
Performance Testing Owl, Parser Generator for Visibly Pushdown
Grammars
LUC TIMMERMAN, University of Twente, The Netherlands

The class of Visibly Pushdown grammars is one between type-3 and type-

2 grammars as defined by Chomsky. For this class of languages the only

currently publicly available parser generator is Owl, a parser generator

written in C. Owl makes numerous claims about performance and lack

thereof in certain conditions but does not list any tests to prove these claims.

In this paper we run several performance tests with multiple measurements

and discover that some of these claims are incorrect.

Additional Key Words and Phrases: Owl, Parser generators, performance

testing, Visibly Pushdown

1 INTRODUCTION
Grammars and languages are important parts of Computer Science

courses. They explain the theory behind programming languages

and much more, like regular expressions. These are powerful tools

for the student. In 1956, Noam Chomsky introduced his hierarchy

for languages [3], giving us the four main classes known today;

• Type-0: Recursively enumerable languages

• Type-1: Context-sensitive languages

• Type-2: Context-free languages

• Type-3: Regular languages

According to some, this hierarchy is outdated. A paper in 2012

said: ". . . this fourfold distinction is too coarse-grained to pin down

the level of complexity of natural languages along this domain" [8].

The paper claims that gaps exist in the Chomsky hierarchy and aims

to fix some of those gaps by providing definitions for new classes

of languages. One of the classes not mentioned in that paper is the

class of Visibly Pushdown languages, or VPLs [1]. These are the

target of the parser generator Owl [5].

In practice, Visibly Pushdown automata are finite state machines

which recognize regular languages, with an added stack capable

of keeping track of so-called brackets, like the tags in <i>abc </i>
and the asterisk pairs in **abc**. As such, the stack allows them to

travel arbitrarily deep into a nested structure. This is the minimum

automaton capable of handling a Dyck language [9], or languages

with "balanced brackets".

The following is the formal definition of VPLs as described by R.

Alur and P. Madhusudan:

(1) Firstly, we define a pushdown alphabet as a tuple

Σ̃ = ⟨Σ𝑐 , Σ𝑟 , Σ𝑖𝑛𝑡 ⟩ where Σ𝑐 is a finite set of calls, Σ𝑟 is a finite
set of returns and Σ𝑖𝑛𝑡 is a finite set of internal actions.

(2) Then we can move on to the Visibly Pushdown Automa-

ton. This is defined by the following: A visibly pushdown
automaton on finite words over ⟨Σ𝑐 , Σ𝑟 , Σ𝑖𝑛𝑡 ⟩ is a tuple 𝑀 =

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

(𝑄,𝑄𝑖𝑛, Γ, 𝛿,𝑄𝐹) where Q is a finite set of states, 𝑄𝑖𝑛 ⊆ 𝑄 is a
set of initial states, Γ is a finite stack alphabet that contains a
special bottom-of-stack symbol ⊥,
𝛿 ⊆ (𝑄 ×Σ𝑐 ×𝑄 × (Γ \⊥)) ∪ (𝑄 ×Σ𝑟 × Γ×𝑄) ∪ (𝑄 ×Σ𝑖𝑛 ×𝑄),
and 𝑄𝐹 ⊆ 𝑄 is a set of final states.

(3) Finally, we can define the Visibly Pushdown Languages: A
language of finite words 𝐿 ⊆ Σ∗ is a visibly pushdown language
(VPL) with respect to Σ̃ (a Σ̃-VPL) if there is a VPA M over Σ̃
such that 𝐿(𝑀) = 𝐿.

This is very useful for rich text formats such as HTML or Mark-

down, and turning one into the other. While doing this is also pos-

sible in type-2 languages, these languages and parser generators

for them often have quite some overhead because they introduce

constructs that are unnecessary for this specific use-case – they

have to in order to support the more complex type-2 grammars.

VPLs, then, are a sweet spot between type-3 and type-2 that caters

to this specific class of problems.

2 OWL
Owl is a parser generator for Visibly Pushdown grammars [5]. It

is, at the moment of writing, seemingly the only available parser

generator for this class. It is written in C and produces parsers in C.

2.1 Performance claims
Owl makes numerous claims on its performance. It claims to be

efficient in its README file, saying: "Owl can parse any syntactically

valid grammar in linear time", but it does not back this claim up.

Additionally, the README also mentions two limitations:

• Large grammars: "Owl uses precomputed Deterministic Finite

Automata (DFA) and action tables, which can blow up in size

as grammars get more complex. In the future, it would be

nice to build the DFAs incrementally."

• Memory use: "Owl stores a small (single digit bytes) amount

of information for every token while parsing in order to

resolve nondeterminism. If a decision about what to match

depends on a token which appears much later in the text,

Owl needs to store enough information to go back and make

this decision at the point that the token appears. Instead of

analyzing how long to wait before making these decisions,

Owl just waits until the end, gathering data for the entire

input before creating the parse tree."

None of these claims are elaborated on with any hard numbers or

graphs. In the past decade and a half, the importance of replications

in empirical software engineering has set in [2, 11, 14] and it is no

longer acceptable to make claims without providing replicatable

tests proving your claims. As such, this paper aims to create and run

those tests and allow readers to run these tests and replicate them

themselves at any point in the future. Testing the time Owl takes

to parse a grammar is quite simple; we can just time Owl. Testing

the size of an internal DFA is more difficult, and testing memory is,

1

TScIT 37, July 8, 2022, Enschede, The Netherlands Luc Timmerman

in practice, also not simple. We aim to get a general idea of these

metrics by recording the size of the parsers Owl generates.

2.2 Owl’s grammar
In order to understand the grammars we generate later on, it is

good to understand Owl’s grammar. Owl’s rules are written a lot

like regular expressions, but using tokens. Owl has a few built-in

token classes; integer, number, identifier and string. Literal
text is matched like 'this'. Rules are quite simple. The following

is a grammar that matches an number of integers like this: 1, 2, 3

list = number (',' number)*

Another important feature of Owl, needed to support VDLs, is

guarded recursion. This is recursion inside guard brackets, which

ensure the brackets are balanced. The following is an example

from Owl’s README file demonstrating a grammar that parses

{"arrays", "that", {"look", "like"}, "this"} using guarded
recursion:

element = array | string
array = ['{' element (',' element)* '}']

A more detailed description, including more features like ex-
pression recursion can be found in the README of Owl at https:

//github.com/ianh/owl.

3 EXPECTATIONS
The fact that the creator of Owl specified that it was able to parse in

linear time as opposed to it just being "fast" leads us to believe this

claim is likely to be true. Regarding the claims about limitations,

it is likely that the creator of Owl wrote these claims down after

having experienced them firsthand, as discrediting your project

without reason would nonsensical. The nuance in this lies in where

problems begin to arise; do they appear in reasonable grammars or

only when grammars get so large that they would rarely, if ever,

occur in the real world? We expect problems will arise at large sizes,

probably larger than is reasonable.

4 METHODOLOGY
In order to test Owl, we will take some inspiration from the paper

on Event-Based Parsing by Vadim Zaytsev [16]. We will generate

a series of grammars in Owl’s syntax that test several features of

Owl to see which feature puts the most stress on the program. To

generate the grammars and measure results we will use Python 3.8.

The size of the grammar we generate is dictated by input N. For

this research, we have limited N to 10,000 in steps of 10 (note that

10,000 is not included, the highest value is 9,990). The tokens used

in rules are randomly decided subsets of all tokens provided by Owl,

so there can be an individual token or a choice of multiple tokens.

The types of grammars are as follows:

• "Many" grammars: this is, together with "long"-type gram-

mars, the most straightforward type of grammar; it is simply

N lines of declarations, like so:

a0 = number
a1 = string | integer
a2 = string | number
a3 = identifier | number | string | integer

We expect this type of grammar to be the easiest to parse as

Owl does not need to keep track of anything to parse this

grammar.

• "Long" grammars: these grammars are simply a single rule

with a number of terminals behind it, like the following (with

N = 3):

long = identifier integer number string

These grammars will likely also be easy for Owl to parse, but

do provide additional context for comparing heavier gram-

mars.

• "Deep" grammars: this type of grammar uses the calling of

other rules, so that there are N + 2 nested calls (one call is for

the terminal state which exists for any input, and one is the

first call to the terminal rule). For example, for N = 3 we get

the following grammar:

a0 = a1
a1 = a2
a2 = a3
a3 = a4
a4 = identifier | string | integer

If there is any grammar type that will be parsed in polynomial

time instead of linear time, this is a likely candidate as Owl

will need to keep track of a lot of these nested states.

• "Nested" grammars: nested grammars use Owl’s guarded

recursion feature to generate very deeply nested grammars.

For N = 3 we see this result:

nested4 = ['(' nested3 ')']
nested3 = ['[' nested2 ']']
nested2 = ['{' nested1 '}']
nested1 = ['(' nested0 ')']
nested0 = number

This is another likely candidate for non-linear computation

times, especially since we expect the guard brackets to intro-

duce extra complexity in the resulting parsers.

• "Optionals" grammars: these grammars strain Owl by using

very deeply nested optionals. Since the main rule of this

example is quite long, you can find it in Figure 1 using N = 3.
There are eight terminals here for N = 3 because it creates
four (N + 1) "shells" around the main terminal in the middle,

in order to make this happen, we need eight terminals.

We will measure performance in time to generate a parser from

the grammars and the number of lines in the resulting parser.

The machine we used to measure on was a server with 50 giga-

bytes of memory and 8 cores (using hyperthreading) from a dual

Intel®Xeon®CPU X5650 running at 2.67 gigahertz.

4.1 Replication
Of course, anyone can replicate the results shown in this paper.

All code is visible at https://github.com/Luctia/owl_perftest. The

2

https://github.com/ianh/owl
https://github.com/ianh/owl
https://github.com/Luctia/owl_perftest

Performance Testing Owl, Parser Generator for Visibly Pushdown Grammars TScIT 37, July 8, 2022, Enschede, The Netherlands

if = (terminal6 (terminal4 (terminal2 (terminal0 string | identifier)? terminal1)? terminal3)? terminal5)? terminal7
terminal0 = integer
terminal1 = string | identifier
terminal2 = string | number
terminal3 = identifier | string
terminal4 = string
terminal5 = identifier | number
terminal6 = integer | identifier | string
terminal7 = string | number | integer

Fig. 1. Example of "optionals"-type grammar at N = 3

repository includes instructions to perform the tests for yourself in

the README file, which is also included in Appendix A.

5 RELATED WORK
A parser generator takes a grammar defined by a user, defining

what they want a corresponding parser to do. This can be many

things, from recognizing a valid e-mail address to parsing an entire

programming language [4].

Parsing can be separated into two categories; top-down parsing

and bottom-up parsing. Innovations are still begin made in both

categories, like a combination of parsing strategies with top-down

parsing at its roots by Terence Parr et al. [10], and research by Guide

Wachsmuth et al. describes the current state of the art for bottom-up

parsing [13].

5.1 Parser performance (testing)
While some people consider parsing a solved problem, this is not

necessarily a consensus as is evident by the innovations still being

made as we saw in the previous section. As such, parser performance

from one to the other parser can differ greatly, and this is why it

is still valuable to evaluate individual parsers’ performance as well

as parsing techniques on their own [12]. While Owl does give an

indication of performance, there is a lack of proof, which could

mislead users if the claims are incorrect.

The waywe test Owl (generating larger and larger grammars with

the same structure) is not the only way to test parser generators.

Another possibility is taking existing grammars with actual real

applications [6, 7]. This approach was difficult for us as Owl is

relatively obscure, so getting a large number of existing grammars

would have required too much time. Another automatic approach

would be to create a certain grammar and "mutate" it to see what

effect different mutations have on the parser. We did not choose for

this approach as we were mainly focused on the performance claims

by Owl’s creators. Therefore our goal was stress-testing Owl, which

small changes in grammars are not ideal for. Instead, creating larger

and larger grammars provides us with a wider range of results.

6 RESULTS
Results for each grammar type will be displayed in graphs with two

lines:

• Time: the blue line, corresponding to the left axis, will repre-

sent the time in seconds it took to execute owl -c {filename}

-o {outputfilename}. This command tells Owl to take in a

grammar by the name of filename, parse the grammar and

output the resulting parser to outputfilename.
• Lines: the red line, corresponding to the right axis, will rep-

resent the total number of lines in the parser that has been

outputted by the command above. While some of these lines

will be comments, the difference this makes is negligible when

considering the size of the files.

6.1 "Many" grammars
Results of the tests run for "many"-type grammars can be seen in

Figure 2. The number of lines is clearly linear, which is no surprise.

Time to compute seems slightly exponential, although the curve is

quite understated. Especially when looking at the time it took at the

highest level (a grammar of size 9,990), it is apparent that this type

of grammar does not pose any issue for Owl with a time of around

1.5 seconds.

Fig. 2. Results of tests on "many"-type grammars

6.2 "Long" grammars
"Long"-type grammars scale by far the best, as is clear to see in

Figure 3. The only real competitor (time-wise) here are the "many"-

type grammars, which, at a length of 9,990, takes about 4.5 times

3

TScIT 37, July 8, 2022, Enschede, The Netherlands Luc Timmerman

longer. It is unparalleled in terms of linecount; the closest (reliable)

competitor here is also the "many"-type grammar, which produces

a file 6.4 times longer than the "long"-type grammar at an input

size of 9,990. Neither of these things are surprising; for this type of

grammar, Owl needs to keep track of only one rule, which is not

the case for any other grammar type.

Fig. 3. Results of tests on "long"-type grammars

6.3 "Deep" grammars
For grammars of type "deep", as expected, the curve is more expo-

nential as visible in Figure 4. As a matter of fact, with our specific

setup, Owl gives up outputting at around N = 1470 entirely. This is

due to limits to memory usage; as mentioned before, we ran these

tests on a server with eight cores and 50 gigabytes of memory, giv-

ing each core about 6.25 gigabytes of memory. When running single

threaded (which was not feasible due to time limits), it becomes

clear that Owl uses about 6.6 gigabytes of memory when parsing

a "deep"-type grammar with N = 1470, which is too much for the

memory allocated to the thread. What is interesting here is that

Owl does seem to continue parsing at higher values of N, as the time

measurements do not hit some ceiling reached at N = 1460. This
could be improved upon in further research, but given the graph

peaks at 81,739 lines, it is not necessary in order to get the full

picture: the generated parsers for this type of file grow extremely

fast.

Look closely and you will notice a small bump in the time measure-

ments right after the crash in linecount. The bump seems unrelated

to that crash, as it occurs at a slightly larger grammar size. It also

seems like it is not caused by a one-time error, as several results after

each other are lower than the previous one. It was not immediately

obvious to us what could cause this bump, and further investigation

is outside the scope of this research.

6.4 "Optionals" grammars
This type of grammar was held back by an error from Owl:

error: operators are nested too deeply. We found out that

Fig. 4. Results of tests on "deep"-type grammars

Owl does not accept nested optionals of over 331 levels. This also

explains the results shown in Figure 5; the randomness in number of

lines from 331 forward is because the terminal values are randomly

determined; when setting the terminal to a consistent token, the

line becomes straight. The line for times remains jagged because

host systems do not always execute jobs with the same number of

interruptions, for example.

Fig. 5. Results of tests on "optionals"-type grammars

When we zoom in on the first few results, we can see a more

nuanced result in Figure 6. We can see that this type of grammar

also grows quite quickly in terms of time and size, but we will touch

more upon that in section 6.6: Comparing grammars.

6.5 "Nested" grammars
"Nested"-type grammars are by far the most tolling on Owl from a

time standpoint. Due to this, we set the maximum input to lower

than the one we used for other grammar types, we went up to a size

4

Performance Testing Owl, Parser Generator for Visibly Pushdown Grammars TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 6. Zoomed in version of Figure 5

of 3990 in steps of 10. Despite this, we believe this is still sufficient;

a grammar with 1000 levels of nesting in one rule will likely never

occur in real applications. A study by V. Zaytsev in 2015 found the

biggest to be the Open Document Format, containing some 1000

nonterminals, 700 terminals and 2000 production rules [15]. The

picture is still as clear though; this type of grammar is definitely

computed in exponential time as is clear from Figure 7.

Fig. 7. Results of tests on "nested"-type grammars

At a size of 3990, Owl takes 2685 seconds to parse and generate

the grammar. One thing stands out in this graph; the apparent drop-

off in line count starting at N = 200. From this point on, Owl gave

an error:

free(): invalid next size (fast)
fish: “owl -c tests/nested_990.owl. . . ”
terminated by signal SIGABRT (Abort)

This is a C memory error which can happen, for example, when

attempting to free a pointer that was not allocated or when at-

tempting to delete a pointer more than once. This is seemingly an

error in Owl, which raises two questions:

(1) Why does this error only occur when parsing grammars of

this type and from a certain size?

(2) If this error occurs from a certain size, how come that the

size of the resulting grammar does not stagnate from that

point onward but instead keeps growing, although producing

much less predictable output sizes?

Something else to note: parsing these types of grammars barely uses

any memory, as was observed during the tests. Answering these

questions above is outside the scope of this research.

6.6 Comparing grammars
6.6.1 Comparing times. When looking at the time Owl takes to

parse grammars and generate their corresponding parsers, displayed

in Figure 8, we can clearly see "nested"-type grammars are by far

the most tolling and clearly exponential.

In fact, the difference is so extreme, that we can barely see the

other types. For example, it is not immediately clear here that "deep"-

type grammars parse in exponential time, as is clearly visible in

Figure 4. To get a better look at the different grammar types, a

zoomed-in version is displayed in Figure 9.

When looking at Figure 9, we should not forget the notable anom-

aly in the "deep"-type grammar (see Figure 4), which is not visible

in this figure.

6.6.2 Comparing linecounts. In Figure 10 the number of lines for

each grammar type is displayed, in which we have limited the hor-

izontal axis to a size of 2500, since anything larger than this only

shows more of the same. We can see here which type of grammar

grows the fastest, which is obviously the "optionals"-type grammars.

Something else worth noting is that, after its crash, "nested"-type

grammars grow remarkably similarly to "many"-type grammars.

We also see here that linecount does not necessarily correspond

to memory usage; we encountered memory issues with the "deep"-

type grammars, but here, there are other grammars without such

problems with more lines than the "deep"-type grammars.

5

TScIT 37, July 8, 2022, Enschede, The Netherlands Luc Timmerman

Fig. 8. Comparison of time at certain sizes

Fig. 9. A zoomed in version of Figure 8

6

Performance Testing Owl, Parser Generator for Visibly Pushdown Grammars TScIT 37, July 8, 2022, Enschede, The Netherlands

7 NOTES ON AMBIGUITY DETECTION
One of the things we tried to test as well, but which is harder to

automate, is how well Owl can handle ambiguity or otherwise con-

fusing grammars. It was able to detect ambiguity in some grammars,

like the following one, which can be problematic for other parser

generators:

A = B | C | D
B = E | F | G
C = H | I | J
D = K | L | M
E = number | string
F = number | string
...
M = number | string

We did find one grammar which proved to have some interesting

behaviour:

A = B*
B = C | D | '.'
C = integer
D = number

When inputting 1.5 in this parser, it concludes that this is a case

of D. This is not necessarily correct, as it could also be interpreted

as C, then '.' and then C again. When we remove the D state

entirely, this is indeed exactly what the parser comes up with.

However, when we remove the option D from B, but we leave D

in as a rule, something peculiar happens; we get an error saying

error: unexpected number. It is as if the parser always recognizes
1.5 as being a number when any rule mentions the number token,
but is otherwise fine parsing it as a combination of two integers and

a string.

8 CONCLUSION AND FUTURE WORK
In this paper, we have attempted to prove or disprove statements

by the creator of Owl, a parser generator for Visibly Pushdown

grammars. We have discovered that Owl does not always parse in

linear time, in particular when many/large "deep"- and "nested"-

type statements are used. We have also seen that for some grammar

types, the size of the resulting parsers is rather big. We had hoped

this corresponded to memory usage and size of DFA’s, but this

turned out to be false, although not a useless measure. We have

also discovered some interesting limitations of Owl, like grammar

size and the amount of nested optionals one can apply, although

these limitations only show up when dealing with grammars so

large that they likely will not appear in real applications [15] and

so the results are not particularly damning for Owl.

One thing that we would have liked to measure but had difficulty

doing was memory usage when parsing a grammar. Not only was

the software built into Python a bit lacking in this area, several

processes can also fight over memory, so the memory usage will be

dependent on the memory size of the machine the measurements

are running on as well as among how many threads this memory is

divided. Given more time and a more powerful machine, perhaps

a more complete image could be given by running one thread at

a time with a lot of memory. It might be valuable to note that we

did keep an eye on our memory during parsing, and we did notice

that memory usage was often quite high, but eyeballing memory is

obviously not a good way of measuring it.

Another part of Owl that would be good to test, is the performance

of the resulting parsers. In this research, we wanted to focus com-

pletely on the claims by Owl’s creator, but this aspect could also be

very interesting.

9 DISCUSSION
We would like to touch on the performance claim Owl made: "Owl

can parse any syntactically valid grammar in linear time". While

we did record the time Owl took to run on different grammars, the

times we recorded were, in fact, the time it took for Owl to parse the

grammars and generate the corresponding parsers. In practice, Owl

cannot be used another way; it has two modes: interpreter mode

and compilation mode, which both need to generate a parser, so

if they did mean only the parsing part, this would not mean that

much in practice.

Another possibility is that they meant something else altogether;

they could have meant that a parser generated by Owl parses in

linear time. While this is not technically what the statement says,

and thus not what this paper focused on, this is another reason why

it might be valuable to look into the generated parsers in the future.

REFERENCES
[1] Rajeev Alur and P. Madhusudan. 2004. Visibly Pushdown Languages. In Proceed-

ings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (Chicago,
IL, USA) (STOC ’04). Association for Computing Machinery, New York, NY, USA,

202–211. https://doi.org/10.1145/1007352.1007390

[2] Jeff Carver, Natalia Juristo, Maria Baldassarre, and Sira Vegas. 2014. Replications

of software engineering experiments. Empirical Software Engineering 19 (04 2014).

https://doi.org/10.1007/s10664-013-9290-8

[3] N. Chomsky. 1956. Three models for the description of language. IRE Transactions
on Information Theory 2, 3 (1956), 113–124. https://doi.org/10.1109/TIT.1956.

1056813

[4] Dick Grune and Ceriel J. H. Jacobs. 2008. Parsing Techniques — A Practical
Guide (second ed.). Addison-Wesley. https://dickgrune.com/Books/PTAPG_

2nd_Edition/

[5] Ian Henderson. 2017. Owl. https://github.com/ianh/owl.

[6] Grzegorz Herman. 2020. Faster General Parsing through Context-Free Mem-

oization. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (London, UK) (PLDI 2020). Association for

Computing Machinery, New York, NY, USA, 1022–1035. https://doi.org/10.1145/

3385412.3386032

[7] Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Mar-

tin Odersky. 2014. Staged Parser Combinators for Efficient Data Processing.

In Proceedings of the 2014 ACM International Conference on Object Oriented Pro-
gramming Systems Languages & Applications (Portland, Oregon, USA) (OOP-
SLA ’14). Association for Computing Machinery, New York, NY, USA, 637–653.

https://doi.org/10.1145/2660193.2660241

[8] Gerhard Jäger and James Rogers. 2012. Formal language theory: refining the

Chomsky hierarchy. Philosophical Transactions of the Royal Society B: Biologi-
cal Sciences 367, 1598 (2012), 1956–1970. https://doi.org/10.1098/rstb.2012.0077

arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2012.0077

[9] Jens Liebehenschel. 2003. Lexicographical Generation of a Generalized Dyck

Language. SIAM J. Comput. 32, 4 (2003), 880–903. https://doi.org/10.1137/

S0097539701394493 arXiv:https://doi.org/10.1137/S0097539701394493

[10] Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) Parsing:

The Power of Dynamic Analysis. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications
(Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery,

New York, NY, USA, 579–598. https://doi.org/10.1145/2660193.2660202

[11] Forrest J Shull, Jeffrey C Carver, Sira Vegas, and Natalia Juristo. 2008. The role of

replications in empirical software engineering. Empirical software engineering 13,

2 (2008), 211–218. https://doi.org/10.1007/s10664-008-9060-1

7

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/s10664-013-9290-8
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://dickgrune.com/Books/PTAPG_2nd_Edition/
https://dickgrune.com/Books/PTAPG_2nd_Edition/
https://github.com/ianh/owl
https://doi.org/10.1145/3385412.3386032
https://doi.org/10.1145/3385412.3386032
https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1098/rstb.2012.0077
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2012.0077
https://doi.org/10.1137/S0097539701394493
https://doi.org/10.1137/S0097539701394493
https://arxiv.org/abs/https://doi.org/10.1137/S0097539701394493
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1007/s10664-008-9060-1

TScIT 37, July 8, 2022, Enschede, The Netherlands Luc Timmerman

Fig. 10. Comparison of linecounts at certain sizes

[12] L. Thomas van Binsbergen, Elizabeth Scott, and Adrian Johnstone. 2020. Purely

functional GLL parsing. Journal of Computer Languages 58 (2020), 100945. https:

//doi.org/10.1016/j.cola.2020.100945

[13] Guido Wachsmuth, Gabriël D. P. Konat, and Eelco Visser. 2014. Language Design

with the Spoofax Language Workbench. IEEE Softw. 31, 5 (2014), 35–43. https:

//doi.org/10.1109/MS.2014.100

[14] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-

ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated. https://doi.org/10.1007/978-3-642-29044-2

[15] Vadim Zaytsev. 2015. Grammar Zoo: A corpus of experimental grammarware.

Science of Computer Programming 98 (2015), 28–51. https://doi.org/10.1016/j.scico.

2014.07.010 Fifth issue of Experimental Software and Toolkits (EST): A special

issue on Academics Modelling with Eclipse (ACME2012).

[16] Vadim Zaytsev. 2019. Event-based parsing. REBLS 2019: Proceedings of the 6th
ACM SIGPLAN International Workshop on Reactive and Event-Based Languages
and Systems, 31–40. https://doi.org/10.1145/3358503.3361275

A REPLICATION INSTRUCTIONS
Running these tests for yourself is simple (these instructions should

work for any operating system with:

(1) Clone the repository (at

https://github.com/Luctia/owl_perftest);

(2) Edit the variables at the top of main.py to your liking:

• TOTAL_MEMORY_GB: the total memory in gigabytes which

you would like to dedicate to the testing;

• TOTAL_WORKER_COUNT: the total number of threads you

would like to dedicate to the testing;

• TYPES: the types you would like to test for (by default, this

is all of them);

• TEST_COUNT: the number of tests;

• STEP_SIZE: the size of the steps in size between tests;

• REMOVE_AFTERWARDS: whether or not the generated gram-

mars and resulting parsers should be removed after run-

ning.

As such, when using the default values (TEST_COUNT of 1000

and STEP_SIZE of 10), 1000 tests will be run with sizes N = 0,
N = 10, N = 20 up to N = 9990;

(3) Install dependencies (like matplotlib and numpy) using the

method of your choice;

(4) Running can be done by simple executing python main.py.
When testing large sample sizes, it might be beneficial to use

nice (or START on Windows systems) to set a priority for the

threads created by using nice -n 10 python3 main.py.

Depending on the setting of REMOVE_AFTERWARDS, this will generate
a number of files:

• {grammar-type}_result.json files: these are files contain-

ing the results of the tests with an entry for every input size

per grammar type including:

– time: time to parse and generate in seconds;

– lines: number of lines in the resulting parser.

• {grammar-type}.png: a fitted graph displaying the results

for a certain grammar type;

• tests/: the grammars generated. The filenames are struc-

tured as follows: {grammar-type}_{N};
• parsers/: the parsers generated by Owl. Their filenames

correspond to those of the generated grammars.

8

https://doi.org/10.1016/j.cola.2020.100945
https://doi.org/10.1016/j.cola.2020.100945
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1016/j.scico.2014.07.010
https://doi.org/10.1016/j.scico.2014.07.010
https://doi.org/10.1145/3358503.3361275
https://github.com/Luctia/owl_perftest

	Abstract
	1 Introduction
	2 Owl
	2.1 Performance claims
	2.2 Owl's grammar

	3 Expectations
	4 Methodology
	4.1 Replication

	5 Related work
	5.1 Parser performance (testing)

	6 Results
	6.1 "Many" grammars
	6.2 "Long" grammars
	6.3 "Deep" grammars
	6.4 "Optionals" grammars
	6.5 "Nested" grammars
	6.6 Comparing grammars

	7 Notes on ambiguity detection
	8 Conclusion and future work
	9 Discussion
	References
	A Replication instructions

