimation 

5.3.1 Closest point matching. To find the corresponding points 
between two point clouds the closest point matching module was 
introduced. It uses the euclidean distance to calculate the similarity 
between all descriptors derived from the point clouds and returns 
the lowest value for each point. A sample matching from this 
module is presented in Fig. 4. The mentioned method provides part 
of the answer to the RQ. 2. 

 
Fig. 4 Example of point clouds registration from the closest point 

matching. It shows 20 closest pairs based on 128 interest points used. 

5.3.2 DBSCAN clustering. The closest point matching function 
outputs the pairs of closest points between two point clouds. 
However, those points might belong to multiple instances as their 
neighbourhoods matches and therefore are classified into the same 
category. In order to solve this issue, we propose the Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) algorithm 
to cluster the points within a single category and therefore perform 
a simplified instance segmentation. As DBSCAN is the only 
clustering algorithm not requiring the input number of clusters and 
is highly performant on diverse input sizes, it is the most suitable 
candidate among all clustering algorithms [26]. 

5.4 Transformation estimation 
To position the CAD template in the correct orientation, position 
and scale the Iterative Closest Point (ICP)[27] algorithm is used. In 
each loop, it calculates the affine transformation matrix between 
the closest point pairs provided by the correspondence estimation 
module. The number of loops necessary to position the element 
depends on the initial distance between point clouds and the initial 
transformation matrix provided to the algorithm. The mentioned 
ICP transformation loop provides an answer to part of the RQ. 2. 

6 RELATION TO PREVIOUS WORK 
The previous work proposed by Vieth [5] focused on the 
classification and segmentation of catenary arches. In order to add 
a new template to the catalogue, it needs to be sampled first. Next, 
the model needs to be retrained in order to learn a new data 
category. 
C approach to 
adding new elements is to sample the template, remove outliers, 
estimate normal, detect key points and generate its descriptors. By 
using this process no model needs to be retrained, resulting in time 
savings. 

7 IMPLEMENTATION 
The implementation of the pipeline was written in the Python 
language and used multiple external modules. The most important 
ones were Open3D, Trimesh, Point Cloud Library (PCL) and 
NumPy. A Trimesh package is a library for working with triangular 
meshes. Whereas the PCL is an open-source package for point 
cloud and geometries processing. 
 Both detector and descriptor use the farthest sampling algorithm 
to down-sample the input data as the original data size is feasibly 
impossible to be used directly. This algorithm samples the points 
selecting ones with the highest distance from the previous one. This 
ensures better sample coverage over the entire point set. 



Digital scene reconstruction from the LiDAR-based scan of the catenary arch  TScIT 37, July 8, 2022, Enschede, The Netherlands 

5 

7.1 Interest point detector 
The implementation of the detector, inspired by the USIP paper was 
developed. It sampled the 10 000 points from the given point clouds 
using the farthest sampling to train the network. It was trained to 
return 800 key points by taking into account 32 closest neighbours 
of the selected points. 

7.2 Point descriptor 
The original USIP point descriptor expected 3 samples to be 
provided for training, the source, positive and negative. It was later 
changed to accept a single point cloud as a data entry and a non-
negative sample would be generated by rotating points and 
translating them randomly. The negative sample was any other 
point cloud used in the batch. To train it, the minimum batch size 
used was 4. If the lower size was used, the descriptor could learn a 

samples. 

7.3 Closest point matching 
In the implementation of the closest point matching the K-Nearest 
Neighbour algorithm is used to find the closest matching point for 
each point descriptor. In this algorithm, we set a 0.8 distance 
threshold to ensure higher pair accuracy. 

7.4 Transformation estimation 
The mentioned ICP algorithm used in the pipeline is the standard 
version using the maximum iteration number if not converged and 
the normalization threshold. In our implementation, we set those 
to 1e-05 and 20 respectively, which ensures lower computational 
cost overall. Moreover, to speed up the process and reduce the 
transformation error the initial transformation matrix was provided 
to the algorithm. 

8 EXPERIMENTS AND RESULTS 
Both detector and descriptor networks were trained using a remote 
environment with NVIDIA Quadro P5000 graphic card (16 GB 
memory), 8 vCPU and 30 GB RAM. Then, for testing purposes the 
local machine was used with the following specification: Intel i7-
11800H, 16GB RAM and NVIDIA GeForce RTX 3050 Ti (4 GB 
memory) graphic card. The experiments were conducted using 
Python 3.8, Cuda 11.3 and PyTorch 1.11.  

8.1 Detector performance and accuracy 
While testing for key point generation with the LiDAR point cloud 
scene the detector performed poorly, returning points skewed on 
the left side of the scan (Fig. 5). This behaviour was tried to be 

network with solely scan point clouds contrary to the default 
training set. But no action resulted in the correct result. 

8.2 Descriptor and closest point matching accuracy 
To measure the accuracy of the descriptor and closest point 
matching algorithm multiple randomly selected CAD models were 
used with the lowest probabilistic Chamfer loss description model. 

The procedure was following, an input CAD model was 
uniformly sampled with 100 000 points, and then it went through 
the preprocessing module with a given number of interest points. 
Next, the same point cloud derived from the model and its interest 
points were transformed using random rotations, translations and 
scale, keeping the order of points in the array. The matching 
interest points from the first point cloud and the transformed ones 
were saved for later check. Afterwards, for randomly selected 
interest points within the transformed ones, the descriptors were 
generated using USIP and inserted into the closest point matching 
function with the normal point cloud interest points. The closest 
point pairs (Fig. 4) were compared to the saved corresponding pairs 
using a ball query of radius 1.5 and later counted. Next, the output 
number was divided by the total number of the returned point pairs. 
Those steps were repeated for a different number of interest points 
(128, 256, 512, 1024) and for each repeated 20 times to increase the 
accuracy of the results.  

The resulting accuracy of the descriptor and pair matching for 
multiple keypoint sizes were equal to 0.998 with the standard error 
of 2-04e. This result indicates that the USIP network is a suitable 
choice for our dataset and ensures state-of-the-art accuracy and 
stability.  

8.3 Descriptor and closest point matching performance 
 

Fig. 5 Sample scene point cloud with interest points detected by the USIP network. 
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Fig. 6 Measured times to generate interest points and their descriptors 

in correlation to the interest point number (x-axis), input point cloud size 
and used algorithm. 

In order to measure the performance of the USIP descriptor 
multiple trials were developed using a different number of interest 
points, input point cloud size and key point detection method. All 
configurations were tested over the span of 128  1280 interest 
points with 128 points steps. It was repeated 20 times to achieve 
higher accuracy of the presented times and different point clouds 
were used. The used configurations were random key point 
selection with 100 000 input points and USIP interest point detector 
with point clouds, having 100 000 and 500 000 points. The detector 
used in this trial was trained on 15 000 input points and 3000 key 
points, having an overall loss of 11.5.  

From the graph (Fig. 6), the strongly visible linear trend can be 
derived. For all configurations, a similar tendency follows with 
different slopes. The slowest description times were noted with the 
highest input point cloud size and those increase faster with a 
higher number of key points. An interesting phenomenon can be 
seen at 128 key points for all settings as its time is equivalent to the 
one with 640 interest points.    

 
Fig. 7 Measured times to find closest point pairs from two arrays, 

containing point descriptors. It shows the correlation with the given array 
size. 

With the generated descriptor arrays the performance of the closest 
point matching was evaluated. All trials were repeated 20 times for 
higher testing accuracy. With a higher number of points given to 
the matching module the higher times were noticed. The resulting 
tendency (Fig. 7) follows an exponential distribution.  

8.4 Transformation estimation accuracy 

 
a) 

 
b) 

Fig. 8 a) Sample query point cloud. b) Transformed CAD model with 
source points. 

To test the accuracy of the transformation module in our pipeline 
we followed a similar procedure as the one used in section 8.3. The 
algorithm used to provide the interest points was a random 
sampling as it ensures the interest points are present in the pointset. 
The ICP algorithm provided the transformation matrix, which later 
on was applied to the source CAD model (Fig.6). The resulting and 
source point clouds were used to calculate the Root mean square 
error (RMSE), which was equal to 0.0002. The RMSE reflects the 
average distance between matching points produced by the 
correspondence module. It was repeated 20 times and hence the 
standard error of the 1-05e applies to the provided RMSE. 

8.5 New CAD template addition - performance 
comparison 

In order to measure the time necessary to add a new element to the 
catalogue using the previous method, the model was trained and 
timed. The average training time for the entire dataset assuming 
500 epochs was 1000 seconds overall using the remote 
environment. While this time is acceptable in normal usage, our 
template addition takes approximately 2.3 seconds when using 640 
random key points and 4s when using 640 USIP key points.  

This provides the answer to the RQ. 3 with the positive response. 
Our approach is approximately 250 times faster than the previous 
approach. The accuracy of both methods was not compared in the 
scope of this paper. 
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9 DISCUSSION AND CONCLUSION 

9.1 General conclusion 
In this paper, we present a scene reconstruction pipeline for the 
LiDAR scans of the railway catenary arches. The proposed novelty 
is semantic segmentation omission in order to simplify the pipeline 
and make labelling unnecessary. To detect interest points and 
generate their descriptors it proposes to use the deep neural 
network, explicitly the USIP model. The pipeline outperforms the 
existing solution[5] in terms of the time necessary to add a new 
element into the catalogue and automates most of the tasks 
necessary to reconstruct the CAD element. To conclude, the chosen 
method with USIP as the point descriptor, random keypoint 
selection, ICP transformer and DBSCAN clustering even though 
having issues, confirms the feasibility to reconstruct the scans of 
the railway arches. 

9.2 Value of this study 
The entire study confirmed the hypothesis of semantic 
segmentation omission. Even though, the results were not as 
positive as expected they provided insightful data and viability for 
future work on the subject. Moreover, the resulting pipeline 
provides the most valuable improvement of all, removing the need 
for labelling task, which is cumbersome and expensive. Moreover, 
it showed the performance gains with the proposed solutions over 
the past pipeline, indicating possible costs and resource savings for 
the companies. 

9.3 Future work 
In the future, the pipeline could be improved upon the keypoint 
detection. To ensure this, the work on higher keypoint stability and 
reproducibility should be performed. When this is settled it should 
improve the accuracy of the transformations of the templates as 
well.  

Moreover, work on the own keypoint detector and descriptor 
could be performed as the research in the field of deep feature 
extraction is limited and must be explored further.  

One other area in need of improvement is the CAD templates 
overlap in the resulting mesh. As the points belonging to the same 
element can be classified into multiple elements in the library the 
elements in the scene might overlap each other. In order to solve 
this issue, the bounding box of the elements could be used to 
classify all points within it as the same element. 

9.4 Shortcomings and limitations 
The biggest issues encountered during the experiment were digital 
environment issues, mostly with CUDA and PyTorch platforms. 
Initially, the experiments were expected to be run locally as 
mentioned in chapter 7, however, the computational power was not 
sufficient to train the models with lower loss. This resulted in 
moving the experiments to the cloud environment. 

One of the main weak points of this experiment is the 
environment used to train and test CNN models. With a limited 
GPU memory, it is not possible to use the entire point cloud as the 
dataset input and therefore some of the detected key points and 
generated descriptors might have low accuracy. Additionally, with 
the lower batch size used in training the models comes the 
possibility of not having enough distinct negative samples, which 
can result in high network loss and poor model overall. 

Another significant issue encountered in this work was a low 
number of papers in the field of deep neural network point cloud 
descriptors. In this field, only a few papers were found and within 
those only two were suitable to use in the context of this work. As 
most researchers use feature extraction in their networks directly 
it is challenging to find a suitable paper. 
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