
Features to Predict Quality of Low-Code Integrations
AACHI GARG, University of Twente, The Netherlands

The number of information systems in a business are growing rapidly as new
technologies and software become available in the market, which increases
the need for integrating these systems for a flow of data between them.
These integrations have to be made quickly to keep up with the market
developments and they have to be of excellent quality. To achieve this, the
use of low code development using iPaaS (Integration Platform as a Service)
is on the rise, however, currently, it is not possible to measure the quality of
a low code integration specifically. Hence, this research aims to find features
that can be used to predict the quality of low code integration in iPaaS.
This will be done by conducting a systematic literature review, then the
features found will be mapped to ISO, from that, the relevant features will
be chosen through a certain criteria and expert guidance. Doing this would
be beneficial for the company as it will save them multiple resources such
as time and money. The result of this research would a list of features which
will be found using a systematic literature review and guidance from experts,
and the list could be used to determine the quality of a low code integration
in an iPaaS.

Additional Key Words and Phrases: Information systems, integrations, low
code development, quality of integration, integration platform as a service,
iPaaS

1 INTRODUCTION
As businesses grow, their information systems become increasingly
complex. They have different systems for different processes and
while this is a feasible option when the business is small, it becomes
increasingly impractical with growth. The same data is present in
various systems and databases, however, the systems or databases
can’t communicate with each other, making the information ex-
tremely redundant. Integrating the systems together allows for the
flow of data between them and interoperability between the sys-
tems. Hence, system integration allows the business to be more
productive, cost-efficient, and have more reliable data[4]. It also
has many other benefits for business processes. In fact, according
to reports[9] by the consultancy firm Grand View Research, the
market for system integrations is expected to grow to 530 billion
dollars in 2025.

One way of creating the system integrations is using low code
development. Low code development is a way to create applications
with minimal use of coding. For example, one way of low code
development is through a drag-and-drop interface as the blocks or
modules are already built [10]. The interest in low code development
is increasing rapidly; major tech companies like Google, Microsoft,
Siemens and more have already created or bought Low Code Plat-
forms or LCP [11]. A global research company Gartner has predicted
that LCP will be used in over 65 percent of all development projects

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

by 2024 [2]. There are multiple reasons behind this increase, the ma-
jor one being that the market changes rapidly, and to keep up with
it, companies also need to update and create their IT environment
rapidly and LCPs allow them to do that. For this reason, LCPs are
being used to create system integrations. Low code development is
often done on iPaaS, that is, integration Platform as a Service. iPaaS
is a platform that allows its users to build integration on the cloud,
without any need for installing hardware. This, in combination with
low code, is preferred by companies as it eliminates the need for any
middleware or hardware, which also means that they don’t have
to maintain that [3]. Moreover, they need less resources, such as
memory or CPU, as it is possible to buy that on the cloud [12].

1.1 Problem Statement and ResearchQuestions
Since businesses rely on these integrations, their quality is of utmost
importance. Integrations of bad quality could result in loss of data,
inefficient functions, and many other problems. However, currently,
there are either none or very limited ways to identify the quality of a
low code integration on an iPaaS. If it turns out that the integration
is of bad quality, the company will have to re-do the integration.
This would waste a lot of their resources, time, and hence money.
For the companies which work on creating integrations for other
businesses, this might even mean that if their new developer makes
a mistake, then the company would have to take the responsibility
and fix the integration. By determining the quality of the integration
before its deployment, the company will be able to take necessary
actions to improve the integration if needed.

This problem leads us to the objective of this research and hence
the research question:

RQ 1:What features can be used to predict the quality of a low code
integration?

2 METHODOLOGY
To answer the research question, first, a systematic literature re-
view will be conducted to find previous research on this topic from
which the relevant papers will be chosen. Ideally, these papers will
contain features for measuring the quality of an integration. Then,
the features found in these papers will be mapped to ISO 25010 [7],
and a final list of features will be made. Out of these, some features
will be selected based on certain predefined criteria and advice from
experts to find the most relevant features.

2.1 Literature Review
To do a systematic review of the research already done on the topic
of the quality of an integration, a number of keywords are selected.
These keywords are “integration”, “information system”, “success
factors”, “quality factors”, “features”, “quality”, “application” and
“integration”. These keywords will be searched on the platforms
Scopus and Web Of Science. The search term is made using a com-
bination of these keywords and the connectors AND and OR. The

1

TScIT 37, July 8, 2022, Enschede, The Netherlands A. Garg

resulting search term is:

("System" OR "Information system" OR "application") AND ("suc-
cess factors" OR "quality factors" OR "quality features" OR "quality"
OR "quality metrics") AND "integration")

At first, only the titles of the papers will be searched for these
keywords. Then, the relevant articles will be selected and a further
selection will be done by reading their abstracts to see which ones
are relevant. In the end, only the papers which contain a list of
features that can be used to measure the quality of an integration
will be selected.

2.2 Mapping to ISO 25010
The features found in the papers from literature review will then
be mapped to the sub-characteristics present in ISO 25010 [7] (Ap-
pendix A), which is a quality model for evaluating software. As this
quality model has several well-defined characteristics and the simi-
larities between general software and integrations have been noted
multiple times in research before ([6] and [8]), it was decided that
the characteristics in ISO 25010 will be used as a basis for selecting
the features, after being mapped to the features from the selected
research papers. Moreover, doing this ensures that the same factor
is not repeated multiple times from the sources.

To do the mapping, first, the features will be mapped according
to their names. That is, if a feature has the same name in a re-
search paper and ISO, then they will be mapped to each other. It
is important to note that if a feature is being mapped to a main
characteristic instead of a sub-characteristic in ISO, then all the
sub-characteristics will be mapped to that feature. The rest of the
features will be mapped according to their definitions to see which
ISO feature are they the most similar to. If the features from the
papers are found to influence ISO features directly, then they will
be mapped to that ISO feature as well.

In the end, a final list of relevant features will be made which will
contain all the ISO features, excluding the ones which were not
mapped to any feature in the papers. Also, any features from the
papers which could not be mapped to ISO will also be added to this
list to ensure that nothing is missed.

2.3 Selection of features
From the features found in the previous step, not all of them will
be valid for this research. So, the selection of the features will be
done based on certain criteria. To start with, the features will be
divided into functional and non-functional requirements. As there
is no globally accepted definition for non-functional requirements,
some definitions as collected from various papers and summarized
by [1] are:

(1) “The required overall attributes of the system, including porta-
bility, reliability, efficiency, human engineering, testability,
understandability, and modifiability.”

(2) “The term “non-functional requirement” is used to delineate
requirements focusing on “how good” software does some-
thing as opposed to the functional requirements, which focus
on “what” the software does.”

As in this research, the focus is on the quality of the software, that
is the non-functional requirements, and not on whether it meets
the business requirements, the functional requirements will not be
considered. Hence, only the features which are regarding the quality
of the code will be kept.

Then, from the features that are an integral part of every low code
integration platform will be removed. This is due to the fact that
the selected papers are focusing on integrations in general and not
low code integrations. So, for example, some features found in these
papers will already be present in every low code integration and
hence it will not make sense to measure them.

After this, experts in the field will be consulted to confirm whether
the selected features are relevant and complete. If needed, features
might also be removed or added based on their advice.

3 RESULTS

3.1 Literature Review
The first step in finding the factors to predict the quality of an inte-
gration was conducting a literature review on Scopus and Web of
Science.

(1) Scopus: Using search term and restricting it to the title on
Scopus resulted in 342 papers. The titles of these results were
manually selected based on their relevance to the research.
Most of the titles were regarding the quality of integrations in
a specific industry or enterprise systems and hence were not
selected. This led to 8 remaining papers, whose abstracts and
conclusions were analysed to check which ones contain lists
with features to measure the quality of integrations. Based
on this the paper [5] was chosen.

(2) Web of Science: Following the same methodology on Web
of Science resulted in 157 papers. From this, 3 papers were
selected based on their titles. After checking the abstracts and
conclusions, one paper [13] was finally selected from Web of
Science.

So the two papers which will be used in this research are “Identify-
ing quality factors of information systems integration design” by
Zikra, Stirna and Zdravkovic (Paper 1) [13] and “Success Factors
of Application Integration: An Exploratory Analysis” by Gericke,
Klesse, Winter and Wortmann (Paper 2) [5]. Both these papers iden-
tify and list important factors which can be used to measure the
quality of an integration, which meets the requirements set earlier.
However, neither of them are written for the purpose of measur-
ing the quality of low code integrations, which is the goal of this
research paper.

2

Features to Predict Quality of Low-Code Integrations TScIT 37, July 8, 2022, Enschede, The Netherlands

3.2 Mapping to ISO 25010
Since integrations and software have similar characteristics and ISO
25010 [7] has well defined features, a matrix map was made for them
following the methodology. For the first step, features which had the
same names as ISO features were mapped together. For example, the
factor “Performance, reliability and scalability” from paper 2 were
mapped to the ISO features “Performance” and “Reliability”. In the
cases where they did not have the same name, the definitions were
compared and the feature was mapped according to what it meant.
For example, in paper 1, the features “accuracy” and “freshness”
were mapped to the ISO feature “functional correctness”. It was
noticed that many features in paper 2 had to be mapped according
to which ISO feature they influence, for example, “separation of
software layers” would improve the ISO features of “reusability”,
“analysability” and “modifiability”. The matrix map can be found in
table 1.

While most of the factors present in the papers could be mapped to
ISO, there were 13 factors in paper 2 which could not be mapped, so
they were added to the final list of the features. Along with those,
the features of ISO which were mapped to at least one paper were
added, so only "Adaptability", "Installability" and "Replaceability"
were removed from ISO. The final list of features can be found in
table 2.

3.3 Selection of features
The final list from which the selection of the features will be done
had 42 features which can be found in table 2. Following the method-
ology, the features were divided into function and non-functional
requirements. As in this research, the concern was regarding the
way the application is coded, that is, non-functional requirements,
only those requirements will be kept. The removed features were
mostly taken from paper 2, and they were concerning the quality
of project management, which is not a non-functional requirement.
Other than that, the features under the ISO “Usability” group were
also removed since they are concerned with the users of the software
and the front-end of the design, not with the quality of the code.
Similarly, all the features under the ISO “Functional completeness”
group were removed because they about the alignment of business
and IT. Hence, this step led to the removal of 21 features and the
remaining features can be found in table 3.

Then, the features which are inherently present in any low code
integration on an iPaaS were removed that is, the two features
“co-existence” and “interoperability” were not be considered as the
purpose of an integration is to make systems compatible. Similarly,
the features “Capacity”, “Reusability”, “Analysability”, “Availability”
and “Testability” are already part of the functions of an iPaaS and
hence will not be used.

For selecting the most relevant sub-features out of the rest, an
expert in the field of low code integrations was consulted. Based on
this discussion, all the factors in the ISO group “Reliability” were
merged together. That is, reliability will be taken as the main fea-
ture where the metrics will be defined based on “Maturity”, “Fault

ISO 25010 Paper 1 Paper 2
Functional Suitability
Functional Completeness x
Functional Correctness x
Functional Appropriateness x x
Performance Efficiency
Time Behaviour x x
Resource Utilisation x
Capacity x
Compatibility
Co-existence x x
Interoperability x x
Usability
Appropriateness Recognisability x
Learnability x
Operability x
User Error Protection x
User Interface Aesthetics x x
Accessibility x
Reliability
Maturity x x
Availability x x
Fault Tolerance x x
Recoverability x x
Security
Confidentiality x
Integrity x
Non-repudiation x
Accountability x
Authenticity x
Maintainability
Modularity x
Reusability x
Analysability x x
Modifiability x x
Testability x x
Portability
Adaptability
Installability
Replaceability

Table 1. Matrix Mapping

Tolerance” and “Recoverability”. The same thing will be done for
“Security” as well. The expert also noted that data is an essential
part of an integration but has not been considered in this list, hence
“Data Reliability” was added to the list with the definition “Degree
to which the data in the system or product is available, reliable and
complete under specified conditions”.

Based on the selection and advice from the expert, the features
and their definitions from ISO 25010 [7] are as follows:

3

TScIT 37, July 8, 2022, Enschede, The Netherlands A. Garg

Functional Complete-
ness

Maturity Methods

Functional Correct-
ness

Availability Integration Strategy

Functional Appropri-
ateness

Fault Tolerance Packaged Applica-
tions

Time Behaviour Recoverability Number of Integra-
tion Tools

Resource Utilisation Confidentiality Number of Applica-
tions

Capacity Integrity Number of Platforms
Co-existence Non-

repudiation
Architecture Mod-
els/Modeling

Interoperability Accountability Scorecards
Appropriateness
Recognisability

Authenticity Principles and Guide-
lines

Learnability Modularity Business/IT Coopera-
tion Capability

Operability Reusability Coordinated and Inte-
grated Processes

User Error Protection Analysability Documentation of IT
Processes

User Interface Aes-
thetics

Modifiability Workflow Manage-
ment

Accessibility Testability Clarity of Responsibil-
ities

Table 2

Time Behaviour Fault Tolerance Modularity
Resource Utilisa-
tion

Recoverability Reusability

Capacity Confidentiality Analysability
Co-existence Integrity Modifiability
Interoperability Non-repudiation Testability
Maturity Accountability Packaged Applications
Availability Authenticity Number of Integration

Tools
Table 3

(1) Time Behaviour: "The degree to which the response and pro-
cessing times and throughput rates of a product or system,
when performing its functions, meet requirements."

(2) Resource Utilisation: "The degree to which the amounts and
types of resources used by a product or system, when per-
forming its functions, meet requirements."

(3) Reliability: "Degree to which a system, product or component
performs specified functions under specified conditions for a
specified period of time."

(4) Security: "Degree to which a product or system protects infor-
mation and data so that persons or other products or systems
have the degree of data access appropriate to their types and
levels of authorization."

(5) Modularity: "Degree to which a system or computer program
is composed of discrete components such that a change to
one component has minimal impact on other components."

(6) Modifiability: "Degree to which a product or system can be ef-
fectively and efficiently modified without introducing defects
or degrading existing product quality."

(7) Data Reliability: “Degree to which the data in the system or
product is available, reliable and complete under specified
conditions”

These features can act as guidelines for companies while developing
a low code integration on an iPaaS and they can be used to measure
its quality.

4 DISCUSSION

4.1 Limitations
Some possible limitations of this research could be that only two
papers were found during literature review. It might be possible
that other libraries would have had other relevant literature as well,
however, considering the scope and time for this research project it
was not possible to search in more libraries.

Another limitation could be that only one expert was consulted
for this paper. If more experts were consulted, then it might be pos-
sible that other features would have been added or removed from
the list.

4.2 Future work
This research can form a very good basis for further research in this
field. Some ideas which can be taken forward is creating metrics for
measuring the factors which were found in this research. An option
to work out the metrics could be using Goal Question Metric, and
table 4 shows some potential metrics which were found during this
research however, they could not be validated because of the limited
time. The next step after validating these metrics, or defining new
ones, would be making thresholds which could be very useful for
any company who wants to implement low code integrations on
iPaaS.

If the thresholds have been defined, then the next step would be to
find features which can predict the quality of the integration at the
design stage itself. This could be done by building on this research,
as qualities at the design stage which influence the list of features
found in this research could be noted as guidelines and would help
improve the quality of the integration from the start itself.

5 CONCLUSION
This research presents a list of features which can be used to predict
the quality of a low code integration on an iPaaS. These features can
be found in section 2.2. To make this list, first a systematic literature
review was done. The research papers found through the literature
review were then mapped to ISO, and a list of all the possible fea-
tures was made using the mapping. Then, the relevant features were
selected from this list based on criteria which had been defined in
the methodology.

4

Features to Predict Quality of Low-Code Integrations TScIT 37, July 8, 2022, Enschede, The Netherlands

Goal Purpose Measure
Issue The quality of an
Object iPaaS integration
Viewpoint From a researcher’s viewpoint

Question Q1 Time Behaviour
Metrics M1 Average throughput rate
Question Q2 Resource Utilisation
Metrics M2 Average memory usage

M3 Average CPU usage
Question Q3 Reliability
Metrics M4 Is there alerting if something goes

wrong?
M5 How does the integration perform un-

der a stress test?
Question Q4 Security
Metrics M6 Is there access control for making

changes?
M7 Is the data encrypted?

Question Q5 Modularity
Metrics M8 What is the coupling value?

M9 What is the cohesion value?
Question Q6 Modifiability
Metrics M10 How many nodes are connected to gate-

way nodes?
M11 What is the gateway heterogeneity?

Question Q7 Data Reliability
Metrics M12 What happens to the data in case of fail-

ure?
M13 What percentage of data is transmitted?
M14 Is the incoming data validated?

Table 4. Goal Question Metrics

This features can be extremely useful for a company who wants to
measure the quality of its integration before it has been deployed.
Moreover, this research can be used as a good base for future work
such as defining metrics and thresholds for these features.

ACKNOWLEDGMENTS
I would like to express my gratitude to my supervisor for this the-
sis, Lucas Meertens, for giving me the opportunity to work on this
project. I would also like to thank Samet Kaya from the company
eMagiz, who helped me validate my research and gave me insights
into very important factors by taking out the time to meet me regu-
larly.

Finally, I would like to acknowledge the work done by Jorn Boksem
at eMagiz, as my research continues and makes use of his earlier
but unpublished work into this topic.

REFERENCES
[1] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. 2000. Non-

functional requirements in software engineering. (2000). https://doi.org/10.1007/
978-1-4615-5269-7

[2] Shannon Duffy. 2021. Salesforce is named a leader in the 2019 gartner magic
quadrant for low code application platforms. https://www.salesforce.com/blog/
gartner-lcap/

[3] Nico Ebert, Kristin Weber, and Stefan Koruna. 2017. Integration platform as a
service. Business & Information Systems Engineering 59, 5 (2017), 375–379.

[4] AltexSoft Editor. 2021. System integration: Types, approaches, and implementation
steps. https://www.altexsoft.com/blog/system-integration/

[5] Anke Gericke, Mario Klesse, Robert Winter, and Felix Wortmann. 2010.
Success Factors of Application Integration: An Exploratory Analy-
sis. http://www.alexandria.unisg.ch/Publikationen/72470 27 (01 2010).
https://doi.org/10.17705/1CAIS.02737

[6] Laura González, Felix Garcia, Francisco Ruiz, and Mario Piattini. 2010. Measure-
ment in business processes: A systematic review. Business Process Management
Journal 16 (02 2010), 114–134. https://doi.org/10.1108/14637151011017976

[7] ISO/IEC 25010. 2011. ISO/IEC 25010:2011, Systems and software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models.

[8] Jan Mendling. 1970. Metrics for Business Process Models. Vol. 6. 103–133. https:
//doi.org/10.1007/978-3-540-89224-3_4

[9] Grand View Research. 2022. System integration market share report,
2022-2030. https://www.grandviewresearch.com/industry-analysis/system-
integration-market

[10] Raquel Sanchis, Óscar García-Perales, Francisco Fraile, and Raul Poler. 2019. Low-
Code as Enabler of Digital Transformation in Manufacturing Industry. Applied
Sciences 10, 1 (Dec 2019), 12. https://doi.org/10.3390/app10010012

[11] Marcus Woo. 2020. The Rise of No/Low Code Software Development—No Experi-
ence Needed? Engineering 6 (07 2020). https://doi.org/10.1016/j.eng.2020.07.007

[12] Kev Zettler. 2022. What is cloud computing? an overview of the cloud.
https://www.atlassian.com/microservices/cloud-computing#:~:text=Cloud%
20computing%20is%20the%20delivery%20of%20computing%20resources%20%
E2%80%94%20including%20storage,the%20internet%20(the%20cloud)

[13] Iyad Zikra, Janis Stirna, and Jelena Zdravkovic. 2017. Identifying Quality Factors
of Information Systems Integration Design. 45–60. https://doi.org/10.1007/978-
3-319-64930-6_4

5

https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/978-1-4615-5269-7
https://www.salesforce.com/blog/gartner-lcap/
https://www.salesforce.com/blog/gartner-lcap/
https://www.altexsoft.com/blog/system-integration/
https://doi.org/10.17705/1CAIS.02737
https://doi.org/10.1108/14637151011017976
https://doi.org/10.1007/978-3-540-89224-3_4
https://doi.org/10.1007/978-3-540-89224-3_4
https://www.grandviewresearch.com/industry-analysis/system-integration-market
https://www.grandviewresearch.com/industry-analysis/system-integration-market
https://doi.org/10.3390/app10010012
https://doi.org/10.1016/j.eng.2020.07.007
https://www.atlassian.com/microservices/cloud-computing#:~:text=Cloud%20computing%20is%20the%20delivery%20of%20computing%20resources%20%E2%80%94%20including%20storage,the%20internet%20(the%20cloud)
https://www.atlassian.com/microservices/cloud-computing#:~:text=Cloud%20computing%20is%20the%20delivery%20of%20computing%20resources%20%E2%80%94%20including%20storage,the%20internet%20(the%20cloud)
https://www.atlassian.com/microservices/cloud-computing#:~:text=Cloud%20computing%20is%20the%20delivery%20of%20computing%20resources%20%E2%80%94%20including%20storage,the%20internet%20(the%20cloud)
https://doi.org/10.1007/978-3-319-64930-6_4
https://doi.org/10.1007/978-3-319-64930-6_4

TScIT 37, July 8, 2022, Enschede, The Netherlands A. Garg

A APPENDIX A: ISO 25010

6

	Abstract
	1 Introduction
	1.1 Problem Statement and Research Questions

	2 Methodology
	2.1 Literature Review
	2.2 Mapping to ISO 25010
	2.3 Selection of features

	3 Results
	3.1 Literature Review
	3.2 Mapping to ISO 25010
	3.3 Selection of features

	4 Discussion
	4.1 Limitations
	4.2 Future work

	5 Conclusion
	Acknowledgments
	References
	A Appendix A: ISO 25010

