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Island parsing is a semi-parsing technique that involves only parsing

interesting fragments of an input text, called islands, and leaving
uninteresting fragments, called water, unparsed. By allowing these
islands to contain lakes and lakes to contain islands, it is possible to

support the semi-parsing of nested constructs such as conditional
or iteration statements in an imperative programming language. In
functional programming, monadic parser combinators are a popular
approach to building recursive descent parsers. This research paper

outlines the step-by-step design, implementation, and verification of
a set of monadic lake parser combinators for recursive island parsing
by combining previous work done in the fields of semi-parsing and

monadic parser combinators.
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1 INTRODUCTION

In the field of syntactical analysis, semi-parsing is the col-
lective term coined by Dean et al. to describe the process
of only partially analysing a string of symbols conforming
to the rules of a formal grammar, recognizing only relevant
constructs and skipping the analysis of irrelevant constructs.
[2]

If we want to compile and execute a program, we need
full syntactic analysis and a complete syntax tree. However,
on the other side of the spectrum, pure lexical analysis can
be used for low-precision tasks such as keyword frequency
analysis. [19]

In between these two extremes lies, for example, control flow
analysis. If we want to analyse the control flow of a program,
only if-else and similar statements are constructs of interest.
In theory, the rest of the input text could be skipped over.
But, without the use of semi-parsing techniques, it can be
a resource-intensive and error-prone task to design a proper
semi-parser from scratch. [16]

Existing techniques all fall somewhere on the spectrum be-
tween almost full syntactic analysis and pure lexical analysis.
For example, take agile parsing, fuzzy parsing and skeleton
grammars. [2, 9, 10] However, most techniques are often not
directly comparable and hard to reuse. One of the more gen-
eralizable ideas is that of island- and lake-grammars, and lake
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symbols. [14, 16, 18]

Island parsing involves only extracting interesting parts of
an input text as an island and skipping over the rest as water.
[18] A body of water inside an island is called a lake. If it
would be possible to define islands within lakes as well, we
could semi-parse nested constructs such as the conditional
or iteration statements that commonly occur in imperative
programming languages. [14] We use the term recursive island
parsers to denote island parsers that support lakes in islands
and islands in lakes.

It would be fairly trivial to define the sea in which the
islands of interest exist using something similar to a wildcard
character. However, it is far more difficult to define the lakes
inside an island. The parser needs to know what patterns
must not be taken as water to exclude the parts of the island
from the lakes. This is a burden to developers implementing a
recursive island parser, as this is not an easy task to do. [16]

Previous semi-parsing solutions all involved algorithmic ap-
proaches, of which only one enabled the user to design actual
recursive island parsers. By shifting to a strictly functional
paradigm and using only pure functions, we gain an important
benefit. The outputs are always the same for any given inputs.
This ensures determinism and predictability, making testing
and verification easier and more reliable. [7]

In functional programming, a popular approach to design-
ing recursive descent parsers is to model parsers as functions
and to define higher-order functions (or combinators) that
implement grammar constructions such as sequencing, choice,
and repetition. [8] Combining the research on monadic parser
combinators and semi-parsing techniques raises the question:

RQ: To what extent would it be possible to design a set
of monadic lake parser combinators for recursive island pars-
ing?

To answer this research question, we performed experimen-
tal research, exploring the inner workings of existing monadic
parser combinators libraries and related research. [12] Com-
bining these findings with existing semi-parsing techniques,
to discover which ideas and principles might translate well
into the functional programming domain, and which can or
might not.

In this document, we further explore the requirements of the
intended system, compare this set of requirements to existing
solutions and finally propose and verify a new architecture
for designing recursive island parsers.
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2 REQUIREMENTS

To decide on the requirements for the intended system, it is
necessary to thoroughly understand the end-user and their
needs. In our case, the user will most likely be a software
engineer or a researcher. They will want to use the system
to successfully create recursive island parsers and use these
for analysis purposes. For example, determining code metrics
like cyclomatic complexity, or performing further research on
the space and time complexity of the system compared to
performing full syntactic analysis.
At this preliminary stage in the design process, we are as-
suming that it is even possible to implement a set of parser
combinators for recursive island parsing.
By utilising the MoSCoW method, which is a prioritisation
technique used in software development, we can distinguish
the following categories of requirements:

2.1 Must-have

R1: The system should be created using, and for use in, a
functional programming language.

R2: Using the system, it should be possible to design parsers
that can perform recursive island parsing.

2.2 Should-have

R3: The system should automatically determine the alterna-
tive symbols, which are the symbols that signify the boundaries
of the lakes and where the islands begin again, and abstract
the complexity of selecting these alternative symbols away
from the user.

2.3 Could-have

R4: The system should use monads to define the set of lake
parser combinators succinctly.

3 EXISTING SOLUTIONS

In this section we will take a closer look into existing solutions
and which of our requirements they satisfy.

3.1 Monadic Parser Combinators

Parser combinators provide a quick and easy method of build-
ing functional parsers. One has the full power of a functional
language available to define new combinators for special ap-
plications. [8]

It was realised early on that parsers form an instance of
a monad, an algebraic structure from mathematics. Using
monads brings several practical benefits. For example, us-
ing a monadic sequencing combinator for parsers avoids the
messy manipulation of nested tuples of results present in ear-
lier work. Moreover, monad comprehension notation makes
parsers more compact and easier to read. [8, 12]

This flexibility in being able to define new combinators for
special applications makes it ideal for extending upon existing

solutions with a new set of parser combinators for recursive
island parsing. However, such a set of parser combinators
does not exist as of yet.

3.2 Island- and Lake-Grammars

In 1999, Deursen and Kuipers introduced the concept of is-
land grammars to simplify the construction of documentation
generators. [18] Island grammars only define syntactic struc-
tures of interest.

In 2001, Moonen used the term water to describe uninterest-
ing syntactic structures in island grammars and proposed lake
grammars and the idea of starting with a complete grammar
for a given language and extending that grammar with several
bodies of water. [14] An uninteresting body of water inside an
island of interest is called a lake. Furthermore, in the resulting
lake grammar, we can mix bodies of water and islands to
support nested constructs such as conditional or iteration
statements. This way, it is possible to define islands with
lakes and lakes with islands, supporting the idea of recursive
island parsing.

3.3 Lake Symbols

In a recent paper from 2021, Okuda and Chiba proposed the
use of lake symbols for island parsers in an extended Pars-
ing Expression Grammar (PEG). [16] They used the term
alternative symbols to describe the terminal or nonterminal
symbols that indicate the end of a lake and the beginning of
the rest of the island.

Lake symbols can be used as a simple wildcard-like symbol
in the extended PEG and automate the enumeration of the
alternative symbols for the water inside an island. Without
this automated enumeration, correctly selecting the right set
of alternative symbols is a burden to developers implementing
an recursive island parser, as this is not an easy task to do.
The paper proposes an algorithm for translating the extended
PEG to a normal PEG, which can be given to an existing
parser generator based on PEG.

Of all the presented existing solutions, this is the only one
that allows users to design parsers that can perform recursive
island parsing and automatically determine the alternative
symbols. PEGs are closely related to the family of top-down
parsing languages, [3] which also includes recursive descent
parsers. However, the proposed solution is algorithmic and
not suitable for direct use with monadic parser combinators.

3.4 Bounded Seas

In 2015, Kurs et al. proposed bounded seas, [11] which can be
used to automatically calculate alternative symbols and use
them for the not predicate, similar to how lake symbols func-
tion. However, the bounded seas calculate only a subset of all
the alternative symbols, which corresponds to the SUCCEED
set used in the algorithm proposed by Okuda and Chiba. [16]

2



Recursive Island Parsing: Monadic Lake Parser Combinators TScIT 37, July 8, 2022, Enschede, The Netherlands

Thus, its applicability is limited and the solution does not
fully satisfy our requirements.

3.5 Formal Foundations for Semi-Parsing

In 2014, Zaytsev compiled what is probably the most compre-
hensive list of semi-parsing techniques known today. [19] Both
island- and lake-grammars appear on the listing in this paper,
which boasts a total of 22 existing methods of semi-parsing.
However, none of these other solutions can perform something
similar to recursive island parsing, which is one of our main
requirements. The most promising ideas include:

∙ Fuzzy Parsing, [10] which involves parsing triggered
by anchor terminals encountered during the scanning
phase. In the framework proposed by Koppler, the user
must manually implement the scanner.

∙ Skeleton Grammars, [9] which introduces default rules
for water in a baseline complete grammar. The parsers
derived from skeleton grammars could be considered
island parsers. However, the proposal by Klusener and
Lämmel does not include support for lakes.

∙ Agile Parsing, [2] in which additional rules are included
to connect several grammars. This approach could be
considered as a variant of island parsing when using the
not operator in TXL [1] to manually specify where a
lake ends and an island starts again.

4 NEW ARCHITECTURE

In this section, we will propose a new architecture, defin-
ing monadic parser combinators for the purpose of recursive
island parsing. A Git repository containing a functioning
implementation has been made available.1

4.1 Defining Primitive Monadic Parser Combinators

We are going to start off by defining our primitive monadic
parser combinators, which we can later extend with combi-
nators for the purpose of recursive island parsing. From the
works of Hutton and Meijer, we have learned that we can
define our Parser as seen below. [8]

type Parser = StateT String Maybe

runParser :: Parser a

-> String

-> Maybe (a, String)

runParser = runStateT

The definition of Parser at this point is just a simple
type synonym for the StateT monad transformer, carrying
a state of type String and an inner monad Maybe. Monad
transformers are type constructors which take a monad as an
argument and return a monad as a result. The mtl package
defines several useful monad transformers besides StateT,
some of which we will make use of in later sections. [6]

1https://github.com/ghuisma/lake-parser-combinators

data Maybe a = Nothing

| Just a

newtype StateT s m a = StateT

{

-- unwrap a state monad computation

-- as a function

runStateT :: StateT s m a

-> s

-> m (a, s)

}

By defining Parser using the StateT monad transformer,
which is already an instance of several important type classes,
including Functor, Applicative, Alternative, Monad and
MonadState, we gain access to a number of powerful func-
tions and parser combinators.

The Functor type class defines the function fmap, which
applies a function of type (a -> b) to a value of type f a

where f is a functor, to produce a value of type f b. [15]

class Functor f where

fmap :: (a -> b) -> f a -> f b

The Applicative type class describes a structure interme-
diate between a functor and a monad. It defines operations to
embed pure expressions (pure), and sequence computations
and combine their results (<*>) [13]

class Functor f => Applicative f where

-- lift a value

pure :: a -> f a

-- sequential application

(<*>) :: f (a -> b) -> f a -> f b

-- sequence actions, discarding the

-- value of the first argument

(*>) :: f a -> f b -> f b

-- sequence actions, discarding the

-- value of the second argument

(<*) :: f a -> f b -> f a

The Alternative type class describes a monoid on applica-
tive functors. A monoid is a set equipped with an associative
binary operation (<|>) and an identity element (empty). [13]
It provides our Parser type with a combinator for prioritised
choice (<|>) and failure (empty).

class Applicative f => Alternative f where

-- The identity of <|>

empty :: f a

-- Prioritised choice

(<|>) :: f a -> f a -> f a

-- One or more

3
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some :: f a -> f [a]

-- Zero or more

many :: f a -> f [a]

The Monad type class defines the basic operations over a
monad, a concept from a branch of mathematics known as
category theory. [15] These include the binding operation
(>>=), which sequentially composes two actions, passing any
value produced by the first as an argument to the second,
and return, which injects a value into the monadic type, and
should give the same result as pure from the Applicative

type class.

class Applicative m => Monad m where

-- inject a value into the monadic type

return :: a -> m a

-- sequentially compose two actions

(>>=) :: forall a b .

m a -> (a -> m b) -> m b

Finally, we reached the MonadState type class, which defines
the actions we can perform on the state monad. get returns
the state from the internals of the monad. In the case of our
Parser type, it Maybe Just returns a String containing the
remaining input characters we still have to parse, or Nothing,
in which case somewhere failure occurred. The put function
can be used to replace or update the current state inside the
monad. [6]

class Monad m => MonadState s m | m -> s where

-- return state from the internals

-- of the monad

get :: m s

-- replace the state inside the monad

put :: s -> m ()

Because of our use of StateT, the only primitive parser
combinator we still need to define is item, which always
succeeds, as long as there is input left, and parses one character
from the input.

item :: Parser Char

item = do

(x:xs) <- get

put xs

return x

By carefully analysing previous works on semi-parsing tech-
niques, we realised there are two key ingredients that are
necessary in order to support recursive island parsing. The
first is prioritised choice, which would allow us to attempt
parsing islands first and if all parser combinators fail, parse
water. We already have the prioritised choice combinator avail-
able (<|>), as our Parser is just a type synonym for StateT,
which in turn instantiates the Alternative type class. The

second key ingredient is the ability to perform negative looka-
head. In order to define our water parser combinator, we
need to be able to look ahead and determine that the charac-
ter we are trying to parse is not equal to an alternative symbol.

We took the idea of a notFollowedBy parser combinator
from the Parsec library. [12] We can define notFollowedBy

such that it takes as input a parser we want to check is not
ahead. We can run the input parser and let notFollowedBy
succeed if the provided parser fails. Vice versa, if the supplied
parser succeeds, notFollowedby fails.

notFollowedBy :: Parser a -> Parser ()

notFollowedBy p = do

xs <- get

case runParser p xs of

Just _ -> empty

Nothing -> return ()

Using the newly defined item and notFollowedBy parsers,
it is also possible to define a parser combinator to verify if
we reached the end of a file.

eof :: Parser ()

eof = notFollowedBy item

The works of Hutton and Meijer [8] also describe a range
of other potentially useful parser combinators. And, once
more inspired by the Parsec library [12], we also built a
helper module to parse lexical elements (tokens) using our
previously defined Parser and primitive parser combinators.2

Using this module, it is possible to create a language definition
describing the structure of comments and identifiers in our
target language, and generate several important token parsers,
including symbol, identifier and whiteSpace. We used this
module to create a lexer for C-style languages.3 Finally, we
have all the necessary ingredients to write recursive island
parsers by hand.4

4.2 Recursive Island Parser Combinators

By carefully analysing our handwritten recursive island parser,
we quickly find a recurring pattern in our implementation.
We first try to parse the islands that might occur at that
specific point in the execution and if none are found, we parse
water. This means that we first perform negative lookahead
on our manually selected set of alternative symbols for that
specific point in the execution and if none are matched, we
just parse the current character of the input stream and
discard it as water. First, let us define an abstract data type
for differentiating between islands and water.

2https://github.com/ghuisma/lake-parser-combinators/tree/main/
src/V1/Parser
3https://github.com/ghuisma/lake-parser-combinators/blob/main/
src/V1/JavaScriptLexer.hs
4https://github.com/ghuisma/lake-parser-combinators/blob/main/
src/V1/TrivialLakeParser.hs

4

https://github.com/ghuisma/lake-parser-combinators/tree/main/src/V1/Parser
https://github.com/ghuisma/lake-parser-combinators/tree/main/src/V1/Parser
https://github.com/ghuisma/lake-parser-combinators/blob/main/src/V1/JavaScriptLexer.hs
https://github.com/ghuisma/lake-parser-combinators/blob/main/src/V1/JavaScriptLexer.hs
https://github.com/ghuisma/lake-parser-combinators/blob/main/src/V1/TrivialLakeParser.hs
https://github.com/ghuisma/lake-parser-combinators/blob/main/src/V1/TrivialLakeParser.hs


Recursive Island Parsing: Monadic Lake Parser Combinators TScIT 37, July 8, 2022, Enschede, The Netherlands

data IslandOrWater a = Island a

| Water

We can use a Set to keep track of the alternative symbols
at a certain point in the execution of the recursive island
parser.

-- alternative symbols

type Alt = Char

-- set of current alternative symbols

type AltSet = Set Alt

We can now define our water combinator, which receives
a set of alternative symbols. By folding over the alternative
symbols in the set and performing negative lookahead on
them, we ensure that the current character does not match
the ending of an island. If it does, the water parser fails. If it
does not, we just parse the current character and discard it
as Water.

water :: AltSet -> Parser (IslandOrWater a)

water s = do

foldl (\acc alt -> acc *>

(notFollowedBy . char) alt

) (return ()) s

item

return Water

Our island combinator can be defined as a function that
receives the alternative symbol of that particular island, a
function that takes an AltSet and produces a Parser, and
the current AltSet. We first add the provided alternative
symbol to our AltSet. Then we can pass the updated AltSet

to the second argument and produce a Parser that takes into
account the updated AltSet. Finally, we map Island over
the resulting parser to indicate that we care about the result
of executing this parser.

island :: Alt

-> (AltSet -> Parser a)

-> AltSet

-> Parser (IslandOrWater a)

island alt f s1 = fmap Island (f s2)

where s2 = (Set.insert alt s1)

It is now possible to define our lake parser combinator as
a function that receives a list of islands and an AltSet. We
fold over the list of island parsers, providing them with the
current AltSet. The starting accumulator is empty, which
is a parser that always fails. Because we accumulate using
prioritised choice (<|>), if no islands are provided, we just
parse water. If islands are provided, we first try to parse the
islands and if all island parsers fail, we just parse water.

lake :: [ AltSet

-> Parser (IslandOrWater a)

]

-> AltSet

-> Parser [IslandOrWater a]

lake fs s = many (islands <|> water s)

where islands = foldl (\acc f -> acc

<|> f s

) empty fs

Now, it is also possible to define an empty lake, which just
receives the current AltSet and calls lake with no islands
provided.

emptyLake :: AltSet

-> Parser [IslandOrWater a]

emptyLake = lake []

We can now use these island and lake parser combinators
to redefine our handwritten implementation.5 Not only did
we drastically reduce the number of lines it takes to define the
same recursive island parser, but it also becomes significantly
easier to select the right alternative symbols for our islands.
Thereby making the process of designing recursive island
parsers a much less error-prone task.

4.3 Hiding the Set of Alternative Symbols

One downside of our previous implementation is that we
need to keep passing our AltSet around to all of our parsers.
However, we can also use the ReaderT monad transformer to
provide our parsers with a read-only environment, containing
the current AltSet.

newtype ReaderT r m a = ReaderT

{

runReaderT :: ReaderT r m a

-> r

-> m a

}

ReaderT is an instance of MonadReader, which permits us
to ask for the current environment containing our AltSet,
and to update the local environment by adding alternative
symbols to our AltSet. [6]

class Monad m => MonadReader r m | m -> r where

-- retrieve the monad environment

ask :: m r

-- execute a computation in the

-- modified environment

local :: (r -> r) -> m a -> m a

5https://github.com/ghuisma/lake-parser-combinators/blob/main/
src/V2/TrivialLakeParser.hs

5
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Both ReaderT and StateT are instances of the MonadReader
and MonadState type classes. This allows us to stack both
monad transformers together and retain access to the func-
tionality described in the definition of both type classes. [6]
By utilising the GeneralizedNewtypeDeriving pragma [17],
we can redefine Parser and hide the implementation details
from the end-user.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype Parser a = Parser

{ getParser :: ReaderT AltSet

(StateT Input Maybe) a

} deriving ( Monad

, Applicative

, Functor

, Alternative

, MonadFail

, MonadState Input

, MonadReader AltSet

)

runParser :: Parser a

-> String

-> Maybe (a, String)

runParser p = runStateT

( runReaderT ( getParser p ) Set.empty )

Now, it is possible to redefine our lake combinators using
our redefined Parser. The water parser asks the local reader
environment for the current AltSet. The lake combinator
directly receives a parser for all the islands it can contain.
And, the island parser updates the local environment of the
provided parser, by inserting the provided alternative symbol
into the current AltSet. We can now redefine our previous im-
plementations of recursive island parsers by removing AltSet,
as this is now part of our Parser definition. 6

emptyLake :: Parser [IslandOrWater a]

emptyLake = lake empty

lake :: Parser (IslandOrWater a)

-> Parser [IslandOrWater a]

lake islands = many (islands <|> water)

water :: Parser (IslandOrWater a)

water = do

s <- ask

foldl (\acc alt -> acc *>

(notFollowedBy . char) alt

) (return ()) s

item

return Water

6https://github.com/ghuisma/lake-parser-combinators/blob/main/
src/V3/TrivialLakeParser.hs

island :: Alt

-> Parser a

-> Parser (IslandOrWater a)

island a = (fmap Island) . local (Set.insert a)

4.4 Determining Alternative Symbols

While our current implementation certainly makes it easier
to select the appropriate alternative symbols, we still do not
automatically determine them. When analysing our imple-
mentations, we quickly see that the alternative symbol we
provide to island is the same as the last character provided
to the symbol token parser. One idea would be to use the
Writer monad to accumulate this final character and add it
to the current AltSet.

newtype WriterT w m a = WriterT

{

runWriterT :: Writer w m a

-> m (a, w)

}

type Writer w = WriterT w Identity

runWriter :: Writer w a -> (a, w)

Writer is an instance of MonadWriter, which defines tell,
a function that allows us to tell w, an action that produces
an output w. [6] The definition of MonadWriter specifies that
w must be a Monoid, which in turn specifies that it must be a
Semigroup. A Monoid instance specifies an associative oper-
ation and the identity of this operation, while a Semigroup

instance only specifies an associative operation. [5]

class Semigroup a where

-- an associative operation

(<>) :: a -> a -> a

class Semigroup a => Monoid a where

-- identity of mappend

mempty :: a

-- an associative operation

mappend :: a -> a -> a

class (Monoid w, Monad m)

=> MonadWriter w m | m -> w where

tell :: w -> m ()

We can redefine our Alt type synonym as a newtype and
create an instance of Semigroup where the associative bi-
nary operation only retains the last character. For example,
Just (Alt 'a') <> Just (Alt 'b') == Just (Alt 'b')

6
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newtype Alt = Alt Char

instance Semigroup Alt where

_ <> y = y

We can use the Monoid instance of Maybe to provide us with
mempty, which is Nothing.

instance Semigroup a

=> Monoid (Maybe a) where

mempty :: Maybe a

mappend :: Maybe a -> Maybe a -> Maybe a

As before, ReaderT, StateT and Writer are all instances of
the MonadState, MonadReader, and MonadWriter type classes.
This allows us to stack these monad transformers together and
retain access to the functionality described in the definition
of the type classes. [6]

We can use the MaybeT monad transformer to insert Writer
at the bottom of our Parser monad stack. [4] Now we can
have both the result of parsing the input string as well as the
last character parsed as our output.

newtype MaybeT m a = MaybeT

{

runMaybeT :: m (Maybe a)

}

newtype Parser a = Parser

{ getParser :: ReaderT AltSet (

StateT Input (

MaybeT (

Writer (Maybe Alt)))) a

} deriving ( Monad

, Applicative

, Functor

, Alternative

, MonadFail

, MonadState Input

, MonadReader AltSet

)

runParser :: Parser a

-> String

-> Maybe (a, String)

runParser p input = fst

$ runWriter

$ runMaybeT

$ runStateT (

runReaderT (getParser p) Set.empty

) input

accAlt :: Parser a

-> String

-> (Maybe Alt)

accAlt p input = snd

$ runWriter

$ runMaybeT

$ runStateT (

runReaderT (getParser p) Set.empty

) input

We now have two execution modes, parsing (runParser)
and accumulating alternative symbols (accAlt).

The sat parser combinator takes a predicate and if the
parsed character satisfies the predicate, successfully returns
the result. It stands at the basis of our character and token
parsers.7

sat :: (Char -> Bool) -> Parser Char

sat p = do

x <- item

if p x then return x else empty

We now want to tell the last character that satisfies the
given predicate. This way when calling accAlt on a Parser,
we get the final character that could be parsed by the provided
parser.

sat :: (Char -> Bool) -> Parser Char

sat p = do

x <- item

if p x

then do

tell (Just (Alt x))

return x

else empty

Now we can modify island such that it no longer takes an
alternative symbol as input, but executes the provided parser
using accAlt and inserts the result of this execution into the
AltSet in the read-only environment of the provided parser.

island :: Parser a

-> Parser (IslandOrWater a)

island p = fmap Island (do

xs <- get

case accAlt p xs of

Nothing -> p

Just alt ->

local (Set.insert alt) p

)

This approach comes with one obstacle. sat does not dis-
card the character it evaluated against the provided predicate

7https://github.com/ghuisma/lake-parser-combinators/tree/main/
src/V1/Parser

7
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as water in case of failure. When parsing this is the desired be-
haviour. However, when accumulating the alternative symbol
of an island, if the predicate is not met, we want to discard it
as water and attempt to match the next character.

One way to achieve this behaviour is by adding a boolean
flag (accAltFlag) to the read-only environment and modi-
fying sat to keep consuming characters from the input by
applying itself recursively. We can now run our parsers and
specify, by setting this flag, that we are interested in either
parsing or accumulating the alternative symbol of an island.

sat :: (Char -> Bool) -> Parser Char

sat p = do

accAltFlag <- askAccAltFlag

x <- item

if accAltFlag

then do

if p x

then do

tell (Just (Alt x))

return x

else do

tell Nothing

sat p

else if p x

then return x

else empty

When accumulating the alternative symbol of a parser, we
need to make sure the whitespace parsers always have the
accAltFlag set to False. Otherwise they will keep trying to
accumulate whitespace or comments as the alternative symbol.

Furthermore, the island and lake combinators should just
be skipped over, that is, return successfully without parsing
any input, because we are only interested in determining the
alternative symbol of the outermost island and not any of the
islands that may occur within it.

We encourage the reader of this document to take a closer
look at the final implementation using the Writer monad, in
the provided Git repository.8

5 VERIFICATION

In this section we will attempt to verify if the requirements
set in section 2 were met. Because of our use of Haskell, which
is a functional programming language, R1 was obviously met.
The same holds for R4, as we used monad and monad trans-
formers to define the Parser type used by our set of lake
parser combinators. What remains to be done is to verify the
correctness of our solutions using manual selection of alterna-
tive symbols (R2), and our final solution, which attempts to

8https://github.com/ghuisma/lake-parser-combinators/tree/main/
src/V4

automatically determine the alternative symbols of an island
(R3).

For this purpose, we created an implementation of a recur-
sive island parser for each of our proposed solutions. These
implementations only recognize function definitions and func-
tion calls in JavaScript programs, which is all we need to
construct a call graph of the input program. See below for a
trivial example of such a program.

function a (a) {

return a(a);

}

When running our implementations on the program defined
above, we would expect to see a result with a general structure
as follows.

[ FunDef "a" (Block [FunCall "a"]) ]

We ran our implementations against a number of such hand-
written input programs and manually verified the correctness
of the data structures resulting from the execution of the
implementations given the input programs. From these tests,
we can with reasonable certainty conclude that we satisfied
R2.

However, despite the fact that our final implementation,
which uses the Writer monad to accumulate the alternative
symbols of islands, did pass our tests, we surmise that it is
probably possible to construct a recursive island parser that
gives incorrect results for the input programs provided. More
extensive testing is required to somewhat guarantee our final
solution works as expected under all various circumstances
that may be expected when designing recursive island parsers.
Therefore, we only partially satisfy R3.

6 CONCLUSION

We have shown it possible to design a set of lake parser com-
binators for recursive island parsing. We have hidden the
implementation details of our work using generalised newtype

deriving and monad transformers. We proposed a solution
using the Writer monad to accumulate the alternative sym-
bols of islands, removing this burden from the developers of
recursive island parsers.

We suggest further work is done on the verification of the
final proposed solution, potentially refining or redefining parts
of it based on the results of the additional tests performed.
Furthermore, it remains to be shown if it is possible to improve
the space and time complexity of the proposed solution and
if the proposed solution is performant enough to be used in
real-life applications.
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[9] S. Klusener and R. Lämmel. 2003. Deriving Tolerant Grammars
from a Base-line Grammar. Proceedings of the 19th IEEE In-
ternational Conference on Software Maintenance (ICSM 2003)
(September 2003), 179–188.

[10] R. Koppler. 1997. A Systematic Approach to Fuzzy Parsing.
Software: Practice & Experience 27, 6 (1997), 637–649.

[11] J. Kurs, M. Lungu, R. Iyadurai, and O. Nierstrasz. 2015. Bounded
Seas. Computer Languages, Systems and Structures 44, A (2015),
114–140.

[12] D. Leijen. 2001. Parsec: a fast combinator parser. http://www.cs.
nott.ac.uk/∼pszgmh/monparsing.pdf.

[13] C. McBride and R. Paterson. 2005. Control.Applicative.
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-
Applicative.html.

[14] L. Moonen. 2001. Generating Robust Parsers using Island Gram-
mars. Proceedings of the 8th Working Conference on Reverse
Engineering (WCRE 2001) (October 2001), 13–22.

[15] The University of Glasgow. 2001. Control.Monad. https://hackage.
haskell.org/package/base-4.16.1.0/docs/Control-Monad.html.

[16] K. Okuda and S. Chiba. 2021. Lake Symbols for Island Parsing.
The Art, Science, and Engineering of Programming 5, 2 (2021),
11.

[17] GHC Team. 2020. Generalised derived instances for new-
types. https://ghc.gitlab.haskell.org/ghc/doc/users guide/exts/
newtype deriving.html.

[18] A. van Deursen and T. Kuipers. 1999. Building Documentation
Generators. Proceedings of International Conference on Software
Maintenance (ICSM 1999) (1999), 40–49.

[19] V. Zaytsev. 2014. Formal foundations for semi-parsing. 2014 Soft-
ware Evolution Week - IEEE Conference on Software Mainte-
nance, Reengineering, and Reverse Engineering (CSMR-WCRE)
(Feb 2014), 313–317.

9

https://hackage.haskell.org/package/transformers-0.6.0.4/docs/Control-Monad-Trans-Maybe.html
https://hackage.haskell.org/package/transformers-0.6.0.4/docs/Control-Monad-Trans-Maybe.html
https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-Monoid.html
https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-Monoid.html
https://hackage.haskell.org/package/mtl
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1093/comjnl/32.2.98
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
http://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf
http://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf
http://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Applicative.html
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Applicative.html
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Monad.html
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Monad.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/newtype_deriving.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/newtype_deriving.html

	Abstract
	1 Introduction
	2 Requirements
	2.1 Must-have
	2.2 Should-have
	2.3 Could-have

	3 Existing Solutions
	3.1 Monadic Parser Combinators
	3.2 Island- and Lake-Grammars
	3.3 Lake Symbols
	3.4 Bounded Seas
	3.5 Formal Foundations for Semi-Parsing

	4 New Architecture
	4.1 Defining Primitive Monadic Parser Combinators
	4.2 Recursive Island Parser Combinators
	4.3 Hiding the Set of Alternative Symbols
	4.4 Determining Alternative Symbols

	5 Verification
	6 Conclusion
	References

