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With model-based diagnostics, a machine is modelled with the intention

to trace back the cause of a particular machine failure. Where traditionally

this is done with logical statements, a probabilistic approach can be used by

translating a diagnostic problem into a Bayesian network.

The research in this paper expands on the work of the TNO’s Embedded

Systems Institute (ESI) which, among other things, researches the Bayesian

approach to model-based diagnosis. In the Bayesian models of ESI, a uniform

prior probability is assumed on the health states of components. However,

this does probably not hold in practice, as some components might be more

likely to fail than others.

The research tries to determine whether including probabilistic informa-

tion reflecting the real-world scenario improves the diagnostic capabilities

of Bayesian diagnostic models. A simple theoretical system consisting of

water pipes is used to achieve this. A network containing probabilities of

component failure reflecting the used data is compared to a uniform model.

Experiments on the test data show that the adjusted model, on average, per-

forms better than the uniform model. However, other observations indicate

that the used structure for the Bayesian network might not be optimal for in-

cluding probabilities of component failure from real-world data. Suggestions

are made to mitigate these issues, which are up for future research.

Additional Key Words and Phrases: Model-based diagnosis, Cyber-physical

systems, Consistency-based diagnosis, Bayesian diagnostic problem, Proba-

bilistic inference

1 INTRODUCTION
Cyber-physical systems act both in the physical world as well as

the software domain. A typical example of this is an industrial

productionmachine equippedwith sensors. In industries where such

systems are used, these machines are desired to experience the least

possible downtime. An important aspect of this is fault diagnostics:

being able to trace back a malfunctioning to a specific component.

As cyber-physical systems become more complex, so does the task

of tracing back machine failures. Once a specific component fails,

it often results in a chain reaction of other components behaving

abnormally before the malfunctioning is detected [2]. Next to this,

on-site technicians often do not have all the knowledge about the

system to trace back the problem themselves [4].

To deal with these problems, several automated fault detection

and diagnostic methods have been developed. Each at a different

state of technical maturity [6]. For the purpose of this research, we

will look at a hybrid model-based method which is used by TNO’s

Embedded Systems Institute (ESI) in collaboration with several in-

dustrial companies, such as Cannon and ASML [1, 2]. This approach

uses a probabilistic approach tomodel-based diagnostics or diag-
nosis (MBD).
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The main idea behind model-based diagnostics is that before a

particular machine or piece of equipment is employed in a produc-

tion setting, most of the knowledge available to find faults or defects

is design knowledge, e.g. about the structure and organisation of

the machine and how it normally functions. Only much later data

will become available about actual faults occurring in the practical

deployment of the machine. Such data can be employed to improve

a particular model used for diagnostics to reflect the frequency with

which they occur. Thus, in the early state of model-based diagnostics,

the emphasis will be on exploiting design knowledge. The tradi-

tional method used in this case is known as consistency-based
diagnostics or diagnosis (CBD) [5]. Although CBD is usually seen

as a kind of logical reasoning, it can be mapped to the multivariate

probabilistic representation of Bayesian networks [9]. The advan-

tage of Bayesian networks as a formalism of model-based diagnosis

is that in principle uncertain, probabilistic knowledge about the

occurrence of faults can be integrated and also learnt from data,

which is the aim of the present research.

This paper first states the research question in section 2. In section

3, relevant literature is discussed. The methodology in section 4

describes the steps that were taken to answer the research question.

Results from these experiments are described in section 5 and are

followed by discussion and conclusions in section 6.

2 PROBLEM STATEMENT
In the work of Barbini et al. [2] at ESI(TNO), the input to our re-

search, the prior probability of health status of each component has

a uniform distribution. This means that the assumption is made that

all components are equally likely to fail. However, this assumption

is not likely to hold in practice, as not all components are equally

robust. Information about the relative likeliness of failure of each

component might have a beneficial effect on the diagnoses. This

leads to the following research question:

Does taking into account probabilistic information reflecting
the real-world situation of component failures increase the
accuracy of diagnostic models?
In this paper, a first step will be taken to answer this research

question. For this, a theoretical, relatively simple, system will be

evaluated along with artificially generated data. Although the con-

clusions drawn from experiments with this system may not directly

generalise to real systems, they may provide interesting insights on

how to apply probabilistic MBD to cyber-physical systems in the

industry. Next to this, a simple theoretical system may help to as-

sess the methodology that is provided in this research. Insights can

finetune the methodology so that it can be employed in a real-life

scenario in the future to answer the research question in its entirety.

3 BACKGROUND

3.1 Consistency-based diagnosis
The concept of MBD was developed to solve the fault diagnostics

problem in a structured way [8]. Where a system SYS is modelled
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Fig. 1. Full adder with inputs and observed and predicted outputs. Here,
Obs = {in1(𝑋1) = 1, in2(𝑋1) = 0, in1(𝐴2) = 1, out(𝑋2) = 1, out(𝑅1) =

0}

as a system description SD and a list of components Comps. The

system description defines the normal behaviour of components and

how these components are connected in first-order logical sentences.

In consistency-based diagnosis, given a specific input of the system,

the output of the model is compared with the observed output of

the system. A discrepancy between these two indicates a fault or

defect in the system [5, 10].

A diagnostic problem can be seen as a system together with a

set of observation Obs. A diagnosis 𝐷 is a minimal set of compo-

nents that, when behaving abnormally, explains the observation of

a faulty system. Formally, a diagnosis 𝐷 is defined as follows:

SD∪Obs∪ {Ab(𝑐) | 𝑐 ∈ 𝐷} ∪ {¬Ab(𝑐) | 𝑐 ∈ Comps −𝐷} ⊭ ⊥ (1)

Where Ab is the abnormal predicate that indicates that a component

𝑐 behaves abnormally (and thus ¬Ab indicates normal behaviour)

and ⊥ is false (the left-hand side of ⊭ is consistent).

Example 3.1. Consider the logical circuit depicted in Figure 1,

which represents a full adder, i.e. a circuit that can be used for the

addition of two bits with carry-in and carry-out bits. This circuit

consists of two AND gates (𝐴1 and 𝐴2), one OR gate (𝑅1) and two

exclusive-or (XOR) gates (𝑋1 and𝑋2); Comps = {𝐴1, 𝐴2, 𝑋1, 𝑋2, 𝑅1}.
The input and output symbols for the components 𝑐 are denoted as

in(𝑐) and out(𝑐).
The behaviour description SD, as provided in [10], consists of the

following axioms:

¬Ab(𝑐) → out(𝑐) = and(in1(𝑐), in2(𝑐)), for 𝑐 ∈ {𝐴1, 𝐴2},
¬Ab(𝑐) → out(𝑐) = xor(in1(𝑐), in2(𝑐)), for 𝑐 ∈ {𝑋1, 𝑋2},
¬Ab(𝑐) → out(𝑐) = or(in1(𝑐), in2(𝑐)), for 𝑐 = 𝑅1.

These logical rules describe the normal behaviour of each individual

component (gate).

The component connections are described as follows:

out(𝑋1) = in2(𝐴2) out(𝑋1) = in1(𝑋2)
out(𝐴2) = in1(𝑅1) in1(𝐴2) = in2(𝑋2)
in1(𝑋1) = in1(𝐴1) in2(𝑋1) = in2(𝐴1) .
out(𝐴1) = in2(𝑅1)

With the observations Obs as indicated in Figure 1 it is clear that

when assuming the empty diagnosis, 𝐷 = ∅ — all components are

behaving normally — Equation (1) will give an inconsistency, as

also indicated in the figure (predicted and observed outputs differ).

There are multiple solutions for the diagnostic problem in this case.

(a) Traditional approach with abonormality vertices

(b) Approach with state vertices

Fig. 2. Two methods of mapping of a simple system model with two com-
ponents 𝐾 and 𝐿 to a Bayesian network

For example, 𝐷 = {𝑋1}, 𝐷′ = {𝑋2, 𝑅1}, and 𝐷′′ = {𝑋2, 𝐴2} are
(minimal) diagnoses.

3.2 Mapping to a Bayesian Network
To add a probabilistic aspect to consistency-based diagnosis, a log-

ical diagnostic problem can be mapped to a Bayesian network. A

Bayesian network is a directed acyclic graph that links random

variables together as arcs between vertices [11]. Each arc between

two connected vertices represents a (set of) conditional probability

distributions.

There are different ways for translating a diagnostic problem into

a Bayesian diagnostic problem. Two of these will be highlighted.

One of these is the traditional method created by Srinivas [12] and

the other is a more recent adaptation by ESI(TNO). The latter one is

used for this research, but since it is based on the traditional method

both will be expanded upon.

3.2.1 Traditional approach. The traditional method stems from the

work of Srinivas in 1994 [12]. In Figure 2a, a simple system has been

translated into a Bayesian network following this method.

Each input and output of a component are modelled as vertices.

A component is modelled as a vertex node that is the child of all its

input vertices. Note that one of the inputs of component 𝐿 is the

output of component 𝐾 and thus the output vertex of 𝐾 is directly

linked to the output vertex of 𝐿. Next to these, per component,
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an extra vertex Ab is added as the parent of the output vertex.

This vertex corresponds with the abnormal predicate in MBD and

similarly indicates whether the component behaves abnormal or

not.

3.2.2 Approach based on state vertex. The method which is cur-

rently used by ESI(TNO) models the in- and outputs of the com-

ponents similar to the traditional approach. The main difference is

that the abnormality vertices are replaced by state vertices, as can
be seen in Figure 2b. The state vertex is the child of all in- and out-

put vertices of the corresponding component and defines a specific

state for each combination of in- and outputs. The possible values

of the state variable are the different behaviours that the pipe can

exhibit, similar to fault modes as defined by Barbini et al. [1]. As

an illustration, the abnormality vertices of the traditional approach

could be mimicked by assigning the values Normal and Abnormal

to the state variable. Where the state Normal indicates that all in-

and outputs match the expected behaviour and Abnormal if this

is not the case. The benefit of the state vertex lies in the fact that

multiple fault modes can be included in a single variable, as will

come apparent from the case in the methodology. In addition, the

state vertices support enforcing extra dependencies between the

connected variables.

3.2.3 Forming a diagnosis. With the logical diagnostic problem

mapped to a Bayesian diagnostic problem, probabilistic inference

methods can be used to derive the state (i.e., whether the component

behaves correctly) of components to form a diagnosis [2].

Before such derivation can take place, first the evidence (i.e.,

known states of inputs and specific outputs) should be included,

which is analogous to the observations in MBD. With probabilistic

inference methods, the posterior probabilities of each of the state

vertices can be calculated. Then for a set of state vertices 𝑆 the

diagnosis

𝐷 = argmax

𝑠
𝑃 (𝑆 = 𝑠 | Evidence) (2)

Note that the same method can be used for the traditional structure

of a Bayesian diagnostic model. For that case, instead of the state

vertices, the variables of the abnormality vertices are maximised.

4 METHODOLOGY
Within this paper, a simple theoretical system is used as context

for the experiments. In the following sections, both this system as

well as the evaluation methods are described. This system, includ-

ing a Bayesian network representing the system, was provided by

ESI(TNO). Next to a system and model, data is needed to perform

the experiments. The decision was made to use artificially generated

(synthetic) data, as it is quickly available and serves well as a first

step to develop the appropriate methods before switching to real

data.

The programming language Python was used to work with the

Bayesian networks and to perform the experiments. For the Bayesian

networks specifically, the pyAgrum package was used. This is a

Python package that wraps the functionalities of the C++ aGrUM

library, which implements many functionalities regarding working

with graphical models [7].

Fig. 3. System of connected water pipes

Fig. 4. Waterpipes system mapped to a Bayesian network

4.1 System
The system used consists of three water pipes connected in series.

Water flows into the system and, after flowing through all pipes, is

measured by a flow sensor at the end. A diagram of this system is

provided in Figure 3. Within this system, the water flow is discred-

ited in three states: NormalFlow, LowFlow and NoFlow. Each pipe

has one flow coming into it (𝑖𝑛𝑊𝑎𝑡𝑒𝑟 ) and one flow going out of

it (𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 ), if pipe 𝑥 behaves normally 𝑖𝑛𝑊𝑎𝑡𝑒𝑟𝑥 = 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟𝑥 .

Alternatively, if pipe 𝑥 has a leak, the outgoing flow will be one

level lower than the incoming flow:

𝑖𝑛𝑊𝑎𝑡𝑒𝑟𝑥 = NormalFlow ∧ Leak𝑥 =⇒ 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 = LowFlow

and

𝑖𝑛𝑊𝑎𝑡𝑒𝑟𝑥 = LowFlow ∧ Leak𝑥 =⇒ 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 = NoFlow

For a MassiveLeak, all water will escape the pipe:

MassiveLeak𝑥 =⇒ 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟𝑥 = NoFlow

Using the method to map a system to a Bayesian diagnostic prob-

lem as described in section 3.2.2, the system in Figure 3 can be

translated to the Bayesian network as displayed in Figure 4. Within

this diagnostic problem, the flow into the system and out of the sys-

tem are known values and the states of each pipe are to be derived

(i.e., the diagnosis).

4.2 Probability distributions
In a Bayesian network, each vertex has a conditional probability

table (CPT) associated with it. This CPT defines conditional prob-

abilities regarding its state given the states of its parent vertices.

There are two types of vertices of which it is useful to analyse the

CPTs: the pipe and the state vertex.
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Table 1. CPT for the state vertex of a pipe

Pipe State
Pipe inWater Pipe outWater Normal Leak MassiveLeak

NormalFlow 1 0 0

Normal Flow LowFlow 0 1 0

NoFlow 0 0 1

NormalFlow 1 0 0

LowFlow LowFlow 1 0 0

NoFlow 0 1 0

NormalFlow 1 0 0

NoFlow LowFlow 1 0 0

NoFlow 1 0 0

4.2.1 State CPT. As explained earlier in section 3.2.2, the state

of a component 𝑐 is modelled as a vertex with all in- and output

vertices of 𝑐 as parents. For the Waterpipes system specifically, the

state of a pipe 𝑥 is modelled as a vertex with parents 𝑖𝑛𝑊𝑎𝑡𝑒𝑟𝑥 and

𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟𝑥 .

The CPT of a pipe, as displayed in Table 1, defines which la-

bel should be associated with the behaviour of the pipe. The con-

ditional probabilities map a specific fault mode to each combi-

nation of 𝑖𝑛𝑊𝑎𝑡𝑒𝑟 and 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 , corresponding to the descrip-

tion as in section 4.1. For example, 𝑃 (State = Leak | 𝑖𝑛𝑊𝑎𝑡𝑒𝑟 =

NormalFlow, 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 = LowFlow) = 1. Since all components in

the system are similarly behaving pipes, the CPT of all state vertices

share the same conditional probabilities.

4.2.2 Pipe CPT. In Figure 4, it can be seen that each pipe is modelled

as a flow out of the pipe 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 with one flow coming into the

pipe 𝑖𝑛𝑊𝑎𝑡𝑒𝑟 . Since this structure is the same for every pipe, the

CPT of each pipe is also similar such that it reflects 𝑃 (outWater |
inWater). Different CPTs associated with this conditional probability
are displayed in Table 2. As an illustration, from the CPT in Table

2a it follows that when the 𝑖𝑛𝑊𝑎𝑡𝑒𝑟 = NormalFlow, there is an

equal likelihood that 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 is either Normal-, Low- or NoFlow.

Furthermore, if the 𝑖𝑛𝑊𝑎𝑡𝑒𝑟 = LowFlow, there is an equal likelihood

that 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 is either Low- or NoFlow while the probability of

NormalFlow is 0. In other words, this models the behaviour that

besides the 𝑖𝑛𝑊𝑎𝑡𝑒𝑟 , there can be no extra water entering the pipe.

This same modelling choice can be seen in the row that represents

the case that 𝑖𝑛𝑊𝑎𝑡𝑒𝑟 =NoFlow.

In these CPTs, the probability that the pipe malfunctions is re-

flected. In Table 2b, the uniform distribution of Table 2a has been

replaced, reflecting a distribution that assigns a certain, non-uniform,

likelihood of the pipe failing. Within this adjustment, a probability

of 0.9 is given to both cases where the pipe behaves normally (i.e.,

𝑖𝑛𝑊𝑎𝑡𝑒𝑟 = 𝑜𝑢𝑡𝑊𝑎𝑡𝑒𝑟 ). For the case where 𝑖𝑛𝑊𝑎𝑡𝑒𝑟 = NormalFlow,

a probability of 0.07 is given to the state LowFlow and a probability

of 0.03 to NoFlow, in other words, this reflects that a normal leak

is more likely than a massive leak. For the case where 𝐹𝑙𝑜𝑤𝐼𝑛 =

LowFlow the probability of NoFlow is 0.1, the accumulation of the

two previous probabilities. In Tables 2c and 2d, other distributions

that reflect a higher probability of failure are reflected.

Table 2. CPT distributions for different likelihoods of pipe failure

(a) Uniform distribution

Pipe outWater

Pipe inWater NormalFlow LowFlow NoFlow
NormalFlow 1/3 1/3 1/3
LowFlow 0 0.5 0.5

NoFlow 0 0 1

(b) Low probability of failure

Pipe outWater

Pipe inWater NormalFlow LowFlow NoFlow
NormalFlow 0.9 0.07 0.03

LowFlow 0 0.9 0.1

NoFlow 0 0 1

(c) Medium probability of failure

Pipe outWater

Pipe inWater NormalFlow LowFlow NoFlow
NormalFlow 0.8 0.12 0.08

LowFlow 0 0.8 0.2

NoFlow 0 0 1

(d) High probability of failure

Pipe outWater

Pipe inWater NormalFlow LowFlow NoFlow
NormalFlow 0.7 0.2 0.1

LowFlow 0 0.7 0.3

NoFlow 0 0 1

4.3 Generation of synthetic data
To generate synthetic data, the choice was made to use the Bayesian

network of the waterpipes system. This can be done by sampling the

network, which yields a dataset where the individual samples each

contain an instantiation of all network variables. The samples are

generated reflecting the probabilities in the network, this allows for

the generation of data that reflects a specific configuration of pipes

with different likelihoods of failure. For this, the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑎𝑚𝑝𝑙𝑒

function from the pyAgrum library is used.

Along with a specific configuration of pipe failure probabili-

ties, the prior probability for the FlowIn variable is also altered.

Within a uniform distribution, 𝑃 (FlowIn = 𝑣) = 1/3 for every

𝑣 ∈ {NormalFlow, LowFlow, NoFlow}. Because the value NoFlow
yields no useful samples (since FlowIn = NoFlow =⇒ FlowOut =

NoFlow with no diagnosis to be made), the prior probability of this

value is set to 0. Next to this, the prior probabilities 𝑃 (FlowIn =

NormalFlow) = 2/3 and 𝑃 (FlowIn = LowFlow) = 1/3 were set.

4.4 Forming of a diagnosis
As explained in section 3.2, for a diagnosis to be formed, the known

states of the system should be included as evidence after which,

through inference, the posterior probabilities of the state vertices

are retrieved. In Figure 5, the pyAgrum library is used to visualise

the result of the inference for the case where FlowOut < FlowIn. A

diagnosis is formed by iterating over the state vertices and selecting

4



Model-based Probabilistic Diagnostics of Cyber-Physical Systems TScIT 37, July 8, 2022, Enschede, The Netherlands

the value with the highest posterior probability, conform equation

2.

4.5 Evaluation methods
To evaluate a specific Bayesian diagnostic model, three evaluation

methods are used. In the following section, each method will be

discussed; both how the metric is computed as well as the signifi-

cance/use of the method. Following these, section 4.6 will highlight

how each method will be used to work towards answering the

research question.

4.5.1 Cartesian product. For every equal instance of evidence, the

Bayesian diagnostic model will yield the same diagnosis. So to get

an insight into all possible diagnoses that can be given by a specific

model, every unique combination of evidence can be used to form

a diagnosis. To get every possible combination of evidence, the

Cartesian product can be used.

Definition 4.1. (Cartesian product of evidence) For a Bayesian
diagnostic model with 𝑛 evidence vertices, let 𝐸𝑛 be every vertex

that is part of the evidence. Let then𝑉𝑛 be the set of possible values

of vertex 𝐸𝑛 . Then the Cartesian product of the evidence

𝐸1 × · · · × 𝐸𝑛 = {(𝑣1, . . . , 𝑣𝑛) | 𝑣𝑖 ∈ 𝑉𝑖 for every 𝑖 ∈ {1, . . . , 𝑛}} (3)

Note that the size of the Cartesian product can expand exponen-

tially when the number of evidence vertices or values increases. In

the case of the waterpipes system with two evidence vertices, of

which each variable has three possible values, the number of tuples

in the Cartesian product is 3
2 = 9. Note that these also include

scenarios that are less interesting from the perspective of making

diagnoses: where FlowIn = FlowOut so that there is no malfunction

in the system and scenarios where the FlowOut > FlowIn. Although

the latter is a correct result from the Cartesian product, as described

in 4.2.2 the Bayesian network does not allow the flow to be increased.

Therefore, these scenarios result in an inconsistency in the network

and therefore do not allow for a diagnosis to be formed.

4.5.2 Accuracy. Using a Bayesian diagnostic model, a diagnosis

can be made on samples from the synthetic data. The samples can

be split into the evidence and diagnosis values (as described in

section 4.4). Then the evidence values can be fed to the Bayesian

diagnostic model to form a diagnosis, which can then be compared

with the diagnosis values from the sample to see whether the formed

diagnosis was correct. The accuracy can then be calculated as

Accuracy =
# correct diagnoses
# total diagnoses

(4)

4.5.3 Log-likelihood. The log-likelihood is a quality measure that

describes how likely a dataset is given a particular Bayesian network

[3]. With the presence of a dataset, multiple models can be compared

to see which one best fits the data.

Definition 4.2. (Log-likelihood) Let 𝐵 be a Bayesian network

with variables 𝑋1, . . . , 𝑋𝑛 . Furthermore, let 𝐷 be a dataset of size

𝑚 with individual tuples 𝑑 ∈ 𝐷 with 𝑑 being an instance of the

variables (𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛).

Table 3. Possible pipe failure configurations

Pipe 1 Pipe 2 Pipe 3
High Medium Low

High Low Medium

Medium High Low

Medium Low High

Low High Medium

Low Medium High

The likelihood of the dataset 𝐷 can be calculated as

𝑃 (𝐷 | 𝐵) =
∏
𝑑∈𝐷

𝑃𝐵 (𝑑)

Where 𝑃𝐵 (𝑑) is the joint probability of instance 𝑑 using the prob-

ability distribution of the Bayesian network 𝐵:

𝑃𝐵 (𝑑) =
𝑛∏
𝑖=1

𝑃 (𝑥𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝑋𝑖 ))

Because computers can more efficiently calculate the sum of large

series, alternatively, the log-likelihood can be calculated.

log 𝑃 (𝐷 | 𝐵) =
∑︁
𝑑∈𝐷

log 𝑃𝐵 (𝑑)

The log-likelihood calculation yields a number in the range (−∞, 0]
where a value of zero indicates a perfect fit [3]. The log-likelihood

is not an absolute measure; It is only suitable to compare several

models within the context of a single dataset.

4.6 Experiments
To answer the research question, two types of analyses will be

made. One to evaluate the performance of a model on test data, and

secondly, to evaluate the diagnostic behaviour. The analysis will be

made for different Bayesian diagnostic models with each a different

configuration of pipe failure probabilities. The different pipe failure

configurations are a permutation of the set {High, Normal, Low}
which are also displayed in Table 3. The values High, Medium and

Low refer to the CPTs as listed in Table 2.

4.6.1 Performance on test data. For each possible pipe configuration
as listed in Table 3, a dataset of 10,000 samples will be generated

(as described in section 4.3). To evaluate the advantage of a model

that reflects the real-world situation, two models will be compared

on their fit to the sample data. One model that matches the pipe

configuration with which the data was generated and a model with

uniform distributions (the base case). Both these models will be

used to form diagnoses (as described in section 4.4) on the test data,

after which the accuracy for both can be calculated. Next to this,

the log-likelihoods of the models given the data are evaluated.

The generated data also contains samples where there is no mal-

functioning, i.e., where FlowIn = FlowOut. These are relevant to

evaluate since diagnostic models should also be able to form a cor-

rect diagnosis when nothing is wrong, i.e. the diagnosis that all

pipes behave normally. However, these cases are also way easier to

predict. Therefore, the accuracy will also be calculated for the cases

where FlowIn != FlowOut. This helps in evaluating the diagnostic

5
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Fig. 5. Visualisation using the pyAgrum library for the inference of the waterpipes system with a uniform distribution, where FlowOut < FlowIn.

capabilities of a system in scenarios where there is a malfunctioning,

which is often the most interesting scenario.

4.6.2 Diagnostic behaviour. As explained in section 4.5.1, all pos-

sible diagnoses by a specific model can be derived by diagnosing

all elements in the Cartesian product of the evidence. For each pipe

configuration as in Table 3, the Cartesian product will be generated.

Then, for each tuple of evidence, a diagnosis will be made.

For the purpose of evaluating the diagnostic capabilities, only

the elements from the Cartesian product where FlowOut < FlowIn

will be considered. As the other elements are either scenarios where

there is no malfunction or scenarios that are not inferable (as ex-

plained in section 4.5.1).

5 RESULTS
In this section, the results of the experiments are listed. This is done

per experiment as described in section 4.6.

5.1 Performance on test data
Table 4 lists all the calculated metrics as described in the experiment

in section 4.6.1. The log-likelihood shows a better fit for the adjusted

model in all cases, with an average advantage of 32%.

The overall accuracy also increased for the adjusted model. There

is however an exception in the two cases where pipe 1 has a medium

probability of failure. For these, the uniformmodel performs slightly

better.

Worth noting is that for the samples in the data where there is

no malfunction (i.e., FlowIn = FlowOut) both models make a correct

diagnosis at all times. This results in the fact that the difference

between the two models for the general accuracy is solely explained

by the difference in the accuracy of the malfunctioning sample cases.

From these results it follows that, on average, the adjusted model

outperforms the uniform model by 10.4 percentage points.

5.2 Diagnostic behaviour
In Table 5, the possible diagnoses are listed for each permutation of

pipe configuration. The state variable values Leak and MassiveLeak

are highlighted to give a clearer view of the made diagnoses. It can

be seen that the diagnosis always marks the pipe with the highest

probability of failure, which is not surprising. What is surprising

however, for quite some cases, a non-diagnosis is made. Within

these cases, the diagnosis states that every component behaves

normally when there is a discrepancy between FlowIn and FlowOut,

which results in a contradiction.

In Figure 5, it can be seen that the posterior probabilities of a

component failure are higher for pipes up in the system (i.e., pipe 1)

than for components closer to the output (i.e., pipe 3). This tendency

rivals the probability of component failure; As the pipe with the

6
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Table 4. Accuracy and log-likelihood metrics for a uniform model and a model that reflects the probabilities with which the data was generated, for different
configurations of pipe failures

Pipe Failure Configuration Log-likelihood General Accuracy

Accuracy Malfunctioning

cases

Ratio
malfunctioning

Pipe 1 Pipe 2 Pipe 3 Uniform Matching Uniform Matching Uniform Matching cases
High Medium Low -30203.834 -21156.643 0.666 0.765 0.331 0.530 0.499

High Low Medium -30729.943 -21049.509 0.682 0.777 0.351 0.545 0.491

Medium High Low -30859.094 -21070.126 0.633 0.611 0.247 0.202 0.487

Medium Low High -31927.939 -21467.365 0.623 0.598 0.244 0.192 0.498

Low High Medium -32066.654 -21417.269 0.561 0.687 0.115 0.370 0.496

Low Medium High -32546.850 -21706.094 0.553 0.588 0.111 0.182 0.503

Average -31389.052 -21311.168 0.620 0.671 0.233 0.337 0.496

highest probability of failure moves towards FlowOut, more non-

diagnoses are made.

6 DISCUSSION AND CONCLUSIONS
On average, the adjusted models perform better on the test data

than the uniform model. Especially the log-likelihood shows a con-

sistently better fit for the adjusted model. However, for two configu-

rations of the system, the uniform model outperforms the adjusted

one as far as accuracy. This indicates that a Bayesian network con-

taining probabilities from a real-world scenario might not always

perform better, at least as used in the context of this research.

Following the analysis of the diagnostic behaviour, the BN struc-

ture with state vertices as used in this research shows some un-

desired behaviour. In several cases, a non-diagnosis is made. This

phenomenon does not occur in Bayesian diagnostic models that

make use of the more traditional Ab vertex [2]. Furthermore, this

structure might also give some challenges when it comes to learn-

ing probabilities of failure from data. It would be easiest to learn

a value 𝑃 (fault) from the data. However, this value can not be di-

rectly included in the structure of the BN as used in this research,

which instead asks for a value of 𝑃 (FlowOut | FlowIn). As another

illustration of this problem, if for a certain pipe FlowIn = LowFlow

and FlowOut = NoFlow, the state of this component will be Leak.

However, in a real-life scenario, a MassiveLeak may result in the

same flow levels.

A possible way of mitigating these issues could be by having the

state vertex as the root vertex for the output vertex of a component,

similarly to the Ab vertex. As opposed to the Ab vertex, the state

would still contain different fault modes (where the Ab is limited

to Normal or Abnormal). The component CPT could then include

the behaviour for different fault modes. Alternatively, a different

method of forming diagnoses could be used that (partly) bypasses

the posterior probabilities of the state vertices.

It should be noted that these limitations of the BN structures only

apply to applications where a diagnosis is made for a similar purpose

as this research. It does not impede other analytical procedures, such

as assessing the diagnosability of a system as illustrated in the works

of Barbini et al. [1].

All in all, this research contributes to ideas on how MBD can

be applied to cyber-physical systems. Especially for MBD in later

stages of products where performance data is available. While in

the first stages design knowledge is used, the performance data can

improve the diagnostical process at later stages. The best methods

for achieving this are up for further research, in which the findings

from this research can play a guiding role.
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Table 5. Possible diagnoses per pipe configuration

(a) "High-medium-low" failure configuration

Pipe1 Pipe2 Pipe3
Likelihood of failure High Medium Low
Flow In Flow Out
NormalFlow LowFlow Leak Normal Normal

NormalFlow NoFlow MassiveLeak Normal Normal

LowFlow NoFlow Leak Normal Normal

(b) "High-low-medium" failure configuration

Pipe1 Pipe2 Pipe3
Likelihood of failure High Low Medium
Flow In Flow Out
NormalFlow LowFlow Leak Normal Normal

NormalFlow NoFlow MassiveLeak Normal Normal

LowFlow NoFlow Leak Normal Normal

(c) "Medium-high-low" failure configuration

Pipe1 Pipe2 Pipe3
Likelihood of failure Medium High Low
Flow In Flow Out
NormalFlow LowFlow Normal Leak Normal

NormalFlow NoFlow Normal Normal Normal

LowFlow NoFlow Normal Normal Normal

(d) "Medium-low-high" failure configuration

Pipe1 Pipe2 Pipe3
Likelihood of failure Medium Low High
Flow In Flow Out
NormalFlow LowFlow Normal Normal Leak

NormalFlow NoFlow Normal Normal Normal

LowFlow NoFlow Normal Normal Normal

(e) "Low-high-medium" failure configuration

Pipe1 Pipe2 Pipe3
Likelihood of failure Low High Medium
Flow In Flow Out
NormalFlow LowFlow Normal Leak Normal

NormalFlow NoFlow Normal Normal Normal

LowFlow NoFlow Normal Leak Normal

(f) "Low-medium-high" failure configuration

Pipe1 Pipe2 Pipe3
Likelihood of failure Low Medium High
Flow In Flow Out
NormalFlow LowFlow Normal Normal Leak

NormalFlow NoFlow Normal Normal Normal

LowFlow NoFlow Normal Normal Normal
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