
Applied product lifecycle
management for scaling
development
an information management methodology

Bram van Munster

Industrial Design Engineering
Management of Product Development
Faculty of Engineering Technology
University of Twente

July 11, 2022
DPM 1949
A thesis submitted in partial fulfilment of the requirements for the degree
of M.Sc. in Industrial Design Engineering.

Examination board

Eric Lutters Chairman
Marijn Zwier Supervisor
Marcus Pereira Pessôa External member
Stef Boerrigter Mentor from company
Ronald Gorter Mentor from company

Wavin Technology & Innovation
Rollepaal 20
7701 BS Dedemsvaart
www.wavin.com

University of Twente
Drienerlolaan 5
7522 NB Enschede
www.utwente.nl
First edition, June 24, 2022

iii

Acknowledgements

I would like to thank Marijn Zwier for the academic supervision of my master’s
assignment. Furthermore, I want to thank Stef Boerrigter and Ronald Gorter for their
valuable guidance and input at Wavin Technology & Innovation. Finally, I want to
express my gratitude to my parents and my girlfriend Iris Iemenschot for their con-
tinuous support throughout my studies.

iv

Abstract

When scaling up the development of a Product-Service System (PSS), involving
many stakeholders, and collaborating with multiple development partners, managing
product development information is a challenge. The combination of mechanical de-
sign, electronics design, firmware development, and software development plays a
key role in this information management difficulty. Product Lifecycle Management
(PLM), when combined with concepts from other fields such as Quality and Con-
figuration Management can help in tackling this issue. However, there exists little
guidance in realizing PLM in product development. To this aim, a PLM methodology
was developed for Wavin Technology & Innovation (T&I). This methodology contains
methods and prescriptions to manage the information of a PSS across its lifecycle,
bound by central principles. Furthermore, a PSS development metamodel is included,
structuring the information types and their traceability. The methodology is based
on Wavin T&I product development through the combination of existing tools and
implemented using an interactive handbook in the form of a website. The result is
an improved shared understanding of the product definition and plans across project
stakeholders. Overall, the methodology provides a stepping stone in PLM application
and can be adapted to other companies scaling up their development efforts.

Contents

1 Introduction 1

2 Background 2
2.1 Company profile . 2
2.2 Sentio . 3
2.3 Sentio 2.0 . 4
2.4 Project characteristics . 5
2.5 Stakeholder analysis . 6

2.5.1 Overview . 6
2.5.2 Stakeholder characterization . 7
2.5.3 Power and interest . 13

3 Problem 14
3.1 Problem statement . 14
3.2 Gaps . 14
3.3 Product lifecycle management . 18

4 Explorative analysis 20
4.1 Fields and disciplines . 20
4.2 Methodologies . 25
4.3 Methods . 27
4.4 Models . 29
4.5 Tools . 31
4.6 Software . 33

5 Approach 36

v

Contents vi

5.1 Methodology . 36
5.1.1 Definitions . 36
5.1.2 Structure . 37

5.2 Application and implementation . 37
6 Methodology 39

6.1 Structure . 39
6.2 Scope . 39

6.2.1 Development and testing . 40
6.2.2 Risk management . 40
6.2.3 Change management . 40
6.2.4 Products . 40

6.3 Components . 41
6.3.1 Knowledge management . 41
6.3.2 Requirements management . 43
6.3.3 Verification and validation strategy 45
6.3.4 Document and configuration management 47
6.3.5 Change request management . 51
6.3.6 Prioritization . 54
6.3.7 Contextualization and risk management 63

6.4 Metamodel . 66
6.4.1 Metamodels versus alternatives . 66
6.4.2 Metamodels in product development 67
6.4.3 Structure . 67

6.5 Principles . 68
6.6 Implementation in Wavin T&I . 69

6.6.1 Prescriptions . 69
6.6.2 Handbook . 70

6.7 Roadmap . 72
7 Discussion 73

7.1 Characteristics . 73
7.2 Adaptations . 74
7.3 PLM maturity . 76

8 Conclusion 77

References 78

Contents vii

Appendix A 88
Sentio technical overview . 88

Appendix B 90
Indoor climate control offerings . 90

Appendix C 93
Non-intrusiveness philosophy . 93

Appendix D 95
Miscellaneous methods . 95
Miscellaneous models . 97
Miscellaneous tools . 97

Appendix E 99
System development metamodel . 99

List of Figures

2.1 From left to right: the Sentio CCU, thermostat, and LCD-200 3
2.2 Sentio SRT . 3
2.3 Ternary plot of indoor climate control characteristics 4
2.4 Illustration of the development situation . 6
2.5 Stakeholder map, current state . 7
2.6 Stakeholder map, near future . 8
2.7 Power-interest matrix . 13
3.1 Locations of the information management gaps in the development situation . 18
4.1 Relevant fields and disciplines and their interrelations 21
4.2 Extended V-Model [19] . 29
4.3 Double diamond process model [32] . 30
5.1 Hierarchy of terms, from methodology to tools 37
5.2 Methodology structure . 38
6.1 Requirements engineering process model [99] 44
6.2 Conventional configuration management [135] 48
6.3 SWOT quadrants . 65
6.4 System development metamodel (enlarged in Appendix E) 68
6.5 Interactive handbook . 71
6.6 One of the topic pages . 71
D.1 Nine window diagram [19] . 98

viii

List of Tables

6.1 Components addressing gaps . 41
6.2 Initial prioritization criteria . 58
6.3 Prioritization rubric, first version . 59
6.4 Prioritization rubric, first version . 61
D.1 N2 diagram example . 97

ix

List of Abbreviations

BU Business Unit . 2
CCB Change Control Board . 52
CCU Central Control Unit . 3
CM Change Management . 21
DSF Digital Service Factory . 5
EA Enterprise Architecture . 25
FMEA Failure Mode and Effects Analysis . 31
ICS Indoor Climate Solutions . 2
KM Knowledge Management . 23
MBSE Model-based Systems Engineering . 26
OC Operating Company . 2
PLM Product Lifecycle Management . 18
PM Project Management . 22
PMO Project Management Office . 2
PSS Product-Service System . 1
QMS Quality Management System . 45
RE Requirements Engineering . 23
RM Requirements Management . 23
SE Systems Engineering . 25
SRT Smart Radiator Thermostat . 3
T&I Technology & Innovation . 2
UFH Underfloor Heating . 3
V&V Verification and Validation . 45

x

1

Introduction

When developing complex products or Product-Service Systems (PSSs), consisting of a
mechanical design, hardware design, firmware and software, the management of infor-
mation such as specifications and decisions is a significant challenge. Wavin is facing
this challenge in the development of the next generation of their smart underfloor heat-
ing controller. This research investigates the details of this challenge, what topics and
concepts it pertains to, and how to tackle it academically and practically. The result-
ing methodology can be applied to realize improved information management practices
across product development.

This report is structured as follows. First, background information on Wavin and
Wavin product development is provided. Then, the problem is specified. To place this
problem into academic context, an explorative analysis is performed. The development
approach for a solution to the problem is discussed in the next chapter. Subsequently,
the resulting methodology is discussed in detail. Finally, the results are discussed, and
conclusions are drawn.

1

2

Background

2.1 | Company profile

Wavin is a manufacturer of, among others, plastic pipes, wastewater drainage systems,
stormwater management systems and indoor climate solutions for heating and cooling.
Founded in 1955 in Zwolle, Wavin operates across the globe in countries in Europe, North
America, Latin America, Asia, and Oceania. In 2012, Wavin was acquired by Orbia, a
global company headquartered in Mexico. The headquarter of Wavin is located in Am-
sterdam and the R&D subsidiary – Wavin Technology & Innovation (T&I) – is located in
Dedemsvaart. New innovations of Wavin include the Ventiza ventilation ducting system,
the Tigris K5/M5 pressure test fitting, and AquaCell infiltration units. Wavin develops
and sells products and services in the Business Units (BUs) Hot and Cold, Urban Climate
Resilience, Indoor Climate Solutions (ICS), Soil andWaste, andWaterManagement across
the various Operating Companies (OCs) globally. Wavin T&I develops products and ser-
vices for all business units. The ICS business unit, towhich this research pertains, primarily
operates in Europe, and its developments are lead from Dedemsvaart in the Netherlands
as well as Hammel in Denmark. Being only a decade old, the ICS business unit is one
of the youngest in the organization. The organizational structure is such that the prod-
uct management takes place at the BU, driving development projects at T&I, which are
managed by the Project Management Office (PMO) in Dedemsvaart.

2

Chapter 2 . Background 2.2. Sentio

2.2 | Sentio

Sentio is a smart underfloor heating controller that forms the cornerstone of the ICS BU.
It is their second-generation underfloor heating controller, superseding the successful
AHC-9000. The main products in the Sentio line are the CCU-208 controller, the EU-
A and EU-VFR extension units, the wireless and wired thermostats, the LCD-200 control
touch screen, and the Smart Radiator Thermostat (SRT) (all but the extension units shown
in figure 2.1 and 2.2).

Figure 2.1: From left to right: the Sentio CCU, thermostat, and LCD-200

Figure 2.2: Sentio SRT

The Central Control Unit (CCU) can control up to 16
Underfloor Heating (UFH) actuators when paired with
the EU-A. It can control the inlet temperature and pump
of the UFH manifold as well as various heating sources.
Using the EU-VFR, up to four dehumidifiers can be con-
trolled by Sentio as well. Via an Ethernet connection,
the CCU communicates with the cloud, allowing con-
trol via a mobile app. The CCU communicates with the
wired and wireless thermostat, as well as the SRT through a proprietary protocol named
ROXi BUS. This protocol is developed and owned by Jablotron, a Czech company towhich
the development of Sentio is outsourced byWavin. In Appendix A, a schematic overview
of Sentio components and communication is provided.

To gain insights on the indoor climate controls market, a market analysis was con-
ducted. This analysis consisted of the comparison of competitors’ offerings based on the
following criteria: price, zone control capabilities, smart home integration, wireless con-
nection capabilities, HVAC system integration, cooling support, UFH support, humidity
control, air quality control, and miscellaneous smart or climate control features. From the

3

Chapter 2 . Background 2.3. Sentio 2.0

Figure 2.3: Ternary plot of indoor climate control characteristics
comparison of Sentio with 17 competitors, three main characteristics of indoor climate
control systemswere discovered: integration, simplicity, and flexibility, onwhich offerings
can be mapped. The full comparison of offerings is provided in Appendix B. A suggestion
for the placement of Sentio as well as a few alternatives are placed on a ternary plot of
these characteristics in figure 2.3.

2.3 | Sentio 2.0

The consensus at Wavin is that the current CCU-208 is approaching its limits. New prod-
ucts such as the SRT and many firmware and software features have been added over
the years increasing the firmware footprint. The new indoor climate solution intended to
supersede Sentio is codenamed Sentio 2.0 within Wavin. The architecture is yet to be
defined of this system, though there is an agreement on many of the features in general.
In line with the intention to transition from product to service revenue from senior man-
agement, the definition of the next generation Sentio Product-Service System (PSS) must
be developed.

4

Chapter 2 . Background 2.4. Project characteristics

2.4 | Project characteristics

In an early Sentio 2.0 brainstorm session on January the 25th, 2022, with application
engineers from T&I, as well as representatives from the BU and various OCs, the ternary
plot from figure 2.3 was presented for discussion. However, the everyday feature request
tended to gain precedence over the definition of the climate control system as a whole,
as they were otherwise thought to be lost, since there was no structured request process
in place. This difficulty to maintain a holistic perspective due to the perceived urgency
of everyday feature requests indicated a lack of facilitation for common understanding.
This is a symptom of the novelty of the project: never before has a system definition be
developed at Wavin T&I in conjunction with a current system.

Until now, Sentio has been developed by Jablotron on request; lists of requirements
were negotiated, after which development and production was executed by Jablotron.
For Sentio 2.0, execution of development will be managed byWavin. Developments such
as mechanical design, hardware design, and software development will not be executed
by Wavin T&I, but they will be initiated, monitored, and integrated. This will reduce de-
pendency on Jablotron as a development partner and open the door to additional de-
velopment partnerships, potentially improving development capacity, flexibility, and time
to market. Furthermore, Wavin wants to further consolidate their non-intrusiveness phi-
losophy, based on the belief that end customers do not want to mindfully interact with
their indoor climate. An elaboration on the non-intrusiveness philosophy can be found in
Appendix C.

As part of a larger digitalization strategy, Wavin has initiated a department called the
Digital Service Factory (DSF). Sentio is intended to be the first product to use the Wavin
cloud developed by this DSF. Incorporating this fact, the development situation is illus-
trated in figure 2.4. Overall, the combination of the ICS business unit and the T&I ICS
team at Wavin can be characterized as a start-up within an established company, expe-
riencing the growth pains of scaling development as well as the rigidity of established
development processes.

5

Chapter 2 . Background 2.5. Stakeholder analysis

Figure 2.4: Illustration of the development situation

2.5 | Stakeholder analysis

In systemdevelopment projects, many stakeholders are often involved. In this section, the
stakeholders of the Sentio project are analyzed. First, an overview of the stakeholders is
provided. Then, the characteristics of each stakeholder are discussed. Finally, they are
placed in a power-interest matrix.
2.5.1 | Overview
As the ICS enterprise, comprising of the ICS business unit and the ICS team at Wavin
T&I is still forming and growing, roles and responsibilities have not fully consolidated.
Additionally, the interactions between stakeholders may change as the operation further
develops. For this reason, it is important to maintain a clear overview of who is involved in
the Sentio endeavor and how. Even though end users, wholesalers and installers are the
customer (both primary and secondary) that will receive the developed system without
having a direct influence on it, they should be incorporated as stakeholders in develop-
ment. Retrospectively, after all, they are the most powerful, as they are the sole reason

6

Chapter 2 . Background 2.5. Stakeholder analysis

for development. Incorporating the voice of customer in development as much as possi-
ble can reduce this retrospective component. Besides, as the business models assigned
to Sentio may change in the future, installers may become partners in delivering value to
end users, shifting their position from customer to stakeholder. In figure 2.5, a stakeholder
map of the current state is shown.

Figure 2.5: Stakeholder map, current state
The ambitions of Wavin to grow the ICS operation and deliver integrated solutions

over commodities are realized in part by insourcing the development of a Wavin Cloud.
This cloud is developed at the DSFmentioned in section 2.4. Sentio will be the firstWavin
product to operate on this cloud. The DSF is added to the future state stakeholder map
in figure 2.6.
2.5.2 | Stakeholder characterization
Stakeholders are grouped organizationally and characterized in this analysis. Where nec-
essary, specific people or roles may be addressed as representative of this organizational
group. These organizational groups are not geographically bound; most often, interna-
tional collaboration is involved. Per stakeholder, a description of their power and interest
is provided, as well their general interactions with Wavin T&I, such as the types of in-
formation that are exchanged. Note that, even though Wavin Sentio is included in the
stakeholder map of figure 2.5 and 2.6, it is not (represented by) a person and, therefore,
not a stakeholder. It serves a functional purpose to illustrate the relationships between
the system and the stakeholders.

7

Chapter 2 . Background 2.5. Stakeholder analysis

Figure 2.6: Stakeholder map, near future
2.5.2.1 | Wavin T&I
AtWavin T&I (more specifically, theWavin T&I ICS team) in Dedemsvaart, all components
of Sentio development coincide. Part of the T&I team working on Sentio works in Den-
mark: these are application and test engineers with extensive experience in underfloor
heating in the Scandinavian market.

■ Power: high
As Sentio system development and integration occurs at Wavin T&I, its power is
significant.

■ Interest: high
The ICS T&I department needs to fulfill the needs andwishes of seniormanagement.
Wavin as a whole, naturally, benefits from successful development projects.

■ Interaction
The Wavin T&I ICS team is the central viewpoint for the methodology under de-
velopment. Its interaction with other stakeholders is discussed at their respective
entries in this analysis.

2.5.2.2 | Wavin (Indoor Climate Solutions Business Unit)
Organizationally, the Wavin T&I ICS team develops the Sentio system for the Wavin ICS
BU. This ICS BU is led by the Global BUDirector working in Denmark, to which the Global

8

Chapter 2 . Background 2.5. Stakeholder analysis

Product Manager Controls / Smart Home reports from the Netherlands. In practice, the
Global Product Manager is quite narrowly involved with Sentio development for senior
management due to the relative youth of the ICS operation. This Product Manager can
be regarded as the representative of the senior management: the ICS business unit. Sales
and marketing are performed by this BU.

■ Power: high
The ICS BU formally makes the final decisions about projects such as Sentio and is
responsible for the strategy of Wavin’s ICS endeavors.

■ Interest: high
Naturally, project successes contribute positively to the prosperity of the complete
organization.

■ Interaction
– Information

The business unit has access to all files, specifications, insights, et cetera. How-
ever, mostly project and product performance need to be regularly commu-
nicated with the BU. Still, the Product Manager can also be involved in the
development of the system specification in order to ensure proper translation
and application of the strategy provided by the business unit.

– Characteristics
Although the business unit is formally located in Amsterdam, BUmembers also
work fromDenmark, the United Kingdom, and more locations. For this reason,
face to face meetings are relatively infrequent. Nevertheless, the digital infras-
tructure of Wavin ICT supports effective online meeting and collaboration.

2.5.2.3 | Jablotron
Jablotron is the Czech development and production partner that has worked with Wavin
since the predecessor of Sentio: the AHC-9000. Currently, there are collaborations with
the following specific subsidiaries of the Jablotron Group a.s.: JabloPCB s.r.o., Jablotron
Controls, and Jablotron Cloud Services s.r.o. For the Calefa and domestic hot water
(DHW) projects, Wavin T&I also collaborates with Logic Elements s.r.o. As the ICS oper-
ation matures, Wavin strives to insource more software and service-related components
of Sentio, in order to deliver integrated solutions.

■ Power: high
Especially while most of technical development is performed by Jablotron, they

9

Chapter 2 . Background 2.5. Stakeholder analysis

have the power to change the specification provided by Wavin T&I based on their
capabilities and capacity.

■ Interest: medium
Wavin is an important development partner and customer of Jablotron, and project
success strengthens this partnership. However, Jablotron is not dependent on this
partnership.

■ Interaction
– Information

Currently, specifications are agreed upon after discussion, afterwhich Jablotron
executes development and returns and produces (sub)system designs.

– Characteristics
Jablotron works with their own project management system named Phabrica-
tor, to which Wavin T&I has partial access. In there, T&I can view the status of
the subprojects that Jablotron is working on.

2.5.2.4 | Wavin Digital Service Factory
One of the steps taken by the ICS business unit to deliver integrated solutions and in-
crease servitization is to develop a Wavin Cloud in-house. This development will be part
of the Wavin Digital Service Factory and Sentio will be the first product to make use of
it. As this DSF is still ‘under construction’, communication and collaboration between it
and the T&I ICS team is not yet defined. However, this provides the opportunity to work
together efficiently from the start.

■ Power: medium
Depending on the strategy imposed by the ICS BU, services developed by the DSF
could directly impose requirements on Sentio. However, especially while the DSF
is still ‘under construction’, service and cloud implications for Sentio will be actively
collaborated on.

■ Interest: low
The Digital Service Factory will develop and provide services forWavin, as does T&I
with system development in the case of Sentio. Sentio will be the first product to
make use of the upcoming Wavin Cloud, but the DSF is not directly dependent on
Sentio product development success.

■ Interaction
10

Chapter 2 . Background 2.5. Stakeholder analysis

– Information
The initial information that will be exchanged between the DSF and T&I is the
properties and constraints of Sentio’s CCU, in order for the DSF to develop a
suitable API to the Wavin Cloud. In this situation, T&I provides requirements
(the limitations), and the DSF returns a specification (the API). In the future,
the DSF can also impose requirements on Sentio development (e.g., minimum
required capacity for cloud communication).

– Characteristics
Interaction between T&I and the DSF can be determined as both teams de-
velop. In this way, the degree of collaboration and the exchange of require-
ments and specifications can be refined and optimized over time.

2.5.2.5 | Installers
Installers are Wavin’s direct customers for Sentio. They make their purchase at whole-
salers and resell it to end users, adding an installation fee. The primary decision factors
for purchase are cost price and ease of installation.

■ Power: low
Installers have no direct power in Sentio development decisions. As customers, they
have a lot of power retrospectively, which can be partially mitigated by involving
them in development. As mentioned before, this transitions them from customer to
stakeholder.

■ Interest: medium
The interest of installers in Sentio is medium: installers benefit from Sentio devel-
opment success in the form of end user satisfaction. Additionally, ease of installa-
tion allows them to work more efficiently, further increasing end user satisfaction
through fewer installation faults and/or lower fees. Sentio being a unique, differ-
entiating value proposition allows installers to sell a unique, differentiating value
proposition to their customers. However, installer interest is limited due to compe-
tition in the market: installers are not dependent on Sentio.

■ Interaction
Installers experiment and learn by themselves how Sentio works. The Sentio techni-
cal handbook is the most comprehensive guide provided byWavin for this purpose.
Currently, there are only few videos available fromWavin, but there are plans to fur-
ther expand the offering of online support tools for installers. From the Sentio web-
page, the simple user manuals for the sensor and thermostat can be downloaded, as

11

Chapter 2 . Background 2.5. Stakeholder analysis

well as the quick guide, which is roughly a simplified version of the technical hand-
book1. Support content varies per country: Dutch and English support pages, for
example, have an FAQ section2. The Danish and French support page do not con-
tain any support videos nor an FAQ section (yet). However, the Danish brochure
does link to the YouTube channel of Wavin Denmark, which does contain Danish
instruction videos for Sentio. In Scandinavia, Wavin also offers a service called ‘All-
Inclusive’, where the right Sentio system components are prepackaged and the CCU
is preprogrammed for convenience.

2.5.2.6 | Homeowners, facility managers, end users
Currently, Wavin is not planning on selling Sentio directly to end users. However, home-
owners, facility managers, and end users can certainly express their preference for certain
brands and products to their installers. In the case of new construction, the contractor
can be regarded as the facility manager until construction is finished. Contractors, facility
managers, homeowners and end users all make the decision for certain installers and the
services and products they provide.

■ Power: low
Like with installers, but to an even lesser extent, homeowners, facility managers,
and end users only have retrospective power in Sentio development through sales
performance. If Wavin were to sell Sentio directly to end customers, this power
would increase to the same level as the installers’.

■ Interest: low
End users benefit from the success of Sentio development in the form of product
performance in the form of lower prices and/or increased comfort and convenience.
However, due to competitive offers in the market, end users are not dependent on
this success.

■ Interaction
End users can access the same public information as installers, which also includes
instructions and manuals for basic settings that are relevant to the end user. Usu-
ally, complaints are directed to the installers, who, if they cannot resolve it them-
selves, relay them toWavin. In short, communication to the end user occurs through
documentation, manuals, et cetera. Communication from the end user to Wavin is
limited. In the future, the amount of feedback can be improved by through user

1https://www.wavin.com/en-en/sentio/sentio-support2https://www.wavin.com/nl-nl/sentio/sentio-support#Anchor%20faq
12

Chapter 2 . Background 2.5. Stakeholder analysis

statistics, if or when more Sentio systems are connected to the internet and are
logging user behavior.

2.5.3 | Power and interest
Mendelow [84] introduced the principle of aligning power and interest of stakeholders
in order to direct attention to prioritized stakeholders. In figure 2.7, the power-interest
matrix for the Sentio project is provided.

Figure 2.7: Power-interest matrix

13

3

Problem

As the current generation of the Sentio generation is reaching its limits, Wavin needs
to gain insights on the management prerequisites for the development of the following
generation(s). In this chapter, the problem statement is provided and elaborated through
identified gaps in product development management.

3.1 | Problem statement

Due to the natural growth of the Sentio project and high degree of outsourcing, manage-
ment of product development and its related information have been only sufficient until
now. Currently, this results in the day-to-day overruling the discussion on larger questions
such as the desired architecture and development strategy of the Sentio product line. In
order to facilitate further growth of the ICS development efforts and the development of
a new Sentio generation, the information management across the product lifecycle must
be improved.

3.2 | Gaps

Gaps in the current information management practices have been identified and serve as
a structure and goal for the development of a solution. With these each of these gaps, an
explanation of its origin and guiding questions are provided. These guiding questions form
the starting point of the explorative analysis as well as the proposed solution. In figure
3.1, the location of the gaps and their guiding questions are placed on the illustration of
the development situation.

1. Requirements management
Currently, lists of requirements only serve for agreements with Jablotron at Wavin.

14

Chapter 3 . Problem 3.2. Gaps

They are not a full system specification, but they have been sufficient while most
of development execution was performed by Jablotron. Additional features and
updates have been requested mostly as they arose from various stakeholders, but
they have never been combined into a single system specification. This is in line
with the Agile methodology, avoiding so-called Big Upfront Design. However, this
level of agility will not scale well as the project and its team grows, development
shifts to Wavin, and more stakeholders get involved [5].
a) Voice of the customer – how can the voice of the customer be captured ade-

quately and processed into system requirements?
b) Traceability – how can the implications of requirements be traced back to their

origin?
c) Completeness – how can completeness of the requirements be ensured?
d) Consistency – how should conflicts between requirements be resolved?
e) Idea generation – how can internal ideas be filtered according to the PSS vision

and translated into system requirements?
f) Triage – how can requirements for the system and subsystems be prioritized?
g) Configuration – how are multiple product architectures managed and how are

requirements, wishes and issues assigned to the right architecture?
2. Change management

Change management in system development is the extension of requirements man-
agement over time. A formalized system definition must stay relevant as both in-
ternal and external factors change. Until now, potential changes to Sentio have
been stored in Excel sheets and have been implemented ad hoc. A defined change
management approach can help the right requests be implemented over the louder
requests.
a) Requirements implications – how can a change process be aligned with the

system development process?
b) Elicitation – how and how often should changes be assessed? How should

technological, industrial, societal, and commercial opportunities be identified
and processed?

c) Contextualization – which contextual factors must be monitored and how?
d) Responsibility – howmany people and who are necessary to translate changes

to subsystem-level requirements?
15

Chapter 3 . Problem 3.2. Gaps

e) Versioning – how should hardware, software, mechanical designs, documents,
and baselines be versioned if system development is, for example, continuous?

3. Decision management
Due to the relative youth of the ICS operation, decisions are not formally docu-
mented. The corporate transparency and flat hierarchy ensure that everyone’s voice
is heard. However, with the ICS team growing in the past years and the teams work-
ing decentrally, decision making may require more organization and more thorough
documentation.
a) Organization – how and by whom should requirements, plans and decisions be

taken, disseminated, and aligned? Where does the project ‘reside’?
b) Documentation – how should decisions be documented? How and how often

should documented decisions be reviewed and reconsidered (i.e., how does
change management apply to general decisions)?

4. Knowledge management
Similar to decision management, insights and their documentation are organized
ad hoc. Finding reports and design decisions is currently time-consuming and not
always successful. Applying knowledge management practices can improve the ab-
sorption, dissemination and application of insights attained from daily T&I research
[92].
a) Documentation – how should investigations, field trips, small reports, etc. that

are not (yet) directly linked to a decision or requirement be documented? How
should artefacts be linked to requirements and decisions?

b) Definitions – (how) should a single source of truth of the systembe approached?
5. Verification & validation strategy

Sentio testing currently takes place at Jablotron, with certain tests being repeated or
executed atWavin T&I for verification. This process is not explicitly traceable to the
list of requirements that was agreed upon before development. With development
responsibility shifting to T&I, so does verification and validation responsibility.
a) Verification – how and when can system quality (making the system right) be

ensured for the whole system and its subsystems? I.e., how can the subsystem
designs and implementations and their integration into the system architecture
be verified robustly?

16

Chapter 3 . Problem 3.2. Gaps

b) Validation – how andwhen can the value proposition (making the right system)
be validated for the whole system and its subsystems? How can the PSS be
validated against the vision and philosophy, as well as the senior management
strategy?

6. Risk management
A SWOT analysis has been performed early on in Sentio development and organi-
zational risk management is the responsibility of senior management. Nevertheless,
development risks should be monitored to adhere to time and budget constraints
[105].
a) Risk management – (how) can development risks be identified and acted upon

effectively?
7. Vision and philosophy

The ICS business unit steers its own course. The ICS team at T&I fulfills the develop-
ment this set course requires. Certain philosophies and ambitions, such as system
non-intrusiveness and the ambition to develop integrated (service-based) solutions
are present and prominent, but not registered. If decisions are based on an undocu-
mented philosophy or strategy, and the underlying philosophy or strategy changes,
the decision becomes untraceably invalid.
a) Senior management – how does the senior management strategy translate to

a PSS vision?
b) PSS philosophy – what are the values and definition of Sentio? How can they

be (re)evaluated and applied in development?
c) Development philosophy – what are the company values for Sentio develop-

ment? How does this relate to collaboration?
d) Development typology – should Sentio (versions) be developed linearly, itera-

tively, organically, continuously, or in any other fashion?
8. Process and methodology improvement

If the Wavin ICS team at T&I adopts a development methodology, it is important
to frequently reestablish whether the methodology is effective and fitting to the
operational scale, and act accordingly.
a) Monitoring – how, how often, and by whom should the development method-

ology and process(es) be monitored regarding performance and quality?

17

Chapter 3 . Problem 3.3. Product lifecycle management

b) Process change management – how should the development process(es) and
methodology be evaluated and changed over time?

Figure 3.1: Locations of the information management gaps in the development situation

3.3 | Product lifecycle management

Product Lifecycle Management (PLM) is an evolving concept that integrates the manage-
ment of all information on the lifecycle of a product, such as documents, BOMs, test re-
sults, change orders, manufacturing procedures, and so on [110, 123, 82]. Search trends
show a significant increase in interest in PLM since 2014 [52]. Still, risks have been iden-
tified in the implementation of PLM systems, most notably divided into human-, process-
and technology-related risks. The first involve factors such as limited user acceptance,
lack of management support, and lack of technological skills. The second and third in-
clude risks such as lack of infrastructure and resources and lack of alignment between
PLM technology, the development process, and business processes [121].

PLM maturity models generally assess strategy and policy, management and con-
trol, organization and processes, people and culture, and information technology [15]. A

18

Chapter 3 . Problem 3.3. Product lifecycle management

higher PLMmaturity can yield benefits in the areas of idea, requirements, change, and risk
management, as well as product structuring, product program planning, project control-
ling, and quality controlling [115]. Multi-dimensional maturity assessmentmodels provide
significant benefits over one-dimensional roadmaps by providing a holistic view on PLM
implementation [120]. Even though PLM assessments are inaccurate and provide little to
no suggestion on how to proceed to improve maturity, they are useful for companies to
determine their relative maturity with respect to other companies [101]. However, there
is only use in the measurement of PLM maturity, if PLM efforts have been made in the
past.

PLM systems are software suites organized around a central database that stores
product information of the whole lifecycle of a product such as requirements, calcula-
tions, models, test results, marketing material, service documentation, and much more
[101]. As a concept, however, PLM is a paradigm that transcends software implementa-
tion [78].

The identified gaps in Wavin T&I system development all pertain to the management
of information across the product lifecycle and, as such, pertain to product lifecycle man-
agement. For this reason, the solution to these gaps will be labeled as a PLM solution,
even though the exact definition of PLM may change over time. To conclude, the prob-
lem is a lack of product development informationmanagement and integration limiting the
transition of ICS projects to Wavin T&I as well as their growth. In the following chapters,
the development of a proposed PLM methodology is reported, starting with an explo-
rative analysis on related topics, fields, and concepts, followed by an explanation of the
development approach. Then, the resulting methodology is described, including its im-
plementation and limits. Subsequently, in the discussion, generalization and application
to other organizations of the methodology is covered.

19

4

Explorative analysis

The explorative analysis was performed to gain insights in existing concepts, research,
practices, et cetera, that pertain to the management of information in product develop-
ment. This chapter is ordered from abstract to applied by covering relevant fields and
disciplines first, followed by methodologies, methods, models, tools, and finally, software
tools. This analysis provides a top-down perspective on product development, as will be
discussed in section 5.2. Items that have been analyzed but were considered less relevant
to Wavin T&I product development can be found in Appendix D.

4.1 | Fields and disciplines

There are many fields and disciplines that are related to product development for busi-
nesses scaling up new product development departments. Their definitions are often
unclear and there is much overlap between them. To provide an overview, a selection
of these relevant fields and disciplines, as well as their most significant interrelations, are
briefly covered in this chapter. Additionally, a graphical representation is provided in fig-
ure 4.1 for reference. In the graphical representation, the fields and disciplines are struc-
tured in three levels based on whether the field or discipline is of a more organizational
or operational nature.

20

Chapter 4 . Explorative analysis 4.1. Fields and disciplines

Figure 4.1: Relevant fields and disciplines and their interrelations

4.1.1 | Quality Management (QM)
Quality management is the integrated approach of minimizing product faults. For this
reason, by nature, quality management is mostly (production) process oriented. How-
ever, the belief that quality can be ‘designed in’ has resulted in the extension of quality
management across the product lifecycle, shifting the focus from product faults to cus-
tomer satisfaction [129]. This shift emphasizes the importance quality management in
the development phase.
Relation to RM/RE: quality management tools and methods elicit many requirements and
constraints in product development.
4.1.2 | Change Management (CM)
In a business environment that is constantly evolving and increasingly competitive, change
management is a necessity [24]. However, many organizational change management ini-
tiatives fail [12]. For companies that develop products or systems, change management
can be divided in twomain categories: organizational (and strategic) changemanagement,
and engineering change management (also referred to as change control). Of these cate-
gories, the latter is most relevant in product development.
Relation to QM: The tracking of changes is a component of quality management as well.
Relation to RM/RE: Engineering change management controls the processing of changes
to (system) requirements.
Relation to EA: Organizational hierarchy and change management can be captured in an

21

Chapter 4 . Explorative analysis 4.1. Fields and disciplines

enterprise architecture.
Relation to PLM: The information that is produced by engineering change management
(such as information related to configuration management) is part of PLM.
4.1.3 | (Enterprise) (Portfolio and) Project Managemnent (EPPM)
Project Management (PM) is a well-known discipline that aims to realize the project goals
using the available resources under given constraints [105]. Project portfoliomanagement
is concerned with the strategic alignment of project management across multiple projects
in a project management office [49]. Enterprise project and portfolio management is the
top-down approach that governs and coordinates practices and strategies for the PMO
and coordinates larger organizational projects [44].
Relation to EA: EA can be complemented by EPPM by applying PPM concepts to the
architecture [49].
4.1.4 | Enterprise Information Management (EIM)
Enterprise information management aims to manage unstructured information alongside
traditional content, documents and records, such as social interactions, business informa-
tion and business intelligence [14].
Relation to MDM: MDM is a more business-oriented information management approach
[131]
Relation to ECM: ECM is a component of EIM, focusing on the storage, preservation, pro-
tection and reusability of information [14].
4.1.5 | Enterprise Content Management (ECM)
ECM, as a component of EIM, is concerned with the integration of structured and un-
structured information within a business [73]. The Association for Intelligent Information
Management defines the purpose of ECM as capturing, managing, storing, preserving and
delivering this information [8]. ECM attempts to combine enterprise resource planning
with document management systems, and functions include the provision of collabora-
tion tools as well as content, records, and document management software. Furthermore,
opportunities for ECM have been identified with the rise of Web 2.0 (the semantic web)
[107]. As the scope of ECM expanded, the notion that ECM solutions would be a com-
bination of multiple (software) tools arose, leading to the development of overarching
frameworks [54]. However, with the hype surrounding Web 2.0 dying off [53], largely, so
did the term ECM [137].

22

Chapter 4 . Explorative analysis 4.1. Fields and disciplines

4.1.6 | Knowledge Management (KM)
Though there is no single definition of knowledge management, it has been defined as
follows by Ngai and Chan [92]: “KM refers to the set processes or practice of developing
in an organization the ability to create, acquire, capture, store, maintain and disseminate
the organization’s knowledge”. The functions in this definition are similar to those of ECM,
which results in overlap between the fields. Knowledge is a more abstract concept, which
can be extracted from information and content, which is why knowledgemanagement can
be regarded as a more abstract field than EIM and ECM.
Relation to EIM/ECM: Since knowledge can be extracted from information, there is much
overlap between knowledge and information management. Furthermore, a KM strategy
can set requirements for EIM procedures and ECM tools.
Relation to EA: EA is heavily influenced by and can be fully based on business ontologies,
which are an important concept in KM.
Relation to IM: The use of a knowledge management system has been correlated with
increased knowledge management capacity, which in turn has been shown to support
innovative capacity [112].
4.1.7 | Innovation Management (IM)
Gartner defines innovationmanagement as the discipline that drives a repeatable and sus-
tainable innovation process and culture in an organization [48]. According to ISO 56000,
innovation management can be performed for several reasons, including alignment of in-
novation activities and initiatives with the organizational strategy and striking a balance
between improving on current performance and exploiting novel opportunities [70].
Relation to EPPM: according to ISO 56000, planning and support are fundamental ele-
ments in an innovation management system. These are also fundamental to project (and
portfolio) management [70].
Relation to EA: An IM strategy can be implemented in an enterprise architecture [7].
Relation to PLM: The openness of innovation as well as the balance between incremental
and radical innovation influences a PLM strategy.
4.1.8 | Requirements Management (RM) / Requirements Engineering (RE)
Requirements management is concerned with the structuring and administration of elic-
itation, derivation, analysis, coordination, versioning, and tracking of requirements of a
product along its lifecycle [57]. Requirements engineering is the systematic approach of

23

Chapter 4 . Explorative analysis 4.1. Fields and disciplines

applying requirements management. The term requirements engineering is frequently
used in software and systems engineering [99].
4.1.9 | Product lifecycle management
The definition of PLM is covered in section 3.3.
Relation to QM: Quality management has implications for the whole product lifecycle.
Furthermore, QM methods can be applied to the product lifecycle [30].
Relation to SE: SE is concerned with systems lifecycle management.
Relation to EPPM: the realization of a PLM strategy and the use of PLM tools and methods
is orchestrated by project management.
Relation to PIM/PDM: PIM/PDM is an essential component of PLM.
Relation to EIM: EIM complements PLM [38].
Relation to MDM: Product master data can serve as a single source of truth in PLM.
4.1.10 | Product Information Management (PIM) / Product Data Management

(PDM)
Product data management is the process of managing all the data that defines a prod-
uct, from design to manufacturing to end-user support [130]. PIM is the storage of all
information required to sell a product, whereas PDM is its more specification-oriented
counterpart. PIM is used in the context of MDM [23]. PDM, on the other hand, is used
in the context of PLM [123]. Examples of information PIM manages are suppliers, ven-
dors, and marketing materials. Examples of PDM are specifications, certificates and bills
of materials. Together, they encompass the storage of everything there is to know about
a product as sold.
4.1.11 | Master Data Management (MDM)
The goal of master data management is to integrate data on products, customers, and
suppliers, and exploit its value [131]. It is an operational approach to informationmanage-
ment, and it is therefore closely related to EIM. Master data is business-critical informa-
tion that commonly pertains to partners, customers and transactions of an organization
[35]. As such, it is less related to products, the product lifecycle, and the information that
comes with it.

24

Chapter 4 . Explorative analysis 4.2. Methodologies

4.1.12 | Enterprise Architecture (EA)
Dedić [31] defines enterprise architecture as “a discipline that: i) defines, organizes, stan-
dardizes, and documents the whole infrastructure and all-important elements of the re-
spective organization, covering relevant domains such as business, digital, physical, or
organizational; and ii) the relations and interactions between elements that belong to
those domains, such as processes, functions, applications, events, data, or technologies.”.
The Zachman framework, the The Open Group Architecture Framework [127], and the
Department of Defense Architecture Framework [133] are common frameworks in en-
terprise architecture [139].
4.1.13 | Systems Engineering (SE)
The International Council on Systems Engineering [64] defines systems engineering as
follows: “Systems Engineering is a transdisciplinary and integrative approach to enable
the successful realization, use, and retirement of engineered systems, using systems prin-
ciples and concepts, and scientific, technological, and management methods.”. It is con-
cerned with all the challenges that arise when developing a system of interrelated com-
ponents.
Relation to RM/RE: Requirements management of systems is one of the systems engineer-
ing processes.

4.2 | Methodologies

As discussed in section 5.1.1, methodologies are a set of methods combined with a set of
principles. In this section, relevant and common methodologies in product, system, and
software development are covered.
4.2.1 | Design thinking
Design thinking is a common product developmentmethodology that focuses on problem
solving through the use of design tools and philosophy. Its important concepts such as
empathizing, ideation, collaborative experimentation, and failure acceptance show it to be
a mind-centric, intuitive development methodology. It is suitable for organizations with
a more collaborative rather than specialized approach, and commitment- over metrics-
focused leadership [89].

25

Chapter 4 . Explorative analysis 4.2. Methodologies

4.2.2 | Lean thinking
Lean thinking is the overarching term of lean startup, lean product development, lean
project management and lean production. Lean thinking, even though frequently applied
in manufacturing, is applicable to product development. Hoppman et al. [59] show that
lean thinking must be applied to the complete value stream, rather than just the produc-
tion domain. Intuitively, this seems logical: what is the use of optimizing the manufac-
turing of a product to make it lean, when the product inherently (meaning by design) is
not lean? In product development, lean product development concepts such as workload
leveling, cross-project knowledge transfer, supplier integration, and simultaneous engi-
neering can reduce the lead time of projects as well as rework [59].
4.2.3 | Agile
The agile methodology, referred to as Agile Software Development in the context of pro-
gramming, is a development methodology focused on adaptivity [116]. This adaptivity is
mainly achieved through incremental development and verification [34]. The twelve prin-
ciples of the Agile Manifesto are focused on software development specifically [16], but
can be adapted for, for example, embedded systems engineering. Where lean thinking
focuses on cutting out unnecessary activities, agile focuses on efficiently and adaptively
organizing the activities that remain [34]. The Scaled Agile Framework (SAFe) exists to
address manageability issues of agile development. It has its own set of principles, aiming
to balance agility with scalability [113].
4.2.4 | TRIZ
The Theory of Inventive Problem Solving (of which the Russian translation shortens to
the acronym TRIZ), is a problem-solving methodology consisting of tools and a large set
of innovation principles. By formulating a problem in terms of TRIZ concepts, it can be
compared to one of the generalized TRIZ problems and their accompanying solutions,
which can then be translated to a specific solution for the problem at hand [19]. Central
concepts in TRIZ are identification and resolution of contradictions, defining and striving
for ideality, and recognizing evolutionary patterns in systems [63].
4.2.5 | Model-based Systems Engineering (MBSE)
Model-based Systems Engineering (MBSE) is the systems engineering approach that ap-
plies models to represent system information at different levels of abstraction, without
losing control of the details [61]. It focuses on the formalization ofmodels in requirements

26

Chapter 4 . Explorative analysis 4.3. Methods

elicitation, traceability, design, analysis, and verification of systems [81]. The modeling
language most used in MBSE is SysML, which is an extension of UML by the International
Council on Systems Engineering [68]. Generally, the use of MBSE has been correlated
with improved systems engineering efficiency and quality. However, its learning curve,
lack of perceived value and predominance of document-based processes limit widespread
adoption [61].
4.2.6 | Academic methodologies
As opposed to the previous methodologies, the following are not endorsed and/or certi-
fied by consortia, foundations, or commercial organizations.
4.2.6.1 | Integrated Product Development
Integrated product development is a methodology that places engineering design in its
context. At the core stands a model that indicate three tracks that all originate from the
same user need: marketing, design and manufacturing. This methodology has largely
been superseded by the stage-gate model and lean product development but has indi-
cated a clear need for product development management already in the eighties [4].
4.2.6.2 | Axiomatic design
Axiomatic design is a methodology initially developed to create a scientific basis for the
field of design. It entails a design approach based on axioms, which are self-evident truths
that cannot be derived or proven true except for the inability to find exceptions. Axiomatic
design is divided into four domains: the customer, functional, physical, and process do-
main. Mapping between these domains translates the what to the how of designs. The
two axioms central to the methodology are posited as universal truths in good design
[124], serving as starting points for further reasoning.

4.3 | Methods

This section covers relevant product, system, and software development methods. Some
may be associatedwith a previouslymentionedmethodology. However, many standalone
methods exist aswell. Furthermore, as discussed in section 5.1.1, the boundaries between
methods and methodologies are not always strict. Miscellaneous methods (methods that
were deemed less relevant toWavin T&I product development) can be found in Appendix
D.

27

Chapter 4 . Explorative analysis 4.3. Methods

4.3.1 | Stage-gate
The stage-gate method of product development divides the development process into
fixed stages and applies formal structured reviews before a design is allowed to continue.
The goal of applying the stage-gate method is to reduce the probability of costly setbacks
[139].
4.3.2 | Scrum
Scrum is an agile development method that comprises of predefined roles, meetings and
artifacts [116]. Scrum projects are divided into sprints, led by a scrum master, which are
small portions of work that can be achieved typically within one to four weeks. This is an
example of incremental development improving the agility of development.
4.3.3 | Kanban
Kanban is an agile method that focuses on continuous improvement [116]. Kanban orig-
inally consists of emitting a signal indicating readiness for new supplies or new work re-
alizing the pull concept of lean production [96]. In agile product development, Kanban
entails creating this pull-based flow to improve development efficiency.
4.3.4 | Continuous integration / continuous deployment
Continuous integration is a popular agile software development practice, aiming to in-
tegrate software parts frequently, throughout all phases of the development cycle [94].
Continuous integration is frequently mentioned and applied in conjunction with contin-
uous deployment, which is the process of streamlining the deployment of changes to
software up to the point where changes can be automatically deployed.
4.3.5 | Quality function deployment
Quality function deployment (QFD) is a method that entails applying the house of qual-
ity (HoQ) tool over multiple phases. In the first phase, the customer needs are cross-
referenced with the available technical measures. In the second phase, the technical
measures are matched with parts characteristics. These are matched with process op-
erations in the third phase, and finally with production requirements in the fourth phase
[28]. The second, third, and fourth QFD phase are frequently omitted in practice: often,
only a single HoQ is used to couple customer needs to product features.

28

Chapter 4 . Explorative analysis 4.4. Models

Figure 4.2: Extended V-Model [19]
4.3.6 | Morphological analysis
Morphological analysis is a procedural method used to explore combinations of work-
ing principles [139]. It uses the morphological chart, also called morphological matrix or
Zwicky box, in which candidate solutions are listed against non-quantifiable parameters
[108].

4.4 | Models

This section covers models that are frequently used in conjunction with or form the cor-
nerstone of development methodologies and methods. Miscellaneous models (models
that were deemed less relevant to Wavin T&I product development) can be found in Ap-
pendix D.
4.4.1 | V-Model
The V-Model (also called Vee model) is a common process model of systems engineering,
highlighting the process of architectural decomposition and integration. Verification and
validation at each (sub)system level ensures that integrity and consistency is maintained
when traversing from decomposition and definition to integration and realization [19,
139]. The V-Model, extended by Bonnema et al. [19] is shown in figure 4.2.

29

Chapter 4 . Explorative analysis 4.4. Models

4.4.2 | Kano model
The Kano model plots customer satisfaction against degree of implementation of a prod-
uct or service feature [74]. This allows for the classification of features into categories
such as basic, performance, and excitement features. Basic features result in a negative
satisfaction when not implemented, but to not yield increased customer satisfaction if
they are. Excitement features do not negatively impact satisfaction if not implemented
but do yield increased satisfaction if they are. Performance features can both positively
and negatively influence customer satisfaction along varying degrees of implementation.
4.4.3 | Double diamond model

Figure 4.3: Double diamond
process model [32]

The double diamond model is a design process
model that distinguishes between four phases: dis-
cover, define, develop and deliver. The first and
third are diverging processes, whereas the second
and fourth are converging processes, resulting in a
double diamond shape (shown in figure 4.3). This
model illustrates the modes of thinking of design-
ers along the design process [32].
4.4.4 | SECI knowledge transfer model
The SECI knowledge transfer model structures the various types of knowledge and their
conversion. The model distinguishes between tacit and explicit knowledge, where tacit
knowledge resides in a person’s mind, and explicit knowledge is stored in an artifact. The
exchange of tacit knowledge is called socialization, and the exchange of explicit knowl-
edge is called combination. The conversion of explicit to tacit knowledge is called inter-
nalization, and, finally, the conversion of tacit to explicit knowledge is called external-
ization. Socialization, externalization, combination, and internalization together form the
SECI acronym [95].
4.4.5 | Academic procedural design models
There are numerous well-known models of the design process, such as those of Pahl and
Beitz, French, Pugh, and Ullman [139]. These typically present the design process as
sequential, (partially) parallel, or iterative. Design research and the process models that
it results in have formed the basis of many commercial design process models, methods,
and methodologies over the years.

30

Chapter 4 . Explorative analysis 4.5. Tools

4.5 | Tools

This section covers common tools that can be applied in previously mentioned methods
or methodologies, as well as in product, system, and software development in general.
Miscellaneous tools (tools that were deemed less relevant to Wavin T&I product devel-
opment) can be found in Appendix D.
4.5.1 | Failure mode and effect analysis (FMEA)
The Failure Mode and Effects Analysis (FMEA) is a tool that systematically quantifies po-
tential failures of a design or a process. Failure modes are the ‘ways’ in which the design
or process can fail. The occurrence, severity, and detectability are assigned scores on a
scale and subsequentlymultiplied, yielding a risk priority number [19]. FMEA is commonly
applied in analysis of the reliability of a system [34].
4.5.2 | Obeya room
The Obeya room is a lean thinking tool in which a ‘war room’, so to speak, is employed
to provide frequent, quick, and effective status updates to chief engineers, project man-
agers, and seniormanagement [59]. TheObeya room is an example of visualmanagement,
which facilitates the management of sequential project steps and occurring bottlenecks
[139].
4.5.3 | PESTLE framework
The PESTLE framework (also arranged as PESTEL) is a framework comprising of the fol-
lowing set of contextual factors: political, economic, social, technological, legal, and en-
vironmental [122]. The use of this framework enables the structured consideration of all
the contextual influences that act on a business, department, or system.
4.5.4 | Lessons learned log
The lessons learned log is a knowledge management tool that facilitates reuse and dis-
semination of the knowledge gained during a project. It is a log that documents what
went right and what went wrong, as well as the implications for future projects and is
made in the termination phase of a project [100].

31

Chapter 4 . Explorative analysis 4.5. Tools

4.5.5 | Responsibility matrix
The responsibility matrix or RACI chart is a tool used for human resource management
in projects [100]. In a responsibility matrix, one of the following degrees of involvement
is assigned to project members or roles: responsible, accountable, consult, inform, from
which the acronym RACI originates. Every activity should have at least one responsible
person, whereas accountable roles and roles that should be consulted or informed are
optional [105]. The responsibility matrix provides a clear and unambiguous overview of
responsibility and involvement of project activities.
4.5.6 | SWOT analysis
The SWOT analysis is a tool in which strengths, weaknesses, opportunities, and threats of
a project or organization are identified [122]. SWOT analyses can be used from a market-
ing perspective, but also from a project management perspective. In project management,
a SWOT analysis is a component of risk management [100].
4.5.7 | Risk register
The risk register is a document consisting of a list of identified risk, their potential owners,
and their potential responses [105]. Where a decision tree analysis is a useful tool in the
planning phase of a project, a risk register is useful for monitoring risks [19].
4.5.8 | Power-interest matrix
Originally developed byMendelow [84], the power-interest matrix is a tool that prioritizes
stakeholders in a project. The axes of the matrix are, as the name suggests, power and
interest. Power indicates the influence a stakeholder has on the project, whereas interest
indicates the influence the project has on the stakeholder. The power-interest matrix is
used in the stakeholder analysis of chapter 2.5.
4.5.9 | Schedule management tools
Common examples of schedule tools are Gantt charts, schedule crashing, and PERT [100].
These aim to visualize and structure the activities of a project to achieve the project goals
within time constraints. Additionally, the project evaluation and review technique (PERT)
facilitates in contingency planning through alternative scheduleswhen employing the crit-
ical path method [139].

32

Chapter 4 . Explorative analysis 4.6. Software

4.6 | Software

Aside from the software that is used to perform product development itself (such as
(E)CAD, IDEs, and simulation software), there are many programs that support the knowl-
edge and information management of the development process. In this section, classes
of relevant software in product development management are identified and common
offerings are discussed.
4.6.1 | Project management
There are many programs that support project management for all business sizes. The
most popular project management tools work out of the box, but provide limited flexibil-
ity such asMonday.com, Atlassian Jira, and Asana. Solutions aimed at larger organizations
such as PlanviewPPMPro andOracle Primavera aremore complex in their rollout but pro-
vide better scalability and flexibility. The core features of project management software
are work assignment, deadline and schedule management, and dependency management
of work. Azure DevOps is a one-stop-shop product for many software development re-
lated practices such as version control and testing management by Microsoft that also
provides these project management features.
4.6.2 | Requirements management
Requirements management programs are commonly used in the medical device industry.
Typically, they focus on formalizing the definition of a system. Examples are IBM Ra-
tional DOORS, Modern Requirements 4 DevOps, Matrix ALM, Jama, and Visure. In the
requirements management software domain, the tradeoff must be made between user
friendliness, integration, and ubiquity. For example, IBM Rational DOORS is a complex
requirements management program with an outdated interface, but with thorough doc-
umentation and support. On the other hand, Modern Requirements 4 DevOps provides
a novel user interface and integrates fully with Azure DevOps.
4.6.3 | Systems modelling
Systemsmodelling software is the cornerstone ofmodel based systems engineering. Most
system modelling applications support the SysML language. Examples of modelling soft-
ware with a focus on MBSE are Modelio, Cradle, Cameo Systems Modeler, IBM Rhap-
sody, Catia MagicDraw, Vitech Genesys, Capella, and Innoslate. With the exception of
Innoslate, these tools suffer from outdated interfaces and limited online collaboration.
Capella promotes the application of their Arcadia systems engineeringmethod over SysML.

33

Chapter 4 . Explorative analysis 4.6. Software

Features supported by some of these solutions are system state simulation and the mod-
ification of the underlying metamodel, which is the definition of objects in models and
their possible relations. Common application of systems modelling tools is in highly com-
plex, safety-critical systems such as in the aerospace industry.
4.6.4 | Enterprise architecture
Enterprise architecture software is a type of specialized modelling software for defining
the components and processes of an operation. The most common EA software, Sparx
Enterprise Architect, supports languages such as UML, SysML, and OWL, as well as var-
ious enterprise architecture frameworks like the Zachman, DoDAF, and TOGAF frame-
works. Archi is a free, open-source alternative that enables architecting in their propri-
etary Archimate standard. Finally, Planview Enterprise One is a project and product port-
folio management suite that supports basic planning of enterprise architectures. Due to
the specialized nature of EA and the possibility to perform EA in othermodelling software,
there are not many dedicated EA software solutions that gain widespread popularity be-
sides Sparx Enterprise Architecture and iServer Suite.
4.6.5 | Product lifecycle management
Product lifecycle management software suites are often large scale solutions for large
scale manufacturers of complex products. Examples of PLM suites are PTC Arena and
Windchill, Siemens Teamcenter, Oracle Agile PLM, Aras Innovator, SAP PLM, and IBM
Engineering Lifecycle Management. PLM software suites are commonly built on core
functions of requirements management, change management, systems modelling, and
product datamanagement. They play an integrating role in themanagement of all product
and process information, tailored to the organization scale and product complexity, often
resulting in lengthy procurement and rollout procedures.
4.6.6 | Commonalities
The common element in almost all these programs is that they are linked database man-
agement programs, with varying flexibility and interface user-friendliness. Since most of
these tools store their data in XML format and provide REST APIs, exchange with other
software is often possible, albeit at varying levels of ease. Furthermore, licenses of these
tools are generally expensive, especially at higher subscription tiers that provide more
support and flexibility. Many vendors of these software categories also provide product
variants target at varying organization sizes, as well as multiple products covering dif-

34

Chapter 4 . Explorative analysis 4.6. Software

ferent areas within product development information management. Even though, as said
before, exchange of information between programs is possible, software vendors attempt
to sell a software ecosystem, occasionally hindering interoperability.

35

5

Approach

5.1 | Methodology

In this thesis, the terms methodology, method, tool, model, and framework are used ex-
tensively. Even though the definitions frequently overlap and occasionally can be used in-
terchangeably, working definitions for clarity are presented in this section. Subsequently,
the structure of the methodology of this thesis is explained.
5.1.1 | Definitions
Model
In the abstract sense, a model is a description (or depiction) of a system or process used
for calculations or predictions1.
Method
A method is another word for a procedure2. Methods are often a prescription of actions,
often in a certain sequence. Many product development methods are the prescribed ap-
plication of a product development model.
Methodology
Literally, a methodology can be translated as a study of methods. Practically this can be
defined as a system of methods, rules and postulates3.

1https://dictionary.cambridge.org/dictionary/english/model2https://www.merriam-webster.com/dictionary/methods3https://www.merriam-webster.com/dictionary/methodology

36

Chapter 5 . Approach 5.2. Application and implementation

Figure 5.1: Hierarchy of terms, from
methodology to tools

Tool
In the broadest sense, a tool is something
(abstract or physical) that helps in perform-
ing an activity4. Tools can be employed in
the application of methods and methodolo-
gies.
Technique
A technique is defined by Merriam-Webster
as a body of technical methods5. In that
sense, the term resides between method and
methodology. However, the term technique
can also be used to indicate a way of achiev-
ing a goal. This definition is useful to denote
the application of a method using a tool, plac-
ing it below the term method in a hierarchical
sense.
A visualization of the hierarchy of these terms
is provided in figure 5.1.
5.1.2 | Structure
Applying the stated definitions, the methodology of this thesis is a set of methods bound
by principles, addressing the identified gaps using management and software tools. This
structure is illustrated in figure 5.2. The result is a selection of curated and developed
methods and principles prescribed to Wavin T&I to improve the development manage-
ment practices for the ICS product line.

5.2 | Application and implementation

The development, application, and implementation of themethodology is realized through
a bidirectional approach: existing methodologies, methods, et cetera are applied toWavin
product development from a theoretical top-down perspective, and practical considera-
tions are abstracted to tailor or develop methods from a bottom-up perspective. This

4https://dictionary.cambridge.org/dictionary/english/tool5https://www.merriam-webster.com/dictionary/technique

37

Chapter 5 . Approach 5.2. Application and implementation

Figure 5.2: Methodology structure
approach not only ensures relevance by being based on current development issues, but
also facilitates stepwise implementation, as opposed to a large set of idealized instructions
and tools being forcibly inserted into an operational development process. Implementa-
tion during development of the methodology, furthermore, provides direct feedback on
the support and effectiveness.

38

6

Methodology

6.1 | Structure

This methodology addresses the gaps in ICS system development using methods bound
by overarching principles. As it is a PLM methodology, the methods, principles and tools
pertain to the information gathered, produced, and applied across the product lifecycle.
This structure is illustrated in figure 5.2 of section 5.1.2.

The methodology is divided into the following components:
■ Knowledge management
■ Requirements management
■ Verification and validation
■ Document and configuration management
■ Change management
■ Prioritization
■ Risk management and contextualization

For each of the components, relevant methods, theories and frameworks are assessed,
as well as their application to Sentio product development.

6.2 | Scope

The PLMmethodology is aimed at system development atWavin T&I, to address the gaps
that limit the transition of development on request to development ownership. However,

39

Chapter 6 . Methodology 6.2. Scope

aspects of product development rarely frequently transcend the core product engineer-
ing team, and the Sentio project is characterized by extensive collaboration with develop-
ment partners. In this section, the relations between the ICS business unit, PLM, external
development partners, and the project management office (PMO) will be outlined.
6.2.1 | Development and testing
Development of ICS products is coordinated by Wavin T&I. However, the execution of
the development effort (writing code, designing PCBs) will remain mostly handled by de-
velopment partners such as Jablotron. The scheduling, monitoring, and support of this
process is the responsibility of the project manager, whereas the management of its re-
lated information is within the scope of PLM. The same applies to verification and valida-
tion. If or when development is delegated to more partners, the complexity of the project
manager’s role increases, as well as the potential benefit of PLM practices.
6.2.2 | Risk management
Risk management, and the monitoring of contextual factors in general, lies at the inter-
section of the PMO, BU, and PLM. Development risks and contextual factors are inherent
to the project and should therefore be monitored by all those involved in the project. For
example, a risk may be identified by the BU, after which a risk response strategy can be
developed. The PMO is then responsible for the implementation and monitoring of this
strategy. PLM can facilitate this entire process.
6.2.3 | Change management
PLM supports the management of information of changes across the product lifecycle.
However, the change management process must be fostered by the BU. Granting T&I
the authority to manage engineering changes is an organizational change in itself.
6.2.4 | Products
The scope of the methodology is on the development of systems in the Sentio product
line, meaning products that comprise of subcomponents, each with hardware, firmware,
and software. In short, the scope of the PLM methodology is system development man-
agement at Wavin T&I.

40

Chapter 6 . Methodology 6.3. Components

Table 6.1: Components addressing gaps
Component GapsKnowledge management 3, 4, and 7Requirements management 1 and 2Verification and validation 5Document and configuration management 1 and 8Change management 2, 3, 7, and 8Prioritization 1, 3, and 8Contextualization and risk management 6

6.3 | Components

The components of themethodology containmethods selected and developed to address
the system development gaps. For every component, its application to Wavin product
development is discussed, indicating how it covers its associated gaps. These components
cover the accompanying metamodel and are underpinned by the seven central principles
covered in subsequent subsections. In table 6.1, the gaps each component addresses are
shown.
6.3.1 | Knowledge management
6.3.1.1 | Knowledge management in product development
Identification and assessment In product development, artifacts of knowledgemost im-
portantly reside in specifications, requirements, decisions, investigations, documentation,
lessons learned logs, assumptions, among many more. Naturally, the knowledge stored
in artifacts does not correspond exactly to the knowledge in the mind of any individual.
Still, identifying which knowledge is captured in which artifact, and assessing their qual-
ity will improve product development performance; the use of KM (software) tools and
techniques such as PLM and PDM systems, visual management, and lessons learned doc-
uments has been positively correlated with KM performance when measuring ease of
entering, retrieving, and reusing information [13].
Organization The organization of knowledge fully defines its reusability at the cost of
quality and capturing effort. Product development knowledge can be organized in sev-
eral concepts. The first and most obvious is textually, which requires little knowledge
as a technique, but often times does not adequately capture knowledge. The second is
topic and concept maps, which are overviews of relevant concepts with connotated lines
indicating their relationships. Conventions of topic maps are standardized in ISO 13250

41

Chapter 6 . Methodology 6.3. Components

[66]. They are of a descriptive nature, with an emphasis of findability. The third concept is
ontology. Ontology is the philosophy of being: ontologies define conceptual knowledge
explicitly [22]. Ontologies are internally consistent vocabularies [29], meaning that auto-
mated semantic reasoning can be applied to them [141]. Ontologies of and for project
management and product development have been made [46, 3, 55], but their practical
application is negligible. Metamodels are the fourth knowledge organization concept. Ac-
cording to Bakirtzis [11], metamodels define the types of information and their relations
in a conceptual system or process. They can be regarded as an abstraction of models.
Metamodels are more prescriptive in nature, meaning that the truth can be constructed
from the model, whereas ontologies are descriptive, meaning that the ontology describes
and classifies the truth [142]. In other words, ontologies are more focused on represent-
ing the real-world concepts truthfully and consistently (semantically), andmetamodels are
focused on application-oriented (syntactical) representations of the real-world concepts
[111]. The fifth, more practical concept in product development knowledge organization
is a (design) knowledge catalogue [98]. Design catalogues store previous technical solu-
tions and design practices to facilitate their reuse [90]. An example of their reuse is in
QFDs or morphological analyses in subsequent projects.
Dissipation and representation The sharing of knowledge is regarded as the most sig-
nificant issue in knowledge management [47]. It has been positively correlated with in-
creased customer value and reduced time to market [58]. The exchange of knowledge is
commonly discussed in terms of the SECI knowledge transfermodel [91], which is covered
in subsection 4.4.4. Notably, internalization (the transfer of explicit to tacit knowledge)
and socialization (the transfer of tacit knowledge) have been shown to play a significant
role in product development [91]. Wu et al. [138] have developed a method for knowl-
edge integration and sharing that, among others, shows relevant information based on
similarity using an underlying product development ontology. This method, however, re-
mains only highly experimental, and is limited to the knowledge of engineers specifically
[138]. Nevertheless, the premise of providing relevant product (development) informa-
tion based on semantical similarity is promising for the future. More applicably, visualiza-
tion has been shown to improve knowledge sharing [25]. Still, the process of visualizing
knowledge for communication is that of externalization and does not fulfill the significant
role of internalization and socialization mentioned earlier. In general, it can be concluded
that both formal and informal exchange of knowledge occurs in product development.

42

Chapter 6 . Methodology 6.3. Components

6.3.1.2 | Application
Structuring system developments around a metamodel is suited for product development
atWavin, as it strikes a balance between an abstract and pragmatic organization of knowl-
edge. The fact that a metamodel, opposed to an ontology, can be easily visualized also
adds the benefit of communication; an overview of the concepts in product development
can be gained at a glance. The contents of this metamodel are covered in section 6.4.
Additionally, investigations performed at Wavin T&I should be reported to enable the
communication and reuse of the acquired knowledge. As the development endeavors of
Wavin T&I scale up, so too should their knowledge management efforts. In the future,
for example, the implementation of design catalogues in the form of best practices and
standardized technical solutions could provide rapid benefits in knowledge management
performance.
6.3.2 | Requirements management
6.3.2.1 | Basics
In system development, requirements are often a system as complex as the product itself,
quickly exceedingwhat a single person can oversee [57]. Requirementsmanagement then
becomes a necessity to develop a product that adequately fulfills the needs of the end
users. Requirements engineering is the practice that encompasses the complete lifecycle
of requirements [99], as illustrated in figure 6.1.

Requirements are commonly divided in to functional and non-functional. Functional
requirements specify the functions and actions a system must perform. Non-functional
requirements, although debated, are generally accepted to concern ‘-ilities’ such as relia-
bility, usability, and constraints such as volume and speed [51]. Requirements elicitation
is the process of gathering all requirements from a technical, user, and contextual per-
spective [99].
Storing requirements Reviewing system requirements is essential to develop a system
that the commissioning party (senior management or a client) envisioned [86]. Require-
ments are generally stored textually in lists, commonly referred to as requirements spec-
ifications. Basing requirements on models rather than on text and semantics can aid in
creating a shared understanding [86]. Still, consensus must be reached on the models for
requirements engineering. Ensuring that a set of requirements is truly complete is impos-
sible, but measurable consistency has been shown to improve requirements complete-
ness [77]. From this we can derive the necessity of traceability in requirements. Graph

43

Chapter 6 . Methodology 6.3. Components

Figure 6.1: Requirements engineering process model [99]
based databases can store requirements and their interrelations effectively. Visualiza-
tion, traceability and test case coverage have been shown to be enhanced by this method
[80, 6]. However, this technology is in its early stages and not available in commercial
requirements management tools. Nevertheless, it further emphasizes the importance of
the interrelations of requirements.
Requirements, agile, and lean When adhering to the agile methodology, requirements
are captured in the form of user stories. These interrelate to one another, introducing
difficulty in traceability when compared with the traditional waterfall methodology [26].
Still, user stories support requirements development from a user perspective rather than
a technical perspective. In simultaneous engineering, concurrently with defining require-
ments, their verification and validation should be developed. This is also part of lean
product development, where the most important aim is to reduce waste [59], including
wasted effort specifying verification and validation plans retrospectively.
6.3.2.2 | Application
Requirements traceability should be an essential component in engineering practices at
Wavin T&I, as it improves project performance [83]. However, a tradeoff must be made

44

Chapter 6 . Methodology 6.3. Components

between required effort to fully implement end-to-end traceability and its benefits, since
it is not required like with standards in the automotive industry such as ISO 26262 [69]
and IEC 61508 [62]. However, traceability is endorsed for quality assurance in ISO 10007
[65] and ISO 9001 [71]. InWavin projects, functional requirements should originate from
change requests, which are based on user stories, to ensure end user benefit for every
implemented function. Non-functional requirements should be elicited from contextual
factors and risks and can be traced as such. Matrix ALM is a software tool for require-
ments management thatWavin T&I already has access to. It supports the implementation
of custom schemas, meaning that the nature of requirements, for example non-functional
and functional, and their traces to other artifacts can be fully customized. Furthermore,
it facilitates the workflow for reviewing requirements and exporting them for communi-
cation. A previously conducted Calefa quality project has resulted in the initiation of a
Quality Management System (QMS) for Calefa. Lessons learned and infrastructure from
this project can be applied to develop a QMS for Sentio. For example, as Wavin aims to
take (more) ownership of technical Sentio development, more regulatory requirements
will be bestowed upon them. Preparing for (self-)certification is therefore necessary, for
which a QMS is essential.
6.3.3 | Verification and validation strategy
Verification and Validation (V&V) is the process of verifying whether the designed prod-
uct meets the requirements, and whether the products and the requirements meet the
envisioned user needs [19]. While V&V is a big component of quality assurance, the two
are not the same: V&V is one of the components of achieving the quality defined in the
quality management strategy of a company. In this subsection, verification and valida-
tion methods and considerations relevant to Wavin as they increase their systems and
software development endeavors are discussed.
6.3.3.1 | Activities
V&V in software engineering In software development, the testing activities can be di-
vided into two main categories: black box testing and white box testing [93, 75, 43].
Black box testing, also called functional testing, is applied to finalized software products,
and verifies the code from a user perspective [93]. The tester will not have access to
the source code, resulting in relatively easy test prescriptions. An important black box
testing technique is state transition testing [75]. White box testing, also called struc-
tural testing, is when the test cases are developed based on the source code and verifies
whether the code functions as intended [93]. White box testing can uncover implemen-

45

Chapter 6 . Methodology 6.3. Components

tation errors on a unit, component, integration, and system level [75]. Important white
box testing techniques are integration testing and regression testing. Integration testing
verifies the functioning of the individual components as they are placed in context, and
regression testing verifies the functioning of the rest of the system as changes are made
to one component [93]. The trivial combination of white and black box testing is called
gray box testing. Model-based software testing can be seen as a form of gray box testing
[75]. Software test automation is a component of software verification and validation that
can yield significant benefits in the form of time saving, test coverage, and effort saving.
However, common limitations in the implementation of automated software testing are
high initial cost of designing test cases, high test case maintenance, and purchase of test
automation tool(s) [106].
V&V in systems engineering Verification and validation activities of systems can be di-
vided into five classes [118]:

1. Verification by similarity: the system is verified by comparing it to already verified
systems.

2. Verification by analysis: the system is verified by simulations and/or analytical data.
3. Verification by testing: the system is verified by executing predefined test plans.
4. Verification by demonstration: the system is verified by operation in a real world

scenario.
5. Verification by examination: the system is verified by direct measurements.

The decision between V&V activities can be made based on quality, cost, and risk [118].
One of the main benefits of MBSE is the possibility to execute V&V activities early in de-
velopment. For example, models allow for simulation and integration testing (of compo-
nents and their interfaces), while it is still possible to implement more significant changes
[87]. In other words, at various levels (unit, component, integration, and system), across
the development process, different classes of V&V activities should be considered [82].
Additionally, responsibility of V&V activities should correspond to development responsi-
bility in general, meaning that thosewho are responsible for development of a component
are also responsible for its verification. This requires trust in and extensive collaboration
with development partners and may take time to achieve.

46

Chapter 6 . Methodology 6.3. Components

6.3.3.2 | Application
As the significant majority of software defects originate from design [43], it is essential
to incorporate V&V as early as possible in development. Wavin has the opportunity to
incorporate V&V practices in the development of their systems development process it-
self. As development responsibilities are shifting from development partners to Wavin,
Wavin’s V&V efforts should grow. To realize this transition, a clear distinction must be
made between component (subsystem) definitions at development partners and the over-
all system definition atWavin. Generally speaking, Wavin should be concerned with black
box testing, validating that the right system has been developed and white box testing for
integration and regression tests. Subsystem teams should develop and execute their own
testing strategies, verifying that their components are developed correctly. Test cases for
system-level requirements should be developed incrementally, meaning that new and up-
dated requirements should receive test cases first, rather than retrospectively developing
test cases for requirements with which no quality issues are experienced. Furthermore,
resolved issues (bugs) should result in test cases as well, ensuring the detection of the is-
sue in the future. Over time, this will lead to a continuous increase in test case coverage.
Test cases should be designed for reuse in regression testing, to increase verification and
validation efficiency, and prioritized by assessing their execution costs, time, and effort
[33]. The added benefit of designing reusable test cases is the suitability for software test
automation. Test plan development and manual test execution can already be performed
in the Matrix ALM requirements management tool of Wavin. This allows for the devel-
opment of reusable test plans immediately, facilitating the scaling up of the development
efforts atWavin T&I. White box testing and test automation, on the other hand, must still
be implemented from scratch if desired after thorough cost-benefit analysis.
6.3.4 | Document and configuration management
6.3.4.1 | Basics
Data and file types in product development In research and development, many types
of office files document the process, decisions and results. Typically, these are in the
form of reports, presentations, and meeting minutes. More formal static documents are
lists of requirements, (textual) design specifications, and risk assessments. These docu-
ments are stored in a cloud environment for collaborative capabilities and the archival of
previous versions. The development of mechanical designs results in CAD files, which
are currently stored at Jablotron in the case of the Sentio product line. These could be
stored in a PDM service ofWavin such as SolidWorks PDM for availability and traceability

47

Chapter 6 . Methodology 6.3. Components

Figure 6.2: Conventional configuration management [135]
purposes, as well as automatic version management. Electronics are developed in ECAD
software, such as Autodesk’s Fusion 360 or Altium’s Designer. Both of these offer their
own PDM solution for hardware. Even though web PDM applications have been shown
to improve supply chain linking in the past [130], many MCAD/ECAD suppliers wish to
provide a complete CAD+PDM ecosystem that only works best when complete, leading
to files being scattered across systems, such as, for example, CAD files in SolidWorks
PDM, specifications in Microsoft SharePoint, and PCB designs in the Fusion 360 cloud.
Software and firmware are developed and stored in a completely different manner: code
is written in various languages, using many libraries, compilers, and drivers. For the Sentio
product line, source code is stored in a version controlled repository, to whichWavin does
not yet have access, due to the use of proprietary specifications of Jablotron. However,
with the intention of further taking responsibility of Sentio development, Wavin should
aim to separate the source code from the intellectual property of development partners.
To transition from Wavin-requested development to Wavin-directed development, dis-
tinctions between the system and its subsystems must be made. This will facilitate the
discussion on the boundaries of development responsibility and intellectual property with
development partners.
Configuration management ISO 10007 defines configuration management as an activ-
ity that applies technical and administrative direction over the lifecycle of products and
services, and their configurations [65]. The main configuration management activities
are configuration identification, change management and configuration status account-
ing [65, 135], as illustrated in figure 6.2.

48

Chapter 6 . Methodology 6.3. Components

Configuration identification
Configuration identification is a continuous process that is supported by version control
systems. However, it is essential to identify and clearly define the configuration items
[135] as early as possible [65]. These relate subsystem components (mechanical, hard-
ware, firmware, and software) and their versions to product and service versions, along
with their interfaces.

A version control system is a system that stores historical versions of project files,
usually source code, as well as specific information per version such as changes made,
identity of the person that made the change, and comments [109]. Different versions can
be worked on in parallel, commonly referred to as branches. In version control systems,
the distinction is made between centralized, where the files are stored in a single loca-
tion, and decentralized, where every user can have their own version of the files [144].
Git is a popular decentralized version control system, commonly accompanied by a well-
documented workflow of managing branches, which can be merged into a master branch
using so-called pull requests [36, 10]. Recently, trunk-based development has gained pop-
ularity over the still frequently used Git workflow [10]. Trunk-based development focuses
more on working on a central team-shared branch named the trunk, off of which small
branches are split for specific releases. This enables continuous integration and continu-
ous development [56].

Versions of configuration items should be assigned unique numbers. A common num-
bering system is Semantic Versioning 2.0.0, which employs a “Major.minor.patch” num-
bering scheme. The increment of the major number indicates changes that are not com-
patible with previous major versions, whereas minor and patch version increments should
be backwards compatible [103].

Version control of general documents and hardware files is often performed ad hoc, re-
sulting in file names with almost meaningless endings such as ‘_final_v2_definitive’, which
often significantly increase the difficulty to find the latest relevant version. Cloud storage
and PDM systems can automate versioning by automatically saving previous versions,
but they do not always suppress the file naming tendencies of engineers, and therefore
require agreements on file storage such as naming conventions. Furthermore, Semantic
Versioning could be applied on these file types as well.
Change management
Change management in the context of configuration management refers to engineering
change management. It is covered in subsection 6.3.5.
Configuration status accounting
Configuration status accounting is the process of managing documentation of configura-

49

Chapter 6 . Methodology 6.3. Components

tion items and tracing the documentation (e.g., design output such as specifications) to
the configuration information (e.g., requirements baselines). Maintaining this traceability
yields two of the largest benefits of configuration management: quality management and
regulatory compliance.
Quality management and regulation Traceability is an essential component of quality
management systems, as emphasized in ISO 9001 [71]. Regulation both in Europe and in
North America even requires traceability for certain groups of products such as medical
devices, standardized in ISO 13485 [67] and 21 CFR 820 [1], respectively. Additionally, in
Europe, a so-called technical file is required for more types of products, including those in
the Sentio product line, to obtain a CE marking. A CE marking is required to sell products
on the European market [42]. 21 CFR 820 specifies the use of and requirements for the
following three files [1]:

■ Design history file (DHF): a file that indicates that the final product design corre-
sponds to the approved requirements for every version of every product (820.30(j)).

■ Device master record (DMR): a file that contains device, production process, quality
assurance, packaging, installation, and maintenance specifications of the product
as-sold (820.181(a-e))

■ Device history record (DHR): a file that shows for each produced batch, lot, or unit
of a product that it is manufactured in accordancewith theDMR andDHF (820.184)

The ISO 13485 standard on medical devices combines the DHF, DMR, and DHR into
what is called a medical device file, serving roughly the same purpose [67]. The technical
file can be regarded as the European counterpart of the DMR, with varying requirements
depending on the directives that apply to the product type. CE marking for some direc-
tives requires more detailed documentation, as well as inspection from a Notified Body.
Conformity assessment from a Notified Body is not required for the Sentio product line
[42]. For products in the Sentio line, the technical file must contain the following:

■ Specifications, drawings and explanations of the product
■ Specification of standards the product adheres to
■ Test reports
■ Declaration of conformity

Based on the following directives:
50

Chapter 6 . Methodology 6.3. Components

■ Low voltage directive [40]
■ Radio equipment directive [41]
■ Electromagnetic compatibility directive [39]

Harmonized standards can be applied to facilitate this process, after which a declaration
of conformity can be signed and submitted [42]. In practice, these files become very large
and may contain references to other documents to limit their individual sizes.
6.3.4.2 | Application
Engineers at T&I are experiencing difficulties in finding relevant files and versions. Fur-
thermore, T&I projects are all stored in one SharePoint library with no explicit version
control and a predefined folder structure that is not tailored to the project at hand. This
folder structure originates from Wavin’s stage gate development process but often, files
do not exactly fit in these categories, leading to organic folder structures partially inter-
twined with and partially separated from the predefined folder structure. Furthermore,
specifications of products currently on the market are difficult to find, if available at all.
This unstructured growth of project information comes natural with the growth of the
ICS operation. However, if Wavin is to take on more development responsibility, more
configuration management structure must be applied for regulatory purposes.

This can be achieved by basing file storage on the distinction between project-bound
and project-transcending files. For project-bound files, the notion that definitive specifi-
cations are formal, and should serve as a single source of truth should be incorporated.
This should result in a release library in which all design output of products currently on
the market can be found. They should be traceable to their requirements as much as
possible. This release library must be agreed upon with stakeholders to be the leading
definition of the product, and as such, few project contributors should have write access.
The boundary between system specifications at Wavin and subsystem specification at
development partners such as Jablotron must be defined as clearly as possible, so that at
all times, the responsibilities and locations of (sub)system definitions are known. Project-
transcending files should be stored independently of projects they may have originated
from, to facilitate reuse of previously gathered knowledge.
6.3.5 | Change request management

51

Chapter 6 . Methodology 6.3. Components

6.3.5.1 | Basics
Change requests A change request is an artifact that pertains to fixing of an issue, im-
provement of performance, or the implementation of a feature. The change request is
regarded as the primary unit of work in many software development projects [27]. Fur-
thermore, change request management is regarded as a subdomain of configuration man-
agement [114, 126]. In the ICS operation, change requests come from many directions.
Installers and end users contact Wavin (including various OCs) with issues and ques-
tions. Additionally, installers occasionally contact ICS at T&I directly for technical sup-
port. Sometimes, they express needs or wishes in these interactions. Besides these di-
rect feature requests from the customers, change requests can come from developers and
development partners as well. Their expected benefits can be direct as well as indirect;
indirect meaning benefits to developers eventually tracing to benefits for the customer.
The change request process is a continuous one, even though it sometimes pertains to a
specific system or component version.
Change control board The Change Control Board (CCB), also referred to as the config-
uration control board, is a forum that organizes and processes change requests [21, 126].
The change control board should consist of members with insight of the development
process, knowledge of system architecture, and decision authority. It should have meet-
ings at regular interval to process the backlog of change requests [21]. The frequency of
these meetings should be based on the following two factors. On the one hand process-
ing change request in bulk is more efficient [88], and CCB members may not have time
to meet as frequently as multiple times per week. On the other hand, letting the change
request backlog grow too large makes the meetings cumbersome and leads to the risk
of important potential changes going unnoticed or ignored, as decision fatigue quickly
arises when too many change requests have to be decided upon in a single sitting. Em-
ploying a change control board will improve the scalability of ICS product development
while maintaining a fair change request process in which every potentially valuable idea
is heard.
6.3.5.2 | Application
Cavalcanti et al. [27] state that processing change requests is a time consuming effort.
They also provide the basis of a change request workflow, emphasizing that discussion
prior to acceptance and implementation of changes is essential. Xu et al. [140] state
that change based configuration management is agile and minimizes required configura-
tion management efforts. The required of processing change requests can be limited by

52

Chapter 6 . Methodology 6.3. Components

streamlining the discussion process using a structured CCB meeting as well as a prioriti-
zation strategy (covered in section 6.3.6). The combination of these items results in the
following general change request lifecycle:

1. Change request is formatted
Any change request may be logged in proper format, including the following fields:

■ Origin: where did the change request arise?
■ Direct beneficiary: who will profit directly from implementing the change?
■ Customer value: what is the (indirect) value to the customer of implementing

the change?
If there is no customer value to be found, even indirectly, or if a change request
that is too similar already exists, the change request should be discarded. In this first
step, it is important to keep the required formatting effort to a minimum tomaintain
a low threshold for taking in change requests. The field of direct beneficiary and
customer value may be combined into a user story, which is a familiar concept to
many engineers at T&I. Change requests reside in the system-level backlog. Until
sufficient information is gathered in the change request, it will be labelled back and
forth as “Needs refinement” and “refined” as the CCB decides more refinement is
needed and the assigned person refines it, respectively.

2. Change requests are prioritized
Using a requirements and feature prioritization strategy, the change requests are
sorted. This results in an ordered lists of refined change requirements. If certain
change requests cannot be fulfilled due to impediments, regardless of priority score,
these should be marked as such to ensure reconsideration if the impediment is re-
solved.

3. Change requests are scheduled and distributed
Starting with the requests with the highest priority, changes are scheduled for im-
plementation, if possible. They are translated into subsystem requirements, which
are linked to the original change request. These subsystem requirements are then
transferred to their corresponding subsystem team.

4. Change requests are monitored and closed
Scheduled change requests can be (temporarily) closed for three reasons: success-
ful implementation, cancellation and impediment. Impediments must be monitored

53

Chapter 6 . Methodology 6.3. Components

more closely than reasons for cancellation. If an impediment is resolved, the change
request can be resumed.

Azure DevOps is a suitable tool for continuous work, change, and issue tracking that
the ICS team at Wavin T&I already has access to. However, DevOps is an extensive tool
mainly aimed at software development, which is less relevant for system-level change re-
quest management. The interface elements related to software development can clutter
up the UI, making the submission of change request possibly more strenuous. Neverthe-
less, DevOps allows for modification of the underlying schema, as well as which fields are
shown for each work item. The change request workflow prescribed in the interactive
handbook has been implemented by the systems architect in the ICS DevOps project on
06-04-2022.

Bug reporting can be seen as a subset (special case) of change requests. When re-
porting issues, three distinctions can be made. The first is a defect, which is a quality
issue that arises when a product does not behave according to specification. The second
is unintended behavior, which is when the customer thinks the product does not behave
correctly when, in fact, it does work according to specification. The third issue category
is bugs, which is when the product specification or functionality does not meet the re-
quirements. All issues are applied in DevOps under the bug category, to facilitate issue
reporting. If, after all, reporting an issue is a tedious and/or complicated process, the
risk of them not being reported (properly) is introduced. The change control board filters
bugs into two paths, depending on whether requirements need to be changed. If they
do, the bug is closed, and a corresponding change request is created. Otherwise, the bug
is prioritized using the same strategy for change requests, after which it is delegated to
the relevant subsystem team. While a bug is resolved (and optionally after a bug-induced
change request is implemented), creating a corresponding test case should be considered,
in line with concurrent engineering principles [59].

For their Calefa DHW unit, Wavin T&I has recently implemented a change request
process as part of a quality management improvement project. The proposed change re-
quest process from this methodology can be implemented in parallel to the Calefa change
request process so long as Calefa remains a separate project from Sentio. In the future, if
ICS projects are to bemore integrated, overlapping quality management processes should
be aligned or merged.
6.3.6 | Prioritization
Work items are a general term for actions in product development, such as the devel-
opment of a feature. The problem of prioritizing work items is one of multicriteria as-

54

Chapter 6 . Methodology 6.3. Components

sessment. Having a defined prioritization strategy will help ICS at T&I strike a balance
between quickly identifying and choosing work items to act upon first and spending time
refining work items. Important in this multicriteria assessment is the required prioritiza-
tion effort: no effort should be wasted defining and refining work items that might end up
receiving a priority too low to further consider executing. This can be achieved by select-
ing the right assessment criteria, along with their granularity. Furthermore, an assessment
method must be employed to prioritize the work items based on the chosen criteria. In
this subsection, the development of a work item prioritization strategy is described.
6.3.6.1 | Criteria
Priority assessment aims to quantify the relative importance of items. Below, potential
criteria of which a selection could indicate priority is provided, as well as their influence
on priority:

■ Business value: the magnitude of added value to the business [65]. A higher busi-
ness value naturally receives a higher priority.

■ Penalty: the adverse effects of not realizing the item [17, 136, 65]. An example of
this is compromised market position. The presence of penalty for not implementing
an item increases its priority.

■ Investment: an estimation of the required costs of realization [17, 65]. A higher
required investment lowers priority.

■ Effort: the required amount of work, which can be seen as the combination of num-
ber of people and hours spent [17]. More difficult tasks indirectly increase invest-
ment and thus lower priority.

■ System impact: the technical impact the realization has on other system compo-
nents [65]. This indicates the risk of complications. Complications stagnate product
development without adding business value, so work items with a higher technical
impact should receive a lower priority.

■ Urgency: a component of importance that indicates time-boundness [17]. A higher
urgency may be conflated directly with a higher importance, but the distinction lies
in the fact that urgency only indicates the time dependency. Nevertheless, a higher
urgency does increase the priority.

55

Chapter 6 . Methodology 6.3. Components

■ Kano model feature type: the comparison between the degree of implementation
and the resulting customer satisfaction [2]. This can be seen as the combination
between business value and penalty.

■ Risk: the predicted risks associated with the implementation of the item [17, 65].
■ Confidence: a component that originates from the RICE prioritization framework

[104]. The RICE framework utilizes reach, impact, confidence, and effort. Impact
and effort have already been covered, and reach is covered by business value. Con-
fidence, however, indicates the certainty with which the overall priority assessment
is made. This helps accompany for potential extreme scores based on gut feeling.
A higher confidence score increases the priority of an item.

6.3.6.2 | Assessment methods
Below, an overview of relevant methods for that can be used for assigning priority is
provided:

■ Analytic hierarchy process: AHP is a systematic decision making method that in-
volves pairwise comparison of all options. For larger numbers of requirements, this
will result in too many comparisons [17, 85].

■ QFD: quality function deployment inherently prioritizes potential features by as-
signing them to user needs [28, 85]. However, this requires a clear definition of
user needs and technical implementation and does not consider the possibility to
forego certain user needs.

■ Cumulative voting (100 dollar test): cumulative voting is a prioritization method
that works by constraining the number of points that can be assigned to each item,
often illustrated as 100 dollars [17, 2, 60]. This analogy facilitates the prioritization
process, as it familiarizes the problem.

■ Numerical assignment: numerical assignment is a prioritization technique where re-
quirements are divided between a limited number of predefined categories, which
are assigned scores [17, 2, 60]. When performing numerical assignment, it is impor-
tant to choose meaningful categories to reduce ambiguity and facilitate the process
of assigning the requirements to the categories [17]. This technique is a quick, but
very coarse method of prioritizing requirements.

■ MoSCoW technique: the MoSCoW technique is very similar to numerical assign-
ment, but has four fixed prioritization categories: must have, should have, could

56

Chapter 6 . Methodology 6.3. Components

have, won’t have [2, 60]. It can be regarded as a direct combination between the
Kano model and numerical assignment. In addition to being equally as inaccurate
as numerical assignment, its support in prioritization is very limited, as defining in
which category an item must go is actually the act of prioritization itself.

■ Wiegers’ matrix: when using Wiegers’ prioritization approach, options are given
a relative score, which is multiplied by a preset weight [136]. This prioritization
method is fairly common [2] but suffers from the same limitations as QFD and AHP
such as having a limited scale, not incorporating requirement dependencies, and not
accounting for input subjectivity [85].

■ Win-Win approach: the Win-Win approach is a fairly common [2] decision making
framework that is focused on negotiation [18]. Its central principle is to maximize
value for all involved stakeholders. As such, it is not a direct prioritization technique,
but its central principle can be minded during the prioritization process.

6.3.6.3 | Strategy
If the number of criteria is too big, decision fatigue will arise. For every item, too many
scores must then be decided upon. There are three remedies to reduce the number of
decisions: reducing the number of criteria, reducing the granularity of some or all criteria,
and providing default values for some or all criteria. Along with the criteria themselves
and chosen assessment method, this comprises the work item prioritization strategy.

Since the scoring of work item criteria is a quick estimation, relative qualitative as-
sessments are most suited. The approach of relative scales like in Wiegers’ matrix fits
best when the adaption is made of incorporating confidence as a criterion to correct for
input subjectivity. Furthermore, the inclusion of technical impact as a criterion includes
requirement dependencies in the prioritization process.

With relative scoring, a default value can be utilized, which can be tailored based
on the estimation. For this reason, more criteria can be included, so long as the default
values are selected carefully and not too many decisions must be made per item. The
default value of all criteria is equal, starting with the base assumption that every work
item is equally important. As criteria scoring is refined in the future, so is the quality of
the overall priority assessment.
6.3.6.4 | Application
Development The initially selected criteria for Sentio development and their rationales
are listed in table 6.2. Criteria that are not included in the prioritization strategy (such

57

Chapter 6 . Methodology 6.3. Components

Table 6.2: Initial prioritization criteria
Criterion RationaleBusiness value Business value is the main driver of implementing a change.Penalty Penalties are useful for e.g. comparing fixing a bug with imple-menting a new feature.Effort Incorporating effort helps in identifying quick wins. The timeestimate serves as a rough guideline; realistically, the numberof people occupied may also be considered.System impact System impact is difficult to assess, especially with limited im-plemented traceability. However, a quick estimation helps toincorporate the wave of complications that may arise from im-plementing a certain feature.Confidence A confidence estimation can help temper unrealistic expecta-tions in both directions.

as risk or estimated investment) can still be assessed when the work item is chosen for
further investigation. If their values are deemed unacceptable, this can be reported as
an impediment or reason for dismissal. The granularity and values of the scales must
be adjusted over by evaluating the quality of the resulting prioritization. The selected
criteria are used to calculate the relative priority score in the following first version of the
formula, which can be seen as a loose adaptation ofWiegers’ matrix, in which the weights
are included in the numerical scales to facilitate implementation:

Priority =
Business value ∗ Penalty ∗ Con f idence

E f f ort ∗ System impact

Change control boardmeeting The proposed strategywas discussedwith theCCB (Project
Manager Ronald Gorter and Systems Architect Stef Boerrigter) on 29-03-2022. The fol-
lowing conclusions were drawn:

■ The penalty criterion should only be applied in one direction (1-2 instead of 0,25-2),
as a penalty smaller than 1 does not carry any meaning.

■ A rubric for all scores must be made to reduce personal variation in estimates. Ad-
ditionally, the rubric for effort estimation should be changed from times in weeks
to examples of which most engineers can get a sense of required effort.

■ The business value estimation can only bemade best by the business unit. The busi-
ness value estimation should remain very rough and can be refined in later change
request process steps.

58

Chapter 6 . Methodology 6.3. Components

Based on this meeting, the first version of the prioritization rubric was drafted, shown in
table 6.3.

Table 6.3: Prioritization rubric, first version
Criterion Scale (scores) Rubric
Business value Minor – small – normal –

significant – huge (0,25 –
0,5 – 1 – 1,5 – 2)

Minor – Slight indirect customer value,
e.g. improved code documentation
Small – Indirect customer value or mi-
nor direct value, e.g. increased usage
analytics or small QoL updates respec-
tively
Normal – Expected increase in sales,
e.g. smart features such as presence
detection
Significant – Expected compliance
with and exploitation of (future/local)
regulation, e.g. CO2 monitoring or
Sentio all-inclusive
Huge – Game changer, serious step in
establishing market leadership

Penalty Normal – significant –
huge (1 – 1,5 – 2)

Normal – Missed business value
Significant – Compromisedmarket po-
sition
Huge – (Future/local) regulatory prob-
lems

Effort Easy task – small task –
normal task – difficult task
– endeavor (0,25 – 0,5 – 1
– 1,5 – 2)

Easy task – Minor software feature
e.g. Adding menu item in interface

Normal task – Firmware feature e.g.
protocol support
Endeavor – Hardware revision or in-
troduction of new component e.g.
new PCB layout or adding CO2 sensor

59

Chapter 6 . Methodology 6.3. Components

System impact Minor/nonexistent – lim-
ited – significant (0,5 – 1 –
1,5)

Minor/nonexistent – Minor software
tweaks required, e.g. adding/changing
menu items or less
Limited – Software/firmware adapta-
tion required or very minor hardware
changes such as adding/changing a re-
sistor
Significant – Complete software or
firmware revision required or large
changes to hardware or mechanical
design

Confidence Uncertain – fairly certain –
confident (0,5 – 1 – 1,5)

Uncertain – Multiple criteria may
change with multiple points
Certain – One criterion might need to
be adjusted slightly

Version 1 was sent to the CCB for review and discussion. Changes were made based
on extended discussion before applying it to a selection of current ICS change requests
on 13-04-2022. Present at this exercise were Systems Architect Stef Boerrigter, Project
Manager Ronald Gorter, and Product Manager Marco Oudshoorn. The following conclu-
sions were drawn from this meeting and online post-meeting discussions:

■ Wordings in the rubric, such as the reference to the CO2 sensor and the wording
for the ‘huge’ score at the penalty criteria should be changed.

■ The terms ‘easy’ and ‘difficult’ at ‘estimated effort’ should be changed, as the current
terms imply complexity, which is reserved for System impact.

■ The rough time estimations at ‘estimated effort’ should be reintroduced, with en-
deavor requiring more than one year.

■ System impact, in turn, should be renamed to technical impact. Furthermore, its
focus on complexity and risk of complications should be emphasized in the rubric.

■ Upfront, it was noticed that confidence scores influence the overall priority too
much. For this reason, the impact of the confidence scores must be reduced.

■ After evaluating the prioritized list of requests, it was concluded that the effort and
system impact scores weigh too heavy.

60

Chapter 6 . Methodology 6.3. Components

■ Urgency should be a criterion, indicating the time sensitivity of the change request.
■ Urgency and effort can be interlinked by adapting the formula.
■ Urgency should be a five-point scale to allow for more differentiation.
The revised formula is as follows:

Priority = Business value+ Penalty−Urgency ∗E f f ort−Technical impact+Con f idence

In table 6.4, version 2 of the rubric is provided. The scales have been adjusted to be
in integers for easier implementation. Additionally, they have been normalized to zero
instead of centered around neutral values to accommodate for the changed formula.

Table 6.4: Prioritization rubric, first version
Criterion Scale (scores) Rubric
Business value Minor – small – normal –

significant – huge (1 – 2 –
4 – 6 – 8)

Minor – Slight indirect customer value,
e.g. improved code documentation
Small – Indirect customer value or mi-
nor direct value, e.g. increased usage
analytics or small QoL updates respec-
tively
Normal – Expected increase in sales,
e.g. CO2 monitoring or smart features
such as presence detection
Significant – Expected compliance
with and exploitation of (future/local)
regulation, e.g. Sentio all-inclusive
Huge – Game changer, serious step in
establishing market leadership

Penalty Normal – significant –
huge (0 – 2 – 4)

Normal –Uncapitalized business value
Significant – Compromisedmarket po-
sition
Huge – (Future/local) regulatory prob-
lems or a threat to the existence of the
product

61

Chapter 6 . Methodology 6.3. Components

Urgency Critical – urgent – nor-
mal – not urgent – time-
indifferent (1 –2 – 3 – 4 –
5)

Critical – must be implemented within
three months

Urgent – must be implemented within
six months
Normal –must be implementedwithin
one year
Not urgent – must be implemented
within two years
Time-indifferent – can be imple-
mented at any time

Effort Quick task – small task –
normal task – large task –
endeavor (1 – 2 – 3 – 4 –
5)

Quick task – Within weeks; Minor
software feature e.g. Adding menu
item in interface
Normal task – Within months;
Firmware feature e.g. protocol
support
Endeavor – Within more than a year;
Hardware revision or introduction of
new component e.g. new PCB layout
or adding CO2 sensor

Technical impact Minor/nonexistent – In-
significant – Limited – Sig-
nificant – Huge (0 – 1 – 2
– 3 – 4)

Minor/nonexistent – Minor software
tweaks required, e.g. adding/changing
menu items or less
Limited – Software/firmware adapta-
tion required or very minor hardware
changes such as adding/changing a re-
sistor
Huge – Complete software or
firmware revision required or large
changes to hardware or mechanical
design

62

Chapter 6 . Methodology 6.3. Components

Confidence Uncertain – fairly certain –
confident (0 – 1 – 2)

Uncertain – Multiple criteria may
change with multiple points
Certain – One criterion might need to
be adjusted slightly

Implementation The prioritization strategy can be implemented into Azure DevOps by
creating picklists with values for each of the criteria. Since DevOps does not allow for
decimal values in picklists, integers must be used bymultiplying the scale so that all values
are whole numbers. Then, a Power Automate Workflow can read those values, divide
them back to unit scale and insert them into the prioritization formula. If picklist values
are changed, but the scale (more specifically the center of the scale) remains the same,
only the affected work items need to be updated. If the center of the scale is changed, or
if scales are added, removed, or renamed, the formula in the Power Automate Workflow
must be updated as well. The prioritization process prescribed in the handbook (covered
in section 6.6) using the aforementioned rubric has been successfully implemented in the
ICS DevOps project.
6.3.7 | Contextualization and risk management
6.3.7.1 | Project context
The development approach of a product or systemmust be adapted to its context [37, 50].
To achieve this, contextual factors must be identified so that they can be incorporated in
the product lifecycle. Du Preez et al. [37] distinguish between the following contextual
characteristics:

■ Project
– size: the duration and amount of resources required for the project.
– type: the nature of the product such as redesign, new development, or config-

uration design of existing components.
– constraints: the limiting factors in the project such as budget and personnel.
– complexity: the number of variables, number of (potentially conflicting) ob-

jectives, opacity, and interdependency all influence the risk and severity of
complications.

■ Organization

63

Chapter 6 . Methodology 6.3. Components

– size: the size of the organization influences the formality and descriptiveness
of the development process.

– type: the identity of the organization such as their purpose, philosophies and
strategies.

– organizational maturity: the experience of the organization, especially related
to product or system development

– structure: the structure, position, and autonomy of the development team(s).
– design capacity: the available resources for product development (or lack thereof)

at the organization.
■ Product

– complexity: the number of subsystems and/or subproducts and their interre-
latedness.

– level within systemhierarchy: indicates the number of interrelationswith other
products and (sub)systems.

– type: can be divided in unit, batch or mass produced.
■ Personnel

– team size: the available human resources in the development project.
– level of maturity: the experience and expertise of the project team.
– design capability: can be seen as a combination between team size and matu-

rity, influenced by management effectiveness, amounting to an overall design
team competence.

The PESTLE framework can be used to classify these contextual factors. The PESTLE
framework organizes Political, Economic, Social, Technological, and Environmental fac-
tors [105]. The aforementioned contextual factors span across all but the last of these.
The PESTLE framework can be combined with the well-known SWOT (Strengths, Weak-
nesses, Opportunities, Threats) analysis [122], by placing the PESTLE factors on SWOT
quadrants based on their influence and internality or externality, as illustrated in figure
6.3.
6.3.7.2 | Risk management
Project risk management is the process of identifying risks that may cause the project
to deviate from the intended results and is directly related to project success [105]. The

64

Chapter 6 . Methodology 6.3. Components

Figure 6.3: SWOT quadrants
Project Management Body of Knowledge prescribes the following risk management pro-
cess [105]:

1. Plan risk management: define the risk management activities to be conducted.
2. Identify risks: generate an overview of all the project risks, as well as their origins.
3. Perform qualitative risk analysis: prioritize risks by assessing their impact and prob-

ability.
4. Perform quantitative risk analysis: quantify the effects and characteristics of the

most relevant risks.
5. Plan risk responses: select a risk response strategy for the most relevant risks.
6. Implement risk responses: implement the selected strategy.
7. Monitor risks: monitor the implementation, its success, and the accuracy of the risk

assessment.
A Failure Mode and Effects Analysis is a useful risk management tool that prioritizes po-
tential product or system failures [19]. Performing an FMEA covers step 2 and 3 of the
aforementioned risk management process.

65

Chapter 6 . Methodology 6.4. Metamodel

6.3.7.3 | Application
The contextual factors can be stored in a standard scheme consisting of the combination
of the PESTLE framework and the SWOT analysis as mentioned in paragraph 6.3.7.1, in
order to successfully adapt the product development process to its context [50]. This con-
text register provides the added benefit of easier familiarization of new project members
to the development context. In addition to the identification and monitoring of contex-
tual factors, risk assessment is a joint effort between the business unit and the project
manager. By centralizing the storage, the resulting risk register and the contextual fac-
tors, as well as their requirements and constraints on the system design can be directly
linked to it. This traceability ensures the tailoring of the design process to its context.

Matrix ALM allows for FMEA-style risk management. However, risks and contextual
factors are applicable outside of their relation to (non-)functional requirements as well.
Furthermore, not everyone may have access to Matrix ALM. Therefore, a central context
and risk register would be best. These registers could, for example, also be referred to in
impediments of work items. Currently, every project has a default folder structure in the
central SharePoint ofWavin T&I. Risk assessments are placed in this project-bound folder
as they are performed in an ad hoc fashion, causing them to be infrequently reused. For
this reason, context and risk registers should be stored in a project-independent location.

6.4 | Metamodel

6.4.1 | Metamodels versus alternatives
As covered in subsection 6.3.1, metamodels are abstractions of models. A product de-
velopment metamodel is, therefore, a model of the development process in general. This
can be illustrated using the example of a recipe for a meal: the recipe itself can be seen
as a process model of preparing the meal, whereas the metamodel of the recipe would
be a model of the concepts in recipes in general, such as ingredients and instructions.
Topic maps are similar in nature in the fact that they contain concepts and their relation-
ships, but they are less strict and serve more of a communicative purpose. Ontologies
have great potential use in PLM due to their support of automated reasoning. However,
ontological developments are still facing too many limitations for practical application in
PLM [72].

66

Chapter 6 . Methodology 6.4. Metamodel

6.4.2 | Metamodels in product development
Metamodels formalize concepts, with the boundaries of the formalization being defined
by the level of detail of the model. For example, expanding a metamodel beyond product
development would include more and more of its organizational context, increasing the
level of detail, eventually resulting in an enterprise architecture metamodel: a model of
all building blocks used to define an enterprise architecture. The Open Group provides an
enterprise architecture metamodel in their EA framework called TOGAF [127]. Logically,
enterprise architectures and their metamodels far exceed product development in their
scope. However, metamodels of product development exist, such as the Vitech product
development metamodel [117]. This model has also been adapted to the development of
defense systems [11]. Schön et al. [116] have developed a metamodel for agile require-
ments engineering, which is more oriented on the process of development rather than the
definition of the system. Carniel and Pegoraro [26] propose a metamodel for the trace-
ability of releases to their user stories. These metamodels all provide useful perspectives
on the concepts in product development, and form the basis of the product development
metamodel for Wavin T&I.
6.4.3 | Structure
By assessing which of the concepts in existing product development metamodels also ap-
ply to Sentio development, the basic components of the metamodel are identified. When
defining their relationships, the boundary of formalization must be chosen. In the in-
terest of knowledge management practices, as well as in the interest of traceability, the
boundary is drawn at decisions, investigations, risks and contextual factors. The resulting
metamodel is provided in figure 6.4.

The decision to combine common system concepts such as ‘state’, ‘component’, and
‘interface’ into a single ‘design’ concept has been made actively to maintain a process
perspective over a system definition perspective. The system architecture should define
these contents of the design. The metamodel has been colored for illustrative purposes.
The model items in dark blue define the intention and result of the system design. The
lighter shades of blue indicate verification and validation activities, their execution, and
their results. Lastly, the items marked in gray are situational influences on the system
definition.

67

Chapter 6 . Methodology 6.5. Principles

Figure 6.4: System development metamodel (enlarged in Appendix E)
6.5 | Principles

As mentioned in section 5.1.2, principles bind a set of methods and tools to form a
methodology. The principles can be common denominators across methods, principles
from popular existing methodologies and principles derived from business strategy and
values. In this section, the principles that bind the methodology are covered. They serve
as general guidelines when implementing the methodology.
Transparency Transparency means the access of as many stakeholders as possible to
as much information as possible. Open innovation requires trustful, sustainable devel-
opment partnerships and has been shown to improve knowledge management capacity
[112]. Furthermore, knowledge sharing increases customer value and reduces product
development lead times [58]. Transparency is also one of the core values in the Scaled
Agile framework [113].
Bottom-up approach A bottom-up development approach means utilizing the technical
expertise and market knowledge of development engineers as much as possible. This is
necessary to capitalize on rapidly arising opportunities [125].
Decision decentralization To realize the servitization ambitions, Wavin should guide
product development from a service perspective. ICS services then deliver value through
software as a medium, with hardware being the medium outlet. In product-service sys-
tem oriented business creation, as opposed to the traditional product-oriented business
creation, the business is involved in value creation along the entire lifecycle of the prod-

68

Chapter 6 . Methodology 6.6. Implementation in Wavin T&I

uct [125]. The direction of this service should be determined by senior management,
guided by the PSS philosophy. The system-level direction should be determined at an
architectural level, using, for example, the ternary plot from the Sentio 2.0 section of the
background chapter. The technical direction of the subsystems should be determined as
much as possible by the relevant subsystem teams. This leads to the principle of deci-
sion decentralization [113]. This principle is supported by transparency and a bottom-up
approach.
Single source of truth To facilitate knowledge management, a single source of truth
must be pursued. Successful implementation of a single source of truth reduces misun-
derstandings caused by outdated and/or duplicate information.
Traceability Traceability not only supports quality management as mentioned in the
document and configuration management section, but also documents reasoning by al-
lowing for answers to be traced to their questions and vice versa.
Scalability As the gaps the methodology aims to address originate from issues of scale,
scalability must be held in high regard. This is facilitated by the decision decentralization
principle, as well as principle 11 of the Agile Manifesto: “the best architectures, require-
ments, and designs emerge from self-organizing teams” [16].
Continuous improvement In line with principle 12 of the Agile Manifesto, regular re-
flection and improvement is essential [16]. The methodology and system development in
general must be frequently evaluated as the ICS venture evolves.

6.6 | Implementation in Wavin T&I

6.6.1 | Prescriptions
The PLMmethodology is applied to Wavin T&I using a set of prescriptions on the follow-
ing eight topics:

■ Document and configuration management
■ Decision and investigation management
■ Feature request processing
■ Bug processing

69

Chapter 6 . Methodology 6.6. Implementation in Wavin T&I

■ Prioritization
■ System requirements management
■ Risk management and contextualization
■ Verification and validation

Combined, these topics apply all of the methodology components. Furthermore, they
each cover an area of the metamodel. The prescriptions provide instructions on how the
methods from the methodology should be applied, using which tools. The prescriptions
contain sections on implementation in the software already present at Wavin T&I: Azure
DevOps, Matrix ALM, and Microsoft SharePoint. This decision has been made over the
implementation of a full PLM suite for the purpose of direct applicability and scale: the
procurement and implementation of a PLM suite would be an enormous endeavor result-
ing in a solution that is excessive for the current scale of system development.
6.6.2 | Handbook
The prescriptions have been presented in an interactive handbook in the form of a web-
site. This website is hosted internally, granting access only to those who may be confided
in its contents. Due to the many interrelations between the topics of the prescription, in-
teractivity of the handbook was deemed a necessity. The two prime candidates for inter-
active handbook technologywere PDF based on a PowerPoint, and awebsite. Drawbacks
of a website are maintainability and required effort, whereas its benefits are accessibil-
ity and flexibility. The benefit of an interactive PDF is its simplicity, but the fact that it
must be shared as a file through services such as e-mail or SharePoint poses significant
threats for maintaining a single up-to-date version at everybody’s disposal. Furthermore,
PDF interactivity is extremely limited. The benefits of developing a website have been
deemed outweighing of its drawbacks, in part thanks to the application of a markdown-
based static site generator named Hugo1. This technique reduces the difficulty and re-
quired web-development knowledge for making adaptations to the handbook, by gener-
ating the page from more legible markdown files. The central component of the website
is the metamodel, which serves as a map of all the prescription topics, as shown in fig-
ure 6.5. By hovering over the buttons for each of the topics, their relevant area in the
metamodel is highlighted.

Every topic has its own page describing the prescription, of which an example is shown
in figure 6.6. References to principles and other topics are formatted as hyperlinks, allow-

1https://gohugo.io
70

Chapter 6 . Methodology 6.6. Implementation in Wavin T&I

Figure 6.5: Interactive handbook

Figure 6.6: One of the topic pages
ing the reader to quickly navigate back and forth between topics. Furthermore, general
pages on the underlying principles, the CCB, and the methodology itself are included. Fi-
nally, quick links to the ICS DevOps and Matrix ALM environments have been provided.

The purpose of the interactive handbook is to provide a quick reference for all PLM
related developments. It aims to increase support for new product development manage-
ment tools and processes by providing a rationale. Furthermore, it is supposed to be an
open-ended document, and is to be read out of interest rather than obligation.

71

Chapter 6 . Methodology 6.7. Roadmap

6.7 | Roadmap

The application of the methodology is fully dependent on the scale of system develop-
ment at Wavin T&I. As the ICS venture expands, PLM efforts should be scaled up accord-
ingly. The first improvement beyond the implementation of the handbook prescriptions
is the alignment of PDM and version control systems across stakeholders. Furthermore,
SharePoint practices could be improved by creating dedicated libraries for definitive re-
leases, as well as departments in general. This will allow for finer control of access and
automation and make project folders and files more manageable.

The prescriptions for the current PLM toolset (DevOps, Matrix and SharePoint) will
reach its limitations at a certain scale of product development. It is at this point that a PLM
software suite should be considered to support information management. If a significant
amount of time is spent servicing the PLM toolset, it is a sign that this transition point is
approaching. The benefits of a PLM suite will then outweigh the high upfront investment
of its expensive license and complicated rollout.

If a PLM suite is commissioned, the gateway to model-based systems engineering
is opened. MBSE will enable for complex system simulation testing and automation. If
further formalization of the ICS enterprise is desired, MBSE and the methodology meta-
model can be adapted in an enterprise architecture. In the far future, developments in
ontology and ontology based systems engineering may further support PLM by, for in-
stance, providing relevant information based on semantic similarity or applying automated
reasoning to find logical inconsistencies in the system.

72

7

Discussion

In order to establish the extent to which the methodology generalizes to other compa-
nies, the characteristics of the development situation are discussed. Then, the aspects
that influence how the methodology should be applied are covered. Finally, critical re-
marks on PLM maturity assessment are provided, as well as an explanation on how the
methodology can address its shortcomings.

7.1 | Characteristics

The situation at Wavin T&I Sentio development is characterized by mainly by its relative
novelty within the established company. As developing a smart product that consists of
both hardware and software was not the expertise of Wavin, the benefits of outsourc-
ing the development of at first the AHC-9000 and later Sentio far outweighed the costs
of developing the products in-house. This outsourcing, however, brings the effect of re-
duced project ownership with it: the products are engineered for Wavin, rather than by
Wavin. Correspondingly, information management practices are fully tailored to product
development practices of the main products of the company. Other companies looking
to venture into new markets will face the same issues, depending on the novelty of the
developments in question. If the business has (acquired) expertise in the development
of the new products already, the reduction of project ownership in outsourcing will be
less significant. As mentioned in the section 6.7, a certain degree of project convolution
will require a more sophisticated PLM toolset, such as a complete PLM software suite.
PLM software vendors present large manufacturers of complex products and systems as
clients on their websites, indicating their recognition of the need of PLM toolsets. Still,
the complexity of rollout and lengthy procurement process of these predominant PLM

73

Chapter 7 . Discussion 7.2. Adaptations

suites shows that there are no out-of-the-box solutions. The PLM methodology of this
thesis aims to bridge this gap.

7.2 | Adaptations

To apply the PLM methodology to other organizations, adaptations must be made. The
considerations of applying the PLMmethodology are structured using the contextual fac-
tors of Du Preez et al. [37], introduced in the risk management and contextualization
component (paragraph 6.3.7.1).

■ Project
– size: in very small projects, the benefits of implementing the PLMmethodology

may not outweigh the effort. In very large projects, a full PLM suite may be
more suitable.

– type: development of new products may present the opportunity to imple-
ment new PLM practices, whereas a redesign or small design revision may be
disrupted too much.

– constraints: budget for PLM tools and personnel to manage product informa-
tion naturally limits the extent to which the methodology can be applied.

– complexity: highly complex projects benefit more from robust PLM implemen-
tation.

■ Organization
– size: in larger organizations, on the one hand, the process of implementing a

PLM methodology may be more complicated and take longer. On the other
hand, it can be coordinated and applied across multiple projects, and even de-
partments, increasing its benefits.

– type: the strategy of the organization significantly influences the applicability
of the methodology. If the organization does not intend to scale up develop-
ment efforts, applying a methodology aimed at facilitating growth is useless.

– organizational maturity: if a company already has experience in developing
more complex products, they may already have sufficient information man-
agement practices in place. Still, rigidity in the development process may be a
challenge the PLM methodology can resolve.

– structure: in companies with a strict hierarchy, the principles of the bottom-up
approach and decision decentralization may not be desired or applicable.

74

Chapter 7 . Discussion 7.2. Adaptations

– design capacity: if a company has all design capacity in-house already, the
benefits of the methodology can increase, especially if there are no existing
PLM practices in place.

■ Product
– complexity: management of information for uncomplicated products is not a

challenge and applying a methodology might then be excessive. Additionally,
some products are held to such high safety and quality standards or may be of
such complexity, as in the medical device or aerospace industry respectively,
that the implementation of far more rigid and formalized information manage-
ment processes are required at all scales of product development.

– level within system hierarchy: if product development is dependent on much
information of external components, the management of contextual informa-
tion becomes more prominent in the implementation of PLM practices.

– type: the scale ofmanufacturing fromunit to batch, tomass production is often
correlated with the product complexity. For complex systems sold in units,
information management becomes more important in the later stages of the
lifecycle for maintainability, for instance. For mass produced products it may
be more important in the manufacturing lifecycle stage for quality assurance.

■ Personnel
– team size: the number of project members, as well as their degree of distribu-

tion influences the characteristics of knowledge exchange. Larger teamswork-
ing frommultiple locations need to externalize information more frequently, as
opposed to direct exchange in conversations.

– level of maturity: the prior experience of project members influences their
knowledge and receptivity of PLM techniques.

– design capability: design capability influences the time dependence of the ap-
plication of the methodology. If the development team is rapidly generating
information, its management becomes more critical.

Besides these contextual factors indicating the need and applicability of PLM, PLM
maturity in general also influences the applicability of the methodology. Companies may
already be practicing PLM unknowingly, for example. This would reduce the applicability
of the methodology, as its methods or similar methods are already applied. Still, its ed-
ucative function would still be useful in strengthening the PLM mindset of the company.

75

Chapter 7 . Discussion 7.3. PLM maturity

This mindset can improve the reception of tools, methods, and processes, which could
otherwise be seen as bureaucratic.

7.3 | PLM maturity

Even though the areas that common PLM maturity models assess apply to the identi-
fied gaps and the components of the PLM methodology [97, 15, 101, 120], they provide
no suggestion on improvement of these areas. The aim of PLM maturity assessment is
to structure and facilitate the implementation of PLM [134]. However, maturity assess-
ment is only useful when paired with suggestions, or at least considerations, to enable
improvement. Concededly, PLM maturity and PLMmaturity assessment is a ‘chicken and
egg’ situation, as the same knowledge and experience required to assess PLM maturity
effectively and draw useful conclusions from it is used for PLM implementation and im-
proving maturity in the first place. In the future, PLM maturity assessment can certainly
be a valuable addition to a PLM methodology, to steer implementation efforts.

76

8

Conclusion

Wavin T&I intends to scale up development management efforts for the second gener-
ation of their Sentio product line. To achieve this, improved information management
practices across the lifecycles of both generations are required. This study has aimed to
address the issue as follows. By investigating relevant fields, methodologies, methods,
models, and tools for PSS development in an explorative analysis, an overview of rele-
vant concepts was created. These have been applied to Wavin T&I development in the
form of a methodology that addresses the information management gaps using methods
and principles developed and curated from the findings of the explorative analysis. This
methodology is structured around a system development metamodel, which identifies
the types of information involved in development. The methodology was developed in
a bidirectional approach, bringing academic work into practice in existing and available
processes and software tools. Besides the direct implementation of methodology com-
ponents in T&I development, implementation prescriptions have been processed into an
interactive handbook in the form of a website. This approach immediately brings PLM
concepts into practice, providing a stepping stone to larger commercial PLM solutions in
the future.

Further research can investigate the transition from initial PLM practices as prescribed
by this methodology to model or even ontology based systems engineering, as well as
the incorporation of PLM maturity assessment. Moreover, future works can further de-
termine the signals that a custom PLM solution of existing tools must be superseded by
larger commercial PLM solutions. Overall, this research has pointed out that while PLM is
a useful paradigm in managing the information of product development, its broad scope
can limit its direct application. The developedmethodology can help companies partaking
in new and growing development endeavors overcome this challenge.

77

References

[1] Quality SystemRegulation. Regulation 21CFR820, Code of Federal Regulations. United States Federal
Government, Mar. 2020.

[2] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. R. Mahrin. A systematic literature review of software
requirements prioritization research. Information and Software Technology, 56:568–585, 2014.

[3] R. Anderl, K. Mecke, A. Sprenger, and O. Weitzmann. Ontology support for product development -
successful application of ontologies in product development. pages 177–182, 01 2009.

[4] M. M. Andreasen. 45 years with design methodology. Journal of Engineering Design, 22:293–332, 5
2011.

[5] P. O. Antonino, T. Keuler, N. Germann, and B. Cronauer. A non-invasive approach to trace architec-
ture design, requirements specification and agile artifacts. In Proceedings of the Australian Software
Engineering Conference, ASWEC, pages 220–229. IEEE Computer Society, 2014.

[6] S. Ariwaka, H. Nakagawa, and T. Tsuchiya. Graph queries for analyzing the coverage of requirements
by test cases. In Proceedings of the International Conference on Software Engineering and Knowledge
Engineering, SEKE, volume 2021-July, pages 544–549. Knowledge Systems Institute Graduate School,
2021.

[7] H. Arnold, M. Erner, P. Möckel, and C. Schläffer. Enterprise Architecture in Innovation Implementation,
pages 132–144. Springer Berlin Heidelberg, 2010.

[8] Association for Intelligent Information Management. What is ECM? https://info.aiim.org/
what-is-ecm. Accessed: 2022-05-29.

[9] R. Atkinson. Project management: cost, time and quality, two best guesses and a phenomenon, its
time to accept other success criteria. International Journal of Project Management, 17:337–342, 12
1999.

[10] Atlassian. Gitflow workflow. https://www.atlassian.com/git/tutorials/
comparing-workflows/gitflow-workflow. Accessed: 2022-05-29.

78

https://info.aiim.org/what-is-ecm
https://info.aiim.org/what-is-ecm
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Chapter 8 . Conclusion References

[11] G. Bakirtzis, T. Sherburne, S. Adams, B. M. Horowitz, P. A. Beling, and C. H. Fleming. An ontologi-
cal metamodel for cyber-physical system safety, security, and resilience coengineering. Software and
Systems Modeling, 21:113–137, 2 2022.

[12] J. Balogun and V. Hope-Hailey. Exploring Strategic Change (2nd ed.). Prentice-Hall, 2003.
[13] R. Bandinelli, E. d’Avolio, M. Rossi, S. Terzi, and R. Rinaldi. Assessing the role of knowledge manage-

ment in the new product development process: An empirical study. In S. Fukuda, A. Bernard, B. Gu-
rumoorthy, and A. Bouras, editors, Product Lifecycle Management for a Global Market, pages 397–406,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[14] M. J. Barrenechea and T. Jenkin. Enterprise Information Management: The Next Generation of Enterprise
Software. More Than Words, 2013.

[15] R. Batenburg, R. W. Helms, and J. Versendaal. PLM roadmap: stepwise PLM implementation based
on the concepts of maturity and alignment. Int. J. Product Lifecycle Management, 1:333–351, 2006.

[16] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, J. High-
smith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas. Manifesto for agile software development. https://agilemanifesto.org, 2001. Ac-
cessed: 2022-05-29.

[17] P. Berander and A. Andrews. Requirements Prioritization, pages 69–94. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[18] B. Boehm and H. Kitapci. The WinWin approach: Using a requirements negotiation tool for rationale
capture and use, pages 173–190. Springer Berlin Heidelberg, 2006.

[19] G. M. Bonnema, K. T. Veenvliet, and J. F. Broenink. Systems design and engineering : facilitating multi-
disciplinary development projects. CRC Press, 2015.

[20] G. Boothroyd. Design forManufacture and Assembly: The Boothroyd-Dewhurst Experience, pages 19–40.
Springer Netherlands, Dordrecht, 1996.

[21] K. C. Bourne. Application Administrators Handbook. Morgan Kaufmann, 2014.
[22] D. J. Bradfield and J. X. Gao. A methodology to facilitate knowledge sharing in the new product

development process. International Journal of Production Research, 45(7):1489–1504, 2007.
[23] J.-S. Brunner, L. Ma, C. Wang, L. Zhang, D. C. Wolfson, Y. Pan, and K. Srinivas. Explorations in the

use of semantic web technologies for product information management. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07, page 747–756, New York, NY, USA, 2007.
Association for Computing Machinery.

[24] R. T. By. Organisational change management: A critical review. Journal of ChangeManagement, 5:369–
380, 2005.

[25] P. Canonico, E. D. Nito, V. Esposito, G. Fattoruso, M. P. Iacono, and G. Mangia. Visualizing knowledge
for decision-making in lean production development settings. insights from the automotive industry.
Management Decision, 60:1076–1094, 3 2022.

79

https://agilemanifesto.org

Chapter 8 . Conclusion References

[26] C. A. Carniel and R. A. Pegoraro. Metamodel for requirements traceability and impact analysis on agile
methods. volume 802, pages 105–117. Springer Verlag, 2018.

[27] Y. C. Cavalcanti, P. A. da Mota Silveira Neto, I. d. C. Machado, T. F. Vale, E. S. de Almeida, and S. R. d. L.
Meira. Challenges and opportunities for software change request repositories: a systematic mapping
study. Journal of Software: Evolution and Process, 26(7):620–653, 2014.

[28] L. K. Chan and M. L. Wu. Quality function deployment: A comprehensive review of its concepts and
methods. Quality Engineering, 15:23–35, 9 2002.

[29] B. Chandrasekaran, J. R. Josephson, and R. Benjamins. What are ontologies, and why do we need
them? IEEE Intell. Syst., 14:20–26, 1999.

[30] U. Cugini, A. Ramelli, C. Rizzi, and M. Ugolotti. Total Quality Management and Process Modeling for PLM
in SME, pages 339–350. Springer London, London, 2006.

[31] N. Dedić. Eafp: Enterprise architecture fusion process. Journal of Information and Organizational Sci-
ences, 45(1), Jun. 2021.

[32] Design Council. A study of the design process. https://www.designcouncil.org.uk/sites/
default/files/asset/document/ElevenLessons_Design_Council%20(2).pdf, 2005. Accessed:
2022-05-29.

[33] H. Do and G. Rothermel. An empirical study of regression testing techniques incorporating context
and lifetime factors and improved cost-benefit models. 2006.

[34] B. P. Douglass. Chapter 2 - what are agile methods and why should i care? In Agile Systems Engineering,
pages 41–84. Morgan Kaufmann, Boston, 2016.

[35] A. Dreibelbis, E. Hechler, I. Milman, M. Oberhofer, P. van Run, and D. Wolfson. Enterprise Master Data
Management: An SOA Approach to Managing Core Information. IBM Press, 01 2008.

[36] V. Driessen. A succesful Git branching model. https://nvie.com/posts/
a-successful-git-branching-model/, 2010. Accessed: 2022-05-29.

[37] N. du Preez, D. Lutters, andH. Nieberding. Tailoring the development process according to the context
of the project. CIRP Journal of Manufacturing Science and Technology, 1:191–198, 2009.

[38] enterprise-information-management.com. How engineering information management sys-
tems complement PLM. https://www.engineering-information-management.com/
how-plm-only-manages-50percent-of-engineering-data-and-eim-complements-it/. Ac-
cessed: 2022-05-29.

[39] European Commission. Electromagnetic Compatibility (EMC) Directive. https://ec.
europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/
electromagnetic-compatibility-emc-directive_en, 2014. Accessed: 2022-05-29.

[40] European Commission. Low Voltage Directive (LVD). https://ec.europa.eu/growth/sectors/
electrical-and-electronic-engineering-industries-eei/low-voltage-directive-lvd_en,
2014. Accessed: 2022-05-29.

80

https://www.designcouncil.org.uk/sites/default/files/asset/document/ElevenLessons_Design_Council%20(2).pdf
https://www.designcouncil.org.uk/sites/default/files/asset/document/ElevenLessons_Design_Council%20(2).pdf
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://www.engineering-information-management.com/how-plm-only-manages-50percent-of-engineering-data-and-eim-complements-it/
https://www.engineering-information-management.com/how-plm-only-manages-50percent-of-engineering-data-and-eim-complements-it/
https://ec.europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/electromagnetic-compatibility-emc-directive_en
https://ec.europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/electromagnetic-compatibility-emc-directive_en
https://ec.europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/electromagnetic-compatibility-emc-directive_en
https://ec.europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/low-voltage-directive-lvd_en
https://ec.europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/low-voltage-directive-lvd_en

Chapter 8 . Conclusion References

[41] European Commission. Radio Equipment Directive (RED). https://ec.europa.
eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/
radio-equipment-directive-red_en, 2014. Accessed: 2022-05-29.

[42] European Union. CE marking. https://europa.eu/youreurope/business/
product-requirements/labels-markings/ce-marking/index_en.htm. Accessed: 2022-05-
29.

[43] G. D. Everett and R. Mcleod. Software Testing Testing Across the Entire Software Development Life Cycle.
Wiley-IEEE Press, 2007.

[44] R. K. Faris, K. T. Neckowicz, and K. Isfahani. Enterprise project portfolio management: a must for
project-based success. Project Management Insitute, 2 2010.

[45] C. Favi, M. Germani, and M. Mandolini. Design for manufacturing and assembly vs. design to cost: To-
ward a multi-objective approach for decision-making strategies during conceptual design of complex
products. In Procedia CIRP, volume 50, pages 275–280. Elsevier B.V., 2016.

[46] P. Fitsilis, V. Gerogiannis, and L. Anthopoulos. Ontologies for project management: Survey. Interna-
tional Journal of Information Processing and Management, 5:1–7, 11 2014.

[47] J. Gao and A. Bernard. An overview of knowledge sharing in new product development. International
Journal of Advanced Manufacturing Technology, 94:1545–1550, 2 2018.

[48] Gartner. Definition of innovation management. https://www.gartner.com/en/
information-technology/glossary/innovation-management. Accessed: 2022-05-29.

[49] C. Gellweiler. Connecting enterprise architecture and project portfolio management: A review and
a model for it project alignment. International Journal of Information Technology Project Management,
11:99–114, 1 2020.

[50] K. Gericke, M. Meißner, K. Paetzold, and I. K. Gericke. Understanding the context of product devel-
opment. In International Conference on Engineering Design. Sungkynkwan University, 8 2013.

[51] M. Glinz. On non-functional requirements. 15th IEEE International Requirements Engineering Conference
(RE 2007), pages 21–26, 2007.

[52] Google Trends. plm - Interest over time. https://trends.google.com/trends/explore?date=all&
q=plm. Accessed: 2022-05-29.

[53] Google Trends. web 2.0 - Interest over time. https://trends.google.com/trends/explore?date=
2005-04-16%202022-05-16&q=web%202.0. Accessed: 2022-05-29.

[54] K. R. Grahlmann, R.W. Helms, C. Hilhorst, S. Brinkkemper, and S. V. Amerongen. Reviewing enterprise
content management: A functional framework. European Journal of Information Systems, 21:268–286,
2012.

[55] H. Graves. Ontology engineering for product development. http://ceur-ws.org/Vol-258/
paper02.pdf. Accessed: 2022-05-29.

81

https://ec.europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/radio-equipment-directive-red_en
https://ec.europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/radio-equipment-directive-red_en
https://ec.europa.eu/growth/sectors/electrical-and-electronic-engineering-industries-eei/radio-equipment-directive-red_en
https://europa.eu/youreurope/business/product-requirements/labels-markings/ce-marking/index_en.htm
https://europa.eu/youreurope/business/product-requirements/labels-markings/ce-marking/index_en.htm
https://www.gartner.com/en/information-technology/glossary/innovation-management
https://www.gartner.com/en/information-technology/glossary/innovation-management
https://trends.google.com/trends/explore?date=all&q=plm
https://trends.google.com/trends/explore?date=all&q=plm
https://trends.google.com/trends/explore?date=2005-04-16%202022-05-16&q=web%202.0
https://trends.google.com/trends/explore?date=2005-04-16%202022-05-16&q=web%202.0
http://ceur-ws.org/Vol-258/paper02.pdf
http://ceur-ws.org/Vol-258/paper02.pdf

Chapter 8 . Conclusion References

[56] P. Hammant. Trunk based development: Introduction. https://trunkbaseddevelopment.com/. Ac-
cessed: 2022-05-29.

[57] M. Hoffmann, N. Kühn, M.Weber, and M. Bittner. Requirements for requirements management tools.
In Proceedings of the IEEE International Conference on Requirements Engineering, pages 301–308, 2004.

[58] P. Hong, W. J. Doll, A. Y. Nahm, and X. li. Knowledge sharing in integrated product development.
European Journal of Innovation Management, 7:102–112, 6 2004.

[59] J. Hoppmann, E. Rebentisch, U. Dombrowski, and T. Zahn. A framework for organizing lean product
development. EMJ - Engineering Management Journal, 23:3–15, 3 2011.

[60] A. Hudaib, R. Masadeh, M. H. Qasem, and A. Alzaqebah. Requirements prioritization techniques com-
parison. Modern Applied Science, 12:62, 1 2018.

[61] T. Huldt and I. Stenius. State-of-practice survey of model-based systems engineering. Systems Engi-
neering, 22:134–145, 3 2019.

[62] Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 1:
General requirements. Standard 61508-1:2010, International Electrotechnical Commission, Geneva,
CH, Apr. 2010.

[63] I. M. Ilevbare, D. Probert, and R. Phaal. A review of TRIZ, and its benefits and challenges in practice.
Technovation, 33:30–37, 2 2013.

[64] International Council on Systems Engineering. Systems engineering. https://www.incose.org/
systems-engineering. Accessed: 2022-05-29.

[65] Quality management — Guidelines for configuration management. Standard 10007:2017, Interna-
tional Organization for Standardization, Geneva, CH, Mar. 2017.

[66] Information technology — Topic Maps — Part 5: Reference model. Standard 13250-5:2015, Interna-
tional Organization for Standardization, Geneva, CH, Apr. 2015.

[67] Medical devices — Quality management systems — Requirements for regulatory purposes. Standard
13485:2016, International Organization for Standardization, Geneva, CH, Mar. 2016.

[68] Information technology—Objectmanagement group systemsmodeling language (OMGSysML). Stan-
dard 19514:2017, International Organization for Standardization, Geneva, CH, Mar. 2017.

[69] Road vehicles — Functional safety — Part 1: Vocabulary. Standard 26262-1:2011, International Orga-
nization for Standardization, Geneva, CH, Nov. 2011.

[70] Innovation management — Fundamentals and vocabulary. Standard 56000:2020, International Orga-
nization for Standardization, Geneva, CH, Feb. 2020.

[71] Quality management systems — Requirements. Standard 9001:2015, International Organization for
Standardization, Geneva, CH, Mar. 2015.

[72] S. E. Kadiri and D. Kiritsis. Ontologies in the context of product lifecycle management: State of the
art literature review. International Journal of Production Research, 53:5657–5668, 9 2015.

82

https://trunkbaseddevelopment.com/
https://www.incose.org/systems-engineering
https://www.incose.org/systems-engineering

Chapter 8 . Conclusion References

[73] U. Kampffmeyer. Enterprise Content Management. PROJECT CONSULT Unternehmensberatung Dr.
Ulrich Kampffmeyer GmbH, 2006.

[74] N. Kano, N. Seraku, F. Takahashi, and S. Tsuji. Attractive quality and must-be quality. The Journal of
the Japanese Society for Quality Control, 14:39–44, 01 1984.

[75] M. E. Khan and F. Khan. A comparative study of white box, black box and grey box testing techniques.
IJACSA) International Journal of Advanced Computer Science and Applications, 3, 2012.

[76] W. C. Kim and R. Mauborgne. Blue Ocean Strategy. Harvard Business Review Press, 2015.
[77] J. Kuchta. Completeness and consistency of the system requirement specification. In Position Papers

of the 2016 Federated Conference on Computer Science and Information Systems, volume 9, pages 265–
269. PTI, 10 2016.

[78] K. Kulkarni, V. N. Kulkarni, V. N. Gaitonde, and B. B. Kotturshettar. State of the art review on imple-
mentation of product lifecycle management in manufacturing and service industries. In AIP Conference
Proceedings, volume 2316. American Institute of Physics Inc., 2 2021.

[79] E. Landre, H. Wesenberg, and H. Rønneberg. Architectural improvement by use of strategic level
domain-driven design. InOOPSLA 2006: 21st Intenational Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 809–814, 01 2006.

[80] R. Lööf and K. Pussinen. Visualisation of requirements and their relations in embedded systems. Mas-
ter thesis, Uppsala University, 2014.

[81] A. M. Madni and M. Sievers. Model-based systems engineering: Motivation, current status, and re-
search opportunities. Systems Engineering, 21:172–190, 5 2018.

[82] P. G. Maropoulos and D. Ceglarek. Design verification and validation in product lifecycle. CIRP Annals
- Manufacturing Technology, 59:740–759, 2010.

[83] A. Martakis and M. Daneva. Handling requirements dependencies in agile projects: A focus group
with agile software development practitioners. In Proceedings - International Conference on Research
Challenges in Information Science, 2013.

[84] A. L. Mendelow. Environmental scanning - the impact of the stakeholder concept. In International
Conference on Information Systems. Association for Information Systems, 1981.

[85] F. Moisiadis. The fundamentals of prioritising requirements. In Systems Engineering, Test & Evaluation
Conference, 10 2002.

[86] Y. Mordecai and D. Dori. Model-based requirements engineering: Architecting for system require-
ments with stakeholders in mind. 2017 IEEE International Systems Engineering Symposium (ISSE), pages
1–8, 2017.

[87] B. Murphy, A.Wakefield, and J. Friedman. Best practices for verification, validation, and test in model-
based design. In SAE World Congress & Exhibition, 4 2008.

[88] B. Nadia, G. Gregory, and T. Vince. Engineering change request management in a new product devel-
opment process. European Journal of Innovation Management, 9:5–19, 1 2006.

83

Chapter 8 . Conclusion References

[89] C. Nakata. Design thinking for innovation: Considering distinctions, fit, and use in firms. Business
Horizons, 63:763–772, 11 2020.

[90] Y. Nemoto, F. Akasaka, and Y. Shimomura. A framework for managing and utilizing product-service
system design knowledge. Production Planning and Control, 26:1278–1289, 11 2015.

[91] P. K. Ng, G. Goh, and U. Eze. The role of knowledge management in product development perfor-
mance: A review. Journal of Knowledge Management Practice, 12, 03 2011.

[92] E. W. Ngai and E. W. Chan. Evaluation of knowledge management tools using ahp. Expert Systems
with Applications, 29:889–899, 11 2005.

[93] S. Nidhra. Black box and white box testing techniques - a literature review. International Journal of
Embedded Systems and Applications, 2:29–50, 6 2012.

[94] A. Nilsson, J. Bosch, and C. Berger. Visualizing testing activities to support continuous integration: A
multiple case study. In G. Cantone and M. Marchesi, editors, Agile Processes in Software Engineering
and Extreme Programming, pages 171–186, Cham, 2014. Springer International Publishing.

[95] I. Nonaka and H. Takeuchi. The Knowledge-Creating Company: How Japanese Companies Create the
Dynamics of Innovation. Oxford University Press, 1995.

[96] B. W. Oppenheim. Lean product development flow. Systems Engineering, 7, 2004.
[97] M. Paavel, K. Karjust, and J. Majak. Plm maturity model development and implementation in sme. In

Procedia CIRP, volume 63, pages 651–657. Elsevier B.V., 2017.
[98] G. Pahl and W. Beitz. Konstruktionslehre. Springer Berlin Heidelberg, 1997.
[99] D. Pandey, U. Suman, and A. K. Ramani. An effective requirement engineering process model for

software development and requirements management. In Proceedings - 2nd International Conference
on Advances in Recent Technologies in Communication and Computing, ARTCom 2010, pages 287–291,
2010.

[100] P. Patanakul, B. Iewwongcharoen, and D. Milosevic. An empirical study on the use of project man-
agement tools and techniques across project life-cycle and their impact on project success. Journal of
General Management, 35, 2010.

[101] H. J. Pels and K. Simons. PLMMaturity Assessment, pages 645–652. University of Nottingham, 2008.
[102] L. Plonka, H. Sharp, P. Gregory, and K. Taylor. UX design in agile: A DSDM case study. In G. Cantone

andM.Marchesi, editors, Agile Processes in Software Engineering and Extreme Programming, pages 1–15,
Cham, 2014. Springer International Publishing.

[103] T. Preston-Werner. Semantic versioning 2.0.0. https://semver.org. Accessed: 2022-05-29.
[104] ProductPlan. RICE scoring model. https://www.productplan.com/glossary/

rice-scoring-model/. Accessed: 2022-05-29.
[105] Project Management Institute. A guide to the project management body of knowledge. Sixth edition,

2017.
84

https://semver.org
https://www.productplan.com/glossary/rice-scoring-model/
https://www.productplan.com/glossary/rice-scoring-model/

Chapter 8 . Conclusion References

[106] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä. Benefits and limitations of automated
software testing: Systematic literature review and practitioner survey. In 7th International Workshop
on Automation of Software Test, AST 2012 - Proceedings, pages 36–42, 2012.

[107] S. Reich and W. Behrendt. Technologien und Trends für Wissensarbeit und Wissensmanagement.
HMD Praxis der Wirtschaftsinformatik, 44:6–15, 12 2007.

[108] T. Ritchey. General Morphological Analysis (GMA), pages 7–18. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[109] N. B. Ruparelia. The history of version control. ACM SIGSOFT Software Engineering Notes, 35:5–9, 1
2010.

[110] A. Saaksvuori and A. Immonen. Product lifecycle management (third edition). Springer Berlin Heidelberg,
2008.

[111] M. Saeki and H. Kaiya. On relationships among models, meta models and ontologies. In 6th OOPSLA
Workshop on Domain-Specific Modeling, 2006.

[112] G. Santoro, D. Vrontis, A. Thrassou, and L. Dezi. The internet of things: Building a knowledge man-
agement system for open innovation and knowledge management capacity. Technological Forecasting
and Social Change, 136:347–354, 11 2018.

[113] Scaled Agile Inc. SAFe lean-agile principles. https://www.scaledagileframework.com/
safe-lean-agile-principles/. Accessed: 2022-05-29.

[114] R. F. Schmidt. Software Engineering. Morgan Kaufmann, 2013.
[115] G. Schuh, H. Rozenfeld, D. Assmus, and E. Zancul. Process oriented framework to support PLM im-

plementation. Computers in Industry, 59:210–218, 3 2008.
[116] E.-M. Schön, J. Sedeño, M. Mejías, J. Thomaschewski, and M. J. Escalona. A metamodel for agile

requirements engineering. Journal of Computer and Communications, 07:1–22, 2019.
[117] Z. Scott and D. Long. One model, many interests, many views. Whitepaper, Vitech Corporation, 2018.
[118] J. Shabi and Y. Reich. Developing an analytical model for planning systems verification, validation and

testing processes. Advanced Engineering Informatics, 26:429–438, 4 2012.
[119] A. J. Shenhar and D. Dvir. Reinventing ProjectManagement: The Diamond Approach to Successful Growth

and Innovation. Hardvard Business Review Press, 2007.
[120] A. Silventoinen, H. J. Pels, H. Kärkkäinen, H. Lampela, H. J. Pels, and J. Okkonen. PLM maturity

assessment as a tool for PLM implementation process. In Proceedings of PLM10, The IFIB WG5.1 7th
International Conference on Product Lifecycle Management, 2010.

[121] S. Singh, S. C. Misra, and S. Kumar. Identification and ranking of the risk factors involved in plm
implementation. International Journal of Production Economics, 222, 4 2020.

85

https://www.scaledagileframework.com/safe-lean-agile-principles/
https://www.scaledagileframework.com/safe-lean-agile-principles/

Chapter 8 . Conclusion References

[122] Z. Srdjevic, R. Bajcetic, and B. Srdjevic. Identifying the criteria set for multicriteria decision making
based on swot/pestle analysis: A case study of reconstructing a water intake structure. Water Re-
sources Management, 26:3379–3393, 9 2012.

[123] J. Stark. Product Lifecycle Management. Springer London, 2011.
[124] N. P. Suh. Designing-in of quality through axiomatic design. IEEE Transactions on Reliability, 44:256–

264, 1995.
[125] A. R. Tan, T. C. McAloone, and M. M. Andreasen. What happens to integrated product development

models with product/service-system approaches? In 6th Integrated Product Development Workshop,
10 2006.

[126] L. P. Taylor. FISMA Compliance Handbook. Syngress, 2013.
[127] The Open Group. The TOGAF® standard, version 9.2. https://pubs.opengroup.org/

architecture/togaf9-doc/arch/. Accessed: 2022-05-29.
[128] S. Thomke and E. Hippel. Customers as innovators: A new way to create value. Harvard Business

Review, 80, 04 2002.
[129] D. Tomar. TQM, ISO 9000, Six Sigma and CMMI project management in business and technology.

Software Engineering, 2020:1–8, 2020.
[130] D. Tony Liu and X. William Xu. A review of web-based product data management systems. Computers

in Industry, 44(3):251–262, 2001.
[131] S. Tuck. Is MDM the route to the holy grail? Journal of Database Marketing & Customer Strategy

Management, 15:218–220, 12 2008.
[132] S. Tyagi, A. Choudhary, X. Cai, and K. Yang. Value streammapping to reduce the lead-time of a product

development process. International Journal of Production Economics, 160:202–212, 2 2015.
[133] U.S. Department of Defense. The DoDAF architecture framework version 2.02. https://dodcio.

defense.gov/library/dod-architecture-framework/, 2010. Accessed: 2022-05-29.
[134] E. Vezzetti, M. G. Violante, and F. Marcolin. A benchmarking framework for product lifecycle manage-

ment (PLM)maturitymodels. International Journal of AdvancedManufacturing Technology, 71:899–918,
3 2014.

[135] J. Wasson. Configuration management for the 21st century. In CM conference 2011, 02 2011.
[136] K. E. Wiegers. Software Requirements. Microsoft Press, USA, 1999.
[137] M. Woodbridge. The death of ecm and birth of content services. https://blogs.gartner.com/

michael-woodbridge/the-death-of-ecm-and-birth-of-content-services/, 2017. Accessed:
2022-05-29.

[138] Z. Y. Wu, X. G. Ming, L. N. He, M. Li, and X. Z. Li. Knowledge integration and sharing for complex
product development. International Journal of Production Research, 52:6296–6313, 11 2014.

86

https://pubs.opengroup.org/architecture/togaf9-doc/arch/
https://pubs.opengroup.org/architecture/togaf9-doc/arch/
https://dodcio.defense.gov/library/dod-architecture-framework/
https://dodcio.defense.gov/library/dod-architecture-framework/
https://blogs.gartner.com/michael-woodbridge/the-death-of-ecm-and-birth-of-content-services/
https://blogs.gartner.com/michael-woodbridge/the-death-of-ecm-and-birth-of-content-services/

Chapter 8 . Conclusion References

[139] D. C. Wynn and P. J. Clarkson. Process models in design and development. Research in Engineering
Design, 29:161–202, 4 2018.

[140] Y. Xu, M. K. Malisetty, and M. Round. Configuration management in aerospace industry. In Procedia
CIRP, volume 11, pages 183–186. Elsevier B.V., 2013.

[141] L. Yang, K. Cormican, and M. Yu. Ontology-based systems engineering: A state-of-the-art review.
Computers in Industry, 111:148–171, 10 2019.

[142] L. Yonglin, Z. Zhi, and L. Qun. An ontological metamodeling framework for semantic simulation model
engineering. Journal of Systems Engineering and Electronics, 31:527–538, 6 2020.

[143] J. Yoo and Y. Pan. Expanded customer journey map: Interaction mapping framework based on sce-
nario. In C. Stephanidis, editor, HCI International 2014 - Posters’ Extended Abstracts, pages 550–555,
Cham, 2014. Springer International Publishing.

[144] N. N. Zolkifli, A. Ngah, and A. Deraman. Version control system: A review. In Procedia Computer
Science, volume 135, pages 408–415. Elsevier B.V., 2018.

87

Appendix A

A technical overview of Sentio is provided on the following page.

88

Appendix A

89

Appendix B

The comparison of indoor climate control offerings is provided on the following two pages.
Below, the price indication scale is included.

90

AppendixB

Manufacturer

Netatmo

(Legrand) Nest (Google) Bosch Sensi (Emerson)

Heatit

(Thermofloor) Tado Plugwise Toon (Eneco)

Price

140-200

thermostat, 70-90

radiator 200

100 controller, 70-

110 thermostat,

60 radiator 90 110

100 thermostat,

70 radiator

90-150

thermostat, 105-

315 UFH

200-275, 4,50 per

month

Price category €€ €€€ € € €€ € € €€€

Central controller Thermostat Thermostat Controller Thermostat Thermostat Thermostat

Thermostat, boiler

controller Thermostat

App Yes Yes Yes Yes Yes Yes Yes Yes

Platform compatibility

HomeKit, Alexa,

Assistant, IFTTT

Assistant, Alexa,

IFTTT

Alexa, Assistant,

Homekit, IFTTT

Alexa, Assistant,

HomeKit,

SmartThings SmartThings

Assistant,

HomeKit, Alexa,

IFTTT Assistant, Homey Assistant

Zoning Linking Linking TRUE None None Full, limited Full None

Product mix size 4 1 5+ 1 1 3 5+ 1

Connection type WiFi, BLE WiFi, BLE WiFi WiFi WiFi, Z-Wave

WiFi, 6LoWPAN

with own API WiFi, ZigBee

WiFi, Z-Wave, own

API

HVAC integration OpenTherm PID OpenTherm PI, PWM None DIF OpenTherm, PID OpenTherm OpenTherm

Cooling No Yes, limited Underfloor Yes No Yes Yes No

Underfloor heating control Inlet, electric Inlet, electric Inlet only Electric only Electric only Inlet only Full Inlet, very limited

Humidity control

Measuring only

(seperate product) Full control Measuring only Full control Measuring only Measuring only Measuring only Measuring only

Air quality control

Measuring only

(seperate product)

Manual and

scheduled

Door/window

sensors

Manual and

scheduled No No No Measuring only

Miscellaneous climate control

Heating system

self learning,

weather and

sunlight inclusion

Heating system

self learning Smoke detectors None None Weather inclusion None None

Miscellaneous smart features

Velux blinds

control, Aldes

ventilation

control, pattern

prediction

Geofencing,

pattern prediction

Motion sensors,

complete smart

home suite

including security None None None None None

Notes

Renowned design,

but limited

features for a high

price

Popular in the

United States.

Limited heating

compatibility

US, Mainly

industrial Scandinavia Mostly NL NL only

91

AppendixB

Manufacturer Honeywell Danfoss Uponor Gira Eve Ecobee Rehau Heatmiser Wiser (Eberle, SE)

Price

219 controller, 300

UFH, 70 radiator

60 icon thermostat,

140 gateway, 80 ally

radiator, 200+ UFH

130 thermostat, 180-

320 UFH, 110 radiator 75 thermostat 80 radiator 200 thermostat

110 thermostat, 470+

UFH

70 thermostat, 80

UFH (no actuators)

60-80 thermostat, 60-

100 controller, UFH

unknown

Price category €€ € €€ € €€ €€€ €€€ € €

Central controller UFH Controller Smartphone/cloud (UFH) Controller Thermostat Smartphone/cloud Thermostat UFH Controller Thermostat Controller

App Yes Yes Yes Yes Yes Yes Yes Yes Yes

Platform compatibility Assistant, Alexa, IFTTT Assistant, Alexa Assistant, Alexa IFTTT HomeKit

Alexa, Assistant,

HomeKit, IFTTT Alexa

Alexa, Assistant,

HomeKit, IFTTT Alexa, Assistant, IFTTT

Zoning Full and linking Full and linking Full and linking None None Full, limited Full and linking Full Full

Product mix size 5+ 5+ 5+ 5-Jan 2 2 4-Feb 2 4

Connection type

WiFi, Sub-GHz with

own API

WiFi, ZigBee, Z-Wave,

own API WiFi Bluetooth Thread Zigbee (module) WiFi WiFi

WiFi, Zigbee & MQTT

(seperate product)

HVAC integration OpenTherm PID PID, PWM None None None PID OpenTherm OpenTherm

Cooling Yes Yes Yes Yes No Yes Yes Yes Yes

Underfloor heating control Full and electric Full and electric Full and electric Full, complex None

Inlet and electric, very

limited Full Full Full

Humidity control No Measuring only Measuring only No Measuring only Full control Full control No

Measuring (seperate

product)

Air quality control No No No Measuring only Measuring only (VOC)

Ventilation control

(third party) No No No

Miscellaneous climate control None None None Blinds control None None None None None

Miscellaneous smart features None None None KNX None Pattern prediction KNX None Geofencing

Notes Gateway

Complete premium

smart home solution,

very limited climate

control NA focused

No radiator

thermostats, UFH only

No radiator

thermostats, NO UFH

ACTUATORS, mostly

UK

UFH in the future.

Schneider Electric

collab with Danfoss,

Somfy, ASSA ABLOY

92

Appendix C

Non-intrusiveness philosophy

When designing a product with (at first) undefined user interaction, such as an indoor
climate control system, it is important to look at the relation the user has with it. This
can help shape the interactions to align with the intentions and expectations of the user.
In terms of the human-technology relations distinguished by Don Ihde, as described by
Peter-Paul Verbeek1, there is a background relation between the end user and the climate
system. This is schematized as human (technology/world). The technology is then part
of the world, serving its purpose in the background, like a floor or a fridge. However,
when controlling the system, especially through a digital system remotely, the interaction
could be described as an alterity relation, where the human ‘alters’ the state of the world
through technology. This is schematized as human→ technology (world). Technology then
serves themediating role between the user and theworld; the state of theworld is altered
using technology.

It is important to align the functions of the indoor climate systems to their respective
human-technology relations. The current ‘non-intrusiveness’ focus for Sentio of Wavin
fits the background relation adequately. However, some interaction and user control is
required, andminding the alterity relationwhen doing so can be of added value. If the goal
of Sentio is to achieve true non-intrusiveness, the amount of interaction (alterity) is to be
minimized, leaving Sentio to provide the optimal indoor climate automatically at all times.
Due to technological limitations, this goal is impossible to be achieved instantly. However,
the target ofminimizing interaction can be pursued at all times, and can translate to design
features. After stripping the user interface, leaving only the necessary, desired controls,

1Peter-Paul Verbeek. Beyond interaction: a short introduction to mediation theory. Interactions 22-3, pp26-31. June 2015.
93

Appendix C

the remaining interaction can be streamlined. Cognitive ergonomics play an important
role in this user interface optimization problem. By incorporating cognitive ergonomics
design guidelines in Sentio development, the mental strain for the user in controlling their
indoor climate can be reduced. Additionally, these guidelines can aid in simplifying the
installation and/or commissioning process of the system.

The non-intrusiveness approach has implications for the Sentio business model and
servitization aspects. A strong marketing and brand presence in users’ houses and in
the digital ecosystem (e.g. through push notifications) contradicts the non-intrusiveness
philosophy. A decision must therefore be made on how to make the user aware of the
product and how to keep the customer engaged enough with the brand to decide on
purchase without intruding. Servitization can be a solution to this problem. Wavin could
offer indoor climate solutions as a service (Climate as a Service, CaaS), with a marketing
focus on convenience and efficiency towards the end customer, and a focus mostly on
ease of installation towards the installers.

94

Appendix D

Miscellaneous methods

Domain-driven design
Domain-driven design (DDD) is a method that prescribes context mapping, distillation,
and application of large-scale structures to explicitly define the intricacies between a do-
main model and the implementation of a software design. DDD is often used in software
development for clarifying the distinction between a design domain and the design im-
plementation. Furthermore, the context mapping activity of DDD can be aligned with
enterprise architecture [79].
Design for X / Design to cost
Design for assembly (DFA), design for manufacturing (DFM), and its combination (DFMA)
are methods developed to optimize the manufacturability of products already from the
design process. These methods are frequently added as development steps after con-
cept design. Design for assembly focuses on the ease and cost of (dis)assembling the
product, whereas design for manufacturing focuses on the material processing costs [45].
Boothroyd and Dewhurst [20] prescribe concrete design practices to optimize assembly
and manufacturing. DFMA can be coupled with design to cost, which is a method that
applies a cost estimation to design candidates iteratively [45].
Critical path method
The critical path method allows project managers to identify and sequence the activities
of a project that are critical to the project schedule. Adhering to this method helps project
managers prioritize the most important activities in the schedule [100].

95

Appendix D

Four actions framework
The four actions of the four actions framework are: reduce, create, raise, and elimi-
nate. Reduce and eliminate aim to avoid conforming to unnecessary industry standards,
whereas create and raise focus on factors underappreciated by the industry. It is part of
their larger Blue Ocean Strategy, of which themain purpose is to find uncontested market
space to render competition irrelevant [76].
Customer-as-innovator
The customer-as-innovator product development approach shifts the customer interface
from right after the prototype phase to before the detailed design phase. Incorporating
the customer in the innovation process increases the frequency of trial-and-error itera-
tions, speeding up innovation. The customer-as-innovator approach works best when the
product is characterized by high customizability, high trial-and-error rates, and the use of
rapid prototyping [128].
Value stream mapping
Value streammapping (VSM) is a process mapping method aimed at resolving root causes
of bottlenecks in sequential processes. VSM was originally developed for manufacturing
process but is adaptable to the generally less structured product development process
[139]. VSM works by mapping the current process state and identifying bottlenecks,
transforming the map into a desired future state. This has been successfully applied to
product development, reducing the product development lead time [132]. Like the value
stream map itself, the Takt time principle of lean production can be applied to product
development by parsing them from the VSM [96]. Here, the similarity with Scrum sprints
is noticeable.
Dynamic systems development method
The dynamic systems developmentmethod (DSDM) is an early agile developmentmethod.
DSDM is a combination of several lightweight tools and practices such as incremental
development, the MoSCoW (must, could, should, won’t have) technique, modelling, and
prototyping. Stemming from rapid application development, it is a software engineering
method [102]. Dynamic product development (DPD) can be seen as its physical product
development counterpart, being an iteration-driven approach focusing on allowing a con-
cept to be adjusted continuously throughout a project [139]. Both methods emphasize
the necessity of strong leadership.

96

Appendix D

Miscellaneous models

Project management triangle
The project management triangle (also referred to as the iron triangle) models the three
main constraints of a project: quality, cost, and time [9]. This model highlights the mutual
exclusivity of these constraints, meaning that improving on one criterion always comes
at the cost of one or both of the other criteria.
NTCP model
The NTCPmodel structures the innovative characteristics of a project in four dimensions:
novelty, technology, complexity, and pace. Novelty is divided into derivative, platform,
and breakthrough categories. Technology is ameasure of technological uncertainty. Com-
plexity indicates general project risk due to assembly, system, or array (system in context)
intricacy. Finally, pace indicates the time sensitivity and urgency of the project [119].
Overall, this model can visually characterize the potential benefits and risks of projects
for comparison.

Miscellaneous tools

N2 diagram
The N2 (or N2, or N-squared) diagram is a tool used to identify and note interfaces within
a system. The N2 diagram is a square table with along the diagonal axis the primary
functions or subsystems of the system. In clockwise fashion, crossing rows and columns
denote interfaces between the subsystems [19]. Below, in table D.1, this is demonstrated.

Table D.1: N2 diagram example
F1 Interface from F1 to F2F2 Interface from F2 to F3F3Interface from F4 to F1 F4

Nine window diagram
The ninewindowdiagram is a TRIZ tool. It is used to understand the system, its subsystem
and its context in a past, present, and future state [63]. The use of a nine window diagram
facilitates the discussion of the future of a system as a whole and its consequences on and

97

Appendix D

influences by the subsystems and context [19]. An example of a nine window diagram is
provided in figure D.1.

Figure D.1: Nine window diagram [19]

Decision tree analysis
In a decision tree analysis, scenarios are systematically developed based on potential de-
cisions. These scenarios can be of qualitative nature to plan for scenarios, but numeric
values can also be added to branches to quantifiably assess various scenarios [19].
Customer journey map
The customer journey map is a tool that illustrates the scenario of a customer experienc-
ing the complete service of the organization. In a journey map, the interactions between
the customer and the organization are highlighted [143]. This tool can aid in systemati-
cally identifying the value delivery points of a service.

98

Appendix E

On the following page, the system development metamodel is shown.

99

AppendixE

100

	Introduction
	Background
	Company profile
	Sentio
	Sentio 2.0
	Project characteristics
	Stakeholder analysis
	Overview
	Stakeholder characterization
	Power and interest

	Problem
	Problem statement
	Gaps
	Product lifecycle management

	Explorative analysis
	Fields and disciplines
	Quality Management (QM)
	Change Management (CM)
	(Enterprise) (Portfolio and) Project Managemnent (EPPM)
	Enterprise Information Management (EIM)
	Enterprise Content Management (ECM)
	Knowledge Management (KM)
	Innovation Management (IM)
	Requirements Management (RM) / Requirements Engineering (RE)
	Product lifecycle management
	Product Information Management (PIM) / Product Data Management (PDM)
	Master Data Management (MDM)
	Enterprise Architecture (EA)
	Systems Engineering (SE)

	Methodologies
	Design thinking
	Lean thinking
	Agile
	TRIZ
	Model-based Systems Engineering (MBSE)
	Academic methodologies

	Methods
	Stage-gate
	Scrum
	Kanban
	Continuous integration / continuous deployment
	Quality function deployment
	Morphological analysis

	Models
	V-Model
	Kano model
	Double diamond model
	SECI knowledge transfer model
	Academic procedural design models

	Tools
	Failure mode and effect analysis (FMEA)
	Obeya room
	PESTLE framework
	Lessons learned log
	Responsibility matrix
	SWOT analysis
	Risk register
	Power-interest matrix
	Schedule management tools

	Software
	Project management
	Requirements management
	Systems modelling
	Enterprise architecture
	Product lifecycle management
	Commonalities

	Approach
	Methodology
	Definitions
	Structure

	Application and implementation

	Methodology
	Structure
	Scope
	Development and testing
	Risk management
	Change management
	Products

	Components
	Knowledge management
	Requirements management
	Verification and validation strategy
	Document and configuration management
	Change request management
	Prioritization
	Contextualization and risk management

	Metamodel
	Metamodels versus alternatives
	Metamodels in product development
	Structure

	Principles
	Implementation in Wavin T&I
	Prescriptions
	Handbook

	Roadmap

	Discussion
	Characteristics
	Adaptations
	PLM maturity

	Conclusion
	References
	Appendix A
	Sentio technical overview

	Appendix B
	Indoor climate control offerings

	Appendix C
	Non-intrusiveness philosophy

	Appendix D
	Miscellaneous methods
	Miscellaneous models
	Miscellaneous tools

	Appendix E
	System development metamodel

