
UNIVERSITY OF TWENTE

BSc Thesis Electrical Engineering
REAL-TIME DETECTION OF
PHOTOGRAPHING AND FILMING
ON EMBEDDED SYSTEMS

Raul Ismayilov

Committee:
prof.dr.ir. R.N.J. Veldhuis
dr. C.G. Zeinstra
dr. J. Zwiers

Faculty of Electrical Engineering,
Mathematics and Computer Science (EEMCS)

July 2022



Abstract—Current developments in image and video capturing
technologies enable the possibility of non-consensual distribution
of one’s identity information. Whether it is accidental pho-
tography or a deliberate attempt of filming, with emerging
privacy concerns, potential methods of preventing a person
from being identified by most facial recognition systems are
currently being investigated. Several wearable solutions, such
as jewelry or glasses, targeted to prevent facial identification
exist; however, most require manual control due to their passive
nature. This paper solves this problem with an embedded system
capable of automatic real-time inhibition of photography and
filming. Using a lightweight YoloFastestV2 deep learning model
in combination with NCNN and MNN inference frameworks,
targeted for optimal performance on embedded devices, an
object detection algorithm is trained and deployed on Raspberry
Pi devices to identify when the user is being filmed. Glasses
with variable lens transparency are used in the system and
instructed to turn dark when filming is detected to prevent
identity recognition. Precision-recall curves are used as a metric
to evaluate the designed models, and differences between NCNN
and MNN frameworks are examined. Based on the results, the
proposed system achieves an accuracy of 89% when evaluated
using images depicting expected filming scenarios. Real-world
experiments are also conducted to validate the performance, and
results demonstrate that accurate detections with an inference
time of 46ms are achievable on Raspberry Pi 4.

I. INTRODUCTION

Ever-evolving image and video capturing technologies make
it easier than ever to photograph a person without their
consent. While one might assume that the privacy rights can
protect an individual from being filmed in a public location,
the reality is different: photography is often considered a
form of art, and any form of prohibition of filming may be
regarded as a violation of the rights of the artistic expression
[1]. As a result, privacy concerns arise since the images
can be shared, and the location, time, and, most importantly,
identity information of the captured individual can become
easily accessible without their permission. Thus, there is a
great need for the protection of one’s privacy when it comes
to photography and filming [2].

To address the forementioned issue, several methods of
preventing the person from being filmed exist. The most
obvious solution, yet impractical in many scenarios, would be
to wear a facial disguise. This prevents most facial recognition
systems from identifying a person. Furthermore, facial paint
and jewelry designs capable of achieving the same results ex-
ist. Wearable glasses implanted with retroreflectors are another
existing option that can be used to prevent measurements by
many LFR systems [3]. In [4], wearable glasses equipped
with infrared LEDs are used to prevent a facial recognition
system from detecting the user. However, most of the existing
literature focuses on methods of passive prevention of filming;
for instance, the IR LEDs need to be turned on by the user
when the cameras are observed. Instead, this paper investigates
the possibility of making this process automated by using
deep learning (DL) on embedded systems to detect cameras
in real-time and, upon detection, prevent the person from
being filmed. For achieving this, a lightweight neural network
is selected, trained to detect filming, and deployed on two

different inference frameworks designed for optimal speed on
mobile and embedded devices. The resulting DL models are
then deployed on a Raspberry Pi 4 and Zero W and tested
using a live video feed from a webcam. When the user is
observed to be filmed, E-TINT® glasses [5] are used to
change their lens transparency and turn dark to prevent the
capture of the user’s identity. The experimental results show
that this task can be achieved, and the trade-off between
accuracy and inference time is investigated. The results are
then compared with a similar model trained on the YOLOv5
model, and conclusions are drawn.

The research and experiments conducted in this paper aim
to answer the following research questions:

• How photography and filming can be detected, and which
method provides the most accurate results?

• What steps need to be taken to achieve real-time object
detection on embedded systems such as Raspberry Pi?

• What impact do inference frameworks have on inference
times of models deployed on embedded systems?

II. RELATED WORK

A. Object Detection Models

In the field of computer vision, object detection can be
described as the task of identification and localization of
objects present in an image or a video. It is realized by
collecting images containing objects of interest and extract-
ing the features using backbone architectures. Commonly
used backbone architectures include examples such as VGG,
ResNet, and EfficientNet, which are explained in more detail
in Appendix A. The object detectors are then built on top of
the backbone architecture layers and can be separated into two
classes: two-stage and one stage. In two-stage object detectors,
region proposals are generated first, and classification and
detection occur in the second stage. Contrarily, one-stage
object detectors have classification and regression performed
at once, often resulting in faster and lighter models [6]. In
other words, while two-stage object detectors apply the model
at different scales and locations on the image and place
the bounding boxes at locations with the highest probability
scores, one-stage models, such as YOLO family models, run
the entire image through the neural network, divide the image
into multiple regions where weighted bounding boxes are
placed, and use non-max suppression (NMS) algorithm to
discard overlapping bounding boxes and keep only one with
the highest probability of detection (see Figure 1) [7]. Thus,
in the context of real-time object detection, one-stage models
such as YOLO and SSD Mobilenet V2 are often preferred.

B. Inference Frameworks

The inference performance of DL models is influenced
by many factors. Most of the existing literature focuses on
hardware and models to understand the performance, leaving
the software side, which plays a critical role in determining
the inference time, unexplored [8]. When it comes to software,
popular frameworks for DL model deployment are TensorFlow
Lite [9], NCNN [10], MNN [11], and PyTorchMobile [12].

1



Figure 1: The architecture of YOLO model [7].

Q. Zhang et al. [8] argue that when comparing these frame-
works, the results can vary greatly for different models. Yet,
it can be observed that benchmarked one-stage YOLOv3
and YoloFastest models perform best on NCNN and MNN
frameworks.

Generally, DL models are composed of many layers and
parameters. YOLO algorithms utilize Convolutional Neural
Networks (CNN) for detection and can have thousands of
interconnected units and thousands or even millions of pa-
rameters. Thus, the vast majority of embedded devices fail to
run these models in real-time due to the challenges related to
resources and data [13]. Both NCNN and MNN frameworks,
which show the best results on already exceptionally fast
YOLO models, include several optimization techniques, which
result in a further decrease in inference time.

Tencent’s neural network inference framework (NCNN) is
highly optimized for the use with ARM CPUs present on
Raspberry Pi devices. Fully developed in C++, it targets
the NEON accelerator on Raspberry Pi. Moreover, NCNN
employs simpler Winograd convolutions in place of 3×3
convolutions. Additionally, quantization (FP32 to INT8) is
available to reduce the model size and further lower the latency
of computations [10].

Alibaba’s MNN framework also offers strong support for
ARM CPUs with its vast versatility of integrations [14]. MNN
utilizes a pre-inference mechanism that performs runtime
optimizations. These optimizations include techniques such as
memory pre-allocation and reuse. It also employs algorithms
for in-depth kernel optimizations, which further improve the
functioning of widely-used DL operations [15]. Similar to
NCNN, model quantization is also available on MNN [11].

C. Real-time Object Detection on Raspberry Pi

When it comes to high-performance computing, ARM tech-
nology is becoming more widespread. Raspberry Pi uses this
technology and integrates a NEON pipeline, which improves
its computing power by a factor of four through the support
of vectorization. It provides a low-cost, high-performance
portable platform that can be used in many scenarios [16].
For instance, authors of [17] use Raspberry Pi for object
detection and drawing by using TensorFlow. In [18], Raspberry
Pi processes the image data for location and motion tracking
of seniors living alone. In [19], it is used for the detection and
tracking of human faces.

III. DESIGN AND IMPLEMENTATION

This section explains the design choices behind the imple-
mentation of the photography and filming detection system.
The image data used for training the model and inference
framework selection are discussed first. After, the training set-
tings are listed, and an optimal way of photography detection
is identified. Finally, three designed models are presented, and
their deployment and evaluation methods are described.

A. Dataset

A dataset containing a sufficient number of images for
training and validation is needed to achieve satisfactory results.
Several large datasets containing various object classes are
available for this task: ImageNet [20], Microsoft COCO [21],
Open Images [22], and Pascal VOC [23]. In this project, Open
Images V4 dataset is used since it contains the highest number
of images per class of interest. To only download the images
of needed classes, OIDv4 ToolKit [24] is used. However, to
achieve better results, a custom dataset was created for the final
model. The dataset mainly contains people holding phones or
cameras in their hands and taking an image in the mirror.
It includes 1480 manually labeled mobile phone images and
1315 camera images from Open Images V4 dataset.

B. Image Data Pre-processing

Once training images are available, several pre-processing
steps can be carried out before model training commences. In
this project, two pre-processing steps are considered: normal-
ization of image inputs and data augmentation.

Normalization of image inputs is an operation performed on
an image to meet the input size requirements of the model. For
example, if the model with an input size of 300×300 pixels
is given an image with a size 1920×1080, the input image
needs to be normalized. One way of achieving this is cropping
the image, but there are several scenarios where this method
will not work, e.g., if the object is contained within the entire
image. On the other hand, resizing the image preserves all
image pixels, keeping the information about the object intact.
In this project, images are resized to meet the model input
size requirements.

Data augmentation increases the dataset size by using
various augmenting techniques to alter the available images.
In addition, it prevents model over-fitting, which is often the
result of the use of smaller datasets and leads to models that do
not discern well the data obtained from the test and validation
sets. Hence, with the integration of data augmentation, the
model’s validation accuracy can be increased [25]. In this
project, seven traditional methods of data augmentation are
implemented as described in Appendix B.

However, even with traditional data augmentation methods,
experimental results of top submissions in image detection
challenges show that the Average Precision (AP) scores for
small objects are often 2-3 times lower than for large objects.
To improve the AP scores for small object detection, Kisantal
et al. [26] propose a method to augment the dataset’s images
by copying smaller versions of the known objects and pasting

2



them in random places in the image. The new objects should
not intersect with each other or the original objects. The best
results are obtained when only 1-2 small objects are added
to each image. Therefore, this method for small object data
augmentation was implemented in this project and is available
for use with any class of choice. In cases when there is no
space for the small object to be placed in the image or the
original object is smaller than 200×200 pixels in size, this data
augmentation is not performed. An example of both traditional
and small object data augmentation techniques implemented
in one image is given in Figure 2.

(a) Original image (b) Augmented image
Figure 2: Image augmentation using both traditional and small-
object data augmentation methods.

C. Model and Framework Selection

As previously mentioned, due to their low inference time,
YOLO models are often preferred for real-time object detec-
tion. For this reason, one of the YOLO family models is used
in this project. Given that the model not only needs to be used
for real-time object detection but also needs to be sufficiently
light for deployment on embedded devices, several lightweight
YOLO models that can be deployed on Raspberry Pi for real-
time detection are considered in Table I.

Model Size COCO mAP(0.5) RPi 4 64-OS
1950 MHz

NanoDet 320×320 20.6 13.0 FPS
YoloFastestV2 352×352 24.1 18.8 FPS
YoloV2 416×416 19.2 3.0 FPS
YoloV3 352×352 tiny 16.6 4.4 FPS
YoloV4 416×416 tiny 21.7 3.4 FPS
YoloV4 608×608 full 45.3 0.2 FPS
YoloV5 640×640 small 22.5 1.6 FPS
YoloX 416×416 nano 25.8 7.0 FPS
YoloX 416×416 tiny 32.8 2.8 FPS
YoloX 640×640 small 40.5 0.9 FPS
Table I: Benchmark of various lightweight YOLO models
trained on MS COCO dataset [27].

Based on the available models, the fastest model, which
also has the 4th highest mAP score, is YoloFastestV2. For
this project, the YoloFastestV2 model is trained to detect
photographing and filming.

Furthermore, the deployment occurs on NCNN and MNN
lightweight frameworks, both of which provide the best bench-
mark results for the YoloFastest model [8] and are optimized
for mobile and embedded devices, making the inference time
sufficiently low for real-time object detection on Raspberry
Pi devices. An attempt was also made to deploy the model

on TensorFlow Lite (TFLite) framework, however, due to a
different layout in memory (NHWC instead of NCHW) and
an unsupported implementation of the GatherV2 layer, this
was not possible. For more information, refer to Appendix C.

C.1 YoloFastestV2 Object Detection Algorithm

In the early days of lightweight object detection, Mobilenet-
SSD was a frequent model of choice. However, due to slow
inference time, real-time object detection was challenging
to achieve on ARM processor devices, examples of which
include most smartphones and Raspberry Pi devices. More-
over, in practical applications of real-time object detection,
mobile multi-core systems usually do not fully utilize all
cores, resulting in high power consumption and CPU usage,
leading to overheating and thermal throttling. YoloFastestV2
not only targets to achieve real-time performance on ARM
processor devices but also low power consumption by using
one or two processor cores at once. The model architecture
of YoloFastestV2 consists of shufflenetV2 as a backbone and
a modified detection head of YoloX. The anchor matching
mechanism is appropriated from YOLOv5 [28].

YoloFastestV2 is a successor of the YoloFastest object
detection algorithm, which, compared with MobileNet-SSD,
is three times faster, and its model size is 20 times smaller.
Using the VOC dataset, the accuracy results of 72.7% and
61.2% are achieved on MobileNet-SSD and YoloFastest, re-
spectively [29]. Thus, to achieve lower inference time on ARM
processors, the accuracy had to be sacrificed. Compared to the
original version, YoloFastestV2 trades a 0.3% loss of accuracy
for a 30% increase in inference speed [28].

D. Model Training

In this project, PyTorch is used for model training, following
the choice made by the creator of YoloFastestV2 [30]. For
faster training, NVIDIA RTX3080 GPU is used as the primary
training device in PyTorch. Additionally, since Open Images
V4 dataset contains train and test sets for each class [22],
images obtained from the train set are further split with a
ratio of 8:2 for train and validation sets, respectively. All input
images are resized to YoloFastestV2’s 352×352 input size.

D.1 Object Labels

During training, the model needs to have information about
the coordinates of the bounding boxes corresponding to the
objects to be detected. OIDv4 ToolKit was used to download
the CSV file containing bounding boxes of all objects in the
Open Images V4 dataset. Labels for each image containing
classes used by the model are added to the text files. When data
augmentation is performed and locations of bounding boxes
are changed, the label files are updated accordingly. Once the
labels are generated and updated, the next step is to convert
them to the YOLO format, as shown in Figure 3.

OIDv4 ToolKit labels contain the coordinates of the top-left
and bottom-right corners of the bounding box, while YOLO
labels need to have the center coordinates of the box as well
as its dimensions relative to the image size.

3



Figure 3: Conversion to YOLO label format.

D.2 Anchor Boxes

Unlike CenterNet or ExtremeNet model architectures, which
are anchor-less, YOLO models, including YoloFastestV2, re-
quire the generation of anchor boxes, which are used in pre-
dicting the coordinates of the bounding boxes [31]. The ratios
and scales of the model’s anchor boxes are essential hyper-
parameters since their shape should match the targets expected
to be detected. As creators of the YOLO-face model argue, in
most images where a face appears, it is expected to have a
larger height than width, making the anchor boxes different
for that specific model [32]. Similarly, this idea applies to the
camera detection model. In the YoloFastestV2 model, a k-
means clustering algorithm is used with the Intersection over
Union (IoU) metric to automatically generate anchor boxes
based on the bounding boxes given in the label files [30].

D.3 Train Configuration Settings

Besides anchor boxes, multiple hyper-parameters can be set
before the model training begins. Examples include optimizer,
initial learning rate, scheduler, and batch size. Overall, except
for anchor boxes, batch size, and initial learning rate, the
adjustable model hyper-parameters had little effect on the
accuracy of the detections. Therefore, the focus, instead, was
shifted towards the dataset and methods of detecting the pho-
tographing and filming. Nevertheless, more details about the
selection of model hyper-parameters are given in Appendix D.
Table II presents the summary of the choices made.

Anchors Model specific; generated automatically
Optimizer SGD (Stochastic Gradient Descent)
Initial Learning Rate 0.001
Training Scheduler MultiStepLR (Multi-step Learning Rate)
Scheduler Steps 150, 250
Batch Size 128
Table II: Summary of configuration settings for model training.

E. Detection of Photographing and Filming

Detection of cameras on their own can be impractical for
the final model implementation on the wearable since every
detection will be considered a true positive, which, in turn,
would trigger the glasses to turn dark even if the person is not
being filmed and the object is in the background.

One approach to solve this problem is to trigger the
glasses to turn dark only when the camera is pointing in
the user’s direction. However, there are several limitations
to this implementation. Firstly, the dataset can be manually

adjusted by removing the images where the cameras are not
directly pointed at the user. However, in the case of large
datasets consisting of thousands of images, this task becomes
very time-consuming. In addition, the size of the dataset will
be reduced drastically, resulting in worse performance since
less unique data is available to train the model. Secondly, a
custom dataset can be created by labeling the images man-
ually, but once again, this task requires substantial time and
data resources. Thirdly, the use of Arbitrary-Oriented Object
Detection, an emerging field of object detection tasked with
determining the orientation of the objects in the image, can be
implemented but requires more complex model architectures
and dynamic anchor selection [33], defeating the possibility
of current deployment on embedded devices.

Another approach to this problem is to detect the camera
and the person taking the picture. If both classes are detected,
the glasses can be turned dark. Still, this method is prone to
erroneous detections, for example, when the detected person is
in the same frame as the camera but does not interact with it.
Nevertheless, following this idea, multiple object classes can
be identified for the detection of photographing and filming.
For detecting cameras, classes “Camera” and “Mobile phone”
can be utilized. As for the detection of humans, different
parts of the human body can be used. The classes that were
considered and tested are: Human hand, Human eye, Person,
and Human face. Based on findings given in Appendix E,
classes “Human face” and “Person” were selected as the final
classes for detection of humans filming the user.

F. Custom Trained Models

In total, three different models were created and tested in
this project. Each model is given a version number to signify
implemented improvements. All of the models are deployed
on both NCNN and MNN frameworks.

For traditional data augmentation, an augmentation factor
of 3 was used, while for small object data augmentation, only
one small object was added per image. For more information
regarding this choice, refer to Appendix F. To prevent some
of the false positives in all of the models, both the human
and the camera need to be detected on multiple images in a
row; this parameter can be easily adjusted and was set to 5.
When several consecutive detections are made, the glasses are
instructed to turn dark for 5 seconds, starting from the last
observation of a human with a camera.

F.1 Model V1

Model V1 contains one model with three different classes:
“Camera,” “Mobile phone,” and “Human face.” Only tradi-
tional data augmentation is used. When both “Human face”
and “Camera” or “Mobile phone” classes are detected, the
glasses are instructed to turn dark. For training and validation,
about 15k camera, 13k mobile phone, and 50k human face
images are used (data augmentation is considered).

F.2 Model V2

Model V2 contains two One-Class Classification (OCC)
sub-models: the first sub-model detects only cameras (images

4



of “Camera” and “Mobile phone” classes are combined in one
“Camera” class), while the second sub-model detects human
faces. Naturally, the inference time of Model V2 is expected
to be twice larger than Model V1. However, by having OCC
models, the effects of issues discussed in Appendix E can
be considerably alleviated. The “Camera” class is augmented
using traditional data augmentation, while the “Human face”
class was not augmented due to a large number of available
images. For training and validation, 28k camera and 50k
human face images are used.

Moreover, since the inference time is increased by a factor
of 2, a pre-trained Slim-320 face detection model deployed on
MNN [34] is available for use instead of the custom-trained
YoloFastestV2 model. This model has a decreased inference
time due to its simpler architecture.

F.3 Model V3

Model V3 further improves Model V2 by using custom
datasets made for the “Camera” and “Mobile phone” classes,
which are merged in one “Camera” class of the first sub-
model. During training, background images of cars, buildings,
people, sunglasses, laptops, and monitors are added to the
dataset with no labels to prevent some of the false camera
detections. Traditional and small object data augmentations
are used. Moreover, a model capable of only detecting mobile
phones was trained to observe if the accuracy decreases when
digital cameras are included in the dataset.

The second sub-model detecting human faces is replaced
with “Person” class detection since the person filming might
have their face covered. In addition, to address the problem
when both camera and person are detected but the person is not
interacting with the camera, a new rule for positive detections
was created: if 70% of the bounding box around the camera
is inside the bounding box of the human, then that means the
human is holding the camera. For training and validation, 7.5k
camera and 150k person images are used.

G. Deployment

To deploy the trained model, PyTorch generates a weight file
that can be converted to the ONNX model for interoperability
between PyTorch and NCNN/MNN frameworks. Both NCNN
and MNN frameworks are implemented in the C++ environ-
ment and contain tools to convert the model from ONNX to
corresponding framework files [10, 11]. An overview of model
training and deployment is given in Figure 4.

Figure 4: An overview of model training and deployment for
the proposed object detection algorithm.

H. Model Evaluation
Since the deployment on NCNN and MNN frameworks

occurs on Raspberry Pi, the model evaluation is also im-
plemented on it. The evaluations are done on the test sets
by comparing the known bounding boxes with the predicted
bounding boxes generated by the model. To quantify this
comparison, the model evaluation is done via Precision-Recall
(PR) curves. To obtain a PR curve, one needs to calculate
precision and recall at detection confidence thresholds ranging
from 0 to 1. At each threshold, values for precision and recall
are calculated using Equation 1, and a point is plotted on
the PR curve. Figure 5 further displays how the required
components of Equation 1 can be found in the context of
bounding boxes.

Precision =
TP

TP + FP
=

TP
PP

Recall =
TP

TP + FN
=

TP
P

(1)

Where TP, FP, FN, PP, and P are true positive, false
positive, false negative, predicted positive, and actual positive,
respectively.

Figure 5: Definitions of TP, PP and P for bounding box
detections.

True positives were defined to occur when the IoU of
predicted and known bounding boxes is greater than 0.5. Once
all the PR points are obtained, a python script is used to
plot them and calculate the area under the graph using the
Trapezoidal Rule. This area corresponds to the AP score and
can be used as a metric to determine the performance of the
object detection algorithm. Mean Average Precision (mAP) is
calculated by averaging AP scores for each class; thus, in the
case of OCC models, mAP = AP.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, the hardware and software environments of
the photography and filming detection system are introduced
first, then all of the proposed models/sub-models are evaluated
using PR curves, inference times collected on three different
platforms are given, and, finally, a joined experiment with B.
Wenhao [35] is introduced and differences between designed
Model V3 and a similar YOLOv5 model are discussed.

5



A. Development Environment

The hardware environment for the proposed system shown
in Figure 6 is described as follows:

• Raspberry Pi 4B
– Architecture: ARM architecture
– CPU: Cortex-A72 64-bit quad-core
– Frequency: 2.1GHz (overclocked)
– Memory: 4GB

• Logitech C920 USB webcam
• Circuit with a button to start/stop classification and a

buzzer to signify detections using audio
• Driver circuit to control the transparency of glasses
• E-TINT® glasses

Figure 6: Hardware environment of the proposed system.

The flow diagram of the system is given in Figure 7 and
the software environment is described as follows:

• Software platform: Raspberry Pi 64-OS
• Inference frameworks: NCNN and MNN

Figure 7: Flow diagram of the proposed system.

Moreover, the models were also deployed on Raspberry Pi
Zero W, with a 1GHz single-core ARMv6 32-bit CPU and
512MB of memory, to only measure the inference times.

B. Evaluation of Models

Areas under PR curves, i.e., AP scores, were used as
the main indicator of how well a class of a certain model
performs. For this, test image sets belonging to each class
were used. While classes “Human face” and “Person” contain
an abundance of images with different backgrounds and scales,
most of the “Camera” and “Mobile phone” class images from
the Open Images V4 dataset represent unrealistic scenarios for
filming, e.g., cameras taking all of the image space. For this
reason, manually labeled images of people holding cameras
and unlabeled background images were used in a test set.
This dataset will be referred to as Mixed Dataset (MD), while
the term Class Dataset (CD) will be used to refer to datasets
in which each image contains the class of interest. Table III
displays the AP scores of each class in each model/sub-model.
MD was not used with human detection sub-models since it
was specifically designed for cameras. It was also not used
on Model V3, which is trained with a custom-labeled dataset,
and, hence, is not expected to detect cameras in unrealistic
filming scenarios.

Several findings were made from the AP scores given in Ta-
ble III. Firstly, quantized MNN models were observed to have
much worse performance when compared to non-quantized
versions. This can be explained by the YoloFastestV2 model
containing a layer not well supported by MNN quantization
tools. More information on this is given in Appendix G. Sec-
ondly, since Models V1&2 are trained on mobile phone images
from Open Images V4 dataset, which contain mostly screens
or outdated phones, the AP scores for MD were lower than for
CD. In comparison, Model V3, which was created to prevent
this problem, performs much better. However, the opposite can
be said about digital camera detection; Model V1 performs
better than V3 on MD since it uses five times more camera
images for training. Thirdly, having separate sub-models for
human and camera classes when transitioning from Model V1
to V2 resulted in an average of 13% increase in mAP scores
since class interference was eliminated (see Appendix E).
Fourthly, using the “Person” class instead of “Human face”
resulted in better AP scores. It is suspected this is due to
the use of 150k images instead of 50k during training and
the “Person” class test dataset containing manually selected
images of people facing the camera at reasonable distances,
which represent well the expected filming scenarios. Finally,
for Model V3, it was found that the model trained only on
mobile phone images performed better than one also trained
with cameras. This is because cameras add an additional layer
of complexity to the model. Overall, the additions in each
model version proved to improve the accuracy of detections.

Furthermore, no apparent differences are observed when AP
scores of NCNN and MNN models (only FP32 versions) are
compared. It can be concluded that when it comes to accuracy,
the two frameworks perform identically. When quantization
is used on NCNN, an average drop of 3% in AP scores is
recorded.

While AP scores can be used as an indicator of how well

6



Model V1 NCNN FP32 NCNN INT8 MNN FP32 MNN INT8

Class CD MD CD MD CD MD CD MD

Camera 0.74 0.87 0.69 0.82 0.74 0.88 0.20 0.15
Mobile Phone 0.87 0.23 0.85 0.15 0.87 0.23 0.42 0.00
Human Face 0.52 0.54 0.52 0.05

Model V2

Sub-model 1 Camera 0.86 0.58 0.84 0.57 0.85 0.57 0.40 0.06

Sub-model 2 Human Face (YoloFastestV2) 0.66 0.67 0.66 0.07
Human Face (Slim-320) 0.59 0.58

Model V3

Sub-model 1 Camera 0.78 0.77 0.78 0.06
Camera (Mobile Phone only) 0.85 0.84 0.85 0.01

Sub-model 2 Person 0.85 0.84 0.85 0.07

Table III: AP scores of each class in all proposed models based on the PR curve evaluation. CD - Class Dataset, e.i. test
images contain only images in which class instances are present. MD - Mixed Dataset, e.i. test images include class instances
and images with only background and day-to-day objects. All AP scores are generated for IoU and NMS thresholds of 0.5.
Colors are given to AP scores for easier comparison between models. Better scores are represented with green color, while
worse with red.

particular models perform, it is still beneficial to analyze the
PR curves to find a threshold at which desired precision and
recall values are obtained. In this project, a choice was made to
select the optimal threshold when a model has equal precision
and recall values; however, in some applications, having more
emphasis on TPs or TNs might be useful, and for this, Figure
8 includes the PR curves of Model V3.

(a) Camera-and-phone sub-model (b) Phone-only sub-model

(c) Person sub-model
Figure 8: PR curves of Model V3. Camera-and-phone and
phone-only detection sub-models are presented with the person
detection sub-model.

Finally, to test the accuracy of the system implementing the
detection rule of Model V3 (detection is only counted when the
camera is inside the human bounding box), a binary system of
classifications is used. Wearable glasses can have two states:
OFF (transparent) and ON (dark). A confusion matrix is used

to show the number of TP, TN, FP, and FN detections for the
state of the glasses. The confusion matrices were made for two
versions of Model V3 (first detects both cameras and phones,
while second only phones) and are given in Figure 9. The
accuracy of the camera-and-phone sub-model is 89% while
the phone-only sub-model has 93% accuracy, confirming that
the addition of digital cameras to the dataset decreases the
accuracy of the model. For an interested reader, Appendix H
includes additional plots of total loss during training.

(a) Camera-and-phone sub-model (b) Phone-only sub-model
Figure 9: Confusion matrices of Model V3.

C. Inference Times
Three platforms were used to deploy the models: Windows

11 system with Intel i7-11700KF CPU, Raspberry Pi 4, and
Raspberry Pi Zero W. The recorded inference times are listed
in Table IV. Due to Raspberry Pi Zero’s ARMv6 architecture,
which is considered outdated and is not supported by both
NCNN and MNN frameworks [10, 11], the Cmake files for
building the libraries had to be modified. While both libraries
were built successfully, the MNN framework would throw an
“Illegal Instruction” error when used, suggesting that it cannot
support ARMv6 architecture.

During experiments, it was observed that both NCNN and
MNN frameworks do not provide reduced inference time when

7



Figure 10: Examples of detections made by Model V3.

Platform Model version NCNN MNN

RPi 4 64-OS
2.1GHz

V1 35ms (29 FPS) 22ms (45 FPS)
V2 Slim-320 42ms (24 FPS) 31ms (32 FPS)

V2&3 67ms (15 FPS) 46ms (22 FPS)

RPi Zero W
32-OS 1.0GHz

V1 2s (0.5 FPS) Not supported
V2&3 4s (0.25 FPS) Not supported

Intel i7-
11700KF

V1 5ms (200 FPS) Not built
V2&3 11ms (90 FPS) Not built

Table IV: Inference time values for Models V1-3 deployed on
three different platforms.

quantized, and only the model size is reduced. This result
was unexpected since quantization decreases the precision of
the data type, which reduces computations and, in theory,
should accelerate inference. Similar results were also recorded
on the pre-trained Slim-320 face detection model. Based on
the results recorded on Raspberry Pi 4, the MNN framework,
on average, is 46% faster than NCNN. Considering that the
results of Table III show that both frameworks have the same
accuracy, MNN becomes the clear choice for the deployment
of YoloFastestV2 models since it provides reduced inference
time with no accuracy loss. Moreover, as expected, inference
times of Models V2&3 are twice larger than for Model V1 due
to two sub-models running in parallel. Slim-320 face detection
model used in Model V2 indeed provided reduced inference
time; however, this came at the cost of accuracy (see Table III).
Overall, all models deployed on Raspberry Pi 4 are capable
of real-time object detection.

Raspberry Pi Zero W was found to be not capable of real-
time object detection due to its unsupported and outdated
ARM architecture. Raspberry Pi Zero 2 W would have been a
much better choice for the deployment since it features the

same form factor while using the CPU of Raspberry Pi 3
[36]. However, due to a stockout, no units were available for
purchase, and the board was not used in the experiments.

D. Joined Experiment: Comparison Between YoloFastestV2
and YOLOv5 Models

Joined experiments were conducted with B. Wenhao [35]
since a similar system for detection of photographing and
filming was developed on the YOLOv5 model. The MD and
test dataset from [35] were evaluated using both Model V3
(camera-and-phone sub-model) and the YOLOv5 model. The
results are given in Table V. It can be observed that YOLOv5
has much better accuracy on both datasets. The reason for
this discrepancy is YOLOv5’s more complicated architecture,
containing 7M parameters [35] compared to 250k of Yolo-
FastestV2 [28], and its 3.3 times larger input image size (see
Table I). YOLOv5 provides higher accuracy at the expense
of increased inference time; if a single YoloFastestV2 model
(Model V1) is compared to a similar YOLOv5 model, the
inference time is expected to be 18 times larger on YOLOv5
(based on Tables I and IV). Thus, for deployment on embedded
devices, the accuracy has to be sacrificed for lower inference
time to enable the possibility of real-time object detection.

YOLO Model MD Dataset X
YoloFastestV2 mAP = 0.78 mAP = 0.66
YOLOv5 [35] mAP = 0.92 mAP = 0.96
Table V: mAP scores of YoloFastestV2 and YOLOv5 for cam-
era and mobile phone detection models. Dataset X represents
the test images used by [35].

A real-world experiment was also conducted to observe how
two different systems compare against each other. Figure 11
shows the proposed system at work. The results are given in
Appendix I. From the experiments, it can be concluded that
both systems perform well under various scenarios. While the
response of Model V3 was much faster when compared with
the YOLOv5 model, it also had lower accuracy and resulted
in occasional false positive and false negative detections.

(a) No camera detected (b) Camera detected
Figure 11: Real-world experiment on the proposed photogra-
phy and filming detection system. Glasses decrease their lens
transparency in the presence of cameras pointing at the user.

8



V. CONCLUSION

In this paper, the concept behind a system capable of real-
time detection of photography and filming on an embedded
system was introduced. To answer the research question re-
garding how photography and filming can be detected most
optimally, it was discovered that an unconventional approach
to object detection was needed since models trained using
a publicly available dataset resulted in poor real-world per-
formance. Since the final solution required the detection of
cameras only when the user is being filmed, the available
datasets could not suffice because a substantial number of
images contained within them did not represent well possible
filming scenarios. In addition, due to the lightweight nature
of the model, occurrences of false detections were frequent.
A method of detecting both humans and cameras was investi-
gated to prevent them. It was found that having one model for
this task was not sufficient since the detection accuracy was
lower due to class interferences. Instead, two OCC models
were created and run in parallel. Moreover, to represent real-
world scenarios of filming, a custom-labeled dataset had to
be created. The added changes considerably improved the
accuracy of detections in real-world scenarios, and the addition
of the small object data augmentation technique increased the
accuracy of detections at greater distances.

To provide an answer to the two remaining research ques-
tions about real-time object detection on embedded systems
and the effects of inference frameworks on latency, research
and experiments were conducted. Based on the results, it
was determined that to achieve real-time object detection on
embedded systems, a lightweight neural network paired with
an inference framework designed for optimal operation on
ARM processor devices is needed for the best combination
of accuracy and latency. In addition, it was found that while
both MNN and NCNN inference frameworks can considerably
decrease the inference time on ARM devices, using the MNN
inference framework with the YoloFastestV2 model results in
a system that is significantly faster and has no accuracy loss
when compared to one deployed on NCNN. Even though all
of the models enabled real-time object detection on Raspberry
Pi 4, the same cannot be said for Raspberry Pi Zero W due
to its outdated ARM architecture. Nevertheless, based on real-
world experiments on Raspberry Pi 4, it was found that the
proposed system is capable of accurate detections and is 18
times faster than a similar YOLOv5 model.

This paper lays the foundation needed to achieve real-time
detection of photography and filming on an embedded device.
More insight is needed into how the accuracy and inference
time can be improved further. One suggestion would be to have
a vast custom-labeled dataset for human and camera detection.
Given that the labels are correct and images represent realistic
filming scenarios, OCC models are no longer required, making
the model twice faster and more accurate than Model V3.
Another possibility would be an implementation of a simple
algorithm for arbitrary-oriented object detection, which would
enable the detection of cameras only in particular orienta-

tions, removing the current need for human detection. The
effects of using different cameras for object detection can be
investigated, and data augmentation techniques can be used to
make the models more robust to such variations. Moreover, the
system can be further miniaturized by using Raspberry Pi Zero
2 W or other commercial DL-oriented boards. Finally, given
that the designed system attempts to protect one’s identity
information, a method is needed to ensure that the images
used by the camera for object detection are never stored on
the embedded device.

REFERENCES

[1] S. Philipp, “Street photography and the right to pri-
vacy”, pp. 2–3, 2020. [Online]. Available: https : / /
cognitio - zeitschrift . ch / index . php / cognitio / article /
download/843/1037.

[2] T. Yamada, S. Gohshi, and I. Echizen, “Privacy visor:
Method for preventing face image detection by using
differences in human and device sensitivity”, in Com-
munications and Multimedia Security, 2013, pp. 152–
161.

[3] N. Madison and M. Klang, “Recognizing everyday ac-
tivism: Understanding resistance to facial recognition”,
Journal of Resistance Studies, p. 103,

[4] M. Frearson and K. Nguyen, “Adversarial attack on
facial recognition using visible light”, 2020.

[5] E-TINT. “Ctrl® one black red / smoke lens”. (2021),
[Online]. Available: https://e-tintproducts.com/product/
ctrl-one-black-red-smoke-lens/.

[6] R. Ismayilov, “Real-time object detection on a tinyml
system”, 2022.

[7] J. Redmon, S. K. Divvala, R. B. Girshick, and A.
Farhadi, “You only look once: Unified, real-time object
detection”, CoRR, vol. abs/1506.02640, 2015. [Online].
Available: http://arxiv.org/abs/1506.02640.

[8] Q. Zhang et al., “A comprehensive benchmark of deep
learning libraries on mobile devices”, in Proceedings
of the ACM Web Conference 2022, 2022, 3298–3307.
[Online]. Available: https://doi.org/10.1145/3485447.
3512148.

[9] “Performance measurement”, [Online]. Available: https:
//www.tensorflow.org/lite/performance/measurement?
hl=zh-cn.

[10] Tencent, “Ncnn”, 2018. [Online]. Available: https : / /
github.com/Tencent/ncnn.

[11] Alibaba, “Mnn”, 2019. [Online]. Available: https : / /
github.com/alibaba/MNN.

[12] “Pytorch mobile”, 2019. [Online]. Available: https : / /
github.com/alibaba/MNN.

[13] S. Voghoei, N. Hashemi Tonekaboni, J. G. Wallace, and
H. R. Arabnia, “Deep learning at the edge”, in 2018 In-
ternational Conference on Computational Science and
Computational Intelligence (CSCI), 2018, pp. 895–901.
DOI: 10.1109/CSCI46756.2018.00177.

9

https://cognitio-zeitschrift.ch/index.php/cognitio/article/download/843/1037
https://cognitio-zeitschrift.ch/index.php/cognitio/article/download/843/1037
https://cognitio-zeitschrift.ch/index.php/cognitio/article/download/843/1037
https://e-tintproducts.com/product/ctrl-one-black-red-smoke-lens/
https://e-tintproducts.com/product/ctrl-one-black-red-smoke-lens/
http://arxiv.org/abs/1506.02640
https://doi.org/10.1145/3485447.3512148
https://doi.org/10.1145/3485447.3512148
https://www.tensorflow.org/lite/performance/measurement?hl=zh-cn
https://www.tensorflow.org/lite/performance/measurement?hl=zh-cn
https://www.tensorflow.org/lite/performance/measurement?hl=zh-cn
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://doi.org/10.1109/CSCI46756.2018.00177


[14] V. Courville and V. P. Nia, “Deep learning inference
frameworks for arm cpu”, Journal of Computational
Vision and Imaging Systems, vol. 5, p. 3, 2020. [Online].
Available: https://openjournals.uwaterloo.ca/index.php/
vsl/article/view/1645.

[15] X. Jiang et al., “MNN: A universal and efficient
inference engine”, CoRR, vol. abs/2002.12418, 2020.
[Online]. Available: https://arxiv.org/abs/2002.12418.

[16] N. Gupta et al., “Deploying a task-based runtime system
on raspberry pi clusters”, in 2020 IEEE/ACM Fifth
International Workshop on Extreme Scale Programming
Models and Middleware (ESPM2), 2020, pp. 11–20.
DOI: 10.1109/ESPM251964.2020.00007.

[17] T. Bayrak, V. Marttin, and U. Yüzgeç, “Raspberry pi
based object detection and drawing”, Jun. 2021.

[18] N. Tabbakha, W. H. Tan, and C. Ooi, “Indoor location
and motion tracking system for elderly assisted living
home”, Nov. 2017, pp. 1–4. DOI: 10.1109/ICORAS.
2017.8308073.

[19] R. A. Tripathy and R. N. Daschoudhury, “Real-time
face detection and tracking using haar classifier on soc”,
2014.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database”, in 2009 IEEE conference on computer vision
and pattern recognition, Ieee, 2009, pp. 248–255.

[21] T. Lin et al., “Microsoft COCO: common objects in
context”, CoRR, vol. abs/1405.0312, 2014. [Online].
Available: http://arxiv.org/abs/1405.0312.

[22] A. Kuznetsova et al., “The open images dataset
V4: unified image classification, object detection,
and visual relationship detection at scale”, CoRR,
vol. abs/1811.00982, 2018. [Online]. Available: http :
//arxiv.org/abs/1811.00982.

[23] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman, “The pascal visual
object classes challenge: A retrospective”, International
Journal of Computer Vision, vol. 111, no. 1, pp. 98–136,
2015.

[24] M. Vittorio, “OIDv4 toolkit”, 2019. [Online]. Available:
https://github.com/EscVM/OIDv4 ToolKit.

[25] L. Perez and J. Wang, “The effectiveness of data aug-
mentation in image classification using deep learning”,
2017. DOI: 10 . 48550 / ARXIV. 1712 . 04621. [Online].
Available: https://arxiv.org/abs/1712.04621.

[26] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K.
Cho, “Augmentation for small object detection”, CoRR,
vol. abs/1902.07296, 2019. [Online]. Available: http :
//arxiv.org/abs/1902.07296.

[27] Qengineering, “Yolofastestv2 raspberry pi 4”, 2022.
[Online]. Available: https://github.com/Qengineering/
YoloFastestV2-ncnn-Raspberry-Pi-4.

[28] qiuqiuqiu, “Yolo-fastestv2: Faster and lighter”, 2021.
[Online]. Available: https : / / zhuanlan . zhihu . com / p /
400474142.

[29] qiuqiuqiu, “Yolo-fastest: Ultra-ultra-fast open source
arm real-time object detection algorithm”, 2020. [On-
line]. Available: https : / / zhuanlan . zhihu . com / p /
234506503.

[30] dog-qiuqiu, “Yolo-fastestv2”, 2021. [Online]. Available:
https://github.com/dog-qiuqiu/Yolo-FastestV2.

[31] Z. Tian, R. Zhan, J. Hu, W. Wang, Z. He, and Z.
Zhuang, “Generating anchor boxes based on attention
mechanism for object detection in remote sensing im-
ages”, Remote Sensing, vol. 12, no. 15, 2020, ISSN:
2072-4292. DOI: 10.3390/rs12152416. [Online]. Avail-
able: https://www.mdpi.com/2072-4292/12/15/2416.

[32] W. Chen, H. Huang, S. Peng, C. Zhou, and C. Zhang,
“Yolo-face: A real-time face detector”, The Visual Com-
puter, vol. 37, no. 4, pp. 805–813, 2021, ISSN: 1432-
2315. DOI: 10 .1007/s00371- 020- 01831- 7. [Online].
Available: https://doi.org/10.1007/s00371-020-01831-
7.

[33] Q. Ming, Z. Zhou, L. Miao, H. Zhang, and L. Li,
“Dynamic anchor learning for arbitrary-oriented object
detection”, CoRR, vol. abs/2012.04150, 2020. [Online].
Available: https://arxiv.org/abs/2012.04150.

[34] Qengineering, “Face detection on raspberry pi 32/64
bits”, 2021. [Online]. Available: https : / / github. com /
Qengineering/Face-detection-Raspberry-Pi-32-64-bits.

[35] B. Wenhao, “Real-time detection of photographing and
filming on mobile devices”, 2022.

[36] “Raspberry pi zero 2 w”, 2022. [Online]. Available:
https : / /www.raspberrypi .com/products / raspberry- pi -
zero-2-w/.

[37] “A survey of modern deep learning based object de-
tection models”, Digital Signal Processing, vol. 126,
p. 103 514, 2022, ISSN: 1051-2004. DOI: https : / /doi .
org/10.1016/j.dsp.2022.103514.

[38] Onnx, “Tensorflow backend for onnx”, 2019. [Online].
Available: https://github.com/onnx/onnx-tensorflow.

[39] H. Katsuya, “Openvino2tensorflow”, 2020. [Online].
Available: https : / / github . com / PINTO0309 /
openvino2tensorflow.

[40] W. Tom, “Issue with gatherv2 conversion”, 2021. [On-
line]. Available: https: / /github.com/onnx/ tensorflow-
onnx/issues/1317.

[41] A. Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library”, in Advances in
Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds., Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http : / / papers .
neurips .cc /paper /9015- pytorch- an- imperative- style -
high-performance-deep-learning-library.pdf.

10

https://openjournals.uwaterloo.ca/index.php/vsl/article/view/1645
https://openjournals.uwaterloo.ca/index.php/vsl/article/view/1645
https://arxiv.org/abs/2002.12418
https://doi.org/10.1109/ESPM251964.2020.00007
https://doi.org/10.1109/ICORAS.2017.8308073
https://doi.org/10.1109/ICORAS.2017.8308073
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1811.00982
http://arxiv.org/abs/1811.00982
https://github.com/EscVM/OIDv4_ToolKit
https://doi.org/10.48550/ARXIV.1712.04621
https://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1902.07296
http://arxiv.org/abs/1902.07296
https://github.com/Qengineering/YoloFastestV2-ncnn-Raspberry-Pi-4
https://github.com/Qengineering/YoloFastestV2-ncnn-Raspberry-Pi-4
https://zhuanlan.zhihu.com/p/400474142
https://zhuanlan.zhihu.com/p/400474142
https://zhuanlan.zhihu.com/p/234506503
https://zhuanlan.zhihu.com/p/234506503
https://github.com/dog-qiuqiu/Yolo-FastestV2
https://doi.org/10.3390/rs12152416
https://www.mdpi.com/2072-4292/12/15/2416
https://doi.org/10.1007/s00371-020-01831-7
https://doi.org/10.1007/s00371-020-01831-7
https://doi.org/10.1007/s00371-020-01831-7
https://arxiv.org/abs/2012.04150
https://github.com/Qengineering/Face-detection-Raspberry-Pi-32-64-bits
https://github.com/Qengineering/Face-detection-Raspberry-Pi-32-64-bits
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://doi.org/https://doi.org/10.1016/j.dsp.2022.103514
https://doi.org/https://doi.org/10.1016/j.dsp.2022.103514
https://github.com/onnx/onnx-tensorflow
https://github.com/PINTO0309/openvino2tensorflow
https://github.com/PINTO0309/openvino2tensorflow
https://github.com/onnx/tensorflow-onnx/issues/1317
https://github.com/onnx/tensorflow-onnx/issues/1317
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


APPENDIX A
BACKBONE ARCHITECTURES

Backbone architectures are an essential part of object detec-
tors since they extract the features from the input images of
the model. These architectures are constructed by combining
various neural network layers: convolution layers, pooling
layers, fully connected layers, etc. Each layer can have several
tunable parameters and performs a specific operation. For
example, while convolution layers apply filters to an image,
pooling layers are used to decrease the dimensions of feature
maps by, for instance, taking an average or maximum value
of multiple cells. The differences between commonly used
backbone architectures such as VGG, ResNet, and EfficientNet
are, thus, in the number and arrangement of these layers. For
example, VGG constructs the network using small convolution
filters, reducing the number of network parameters. ResNet
architectures are significantly deeper when compared to VGG;
however, by using skip connections between stacked convo-
lution layers, they alleviate the performance decay without
adding more parameters to the network and achieve higher
accuracy results. Creators of EfficientNet had a different
approach: they meticulously analyzed how changes in network
parameters affect the accuracy and, based on the results,
developed a simple yet efficient and accurate architecture [37].

APPENDIX B
TRADITIONAL DATA AUGMENTATION

For each class used in the model, an augmentation factor
can be set. When the augmentation factor is set to 1, no
augmentation is applied to the class; on the other hand, if
the augmentation factor is set to 3, for each existing image
in the class, two more altered versions of this image are
added. In total, seven different augmentation techniques are
implemented:

• Horizontal, vertical, and horizontal & vertical flips
• Rotations by +90°, -90°, and 180°
• Brightness level change
• Saturation level change
• Contrast level change
• Addition of Gaussian noise
• Addition of salt-and-pepper noise
Each augmentation setting can be chosen to be used or

not during the augmentation procedure. It is also possible to
randomly select different augmentation techniques for each
image rather than applying all of them at once.

APPENDIX C
ISSUES WITH DEPLOYMENT ON TFLITE FRAMEWORK

Similar to how PyTorch models can be converted to NCNN
and MNN, they can also be converted to TFLite. The models
first need to be converted to ONNX, and then by using
onnx-tensorflow conversion tools [38], they can be converted
to TensorFlow models, which are later converted to TFLite.
However, using the official tool for conversion results in
models which are much larger in size and contain many

transpose layers. This is due to PyTorch models being in
NCHW (channel second) format, while TensorFlow models
are in NHWC (channel last) format. The conversion tool
converts the models from ONNX to TFLite, and to solve
the problem of TensorFlow’s layers being in NHWC format,
inserts multiple transpose layers throughout the model. This
can be seen from Figure 12, where several ONNX layers
and converted TFLite layers are compared. Given that TFLite
convolution layers are in NHWC, while input and output need
to be in NCHW format, two transpose layers are added. This
inefficient conversion results in a significant increase in the
model size and inference time.

(a) ONNX model layers (b) TFLite model layers
Figure 12: Comparison between ONNX and TFLite imple-
mentations of the same layers in YoloFastestV2 model.

Another tool for this conversion was developed by [39]. It
is designed to solve the problem of added layers in Tensor-
Flow models. The conversion process is described in Figure
13. While conversion from ONNX to OpenVINO platform
was carried out without problems, OpenVINO to TensorFlow
conversion resulted in an error in layer 80, which corresponds
to the GatherV2 layer as seen in Figure 14. After further
research, it was found that ONNX does not support the correct
conversion of the GatherV2 layer and its batch dim property
[40]. Due to this error, no efficient method for conversion from
PyTorch to TFLite was found for the YoloFastestV2 model.

Figure 13: Conversion of ONNX model to TFLite model
without addition of extra transpose layers.

11



Figure 14: Error during conversion from OpenVINO to Ten-
sorFlow.

APPENDIX D
MODEL HYPER-PARAMETERS

The performance of models with varying hyper-parameters
was evaluated using the evaluation metrics printed every 10
epochs during training. Due to minor performance differences,
the results are only discussed briefly.

By default, YoloFastestV2 uses an SGD (Stochastic Gra-
dient Descent) optimizer, which holds the current state and,
based on calculated gradients, optimizes the parameters such
as weight decay and learning rate [41]. The PyTorch library
contains many optimizer algorithms, a few of which (Adam,
Adamax, and RMSprop) were tested during the training proce-
dure. No significant improvements were detected, and, in some
cases, worse performance was recorded. Hence, it was decided
to keep SGD as the model optimizer. Similar results were
observed during the choice of a scheduler. The learning rate
scheduler adjusts the learning rate dynamically during training.
By default, MultiStepLR scheduler is used, which multiplies
the learning rate at predefined epochs with some factor gamma.
It was discovered that the original value of gamma = 0.1
was excessive since the learning rate reduction resulted in
no noticeable improvement as training epochs progressed,
especially after the decrease for the second time (100 times
less than the initial learning rate). Hence, through several
experimental runs, it was found that gamma = 0.2 works
optimally during the training. When ConstantLR scheduler
was used, model over-fitting was observed after epoch 150.
ExponentialLR with gamma = 0.995 (meaning that every
epoch, the learning rate is multiplied by gamma) was found
to work quite well and sometimes even converge to best
results faster than MultiStepLR. However, for different models
gamma parameter had to be varied slightly to achieve the
best results, making the scheduler not universally applicable
to most models. As a result, MultiStepLR scheduler with
gamma = 0.2 and steps at epochs 150 and 250 was used
during training.

The final value for the initial learning rate was set to be
0.001, as was set by default. A model that over-fits during the
first 50 epochs was observed when this value was increased by
a factor of 10, and when it was decreased by the same factor,
a slightly worse performance was recorded since the model
is learning much slower than preferred. Batch size, which
represents the number of training samples going through the
neural network at once, was set to 128. Using a smaller batch
size resulted in slower training and worse performance, while
having it larger (256 was a maximum value that could have
been used with 10GB of GPU memory) resulted in slightly
better results (AP score being higher by 0.02), but due to CPU
and GPU overheating when training, it was decided to keep
the batch size of 128.

APPENDIX E
OPTIMAL TRAINING DATA SELECTION

While all four mentioned classes can be used to find a
human, some perform better than others. For example, the
class “Human hands” was found to be more challenging for
the model to detect when compared to the class “Human
eye.” However, when these classes are added to the camera
class in one model, it was discovered that the accuracy of
classifications considerably worsens. The reason for that is
that most images that contain humans from the camera and
mobile phone classes do not have corresponding labels for
humans. That creates a problem: the model learns the features
of a human, but when images with cameras are analyzed, the
unlabeled human in them is found, and the model assumes it
made a wrong classification and adjusts the weights wrongly.
Furthermore, it was noted that, for example, human eyes could
be detected correctly, but as soon as a camera appears in
the same frame, the eyes become no longer detectable, as
displayed in Figure 15.

Figure 15: Camera presence in the same image changes the
detectability of eyes.

This problem makes it hard to correctly detect when the
glasses should turn dark and when not. The issue lies within
the dataset, which had to be accurately and thoroughly labeled
for all objects of interest to be detected. Nevertheless, it was
noted that out of all mentioned classes, class “Human face”
performed the best with cameras. There are two reasons for
this: this class contains a large number of images for training,
thus, not labeled images from the camera class play a lesser
role in determining the weights, and though not all, some
images containing cameras also have labels for the human
face.

Finally, another method that can be used to avoid this
problem is to have multiple models trained to detect only
one object. Input images will then be used as an input for
these separate models, and the outputs of the models will
be combined into one image. This, however, decreases the
inference time by a factor equal to the number of such
models running in parallel. Nevertheless, the images from
different classes are no longer affected by each other, and best
performing classes for detection of a human (“Human face”
and “Person”) can be used in parallel with a model detecting
only cameras.

12



Another preliminary experiment was carried out on the
dataset to determine the best method to detect photographing
and filming. “Camera” and “Mobile phone” classes contain
images that are not expected to be detected when the model
is deployed, for example, large filming cameras, the display
side of cameras and phones, and old phones. Thus, an attempt
was made to remove these images from the training and test
sets to determine the impact on the accuracy. This resulted in
the following changes: “Camera” class images were reduced
from 5000 to 4109, and “Mobile phone” class images were
reduced from 4312 to 674. The PR curves of models trained
with the original and refined dataset are given in Figure 16.

(a) Original dataset (b) Refined dataset
Figure 16: Comparison between PR curves of the original and
refined datasets. Evaluation is performed on CD and Model
V2 deployed on NCNN FP32.

As can be seen from the areas under the curves, which
are equal to AP scores, when tested on the refined test set,
the performance of the original model is better. While the
removed images did not represent the anticipated reality, they
amounted to 51.4% of the entire collection of images, which,
in turn, made the model have less available data to be trained
with, leading to worse performance. Using data augmentation
to bring the classes to about the same number of images as
were available initially resulted in no significant improvement.
Based on these results, it was decided not to limit the dataset
and use all available images for training.

APPENDIX F
OPTIMAL DATA AUGMENTATION SETTINGS

Compared to “Human face” and “Person” classes which
contain hundreds of thousands of images, “Camera” and “Mo-
bile phone” classes lack useful training data which can further
improve the model. As already mentioned, in such scenarios,
data augmentation can be used. To determine the optimal
factor by which the dataset of camera images should be
increased, an experiment was conducted with datasets of four
different sizes. The results are given in Figure 17. Based on
the results, augmentation factors of 1 (no data augmentation)
and 2 give similar AP scores; an augmentation factor of 3
results in the best AP score, while a factor of 4 brings the AP
score down by 0.01. Thus, an augmentation factor of 3 was
used for all of the models.

Small object data augmentation was used in this project
to enhance the accuracy of small object detections. Results of
Kisantal et al. [26] suggest that for most optimal performance,

(a) No data augmentation (b) Augmentation factor = 2

(c) Augmentation factor = 3 (d) Augmentation factor = 4
Figure 17: Effects of different augmentation factors on PR
curves of a model. Evaluation is performed on CD and Model
V2 deployed on NCNN FP32.

only 1-2 small objects need to be added per image. This was
tested on the custom dataset made for Model V3, and the
results are given in Figure 18. Based on the results, the highest
AP score was recorded for a model with one small object
added per image. Thus, this factor was used during the training
of the Model V3.

(a) No small objects added (b) 1 small object per image

(c) 2 small objects per image
Figure 18: Effects of small object data augmentation on PR
curves of a model. Evaluation is performed on MD and Model
V3 deployed on NCNN FP32.

13



Scenario description YoloFastestV2 Model V3 YOLOv5 model

Samsung smartphone in 3 different poses at 2 meters distance; indoors Passed Passed
iPhone smartphone in 3 different poses at 2 meters distance; indoors Passed Passed
Huawei smartphone in 3 different poses at 2 meters distance; indoors Passed Passed
A smartphone at 2 meters distance in dim lighting conditions; indoors Passed Passed
A smartphone at 8 meters distance; indoors Passed Passed
Phone-like object at 2 meters distance; indoors Failed Passed
A smartphone at 2 meters distance; outdoors Passed Passed

Table VI: Real-world experiments conducted on YoloFastestV2 Model V3 and YOLOv5 model [35].

APPENDIX G
ISSUES WITH MODEL QUANTIZATION ON MNN

FRAMEWORK

Both NCNN and MNN frameworks require calibration
datasets to convert FP32 models to INT8. Additionally, both,
by default, use the KL divergence method to quantize the
features and the max absolute value of weights to perform
symmetrical quantization [10, 11]. While the conversion pro-
cedure is similar, a different set of tools is used by MNN. Dur-
ing the debugging of the model quantization, it was observed
that cosine distance parameter of one of the layers results
in NaN value as shown in Figure 19. This parameter error
results in incorrect model quantization and poorly performing
MNN INT8 models. GatherV2 was found to be the layer that
had the corresponding input given by the debugger (see Figure
20). This same layer is also responsible for the error occurring
during conversion from ONNX to TFLite (see Appendix C).
Thus, due to the unsupported implementation of the GatherV2
layer in ONNX [40], the MNN quantization process fails and
results in worse-performing models.

Figure 19: MNN quantization error.

Figure 20: Layer responsible for MNN quantization error.

APPENDIX H
TOTAL LOSS OF MODEL V3

During model training, the total loss function can be used as
an indicator of how well the model is learning from the data.
This function needs to be minimized to achieve better results.
From Figure 21, it can be seen that values for total loss for
different sub-models of Model V3 flatten out, meaning that
the detector becomes stable over time.

(a) Camera-and-phone sub-model (b) Phone-only sub-model

(c) Person sub-model
Figure 21: Total loss plots of Model V3. Camera-and-phone
and phone-only detection sub-models are presented with the
person detection sub-model.

APPENDIX I
REAL-WORLD EXPERIMENTS ON YOLOFASTESTV2 AND

YOLOV5 SYSTEMS

Experiments were conducted on both the proposed Model
V3 and YOLOv5 model designed by [35] to observe the real-
world performances. Seven different scenarios were consid-
ered, and the results are summarised in Table VI.

14


	Introduction
	Related Work
	Object Detection Models
	Inference Frameworks
	Real-time Object Detection on Raspberry Pi

	Design and Implementation
	Dataset
	Image Data Pre-processing
	Model and Framework Selection
	YoloFastestV2 Object Detection Algorithm

	Model Training
	Object Labels
	Anchor Boxes
	Train Configuration Settings

	Detection of Photographing and Filming
	Custom Trained Models
	Model V1
	Model V2
	Model V3

	Deployment
	Model Evaluation

	Experimental Setup and Results
	Development Environment
	Evaluation of Models
	Inference Times
	Joined Experiment: Comparison Between YoloFastestV2 and YOLOv5 Models

	Conclusion
	Appendix A: Backbone Architectures
	Appendix B: Traditional Data Augmentation
	Appendix C: Issues with Deployment on TFLite Framework
	Appendix D: Model Hyper-parameters
	Appendix E: Optimal Training Data Selection
	Appendix F: Optimal Data Augmentation Settings
	Appendix G: Issues with Model Quantization on MNN Framework
	Appendix H: Total Loss of Model V3
	Appendix I: Real-world Experiments on YoloFastestV2 and YOLOv5 Systems

