
1

CAD model reconstruction from the LiDAR
scan of the catenary arch
BARTOSZ PRZADKA , University of Twente, The Netherlands

Fig. 1 Exemplary LiDAR-based scans of the catenary arches [1]

The railway industry sees a chance to improve its operations both in terms
of security and efficiency by digitalizing the railway tracks and nearby
structures. Strukton Rail in collaboration with the University of Twente and
the Saxion University of Applied Science began the digitalization of its
resources as the necessity for such a process began emerging worldwide.
The main focus in this process is the catenary arch as it plays a crucial role

fundamental functionality. Such an arch consists of poles,
insulators and many more elements. Currently, the companies managing
the network do not have an overview of their infrastructure or the
inventory of the elements. Moreover, it can contain both legacy and new
elements, which requires trained professionals to perform a manual on-site
state assessment and therefore makes the operations cumbersome and time-
consuming. This is why there is a need for digital twins (virtual
representations) of those, allowing for faster and more reliable repairs and
improvements.
This paper explores the process of matching the LiDAR-produced point
clouds of the catenary arches to its CAD template stored in the catalogue
form. It omits the semantic segmentation in its core as it is perceived as
unnecessary and focuses on a deep convolutional neural network (CNN) to
extract the features from a scan. Such an approach ensures the labelling task
and retraining of the semantic segmentation network are unnecessary. This
research is a proof of concept and confirms that the proposed method is
feasible and provides numerous improvements over the existing one. To
find the best interest point detection method for the given dataset, multiple
methods were compared. In the last phase, it was compared to the existing
method and provided an overall 250 times speed improvement in terms of
adding a new CAD template to the models' catalogue.

Additional Key Words and Phrases: CAD, point cloud, deep learning,
catenary arch, feature extraction, CNN, digital twin, railway, reconstruction

1 INTRODUCTION
There is about 3055 km[2] of the railroad network in the
Netherlands alone. In this network, there are catenary arches,
placed at 50 - 70 m intervals, which give around 43 642 61 100
pieces in total. They are fundamental to this system as they carry
the power lines, insulators and many more elements above the
traction, safely from the users. This study disregards the electric
wires and focuses on the construction elements such as poles and
arches with the elements assembled upon them.

Those structures are a mixture of both new elements and their
legacy equivalents, which makes it difficult for the maintenance
team to conduct necessary repairs and improvements in a fast and
efficient manner. Currently, the state of the elements and the need
for repair are assessed by the specialised workers manually by the
means of visual inspection. As the state of the elements is crucial to
the safety of the entire network and carried passengers it is
essential to explore new methods to map the infrastructure to its
digital equivalent (twin). Digital twins are the virtual
representations of physical objects with respect to their size, shape
and orientation[3]. A new method would allow workers to scan the
environment from the train using for instance LiDAR and to find
correct elements from its library quickly. This necessity was
noticed by Strukton Rail, who in collaboration with the University
of Twente and the Saxion University of Applied Science began the
digitalization process of the railway network infrastructure.

In the mentioned digitalization phase a new inventory system
needs to be proposed. This paper explores the deep learning-based
procedure to reconstruct the CAD models, stored in the library
form from the point cloud scans of the real-life catenary arches,
using deep learning feature extraction. Deep learning is a subtype
of the machine learning method. It consists of multiple
convolutional layers, each, transforming the input data into a more
abstract form, which in the end allows its program to detect objects,
features and many more[4]. This study focuses mainly on the point
clouds generated by the LiDAR installed on the service train and
CAD templates catalogue.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

2

TScIT 37, July 8, 2022, Enschede, The Netherlands Bartosz Przadka

In the following sections, we will provide a problem with the
current situation and research questions, supporting the search for
solutions. Next, the results of a performed literature review will be
provided with relevant information and possible solutions. From
the given information the proposed method is derived and will be
described in-depth. In the next section, the implementation of the
pipeline is provided, all experiments and their results. In the end,
we will provide conclusions and information on which aspects of a
new method need improvement.

2 PROBLEM STATEMENT
In 2022, there was already performed a study about matching the
catenary arch s point cloud-based scan to its CAD templates [5].
However, it requires labelled data in the semantic segmentation
part of the pipeline. By using semantic segmentation, when a new
element is added to the library it needs to be labelled first and later
the network needs to be re-trained, which could cause delays and
higher costs for the companies. The proposed improvement is to
omit the middle step (semantic segmentation) and to train the deep
learning model directly to extract the point cloud features. Those
could be used later to find the corresponding CAD model from the
catalogue. Such a change would make the labelling task
unnecessary and generate a much simpler and straightforward
process.

2.1 Research question
From the above problem the following research questions arise:

RQ.1 What deep-learning methods are available to extract the
key features?

RQ.2 How closest point pairs and corresponding transition
matrix can be calculated?

RQ.3 Is the matching process with no semantic segmentation
faster than the previous approach [5] in terms of
modifying the template library?

3 RELATED WORK
To find the relevant literature Scopus, Google Scholar, and IEEE
Explore sources were used.

Although CAD template matching from the point cloud is a
relatively common topic within the academic area, the processing
pipeline similar to the proposed one is not. The main difference
being most papers use semantic segmentation as a tool to class the
labelled points into multiple segments. Such examples are
PointNet++[6], introduced in 2017 and RandLA-Net[7] published in
2019. Next, those segments are matched to the sampled point cloud.
The most common algorithm to match the template with the cloud
is the point pair feature-based matching. Although it works well
without template matching involved, it is perceived as a redundant
step in the application context, as mentioned previously.

Other solutions use normal orientation detection or outlier
detection in the pre-processing phase and later on a feature
description[8]. This could have worked in the scope of the
application, however, using deep convolutional neural networks
(DCNN) ensures a higher amount of key features found and higher
accuracy in the end.

If we consider the feature derivation standalone most algorithms
use the density[9] or edge feature extraction[10] to get the
representative vectors. Others, less popular ones draw geometrical
figures anchoring to the points and generate data from those[11].

According to the performance comparison conducted by
Stancelova et al. [12] among the most common detector-descriptor
combinations, the most stable detector is Intristric Shape Signatures
3D (ISS3D) and the most performant descriptor is the Fast Point
Feature Histogram (FPFH)[13]. Even though those can provide
useful matching metrics it provides too little information to match
the elements effectively and accurately enough. Therefore, this
method is not implemented in this paper.

3.1 Deep feature extraction
In the field of the point cloud, and deep network descriptors very
little research can be found. Most methods omit feature extraction
standalone and use it inside the neural network itself to segment
points [14] for instance.

Others use the network for point cloud registrations[15] or
reconstructions [16]. Some of the methods used in the mentioned
tasks are relevant to our reconstruction pipeline. One of the
examples could be an interest point detection for the point clouds.
However, the detection methods used for registration purposes
would provide worse performance in our pipeline. The main reason
being those networks require multiple fragments of the same point
cloud to generate overlap between point neighbourhoods. If it was
used with our dataset, the fragments would be required to be
generated and therefore the key points detected within those
fragments would be random points based on the probability of
sampling the same points multiple times. Therefore, the detectors
and descriptors with the aim to solve the registration or
reconstruction tasks are not adequate in this work.

The most promising work providing both key points detection
and description for our point clouds is the Unsupervised Stable
Interest Point (USIP)[17]. In the paper, the authors argue their
method is the most stable algorithm among random, SIFT-3D[18],
ISS[19], Harris-3D[20] and 3DFeatNet[21]. It can be used to register
point clouds or classify them, however, the method purpose is to
be used as a standalone network.
All information combined provides an answer to the RQ. 1.

3.2 Mesh reconstruction
In order to reconstruct the CAD model from the scan, one could use
a mesh reconstruction instead of template matching. This method
uses a point cloud surface to generate geometric figures such as
triangles or spheres [22], which combined create a mesh.

In this field, a high amount of research can be found, but most
of the papers use a deep neural network to train the model from
numerous exemplary meshes and reconstruct the point cloud based
on those. Unfortunately, the given output does not provide high
accuracy in terms of positioning or surface structure. Hereafter, this
method is not a valid proposition for our pipeline.

3.3 CAD template matching
In terms of pipelines for CAD template matching a few works can
be found. The most promising is the one introduced by Verga et al.
[23]. It starts with a pre-processing module, where outliers are
removed and surface normal is estimated. Next, it detects key points
and extracts features. Later, it uses the K-Nearest Neighbour (K-
NN) algorithm to find pairs of points between the template and
scene point cloud. Those pairs are clustered using the DBSCAN

Digital scene reconstruction from the LiDAR-based scan of the catenary arch TScIT 37, July 8, 2022, Enschede, The Netherlands

3

method and then it tries to find the minimum-weight matches. In
the last stage, the output from the module is used in the Iterative
Closest Point (ICP) algorithm to generate the transformation
matrix.
 The mentioned algorithm provides flexibility in terms of
modifying the template library and matching accuracy.

4 DATASET
The data used to provide the results in this study is a dataset,
consisting of 15 distinct, high-density terrestrial point cloud scans
of the catenary arches (Fig.1) [1]. Those scans were produced using
a Trimble TX8 laser scanner placed on the moving maintenance
train. It contained single or multiple arches within a single file and
all points were manually labelled with one of the 14 classes. It did
not contain many outliers as it was previously prepared for the
training using the PointNet++[6] network.

In addition to the point clouds, 60 CAD models were used in the
models' library. It contained mostly drawings of the arches, poles,
insulators, connectors and rods. Examples of used elements are
present in Fig. 9. All those elements were distinct, with some having
only small discrepancies.

5 PROPOSED METHOD
In this section, we will introduce our method to reconstruct the
CAD models. It consists of multiple modules such as preprocessing,
correspondence estimation and transformation estimation as
depicted in Fig.2.

When referenced to the random transformation of the point
cloud its transformations are limited to the rotations and
translations in all three axes (x, y, z). The resulting pipeline is
inspired by the one proposed by Verga et al. [23].

5.1 CAD template preprocessing
Every model added to the library is processed beforehand. It starts
with a uniform random sampling of the mesh with 100 000 or 500
000 points. Next, it goes through the pre-processing pipeline (with
the exception of outliers removal) to extract the features, which will

be used to match the template with other point clouds. When
features are generated, they are saved in files to save the
computational time needed to generate those.

5.2 Pre-processing

5.2.1 Outlier detection and normal estimation. To detect the outliers
the point cloud is down-sampled using the voxels. Then, the
resulting voxels are down sampled again for the specific number of
points and outliers are calculated for 15 nearest neighbours and
standard deviation equal to 3.

From the processed point cloud surface normal is estimated by
querying the k-dimensional tree (KDTree) with a given radius and
maximum neighbours number. The default parameters used were a
radius of 0.1 and a maximum neighbour number set at 30.

5.2.2 Keypoint generation. Two distinct methods are used to
generate the interest points. The first one is random uniform points
sampling and the second one is the Unsupervised Stable Interest
Point (USIP) [17] method.

The first method provides the best performance among the two
and when given a high number of input points ensures samples
from all scene elements are present and can be matched in later
stages. Moreover, it is the only method ensuring the key points can
be found in the initial point cloud.

Contrary to random sampling the USIP uses the deep
convolutional network to calculate the key points. It provides
higher stability and reproducibility of the selected points but does
so in a long time. In essence, it takes an input point cloud and
creates a randomly transformed copy of it. Next, given points are
convoluted with multiple layers, including two of the PointNet [14]
layers and normalized to the desired size. Based on the returned
points from the normal point cloud and transformed one the
Probabilistic Chamfer Loss is calculated to establish the
performance. The main advantage of this method in comparison to
similar solutions [21], [24], [25] is higher point stability and
distinctiveness. To find the representative features it performs a

Fig. 2 The overview of the proposed reconstruction pipeline. The green-dotted arrow between uniform sampling and CAD models
library indicates that point cloud is prepocessed in the part of the preprocessing modules (green-dotted lines) and later output is added to

the library.

4

TScIT 37, July 8, 2022, Enschede, The Netherlands Bartosz Przadka

ball query of radius 2, which provides a significant amount of the
surface information.

5.2.3 Feature description. After extensive research on the subject of
deep convolutional network generating point descriptors, we
decided to use the USIP descriptor implementation (Fig.3). This
unsupervised deep learning algorithm is similar in its functionality
to the 3DFeat-Net [21]. However, according to the paper it
outperforms it in terms of speed and flexibility. At its core, it differs
from the USIP keypoint detector slightly. The main difference
between those in the data input used to train it, is the normal point
cloud and its key points, randomly transformed point cloud and its
key points and negative samples of the original point cloud. To
provide negative samples a random normal point cloud from the
data batch (excluding itself by comparing the provided index) is
selected as all dataset elements are distinct. Both algorithms use the
k-nearest points at their core to find representative features of the
points such as density or noise amount. The USIP network uses a
ball-search to find the nearest neighbours of the point and based on
the output, generates the local descriptor.

In the training phase, random points are selected from the point
cloud as it would be computationally impossible to fit the entire

with other necessary data. To
select those points two methods are used. The first is random
uniform sampling and the second is K-th nearest neighbours of a
random point. The second method ensures no information is lost
from the local environment of the point and density is kept intact.
However, for the descriptor to learn efficiently it requires a high
number of epochs used in the process. The default size of the
selected sample is 15 000 vectors.

Fig. 3 USIP descriptor network architecture [17].

5.3 Correspondence estimation

5.3.1 Closest point matching. To find the corresponding points
between two point clouds the closest point matching module was
introduced. It uses the euclidean distance to calculate the similarity
between all descriptors derived from the point clouds and returns
the lowest value for each point. A sample matching from this
module is presented in Fig. 4. The mentioned method provides part
of the answer to the RQ. 2.

Fig. 4 Example of point clouds registration from the closest point

matching. It shows 20 closest pairs based on 128 interest points used.

5.3.2 DBSCAN clustering. The closest point matching function
outputs the pairs of closest points between two point clouds.
However, those points might belong to multiple instances as their
neighbourhoods matches and therefore are classified into the same
category. In order to solve this issue, we propose the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm
to cluster the points within a single category and therefore perform
a simplified instance segmentation. As DBSCAN is the only
clustering algorithm not requiring the input number of clusters and
is highly performant on diverse input sizes, it is the most suitable
candidate among all clustering algorithms [26].

5.4 Transformation estimation
To position the CAD template in the correct orientation, position
and scale the Iterative Closest Point (ICP)[27] algorithm is used. In
each loop, it calculates the affine transformation matrix between
the closest point pairs provided by the correspondence estimation
module. The number of loops necessary to position the element
depends on the initial distance between point clouds and the initial
transformation matrix provided to the algorithm. The mentioned
ICP transformation loop provides an answer to part of the RQ. 2.

6 RELATION TO PREVIOUS WORK
The previous work proposed by Vieth [5] focused on the
classification and segmentation of catenary arches. In order to add
a new template to the catalogue, it needs to be sampled first. Next,
the model needs to be retrained in order to learn a new data
category.
C approach to
adding new elements is to sample the template, remove outliers,
estimate normal, detect key points and generate its descriptors. By
using this process no model needs to be retrained, resulting in time
savings.

7 IMPLEMENTATION
The implementation of the pipeline was written in the Python
language and used multiple external modules. The most important
ones were Open3D, Trimesh, Point Cloud Library (PCL) and
NumPy. A Trimesh package is a library for working with triangular
meshes. Whereas the PCL is an open-source package for point
cloud and geometries processing.
 Both detector and descriptor use the farthest sampling algorithm
to down-sample the input data as the original data size is feasibly
impossible to be used directly. This algorithm samples the points
selecting ones with the highest distance from the previous one. This
ensures better sample coverage over the entire point set.

Digital scene reconstruction from the LiDAR-based scan of the catenary arch TScIT 37, July 8, 2022, Enschede, The Netherlands

5

7.1 Interest point detector
The implementation of the detector, inspired by the USIP paper was
developed. It sampled the 10 000 points from the given point clouds
using the farthest sampling to train the network. It was trained to
return 800 key points by taking into account 32 closest neighbours
of the selected points.

7.2 Point descriptor
The original USIP point descriptor expected 3 samples to be
provided for training, the source, positive and negative. It was later
changed to accept a single point cloud as a data entry and a non-
negative sample would be generated by rotating points and
translating them randomly. The negative sample was any other
point cloud used in the batch. To train it, the minimum batch size
used was 4. If the lower size was used, the descriptor could learn a

samples.

7.3 Closest point matching
In the implementation of the closest point matching the K-Nearest
Neighbour algorithm is used to find the closest matching point for
each point descriptor. In this algorithm, we set a 0.8 distance
threshold to ensure higher pair accuracy.

7.4 Transformation estimation
The mentioned ICP algorithm used in the pipeline is the standard
version using the maximum iteration number if not converged and
the normalization threshold. In our implementation, we set those
to 1e-05 and 20 respectively, which ensures lower computational
cost overall. Moreover, to speed up the process and reduce the
transformation error the initial transformation matrix was provided
to the algorithm.

8 EXPERIMENTS AND RESULTS
Both detector and descriptor networks were trained using a remote
environment with NVIDIA Quadro P5000 graphic card (16 GB
memory), 8 vCPU and 30 GB RAM. Then, for testing purposes the
local machine was used with the following specification: Intel i7-
11800H, 16GB RAM and NVIDIA GeForce RTX 3050 Ti (4 GB
memory) graphic card. The experiments were conducted using
Python 3.8, Cuda 11.3 and PyTorch 1.11.

8.1 Detector performance and accuracy
While testing for key point generation with the LiDAR point cloud
scene the detector performed poorly, returning points skewed on
the left side of the scan (Fig. 5). This behaviour was tried to be

network with solely scan point clouds contrary to the default
training set. But no action resulted in the correct result.

8.2 Descriptor and closest point matching accuracy
To measure the accuracy of the descriptor and closest point
matching algorithm multiple randomly selected CAD models were
used with the lowest probabilistic Chamfer loss description model.

The procedure was following, an input CAD model was
uniformly sampled with 100 000 points, and then it went through
the preprocessing module with a given number of interest points.
Next, the same point cloud derived from the model and its interest
points were transformed using random rotations, translations and
scale, keeping the order of points in the array. The matching
interest points from the first point cloud and the transformed ones
were saved for later check. Afterwards, for randomly selected
interest points within the transformed ones, the descriptors were
generated using USIP and inserted into the closest point matching
function with the normal point cloud interest points. The closest
point pairs (Fig. 4) were compared to the saved corresponding pairs
using a ball query of radius 1.5 and later counted. Next, the output
number was divided by the total number of the returned point pairs.
Those steps were repeated for a different number of interest points
(128, 256, 512, 1024) and for each repeated 20 times to increase the
accuracy of the results.

The resulting accuracy of the descriptor and pair matching for
multiple keypoint sizes were equal to 0.998 with the standard error
of 2-04e. This result indicates that the USIP network is a suitable
choice for our dataset and ensures state-of-the-art accuracy and
stability.

8.3 Descriptor and closest point matching performance

Fig. 5 Sample scene point cloud with interest points detected by the USIP network.

6

TScIT 37, July 8, 2022, Enschede, The Netherlands Bartosz Przadka

Fig. 6 Measured times to generate interest points and their descriptors

in correlation to the interest point number (x-axis), input point cloud size
and used algorithm.

In order to measure the performance of the USIP descriptor
multiple trials were developed using a different number of interest
points, input point cloud size and key point detection method. All
configurations were tested over the span of 128 1280 interest
points with 128 points steps. It was repeated 20 times to achieve
higher accuracy of the presented times and different point clouds
were used. The used configurations were random key point
selection with 100 000 input points and USIP interest point detector
with point clouds, having 100 000 and 500 000 points. The detector
used in this trial was trained on 15 000 input points and 3000 key
points, having an overall loss of 11.5.

From the graph (Fig. 6), the strongly visible linear trend can be
derived. For all configurations, a similar tendency follows with
different slopes. The slowest description times were noted with the
highest input point cloud size and those increase faster with a
higher number of key points. An interesting phenomenon can be
seen at 128 key points for all settings as its time is equivalent to the
one with 640 interest points.

Fig. 7 Measured times to find closest point pairs from two arrays,

containing point descriptors. It shows the correlation with the given array
size.

With the generated descriptor arrays the performance of the closest
point matching was evaluated. All trials were repeated 20 times for
higher testing accuracy. With a higher number of points given to
the matching module the higher times were noticed. The resulting
tendency (Fig. 7) follows an exponential distribution.

8.4 Transformation estimation accuracy

a)

b)

Fig. 8 a) Sample query point cloud. b) Transformed CAD model with
source points.

To test the accuracy of the transformation module in our pipeline
we followed a similar procedure as the one used in section 8.3. The
algorithm used to provide the interest points was a random
sampling as it ensures the interest points are present in the pointset.
The ICP algorithm provided the transformation matrix, which later
on was applied to the source CAD model (Fig.6). The resulting and
source point clouds were used to calculate the Root mean square
error (RMSE), which was equal to 0.0002. The RMSE reflects the
average distance between matching points produced by the
correspondence module. It was repeated 20 times and hence the
standard error of the 1-05e applies to the provided RMSE.

8.5 New CAD template addition - performance
comparison

In order to measure the time necessary to add a new element to the
catalogue using the previous method, the model was trained and
timed. The average training time for the entire dataset assuming
500 epochs was 1000 seconds overall using the remote
environment. While this time is acceptable in normal usage, our
template addition takes approximately 2.3 seconds when using 640
random key points and 4s when using 640 USIP key points.

This provides the answer to the RQ. 3 with the positive response.
Our approach is approximately 250 times faster than the previous
approach. The accuracy of both methods was not compared in the
scope of this paper.

0

2

4

6

8

10

128 384 640 896 1152

T
im

e
(s

)

Interest point number

random, 100k
random, 500k
USIP, 100k
USIP, 500k

0

2

4

6

8

10

12

100 6100 12100 18100 24100 30100

T
im

e
(s

)

Point number

Digital scene reconstruction from the LiDAR-based scan of the catenary arch TScIT 37, July 8, 2022, Enschede, The Netherlands

7

9 DISCUSSION AND CONCLUSION

9.1 General conclusion
In this paper, we present a scene reconstruction pipeline for the
LiDAR scans of the railway catenary arches. The proposed novelty
is semantic segmentation omission in order to simplify the pipeline
and make labelling unnecessary. To detect interest points and
generate their descriptors it proposes to use the deep neural
network, explicitly the USIP model. The pipeline outperforms the
existing solution[5] in terms of the time necessary to add a new
element into the catalogue and automates most of the tasks
necessary to reconstruct the CAD element. To conclude, the chosen
method with USIP as the point descriptor, random keypoint
selection, ICP transformer and DBSCAN clustering even though
having issues, confirms the feasibility to reconstruct the scans of
the railway arches.

9.2 Value of this study
The entire study confirmed the hypothesis of semantic
segmentation omission. Even though, the results were not as
positive as expected they provided insightful data and viability for
future work on the subject. Moreover, the resulting pipeline
provides the most valuable improvement of all, removing the need
for labelling task, which is cumbersome and expensive. Moreover,
it showed the performance gains with the proposed solutions over
the past pipeline, indicating possible costs and resource savings for
the companies.

9.3 Future work
In the future, the pipeline could be improved upon the keypoint
detection. To ensure this, the work on higher keypoint stability and
reproducibility should be performed. When this is settled it should
improve the accuracy of the transformations of the templates as
well.

Moreover, work on the own keypoint detector and descriptor
could be performed as the research in the field of deep feature
extraction is limited and must be explored further.

One other area in need of improvement is the CAD templates
overlap in the resulting mesh. As the points belonging to the same
element can be classified into multiple elements in the library the
elements in the scene might overlap each other. In order to solve
this issue, the bounding box of the elements could be used to
classify all points within it as the same element.

9.4 Shortcomings and limitations
The biggest issues encountered during the experiment were digital
environment issues, mostly with CUDA and PyTorch platforms.
Initially, the experiments were expected to be run locally as
mentioned in chapter 7, however, the computational power was not
sufficient to train the models with lower loss. This resulted in
moving the experiments to the cloud environment.

One of the main weak points of this experiment is the
environment used to train and test CNN models. With a limited
GPU memory, it is not possible to use the entire point cloud as the
dataset input and therefore some of the detected key points and
generated descriptors might have low accuracy. Additionally, with
the lower batch size used in training the models comes the
possibility of not having enough distinct negative samples, which
can result in high network loss and poor model overall.

Another significant issue encountered in this work was a low
number of papers in the field of deep neural network point cloud
descriptors. In this field, only a few papers were found and within
those only two were suitable to use in the context of this work. As
most researchers use feature extraction in their networks directly
it is challenging to find a suitable paper.

REFERENCES
[1] catenary arches in the

https://data.4tu.nl/articles/dataset/Labelled_high_resolution_point_cloud_datas
et_of_15_catenary_arches_in_the_Netherlands/17048816/1

[2] E. Commission and D.-G. for M. and Transport,
pocketbook 2021. Publications Office, 2021. doi: doi/10.2832/27610.

[3] M. Jacoby and T. Usländer Current
Applied Sciences, vol. 10, no. 18, 2020, doi:

10.3390/app10186519.
[4] Nature, vol. 521, no. 7553,

pp. 436 444, 2015, doi: 10.1038/nature14539.
[5]

Feb. 18, 2022. [Online]. Available: http://essay.utwente.nl/89565/
[6] C. R. Qi, L. Yi, H. Su, and L. J. Guibas,

[7] Q. Hu et al. -Net: Efficient Semantic Segmentation of Large-Scale Point

[8] D. Varga, J. M. Szalai-Gindl, B. Formanek, P. Vaderna, L. Dobos, and S. Laki,

IEEE
Access, vol. 9, pp. 76894 76907, 2021, doi: 10.1109/ACCESS.2021.3082848.

[9] ity based feature point detection for
IET 3rd International Conference on Wireless, Mobile and

Multimedia Networks (ICWMNN 2010), 2010, pp. 377 380. doi:
10.1049/cp.2010.0694.

[10] onstruction based on point
2016 IEEE Information Technology,

Networking, Electronic and Automation Control Conference, 2016, pp. 275 279.
doi: 10.1109/ITNEC.2016.7560364.

[11] J. Huang and C.- a segmentation for geometric feature
extraction from unorganized 3- IEEE Transactions on
Robotics and Automation, vol. 17, no. 3, pp. 268 279, 2001, doi: 10.1109/70.938384.

[12] luation of
Selected 3D Keypoint Detector 200.
doi: 10.1007/978-3-030-59006-2_17.

[13]

2009 IEEE International Conference on Robotics and
Automation, 2009, pp. 3212 3217. doi: 10.1109/ROBOT.2009.5152473.

[14]

10.48550/ARXIV.1612.00593.
[15] S. Ao,

10.48550/ARXIV.2011.12149.
[16] -Assisted Object Retrieval for

Real-Ti Computer Graphics Forum, vol. 34, no. 2, pp. 435
446, May 2015, doi: https://doi.org/10.1111/cgf.12573.

[17]

1904.00229.
[18] -dimensional sift descriptor and its

Proceedings of the 15th ACM international
conference on Multimedia, 2007, pp. 357 360.

[19]

2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, 2009, pp. 689 696. doi:
10.1109/ICCVW.2009.5457637.

[20] rris 3D: A robust extension of the Harris operator
The Visual Computer, vol. 27, pp. 963

976, Nov. 2011, doi: 10.1007/s00371-011-0610-y.
[21] -Net: Weakly Supervised Local 3D Features for

Computer Vision ECCV 2018, Springer
International Publishing, 2018, pp. 630 646. doi: 10.1007/978-3-030-01267-0_37.

8

TScIT 37, July 8, 2022, Enschede, The Netherlands Bartosz Przadka

[22] I. Lang, A. Manor, and S. Avidan, SampleNet: Differentiable Point Cloud Sampling.
2020. doi: 10.1109/CVPR42600.2020.00760.

[23] D. Varga, J. Szalai-Gindl, B. Formanek, P. Vaderna, L. Dobos, and S. Laki,
IEEE

Access, vol. PP, p. 1, May 2021, doi: 10.1109/ACCESS.2021.3082848.
[24] C. Choy, J. Park, and

2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp.
8957 8965. doi: 10.1109/ICCV.2019.00905.

[25]

Learne
10.48550/ARXIV.2103.13808.

[26]

Incremental K-
10.48550/ARXIV.1406.4751.

[27]

2002 International Conference on Pattern Recognition,
2002, vol. 3, pp. 545 548 vol.3. doi: 10.1109/ICPR.2002.1047997.

[28]

A SAMPLE CAD ELEMENTS

Fig. 9 Sample overview of the CAD elements in the dataset.

	1 INTRODUCTION
	2 PROBLEM STATEMENT
	2.1 Research question

	3 RELATED WORK
	3.1 Deep feature extraction
	3.2 Mesh reconstruction
	3.3 CAD template matching

	4 DATASET
	5 PROPOSED METHOD
	5.1 CAD template preprocessing
	5.2 Pre-processing
	5.2.1 Outlier detection and normal estimation. To detect the outliers the point cloud is down-sampled using the voxels. Then, the resulting voxels are down sampled again for the specific number of points and outliers are calculated for 15 nearest neig...
	5.2.1 Outlier detection and normal estimation. To detect the outliers the point cloud is down-sampled using the voxels. Then, the resulting voxels are down sampled again for the specific number of points and outliers are calculated for 15 nearest neig...
	5.2.2 Keypoint generation. Two distinct methods are used to generate the interest points. The first one is random uniform points sampling and the second one is the Unsupervised Stable Interest Point (USIP) [17] method.
	5.2.2 Keypoint generation. Two distinct methods are used to generate the interest points. The first one is random uniform points sampling and the second one is the Unsupervised Stable Interest Point (USIP) [17] method.
	5.2.3 Feature description. After extensive research on the subject of deep convolutional network generating point descriptors, we decided to use the USIP descriptor implementation (Fig.3). This unsupervised deep learning algorithm is similar in its fu...
	5.2.3 Feature description. After extensive research on the subject of deep convolutional network generating point descriptors, we decided to use the USIP descriptor implementation (Fig.3). This unsupervised deep learning algorithm is similar in its fu...

	5.3 Correspondence estimation
	5.3.1 Closest point matching. To find the corresponding points between two point clouds the closest point matching module was introduced. It uses the euclidean distance to calculate the similarity between all descriptors derived from the point clouds ...
	5.3.1 Closest point matching. To find the corresponding points between two point clouds the closest point matching module was introduced. It uses the euclidean distance to calculate the similarity between all descriptors derived from the point clouds ...
	5.3.2 DBSCAN clustering. The closest point matching function outputs the pairs of closest points between two point clouds. However, those points might belong to multiple instances as their neighbourhoods matches and therefore are classified into the s...
	5.3.2 DBSCAN clustering. The closest point matching function outputs the pairs of closest points between two point clouds. However, those points might belong to multiple instances as their neighbourhoods matches and therefore are classified into the s...

	5.4 Transformation estimation

	6 RELATION TO PREVIOUS WORK
	7 IMPLEMENTATION
	7.1 Interest point detector
	7.2 Point descriptor
	7.3 Closest point matching
	7.4 Transformation estimation

	8 EXPERIMENTS AND RESULTS
	8.1 Detector performance and accuracy
	8.2 Descriptor and closest point matching accuracy
	8.3 Descriptor and closest point matching performance
	8.4 Transformation estimation accuracy
	8.5 New CAD template addition - performance comparison

	9 DISCUSSION AND CONCLUSION
	9.1 General conclusion
	9.2 Value of this study
	9.3 Future work
	9.4 Shortcomings and limitations

	REFERENCES
	A SAMPLE CAD ELEMENTS

