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Executive Summary 

This thesis was written within Vattenfall’s Analytics team in Amsterdam. Vattenfall is looking to 

minimize the costs of failures and thus downtime in offshore wind turbines. The main downtimes 

are mainly caused by critical parts, which we will refer to as Main Components (MCs). To ensure 

minimum lost revenue due to the downtime of these MCs, Vattenfall constructed a central 

warehouse to store spare MCs. To find this optimal balance of inventory, we first have to obtain 

the lifetime distribution to determine the expected failure rate characteristics of the MCs, which 

leads us to the following research question: 

“Develop and validate an expected lifetime distribution, to predict expected failure rates of MCs 

given their current state and integrate it into a spare part optimization model to determine the 

optimal spare part policy and level, thereby achieving maximum cost efficiency.” 

Complying with the literature, we have used Weibull distribution as the lifetime distribution to 

model the MC failure characteristics, which we use to determine the expected failure rate of 

components. Furthermore, we calculated various inventory models, which we tested using a Monte 

Carlo simulation. For this simulation we used test data, which represent the MCs. We compared 

various experiments for multiple replications to average all Total Relevant Costs (TRC) for a 

proper comparison between results. 

From the results of the experiments we conclude that it is always better to not keep any inventory 

when the Jack-Up vessel lead time exceeds or is equal to the component lead time, the Jack-Up 

lead time can be utilized to order the component itself. We see this back in the sensitivity analysis, 

where the Jack-Up and component lead time have the biggest impact on the TRC. The least amount 

of TRC is always when the two lead times are equal. Therefore, it is beneficial to invest in either 

shorter Jack-Up or component lead times to equalize one with the other.  

Furthermore, the only changes which seemed to benefit the inventory management over not 

keeping inventory is the batching of components in groups of two including a batching discount of 

10%. The other change is a higher lost revenue per month. However, this benefit will only pay out 

over a prolonged period, of which the benefit is based on the number of failures of the component 

and the holding costs. When a lot of failures are expected, the benefit is earned back faster, which 

also goes in hand with an increase in population size or older components, which are more likely 

to fail.  

All with all, we recommend to build upon this research by utilizing real scenarios to determine 

when it becomes beneficial to keep inventory for their own components and to continuously update 

the parameters for more exact predictions of the failures. Additionally, once the predictions become 

adequate, to invest into proactively ordering the Jack-Up vessel, which will save a lot of money for 

industry wide.  
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Glossary 

- ADI (Advanced Demand Information) –Monitoring of components, which can indicate 

future demand. 

- Backorder – Amount of components ordered but not yet received. 

- EBO (Expected Backorders) – Expected demand that cannot be fulfilled right away. 

- Echelon – A level or station within the supply chain. 

- ESC (Estimated Shortage per Cycle) – Expected shortage of spare components per cycle 

period. 

- Failure rate – Frequency in which a component fails, expressed in number of failures per 

unit of time. 

- Fill rate - which indicates the probability of fulfilling demand without delay. 

- Indenture – sub-part of a higher-level component (represented by SRUs and LRUs). 

- LR (Lost Revenue) – Revenue lost by Vattenfall due to the wind turbine downtime caused 

by a failed MC. 

- LRU (Line Replaceable Unit) - Complete functional components (e.g. Gearbox). 

- OEM (Original Equipment Manufacturer) – Original manufacturer of the components 

in question. 

- OM (Operations and Maintenance department) – Department for the day-to-day 

operations within a company.  

- PDF (Probability Density Function) – A function, which value represents the probability 

of a random sample being close to that value. 

- Pipeline  - All components part of the owner’s inventory, which are either in inventory or 

still in transit . 

- Polynomial time – The relation between the execution time of a computation, and the 

complexity of the function of the polynomial n. 

- SA (Supply Availability)  - SA is equal to one minus the EBO and represents the fraction 

of demand fulfilled from inventory. 

- SRU (Shop Replaceable Unit) - sub-part of an LRU, representing component functions 

(e.g. gear in the Gearbox). 

- SS (Safety Stock) – Extra inventory to reduce the risk of not having an item on stock when 

needed. 
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1. Introduction 

This master thesis is written for the completion of the Master Industrial Engineering and 

Management as part of the Production and Logistics Management track within the faculty of 

behavioural, management and social sciences from the University of Twente. Research has been 

conducted at Vattenfall in Amsterdam within the offshore wind turbines analytics team.  

In this chapter, the research performed at Vattenfall will be introduced. Section 1.1 provides 

background information about Vattenfall and offshore wind energy. Section 1.2 provides the scope 

and the operation and maintenance (OM) related to the research subject and is used to formulate 

the problem statement and the scope in Section 1.3. Subsequently the research objective and 

questions are formulated in Section 1.4. Section 1.5 will describe the research approach and 

methodology used and an overview of the research layout.  

 

1.1 Vattenfall & offshore wind energy 

1.1.1 Vattenfall 

Vattenfall is a leading European energy supplier company, which was founded in 1909 as a state-

owned enterprise in Sweden as it currently still is. In the Netherlands, Vattenfall was formerly 

known as NUON but changed its name to Vattenfall in 2018, after Vattenfall bought NUON, back 

in 2009. Vattenfall's headquarter is located in Solna, which is within the municipality of Stockholm. 

The head office within the Netherlands is located in Amsterdam. Vattenfall operates in 8 European 

countries, where they currently employ around 20,000 people (Vattenfall, 2021). Vattenfall is on 

the forefront in the fight against climate change as an energy supply company, and therefore focus 

their aim to enable fossil-free living within one generation. They are working to achieve this, by 

constantly acquiring more alternatives to fossil fuels (e.g., wind, solar, nuclear, hydro, biomass, 

biogas). This has made Vattenfall one of the leading players in the European renewable energy 

market. The focus of this research paper will be on the offshore wind sector.  
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Figure 1. Offshore Windfarm Vattenfall 

1.1.2 Offshore wind power  

Large scale wind power has recently grown towards offshore locations, due to lack of space, noise, 

aesthetics, and in addition to the extra electricity generated per amount of capacity installed, due 

to more favourable wind resources (Krogsgaard & Madsen, 2010). This has caused the offshore 

wind generation to gain increasing interest on the renewable energy market and induced a 

tremendous growth the last decade. In 2020 the offshore wind sector had a capacity of around 35.3 

gigawatts (GW) (Global Wind Energy Council, 2021). These wind farms are typically located a 

few kilometres away from the coast, and the grid transports high voltage energy onshore through 

cables buried deep in the seabed. Due to the European climate and energy measures, many countries 

like the Netherlands are interested in further developing the offshore sector, since it can be crucial 

to meet these measures. One of the Dutch measures in the field was producing 14% of their total 

energy production through utilizing renewable energy sources by the year 2020, which increases 

to 32% in 2030 (Government of the Netherlands, 2019). This has initiated a new project, where 

Vattenfall is currently constructing a new wind farm in the North Sea near the Dutch coastline, 

called “Hollandse Kust Zuid.” 

However, the offshore wind energy industry is still facing a multitude of challenges, such as the 

harsh marine environment, and the difficult soil properties. Blades that endure this harsh saline 

environment show an accelerated increase in surface roughness. This increase in surface roughness 

increases friction drag, which negatively reduced performance (Slot, Gelinck, Rentrop, & van der 

Heide, 2015). This increased level of leading-edge erosion has drastically reduced the initial 

expected life expectancy of offshore wind turbine blades (Keegan, Nash, & Stack, 2013). 

Additionally offshore wind turbines must endure extra loads created by the waves and currents and 
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overcome water depths by building deep foundations embedded into the seabed. These 

technological and economic issues are part of the aspects in which onshore and offshore wind 

turbines differ. However, as mentioned before, the favourable wind resource with increased 

production and locations, still makes offshore wind turbines an interesting alternative compared to 

their onshore counterparts. 

 

1.2 Offshore Operations and Components 

1.2.1 Contributing Components 

Although all components and parts are required to efficiently operate the wind turbine, there are a 

few components which are of great complexity and of significant importance when contributing to 

the effective uptime of a wind turbine, we will refer to these components as "the main components” 

(MC) as some can be seen in Figure 2. Each of these components has their own tasks ensuring the 

operationalization of the wind turbine. However, these MCs sometimes fail to perform their tasks 

due to their loss of ability, which we call a failure. “A failure is the termination of the ability of an 

item to perform a required function” (International Electrotechnical Commission, sd). Faulstich, 

Hahn, & Tavner (2011) showed in their study regarding wind turbine component failure rates that 

minor failures, which represent 75% of the failures, cause only 5% of the downtime. In contrast to 

the main failures caused by MCs which corresponds to only 25% of the failures, but 95% of the 

overall downtime. For the problem context we will only focus on the main failures, which require 

the component to be replaced, which causes the long down time. These MCs, their functionality 

within the wind turbine, and failure causes will be described in more detail in Section 2.1.2. To 

tackle the long down times, it is important for Vattenfall to understand the failure rate 

characteristics of the MCs and to anticipate such a failure. In Section 3.2 we will go more in depth 

surrounding the failure distributions.  
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Figure 2. Cross-section Wind Turbine 

1.2.2 Operations and Maintenance 

OM management aims to improve the availability of the wind turbines and reduce overall 

maintenance expenses. This is a complex task to accomplish, due to the different sizes of the  

components and due to the components having to be lifted high up in the air at sea, which are hard 

to reach due to varying weather conditions. This causes the operations and maintenance tasks 

surrounding offshore wind turbines to be much more difficult, time-consuming, dangerous, and 

expensive. Furthermore, this causes minor failures to have bigger effects on the availability of 

offshore wind turbine and additionally their operational expenses, in comparison to onshore wind 

turbines. These expenses consist of part purchases, labour, transportation, Jack-up vessel rental, 

and lost revenue.  

 

Most expenses are quite self-explanatory, apart from the Jack-up vessel. A Jack-up installation 

vessel is a self-lifting service rig, which allows for safe installation of heavy foundations and 

components of offshore wind farms, see Figure 3. It performs these tasks by lifting itself above sea 

level, using its "legs,” which results in a stable platform for lifting heavy components up in the air. 

For all MC operations surrounding placement and replacements on a wind turbine, a Jack-Up 

installation vessel is required. These Jack-Up vessels are subcontracted from an external company, 
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and since all offshore wind parks use these vessels, these vessels are in high demand. Since these 

vessels are in such high demand, the corresponding lead time of availability can go up to three 

months and beyond.  

 
Figure 3. Jack-Up Vessel 

 

1.3 Problem Statement & Scope 

1.3.1 Problem Statement & Problem Cluster 

From Sections 1.1 and 1.2, we can conclude the importance of minimizing the downtime of the 

offshore wind turbines to maximize availability. To identify the core problem causing this 

downtime, all problems are stated and connected to form a problem cluster. The root problem can 

be classified as the core problem. The last problem is the action problem (Heerkens & van Winden, 

2017), indicating the required action to be taken to solve the core problem. Figure 4 shows the 

problem cluster including the core problem and action problem. 

In the problem cluster we can see that the action problem indicated in grey is caused by a multitude 

of factors, like the Jack-Up lead time, component lead time, weather conditions, and complexity of 

replacement or repair. Certain factors, like the weather are uncontrollable, and others like the 

complexity of replacement or repairs are currently seen as a given and are thus outside of the scope 

of this research. The Jack-Up lead times are a bit more flexible. These are currently set in contracts 

with the vessel contractor, where a vessel should be available within a given period. However, it is 

possible to set up new contracts with lower lead times for a higher price. Finally, the component 
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lead time: When a failure occurs of a component, this component is either directly ordered from 

the OEM, or bought from a refurbished component market. Some components are no longer 

produced by the OEM and thus must be bought elsewhere However, since these are relatively large 

and complex parts, buying the parts from the OEM, if possible, will have a higher reliability but 

also a higher component lead time. This higher component lead time is of course undesired by 

Vattenfall, since this is causing a lot of lost revenue where the wind turbine is down waiting for a 

part, which are indirect costs for Vattenfall. To counteract this downtime from waiting for a part, 

Vattenfall has decided to construct a central warehouse for a more centralized storage of MCs. 

There are already local warehouses in place, which are used as cross-docking warehouses for the 

MCs, which are required for an offshore replacement. Additionally, the local warehouses are used 

to store smaller components. These local warehouses are located in the harbours near an offshore 

wind park and are therefore expensive storing locations. Additionally, since MCs have such a low 

failure occurrence, these spare parts often catch dust and require maintenance and when located in 

a warehouse, which is not economically viable against 25% component price as holding costs 

(Durlinger, 2014). Therefore, the local warehouses act as a cross-docking warehouse for MCs. The 

central warehouse is supposed to offer a more centralized approach by providing an intermediate 

holding location, which can provide to all the local warehouses, minimizing the total number of 

spare components required and thus minimizing the holding costs. Since this central warehouse is 

still being built, the assumption of 25% of the components price for storing still holds for the central 

warehouse until new information is released. However, since the storing costs are so high and MCs 

fail with such low frequency it is uncertain whether it is or can be economically beneficial for 

Vattenfall to store these spare MCs in the central warehouse at all. If it is beneficial, Vattenfall is 

still uncertain what policy is optimal to minimize holding costs and downtime. All these problems 

start with finding an answer to the following core problem:  

What is the optimal inventory management system for cost efficiency given the current state of the 

MCs, considering the uncertainty of MC failure occurrence.  
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Figure 4. Problem Cluster 

 

1.3.2 Scope 

The scope of the project is on two out of the three of the action problems in blue as stated in the 

problem cluster, Figure 4. We do not consider the modelling of demand based on the degradation 

process, since Vattenfall have their own condition-based monitoring team. This team offers an 

expected forecast based on experience using the limited data available, which is information that 

can be used in expected failures. The other two action problems are divided into two stages. The 

first stage estimates failure rates of expected failures of the MCs based on historical data. The 

second stage will use this demand rate to implement in an appropriate inventory model. 

Additionally, we will only focus on the MCs as a Line Replaceable Unit (LRU), and not on their 

corresponding Shop Replaceable Units (SRUs), which makes it a single-indenture system since we 

only look at the components as a single part. The estimated failure rates of the MCs are based on 

the statistical analysis of historical failures. Additionally, condition-based monitoring is performed 

by Vattenfall, which provides installed base information. This installed base information provides 

an indication when a component is not working according to what is expected, which can indicate 
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an upcoming failure. This information is only available for certain MCs, since not all MCs at an 

age at which they have provided enough data points. However, this will not be considered in the 

scope of the project since no data is ready to be incorporated. For the inventory management, we 

only focus on the central warehouse since no real stock is kept at the local warehouses. The Central 

warehouse is located in Denmark, which is supplied by the OEM and will supply all local 

warehouses. This makes it a single-echelon, multi-item, single-indenture system. It is a single-

echelon problem, since the inventory will only be optimized for one echelon level, the Central 

warehouse. A multi-item problem because multiple components will be incorporated. Lastly, a 

single-indenture problem, since no sub-components of the MCs will be considered, only the MCs 

themselves.  

 

Figure 5. Project Scope 

 

1.3.3 Requirements 

In this section we will elaborate on certain criteria set by Vattenfall for the project. We will use 

these criteria for the model selection and creation to ensure the model suffices the correct 

requirements. The requirements are summed and are as follows: 

 

1. Optimum inventory levels must be provided and updated at least every month for every 

component. 

2. Demand rates of components should be computed based on historic data, including non-

failed components. If this is not available, standard failure rate provided by the OEM should 

be used instead.  

3. Manufacturing prices and lead times should be considered for the inventory model. 

4. Storage cost should be weighed against the lost revenue costs. The lost revenue costs should 

be based on the current electricity prices. 

5. For the offshore wind parks, the spare components must be stored at the central warehouse, 

if there are any.  

6. The inventory model should be able to be integrated into Python, using the standardized 

structure of the analytics team of Vattenfall.  

7. The results should be generated for a timeframe of three years.  

 



 

 
11 

 

Confidentiality: C2 - Internal 

1.4 Research Objectives 

1.4.1 Research Aim 

The aim of this research is to determine the expected demand rate of MCs, based on the expected 

failure distribution statistics. These analyses are used as input for the inventory management 

analysis, to determine optimal spare part policy and parameters. The result from the inventory 

management analysis is then validated and evaluated, which we will go more in depth into in 

Section 5.  

Combining these two stages, gives us the following research objective: 

 

“Develop and validate an expected lifetime distribution, to predict expected failure rates of MCs 

given their current state and integrate it into a spare part optimization model to determine the 

optimal spare part policy, thereby achieving maximum cost efficiency.” 

 

1.4.2 Research Questions 

Given the research objective, the following research questions are defined to help achieve the 

research objective of obtaining the most efficient cost solution. The research question is divided 

into multiple sub questions, thereby sub-structuring the research questions.  

 

Firstly, we would like to familiarise ourselves with the current state of the processes surrounding 

the MCs degradation process and the practises surrounding the repair and operations of the MCs.  

 

1. What causes failures, and what are the corresponding current practises and available data 

related to the problem context? 

a. Which factors influence the current failures of MCs? 

b. What is the current practice regarding MC spare parts stocking? 

c. What are the current supply processes regarding repair/maintenance operations? 

d. What are the costs surrounding MC storing and replacement? 
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Secondly, we would like to utilize the literature available surrounding the forecasting of the 

expected statistical failure analysis. In addition, the relationship between the forecasting of the 

degradation process regarding the spare parts optimization modelling approach.  

2. What information can be found in literature related to the research objective and question? 

a. What type of failure behaviours are differentiated? 

b. What distributions for lifetime expectancy are used for varying failure rates and how 

are they fitted? 

c. Which spare part optimization models and inventory policies related to the lifetime 

distributions are available in literature? 

d. How to validate and evaluate the performance and accuracy of the expected spare 

part demand and spare part optimization tool according to literature? 

Thirdly, after conducting the literature research, we utilized the findings for setting up the 

modelling approach of the expected lifetime model and the inventory management. 

3. How to set up the modelling approach for the expected failure rate, and inventory 

management? 

a. How to fit the lifetime distribution and validate it? 

b. How to model the expected failures statistics of MCs? 

c. How to use the statistical analysis to use as demand rate input for inventory model? 

d. How to model optimal spare parts control, while incorporating logistical 

difficulties? 

e. How is the performance of both models (statistically) evaluated and validated? 

Lastly, the focus will be on testing and validating the performance and accuracy of the models 

regarding the degradation process, forecast and inventory policy. 

4. Will failure rate predictions and replenishment policies for spare parts be economically 

beneficial for the offshore wind industry to implement? 

a. What is the performance of the models? 

b. Does the model offer a valid solution to the problem? 

c. What are the possible costs saving areas of the models? 

i. If no savings, what should Vattenfall change for it to be cost effective? 

d. What is required to implement the models in the standardized working method? 

e. What are limitations for implementing the model? 
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f. What are the steps looking forward? 

Answering all the above-mentioned research, and research-sub questions would collectively lead 

to the answer on the research objective. 

 

1.5 Approach and Methodology  

To ensure the fulfilment of the research objective, multiple research questions are developed. To 

answer these research question, the research approach can be summarized in six methods as shown 

in Figure 6. 

 

 
Figure 6. Research Approach 

1.5.1 Field Study 

To understand and familiarize ourselves with the current situation, the problem and desired 

solution, field study has been conducted by gathering information from the internal database and 

utilize the knowledge of employees involved in the project and or involved in maintenance and 

operations, data gathering. Since little data is available regarding MCs failures, as mentioned 

before, majority of the data acquisition will be based on internal knowledge and data related to 

potential failure rate detection. Additionally, information provided by OEM regarding MC failure 

rates will also be utilized. More in-depth information of the related processes will be provided in 

Chapter 2. 

1.5.2 Literature Study 

As described in the research questions, the literature study focusses on two scientific areas, the 

statistical analysis of expected failures, and inventory management of spare parts. These scientific 

areas are studied for the better understanding and application of the different models in the wind 

energy sector. In addition, the lifetime distribution of components, data censoring, and model 

evaluation and validation are all described in Chapter 3. 
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1.5.3 Modelling Approach 

After the field study and the literature study, the most relevant models and data are used for 

conceiving the theoretical design of the expected failure rate model and the spare part optimization 

model. This includes the assumptions, scope, and limitation of both models. For the modelling of 

the models Python, which is the standard computer software used by the Analytics team within 

Vattenfall, is used. Python is a high-level general-purpose programming language meant to be 

easily accessible and readable for all users. Therefore, it is an industry wide accepted programming 

tool used for modelling complex systems, thus time is spend learning more about Python 

programming and the structure used by the Analytics team. Chapter 4 will introduce the modelling 

approach and describe the models themselves.  

 

1.5.4 Validation and Evaluation 

To ensure the validity, accuracy and performance of any newly developed model, verification and 

validation is important. Various methods are widely available and will be introduced in chapter 3. 

These methods ensure that the proposed model offers a valid solution for the problem context and 

ensure the usability for the problem owner. The proposed methods will be applied in Chapter 5, 

the experimental design. 
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2. Main Components Management 

In this chapter we will explore the operational side of a wind turbine, corresponding operations, 

failure distribution, and supply chain. Firstly, we will take an in-depth look at the operating of a 

wind turbine and its corresponding MCs and failure modes in Section 2.1. In Section 2.2 the current 

situation regarding MC operations for offshore wind turbines is described. Followed by Section 

2.3, where the current supply chain activities and policies are discussed. Lastly, section 2.4 gives 

an economic overview of the current operational situation and components.  

2.1 Wind Turbine & Main Components 

In this section we will explore the operating of an offshore wind turbine. Firstly, in Section 2.1.1 

we will elaborate in more detail on the operating of an offshore wind turbine and the offshore wind 

parks of Vattenfall. This is followed by a more concise description of the MCs and their degradation 

and failure process in Section 2.1.2. Lastly, in Section 2.1.3 we will look at the different seasonal 

effects on the failure rate of MCs.  

2.1.1 Operational Wind Turbine 

The basic concept of a wind turbine dates back centuries, of which the main aspects have not 

changed. In today’s wind turbines the blades are set in motion by the passing of the wind, and this 

causes rotation. This rotation of the blades is transformed into electric energy that can be used to 

power houses, lights, etc. Here we will go more in depth about what causes wind, how does wind 

rotate the blades, and how is this rotation of the blades transformed into usable energy. 

 

Wind is a combined effect from the sun on atmospheric temperature gradients, which results in 

convection, and of Coriolis forces due to the rotation of Earth. This results in a convectional air 

flow, which we call wind. Wind is a three-dimensional unsteady phenomenon, where it is a function 

of time and location, and it is best described and used by its velocity. In general, the average wind 

velocity at the hight of the wind turbine is used to determine expected energy generation. Therefore, 

it is of high importance to be able to predict wind velocity and thus economic viability of various 

locations. This determines the optimal locations to build a wind park. Wind power available for 

extraction in these locations is denoted by Function1(2.1). 
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𝜌𝐴𝑈3 

 
  

1(2.1) 

 

In Function1(2.1) 𝜌 denotes the air density at the given location, A the surface area swept by the 

blades of the wind turbine, and U the average wind velocity (Njoku, Ekechukwu, & Onyegegbu, 

2013). This equation may include 𝜂 the efficiency of the wind turbine, and 𝐶𝑝 the rotor power 

coefficient. To optimally determine the average wind velocities in an area, a dense measuring 

network of multiple measuring stations must collect data for 5-10 years. Since this is often not 

possible in practise, multiple methods can be applied to determine average wind velocity for a 

specific area. (Landberg, et al., 2003) gives an overview of multiple methods of how a wind 

resource as a function of wind velocity at a certain site can be estimated. This wind velocity 

estimation gives the ability to compute the expected energy generation. Modern wind turbines are 

placed in these optimal wind source locations, with sufficient distance between them due to the 

turbulence caused by other turbines to minimize the loss.  

 

Once a location is chosen and wind turbines are placed, the electricity generation can begin. A 

wind turbine typically consists of four parts, which are required for the generation of electricity, 

namely the rotor assembly, the nacelle, the tower, and the foundation. The rotor assembly is the 

beak of the wind turbine holding the blades. The nacelle is the box containing all the electrical 

components, which is connected to the rotor assembly via the main axis. The tower supports the 

nacelle up in the air. Lastly, the foundation is required for the stabilization of the wind turbine, 

which can all be seen in Figure 2.  

The blades of the wind turbine are constructed with an aerodynamic shape, causing lifting power 

when the wind passes, which generates rotational energy. A pitching system is used to rotate the 

blades into the optimal position. This rotational energy generated by the blades is then transferred 

into a gearbox to increase rotational speeds. This rotational energy is then transferred into a 

generator, where it gets transformed into electricity. To ensure the wind turbine catches the optimal 

amount of wind, a yaw system is used to rotate the nacelle, rotor hub and the blades into the wind 

for optimal efficiency.  

Currently, Vattenfall is operating 20 offshore wind parks located in 5 different countries. 

Additionally, 2 are still being built as part of “Hollandse Kust Zuid”. Appendix A. shows where 
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the parks are located, number of wind turbines, the commission year, and manufacturer. The 

difference in wind turbine manufacturers per park is caused by two reasons. Firstly, the rapid 

developments in the wind energy sector creates new advancements rapidly, and thus creating more 

efficient wind turbines. Secondly, the difference is location cause different wind turbines to be 

more efficient in different environment.  

2.1.2 Main Components & degradation 

As described in Section 1.2.1, there are a few important components, the so called “Main 

Components.” In this section we describe the functions within an operational wind turbine and their 

most common failure causes, based on the failure definition mentioned earlier. This can be seen in 

Table 1. In Appendix B. Main Components, a more detailed description of the components, their 

function and their most common failure types can be found.  

Table 1. Main Components 

      

Component Use Failure Causes 

The Blades 
Transform wind into 

rotational energy 

Extensive wear due to 

harsh environment (Leon 

Mishnaevsky, 2022)  

Main Bearing 
Transmit rotational 

energy to gearbox 

Degrading lubricant, 

environmental conditions 

(Kopeliovich, 2014) 

Main Shaft 
Transmit rotational 

energy to gearbox 

Debris, high Axial, and 

radial loads (Nyberg, 2011) 

Gearbox 
Increase rotational speeds 

for the generator 

Axial cracking, debris, 

small cracks (Foti, 2018) 

Generator 
Transform rotational 

energy into electricity 

Varying loads caused by 

varying wind speeds 

(Gowdar & Gowda, 2016) 

Transformer 

Increasing the low voltage 

from generator to a higher 

distribution voltage 

Varying loads caused by 

varying wind speeds (Sims, 

2019) 

Switchgear 

Control, protect, and 

isolate electrical 

equipment 

Faulty modifications, lack 

of operating knowledge, or 

inappropriate resets 

(Paoletti, 2017) 

 

Since different wind parks use diverse types of wind turbines, with each their own technologies. 

These diverse types of technologies indicate that the wind turbines from different parks with 
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different technologies do not use the same type of MCs, and thus the MCs inventory management 

is based per type of wind turbine. Appendix A. gives the names of the different wind turbine types 

used and the corresponding number of turbines of this type in the current situation.  

2.1.3 Seasonality 

In this section we will look at the impact of seasonal changes regarding failure of the MCs. Seasonal 

changes have a big impact on the renewable energy sector, where the power generation is reliant 

on the weather conditions. Wind is no different, and experiences different generation performances 

throughout the year. A study performed by Tavner, et al. (2013) showed the effects of varying 

conditions on wind turbine reliability. They monitored various conditions and failures over a 

prolonged period and concluded that weather has a positive cross-correlation between 9-31% with 

failures depending on the location. This result was achieved with a small but precise data set, which 

helped them achieve >99.9% level of significance. This indicates that indeed weather has a small 

correlation with the failures of MCs. Additionally, they showed that the correlation increases 

during the winter month by an average of 5%, which indicates that colder weather effects and thus 

higher winds have a higher effect on failures. Therefore, a seasonality exists, where reliability is 

slightly lower in the winter months. How much the seasonality impacts the failures of MCs exactly 

is however uncertain since no data is available and no precise information can be found in literature. 

Therefore, we decided to not take seasonality into account while determining the failure rate of 

MCs. However, once such seasonal data becomes available, an extension of the model can include 

these seasonal effects. Additionally, we will consider the seasonality surrounding production rates 

of wind turbines based on indications of Vattenfall regarding the average monthly production rates 

throughout the year. This information will be used in the calculation of lost revenue per month per 

turbine. However, we do not take in to account the weather effects on the repair lead time since 

this would increase the complexity of the problem significantly.  

2.2 Main Component Operations 

In this section a more detailed overview of all the operations surrounding MCs will be given. 

Firstly, we will discuss the monitoring of the MCs in Section 0. Secondly, in Section 2.2.1 MC 

decision making regarding the operations will be brought to light. Lastly, Section 2.2.2 will 

describe the operations organization in more detail. Additionally, Appendix C. Condition Based 
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Monitoring, describes the process of monitoring the condition of the component, which might be 

interesting to add later but for now is outside of the scope.  

2.2.1 Operational Decision Making 

To determine when a MC should be replaced is dependent on a multitude of variables. Ideally you 

require three sources of information regarding the specific component, namely, current state of 

component by means of condition monitoring, expected failure rates based on historic data, and 

the expected life expectancy given by OEM. Vattenfall is looking for an internal calculation of the 

expected failure mode on top of the failure mode given by the OEM to increase accuracy. Since 

MCs fail with such low frequency, a more accurate failure becomes more important for the decision 

of inventory management. Additionally, monitoring of MCs is a strong technique for detecting 

failure or damages on rotating components used in the wind turbine. When a potential damaged 

component is detected, which can eventually cause a failure, or a failure is expected, a decision 

must be made regarding how to act to minimize downtime of the wind turbine. 

From an analytics perspective, the damaged component must be replaced as soon as possible, since 

you want the optimal performance out of your wind turbine, even though it might be functioning 

near perfect and still operating at full or near full capacity. Therefore, the team responsible for 

operating the wind turbines, prefers waiting until it is of high priority to replace the part. This is 

the trade-off between preventive and reactive replacement. The cross-over point of the trade-off is 

based on the cost of replacing a MC and the missed revenue due to downtime. This is an important 

break-even point, which determines when a repair is required and thus when a spare component is 

required. However, this decision will not be taken inside of the scope, as this would require the on-

site information of the current state of components.  

2.2.2 Operational Organization 

When a MC is in their early life phase they are still under warranty at the OEM. Therefore, the 

OEM maintains full control over the component, and they monitor the components and replace the 

faulty ones. Therefore, when a component wears out while under the supervision of Vattenfall, it 

is assumed to be in the wear out phase or from a random failure. Once a replacement is required a 

planning must be made as to when the component can be replaced. Once the specific date has been 

chosen based on the availability of the Jack-Up vessel and the lead time of the component, 
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preparations for the replacement are brought into place. The required component is transported 

either from the central warehouse, or from the OEM to the local warehouse in the port near the 

offshore wind park waiting for the component. Once the Jack-Up vessel has arrived, the component 

is lifted onto the vessel and the vessel goes towards the corresponding wind turbine waiting for the 

part. The faulty component is brought back ashore and taken for analysis and repair, either at the 

OEM or in house. If the component was repaired, it can either be stored in the warehouse or sold 

on the refurbished spare component wind turbine market.  

 

 

Figure 7. Operations 

 

2.3 Supply Chain 

In this section we will discuss the current supply chain in place at Vattenfall regarding the MCs. 

Here the current inventory model being used at Local Warehouses and future inventory model for 

the new Central Warehouse in Denmark will be discussed. Additionally, we will discuss the supply 

chain coordination and corresponding lead times to the MC operations.  

2.3.1 Supply Chain Logistics 

A lot of actions must be planned before a component can be shipped out on sea to replace a failed 

component of a wind turbine. The component must be ordered by the OEM and shipped towards 

the desired location. The Jack-Up vessel must be ordered for a specific day when the new 

component is ready in the harbour. All these activities have their own lead time, which must 

correspond with one another.  

The average component lead time differs per component and can be seen in Table 2 (Rajendra & 

Rajendran, 2020), where we increased the lead time for some components to monitor the effects. 

We have taken this as a given as this is the only indication available, since no data is available for 

the variability of this lead time and thus no variable lead time can be assumed. Additionally, the 

transportation lead time is three days. Furthermore, the average Jack-Up vessel lead time is 

assumed to be 88 days (The Crown Estate, 2014), which we round off for simplicity to three 
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months. Since the Jack-Up lead time is longer than the component and transportation lead time 

together for some components it would not be beneficial to keep stock at all. However, we will 

experiment with different Jack-Up lead times demonstrating whether Vattenfall can benefit from 

shorter lead time contracts with Jack-Up vessel suppliers or other scenarios.  

Table 2. Component Lead Time 

  MC Lead time (months)   

  Blades (3x) 1 months   

  Main Shaft 1 months   

  Main Bearing 2 months   

  Gearbox 4 months   

  Generator 4 months   

  Transformer 3 months   

  Switchgear 3 months   

 

Additionally, the storage space of spare components in the new Central Warehouse is a limiting 

factor for the number of components that can be stored. Therefore, we have taken the size of the 

warehouse and the components into account as a restricting parameter while developing the model.  

2.3.2 Inventory Model 

Currently Vattenfall has no inventory management in place since the new Central Warehouse is 

not fully constructed yet and thus no MC storage space is available. Therefore, MCs are only 

ordered from the OEM when a component has failed and a new one is required for the replacement 

of the failed one. This means that the corresponding wind turbine has a down time equal to the lead 

time of the production and transportation of the component, where we neglect the installation time 

for sake of simplicity. This is very inefficient, since this is a lot of lost revenue for Vattenfall. To 

ensure minimum downtime, Vattenfall started building the new Central Warehouse for the storing 

of spare components and is thus looking for an inventory model to orchestrate the spare 

components.  
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2.4 Cost Breakdown 

In this section, all the costs included in the project are given in a cost breakdown analysis. This 

will include component purchase costs, holding costs, and lost revenue. Transportation and Jack-

Up vessel costs will be taken out of scope, since for comparing the use of a spare component or 

not, it is irrelevant, since both situations require transportation and a Jack-Up vessel.  

According to (Stehly, Beiter, & Duffy, 2019), the average installed offshore wind turbine in 2019 

has a capacity-weighted average of 6.1 MW. These turbines have a rotor span of 151 meters and 

have a 102-meter-high hub. They estimate the average price of an offshore wind turbine to be 4,077 

dollars/kW. This results in an average cost of 25 million dollars per wind turbine placement. Only 

31.9% consists of turbine components, resulting in an average price of 8 million dollars per wind 

turbine.  

 

Cost per Main Component 

The total costs of all offshore wind turbine components are split up, and only the MCs are used. 

These MC costs percentages are based on IRENA cost analysis report (2019) (International 

Renewable Energy Agency, 2012), and can be seen in Table 3. These costs represent the purchase 

price of the components, which we included into the model, and final decision-making process 

under the assumption that this includes the transportation costs from OEM to customer.  

Table 3. MC Cost Division 

  MC Percentage of total costs Costs (dollar)   

  Blades (3x) 22,20% 1761200   

  Main Shaft 1,91% 151500   

  Main Bearing 1,22% 96800   

  Gearbox 12,91% 1024200   

  Generator 3,44% 272900   

  Transformer 3,59% 284800   

  Switchgear 1,32% 104700   
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Holding costs 

For the holding costs of MC in the new central warehouse, a percentage of the component price is 

used as an indication. For the holding costs, an industry standard of 25% of the component purchase 

costs is used per year, this includes deprecation, capital investment, damage, lifetime, and cost of 

storage space in warehouse (Durlinger, 2014).  

 

Lost Revenue 

When a wind turbine is not operating, it does not produce electricity. This lack of electricity 

production can be described as lost revenue, which as a company you want to minimize as much 

as possible. For the offshore wind electricity production, we can look at the monthly production of 

an offshore wind park to ensures we take seasonality of production into account when calculating 

the lost revenue. We compute the lost revenue per time unit in two steps. Firstly, the average 

forecasted production per kWh per month for the next three years is taken, which thereby 

incorporates seasonality. Secondly, for the electricity price, we take the global weighted-average 

production costs of offshore wind energy over a 25-year lifetime period. This is roughly 4.7 cents 

per kWh (Lensink & Pisca, 2019). To overcome these costs, municipalities can provide a subside 

to encourage the transition to a decarbonised society. This is stated in the  Contract for Difference 

(CFD). The CFD states that once the electricity price goes below a certain threshold, the 

government will provide the subside for companies for the remaining costs. However, once it goes 

above the threshold the generator (in this case Vattenfall) has to pay back the difference. One of 

the CFD contract in the United Kingdom for the years 2025-2027 states that this threshold for 

offshore wind is equal to 5.5 cents per kWh. We will use as an indication of the electricity prices 

(Department for Business, Energy & Industrial Strategy, 2021). Combining this with Vattenfall’s 

forecasted electricity’s price each month dependent based on trends in the electricity market for 

seasonality gives us the price per month. Combining the two parts gives us the following equation: 

 

 𝑙𝑜𝑠𝑡 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 =  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟(𝑡) ∗ 𝑅𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 ∗ 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡 ∗  𝑃𝑟𝑖𝑐𝑒(𝑡)   2(2.2) 

where, 

 Capacity factor(t): percentage of full power in month t (Percentage) 

 Rated power: power rating of their maximum output (MW) 

 Price: electricity price per megawatt hour in month t (Euros) 
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3. Literature Review  

In this chapter the performed literature review will be elaborated upon. Various methods and 

techniques will be discussed, which are relevant for the problem context. In chapter 4, the chosen 

models, methodologies, and approaches will be discussed, which will use this literature review as 

a basis. The literature review is divided into five parts. First, the types of failure behaviours and 

censoring of data are discussed in Section 3.1.  Secondly, the different continuous failure 

distributions and models are brought to light in Section 3.2. Thirdly, the inventory policies and 

performance measures are discussed in Section 3.3. Fourthly, in Section 3.4 the different inventory 

models applicable to the problem context are elaborated upon. Lastly, the different validation and 

verification techniques are discussed in Section 3.5.  

3.1 Failure Rate & Censoring 

To perform a statistical analysis of the expected failure rate of a MC, a distribution for the 

estimation of the life expectancy is required. Extensive research has been performed about failure 

rates since predicting expected failures is important for critical operational decision making, such 

as main component repair analysis. At Vattenfall statistical modelling is used, which is very limited 

due to the lack of MC failures data. This is caused by the long-life expectancy of the wind turbine 

and its components, which were constructed in recent years. There are various types of failure 

behaviours, which are described in the “bathtub curve,” as seen in Figure 8. The bathtub curve 

differentiates between three types of failures, infant mortality with Decreasing Failure Rate (DFR), 

random failures with Constant Failure Rate (CFR), and wear out failures with Increasing Failure 

Rate (IFR). The focus of the research is on the wear out failures of the MCs, meaning there is an 

IFR over time.  

 

Figure 8. Bathtub Curve 
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Since the focus is on long-life components, uncomplete data sets are a common case. This indicates 

that observations of failures are terminated even before a component failed, this is called right 

censoring. Additionally, when it is unknown when a component was put into operation, we talk 

about left censoring. Using these censoring notations, we distinguish four types of censoring 

(Rausand & Hoyland, 2004). 

 

Type I Censoring 

All components are activated at time t=0 and the monitoring or life test is terminated at time t0. 

Therefore, only the lifetime of components that failed before t0 are known, and the number of 

components that have not failed yet is also known. Both information types should be utilized, this 

is characterized as right sided censoring. 

 

Type II Censoring 

When limited time is available to perform a lifetime test, the test can be terminated after a fixed 

number of r lifetimes is observed. Like Type I Censoring, we assume all components are activated 

at time t=0 and terminated when r lifetimes are reached. The survived components should again be 

utilized, and this is also characterized as a right sided censoring 

 

Type III Censoring 

Type III censoring is a combination of both type I censoring and type II censoring, where you either 

stop at a given time t0, or after a fixed number of r lifetimes of components are observed. This is 

also characterized as a right sided censoring 

 

Type IV Censoring 

Type IV censoring is when identical components are put in place at different time points but can 

be adjusted to set all activating point at the same time (time t=0). This results in the time for 

censoring of an individual observation to become stochastic. An example of this would be a 

medical experiment, where patients come in at random times. 
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3.2 Lifetime Distributions & Models 

In this section we will look at different distributions and models, which can be used for their 

application in modelling varying failure rate systems for the given problem context. These give a 

more realistic representation than non-varying distributions of failure properties, since a new 

component is less likely to fail due to wear out than an older component. Additionally, assuming a 

constant failure rate, like a compound Poisson process, will often result in excess or lack of stock, 

due to not incorporating the changing conditions of the components. In Appendix D. Poisson & 

Exponential Distribution, the Poisson and Exponential distribution are shortly described 

3.2.1 Gamma/Erlang Distribution 

Gamma Distribution 

The gamma distribution can offer a good fit for flexible life distributions sets. It is a time-to-first-

event distribution and can be seen as a group of exponentially distributed random variables. This 

makes the Gamma distribution commonly used in queuing theory (NIST/SEMATECH, 2013).  

The Gamma distribution is commonly a two-parameter continuous probability distribution. It has 

shape parameter k and scale parameter λ. Additionally, a three-parameter Gamma distribution is 

available, which introduces the threshold parameter γ (R. & Nathan, 2016). The threshold describes 

the shift of the distribution (to the left or right). This is not relevant for the context of the research. 

Therefore, it is taken outside of the scope. 

To estimate the parameters of the two-parameter Gamma distribution, the method of moments can 

be used. The method of moments first estimates the mean and the variance. The mean and variance 

can then be used to calculate the estimators of k and λ. When the shape parameter k is equal to one, 

we have a constant failure rate, and are in the random failures part of the bathtub curve. When k is 

bigger than one, it has an increasing failure rate, which represents the wear out failures. The 

estimation of the mean and variance is given by Function3(3.1) and Function4(3.2). Where n 

represent the total number of observed failures at time 𝑡𝑖 (Gomes, Combes, & Dussauchoy, 2022). 
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Using this estimation of the mean and the variance, we can calculate the estimator of the parameters 

of the Gamma function as seen in Function5(3.3).  
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𝜇̂2

𝜎̂2
,       λ:

𝜇̂

𝜎̂2
 

 
  

5(3.3) 

 

The estimators of the parameters can be used to determine the probability density function f(t), as 

seen in Function6(3.4). Γ represent the gamma function. The density function can then be used 

in determining the reliability of component at time t, since the reliability function R(t) = 1-F(t), 

where F(t) is the integral of the probability density function (Rausand & Hoyland, 2004).  

 

 

𝑓(𝑡) =
λ𝑘𝑡𝑘−1𝑒−λt

Γ(𝑘)
 

  

6(3.4) 

The disadvantage of the method described above is, that it does not consider survival data, which 

is a very important factor for accuracy when limited failure data is available.  

 

Erlang distribution 

The Gamma distribution is almost identical to an Erlang distribution, where the parameter k can be 

a positive real number for a Gamma distribution compared to a positive integer number for the 

Erlang distribution. Additionally, the scale parameter used in the Gamma distribution is often 

referred to as the rate parameter in the Erlang distribution (Kim, 2019).  

 

3.2.2 Weibull Distribution 

The Weibull distribution is a continuous probability distribution that can take the shape of an 

extensive range of distributions based on its parameters. This ensures Weibull provides a good fit 

with the data obtained for many applications. Therefore, Weibull can just like the Gamma 

distribution formulate all 3 phases of the bathtub curve. Because of this versatility, the Weibull 

distribution is widely used in reliability engineering within life cycle analysis. (Burtin & Pittel, 
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1972) Said “For an arbitrary monotone system with independent and non-renewable components, 

the system lifetime can be approximated by a Weibull distribution”.  

To compute the Weibull distribution, we first need the parameters. Weibull consists of either two 

or three parameters, namely η, β, and γ. η is the scale parameter, which represents the point at 

which 63.2% of all Weibull failures have occurred. β is the shape parameter, which correlates to 

the different failure rates of the bathtub curve, and γ is the location/threshold parameter. However, 

γ is the difference between the two- and three-parameter Weibull distribution and is often not used 

or set to zero, which results in the same outcome. Function9(3.7) gives the PDF of the Weibull 

distribution. The parameters are determined based on the observations of the time to a failure 𝑋(𝑖), 

where i represents the 𝑖𝑡ℎ failure. Additionally, the total number of parts observed, either failed or 

not, is described as n. The components that have not yet failed are described as censored data. For 

the problem context we use a two parameter Weibull distribution, for which the parameters are 

estimated using the following steps. Firstly, Function7(3.5) gives the expected empirical 

distribution function, which are used with Function8(3.6) for performing a regression analysis 

(Rausand & Hoyland, 2004). An alternative approach for multi-censored data is proposed by 

(Zaiontz, 2022), which can be seen in Appendix E. Multi-Censored Weibull Parameter Estimation. 

 

 𝐹̂(𝑋(𝑖)) =
𝑖 − 0.5

𝑛
 7(3.5) 

 

 

{
𝑦(𝑡) = ln (𝑙𝑛

1
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𝑓(𝑡) =
𝛽

𝜂
(
𝑡

𝜂
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−(
𝑡
𝜂
)𝛽

 9(3.7) 

 

Secondly, the Weibull parameters are taken from the regression, where β is equal to the coefficient 

of x(t) of the regression, C is the coefficient of intercept, and 𝜂 = 𝑒𝑥𝑝(−𝐶/ 𝛽) (Abernethy, 2001). 

The obtained parameters are used in the calculation of reliability and the failure rate function. The 

reliability function of Weibull is given in Function10(3.8). This determines the reliability of a 

component at time t, thus the probability of it not breaking down at time t.  
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10(3.8) 

The scale parameter is determined based on the types of failures, β < 1: infant mortality, β = 1: 

random failures, and β > 1: wear out failure. For the problem context, we are only interested in the 

failure rate function of the wear out failures, which is given by Function11(3.9), where the increasing 

failure rate is a function of the time t (Klutke, Kiessler, & Wortman, 2003) (Xie & Lai, 1996). 

 

 

 

λ(t) =
𝛽

𝜂
(
𝑡 − 𝛾

𝜂
)
𝛽−1

    𝑜𝑟     λ(t) =
𝑓(𝑡)

𝑅(𝑡)
  

  

11(3.9) 

 

For a system of n identical and independent components, which have indistinguishable failure rate 

functions, the cumulative failure rate can be described as the sum over the individual failure rates. 

Furthermore, the reliability function of the entire system can be denoted by Function12(3.10). These 

calculations of the reproductive property only hold true when the shape parameters are identical, 

otherwise the failure rate distributions will not be Weibull distributions anymore (KMUTT, 2019) 

(Kemmner, 2012).  

 𝑅(𝑡) =  𝐹̅(t) =∏𝑒
−(
𝑡−γ𝑖
𝜂

)𝛽
𝑛

𝑖=1

 

  

12(3.10) 

Lastly, the mean and variance of the Weibull distribution can be determined based on the 

parameters as calculated above. The mean and variance are calculated as seen in 

Function13(3.11),14(3.12), and15(3.13). 

 Γ(𝑟) = ∫ 𝑥𝑟−1𝑒−𝑥𝑑𝑥
∞

0

 13(3.11) 

 

 𝐸(𝑇) = 𝑡𝑜 + 𝜂Γ(1 +
1

𝛽
) 14(3.12) 

 

 𝑉𝑎𝑟(𝑇) = 𝜂2(Γ (1 +
2

𝛽
) − Γ2 (1 +

1

𝛽
)) 15(3.13) 
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3.2.3 Proportional Hazards Model 

The proportional hazard model is classified as a methodology for statistically analysing censored 

survival data, relating to passing of time before a specific event occurs. It was introduced to 

estimate the different effects of various factors impacting the time to failure of a part by D.R. Cox 

in 1972 to analyse collected reliability data, which have not been under the same conditions. These 

various conditions made the expected reliability of a component less reliable, and therefore it is 

desirable to isolate the various factors and estimate their influence. These various factors should 

be identified and quantified using numerical variables. These various factors, generally, called 

covariates can either be constant or varying over time (Dhananjay & Bengt, 1994).  

The proportional hazard model has potential in processing reliability data without the need for 

making any specific assumptions for the hazard rate (failure rate). The total hazard rate λ(t) is a 

function of the base hazard rate λ0(t), which is dependent on time only, and the positive function 

term 𝜓(𝑧; 𝛽), where z is the row vector of the covariates, and 𝛽  is the column vector of the 

regression parameter, giving Function16(3.14).  

 

 

λ(t) = λ0(t) 𝜓(𝑧; 𝛽) 

 
  

16(3.14) 

 

It is assumed that the functional form of 𝜓(𝑧; 𝛽) is known and can also be used in different function 

forms. The most common function form is the exponential form for 𝜓(𝑧; 𝛽), which is seen in 

Function17(3.15).  

 λ(t) = λ0(t) exp (∑𝛽𝑗𝑧𝑗)

𝑞

𝑗=1

 17(3.15) 

 

 

Where 𝑧𝑗 , 𝑗 = 1,2, . . , 𝑞 represents the covariates of the system, and 𝛽𝑗 , 𝑗 = 1,2, . . , 𝑞 corresponds to 

the unknown parameters defining the effects of the covariates on the hazard rate. The 

corresponding reliability function is given by Function18(3.16). 

 

 𝑅(𝑡; 𝑧) = (exp[−𝐻0(𝑡)])  exp (∑𝛽𝑗𝑧𝑗)

𝑞

𝑗=1

 18(3.16) 
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Where 𝐻0(𝑡)  represents the cumulative baseline hazard rate. Additionally, the maximum 

likelihood method can be used to estimate the unknown parameter 𝛽, and can be obtained by 

considering the individual time to failure contribution to the hazard rate. However, it is not an 

optimal approach when a lot of parameters are present. The maximum likelihood function without 

failures tied together is given by Function19(3.17). 

 

 𝐿(𝛽) =∏
exp (𝑠𝑖𝛽)

∑ exp (𝑧𝑚𝛽)𝑚∈𝐹(𝑡𝑖)

𝑘

𝑖=1

 19(3.17) 

 

 

Where 𝐹(𝑡𝑖) represents the risk set of items that were functioning before the observed failure at 

time 𝑡𝑖. Additionally, m represents a small group of components as part of 𝐹(𝑡𝑖), and 𝑠𝑖 is equal to 

the sum of covariates 𝑧𝑞 of observed items. The estimated value’s significance can be tested to 

verify the effect on the failure behaviour of the component (Cox, 1972). 

 

After the estimation of parameter 𝛽 is known, it can be used to estimate the base hazard rate λ0(t). 

For the base hazard rate, no specific distribution is assumed but it is assumed to be a step function, 

which is constant between the time to failure. The maximum likelihood gives the estimation of the 

base hazard rate at every point by Function20(3.18).  

 

 
λ0(t) =

𝑑𝑖
(𝑡𝑖 − 𝑡𝑖−1)∑ exp (𝑧𝑚𝛽)𝑚𝜖𝐹(𝑡𝑖)

 

 

20(3.18) 

 

 

3.2.4 Conclusion Expected Demand Rate 

Each method has their own application in different scenarios, giving them their own strengths and 

weaknesses. Gamma and Weibull are both extremely versatile and can mimic other distributions 

based on their parameters and can both be seen as a generalized version of the exponential 

distribution. Gamma is however not commonly used as a life distribution or failure distribution for 

failures. The Proportional hazard model adds another layer of complexity by taking the various 

covariates into account if that information is available. In the following sections more in-depth 

information will be given how these methods can be used as input for spare part inventory systems. 
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3.3 Inventory Management 

In this section we will discuss various inventory policies and spare part performance measures, 

which could be applied to the problem. First, we will express the notation of inventory policies and 

present the inventory policies expressed in literature, which could be applicable to the problem 

context. Secondly, we will discuss various inventory performance measurements, which are used 

to measure the performance of an inventory model.  

3.3.1 Inventory Policies 

Spare part inventories policies are used to help determining the optimal inventory management of 

spare components. The literature distinguishes between different policies based on various 

parameters. Silver, Pyke, Thomas (2016) distinguishes between three basis variations, how often 

inventory should be checked, when a replenishment order should be placed, and how large the 

replenishment order should be. These three basic variations can be described in a policy using 

different variables consisting of: (Review period, Replenishment order threshold, Replenishment 

order Quantity) 

The replenishment order quantity represents the number of units ordered for replenishment, either 

a fixed amount Q, or a variable order-up-to quantity S. The review period indicates how often the 

inventory level should be checked indicated by R, otherwise a continuous review, indicating that a 

system keeps track of how many spare components are present at all times. The replenishment 

order level indicates the threshold for the inventory, indicating that when the pipeline quantity goes 

below it a replenishment order should be placed, which is indicated by s if applicable. Lastly, the 

demand multiplicity indicates in what quantities the demand arrives, whether it is one by one or 

minimum of two items. Combining these various parameters into policies gives us diverse options 

split up into four main groups, as seen in Table 4 (Rego & Mesquita, 2011).  
 

Table 4. Inventory Policies 

    Continuous review Periodic review   

  Fixed lot size (s,Q), (s,nQ), (S-1, S) (R,s,Q), (R,s,nQ)   

  Variable lot size (s,S) (R,S), (R,s,S)   
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These policies all offer a solid stationary inventory management solution for a constant demand 

rate, since they assume that the demand is known. However, for the problem context, the demand 

of components is a continuous function of time. This indicates that the stationary policies require 

adjustments based on the degradation rate of the components. Therefore, parameters should be 

flexible to relate to the current state of MCs. (Van Houtum & Kranenburg, 2015) propose several 

interventions to adjust the corresponding spare component policies. These interventions that are of 

interest for the scope of the research are as follows: 

1. Increase stock level: Increase the current replenishment order quantity for more stock to 

represent a higher upcoming demand rate. The order is delivered under the component lead 

time. 

2. Decrease stock level: Decrease the current replenishment order quantity to reduce the 

upcoming inventory level to represent a lower expected demand rate of components.  

3. Decrease repair and/or component lead time: To reduce the repair and component lead time 

a contract can be put in place with the OEM and Jack-Up vessel facilitators to reduce the 

lead time of availability. This intervention ensures the repair of a failed component to be 

more responsive and eventually require less inventory. 

Combining the first two interventions gives us a variable inventory stock level for components, 

which we can adjust on a periodic or continuous bases. Intervention 3 is stuck behind contractual 

agreements between the parties and can only be adjusted once a new contract is set in place and 

the new service agreements are discussed. Therefore, intervention 3 will be considered during the 

evaluation and accuracy of the performance measures in the sensitivity analysis.  

3.3.2 Spare Part Classification 

To assess whether an inventory model meets expectations, various performance measures are 

suitable. Spare part inventory management differs from other inventories management, whereas 

for spare part inventories the goal is to minimize downtime while minimizing inventory costs. The 

parts are often classified according to criticality in the categories: Desirable, Essential, and Vital 

(Gajpal, Ganesh, & Rajendran, 2003). Whereas consumer goods inventories are to ensure 

maximizing demand rate for optimal profit, which are usually classified according to a three-tier 

ABC-classification described in a Pareto graph, where A products are most important to a business 
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and C the least important (Silver, Pyke, & Petterson, Inventory Management and Production 

Planning and Scheduling 3rd edition, 1998) (Teunter, Babai, & Syntetos, 2010).  

 

3.3.3 Spare Part Performance Measures 

Spare part management and maintenance are intertwined management activities since no 

replacement can be performed without a spare part. Most focus is projected onto the optimum 

number of parts required and the selection of the optimum inventory policy. However, the joint 

management of maintenance and spare part are rarely addressed (Barkany & Biyaali, 2020). For 

the problem context, we are interested in the optimal management of spare components and 

inventory. Commonly used metrics for evaluating spare part storing are: holding costs, average 

waiting time (W), Fill Rate (FR), Expected Backorders (EBO), Supply Availability (SA), and Lost 

Revenue (LR). The metrics can be calculated using the following equations: 

 𝐸𝐵𝑂(𝑠) =  ∑ (𝑛 − 𝑠) ∗
(𝑚𝑇)𝑛 ∗ 𝑒−𝑚𝑇

𝑛!

∞

𝑛=𝑠+1

 

 

21(3.19) 

 

 𝑆𝐴(𝑠) =  1 − 𝐸𝐵𝑂(𝑠) 
 

22(3.20) 

 𝑊(𝑠) =  𝐸𝐵𝑂(𝑠)/𝑚   
 

23(3.21) 

 𝐹𝑅(𝑠) =  ∑
(𝑚𝑇)𝑛 ∗ 𝑒−𝑚𝑇

𝑛!

𝑠−1

𝑛=0

   𝑜𝑟 𝐹𝑅 = 1 −
𝐸𝑆𝐶

𝑄
 24(3.22) 

 

Where ESC represents the Estimated Shortage per Cycle and Q represents the order quantity, also 

denoted by Economic Order Quantity (EOQ). EOQ is calculated according to Function25(3.23).  

 

 𝑄 = 𝐸𝑂𝑄 = √
2 ∗ 𝐷𝑒𝑚𝑎𝑛𝑑 ∗ 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠
 25(3.23) 

 

3.3.4 Preventive vs Reactive Replacements 

Preventive maintenance is the replacement of a component before it fails. The main objective is to 

replace the component as late as possible but before it wears out completely and production losses 

occur. Condition based monitoring like described in Section 2.1.1 can help determine when a 
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component is likely to fail, and thus when a replacement is beneficial. Additionally, reactive 

replacements are performed when a component has already failed and needs a replacement. Various 

methods are available in literature discussing the trade-off between preventive and reactive 

replacement, two of these are age-based replacement and block replacement.  

 

Age based replacement 

Age based replacement is preventive replacements of components after a set amount of operational 

time. It is one of the most used preventive replacement methods in maintenance operations. In most 

cases no effects of surrounding conditions are considered. (Jin & Yamamoto, 2017) proposes an 

extension to the basic age-based replacement model by adding a cumulative exposure model for 

considering variable operating conditions. This is achieved by proposing a new time scale to 

determine the optimal replacement interval based on the monitored conditions as well. Here the 

optimal replacement time is the minimizer of the cost rate function. Additionally, (Kurt & Maillart, 

2009) formulated the deterioration of the components using a Markov process, where the 

replacement is carried out based on the deterioration of the components, which can be monitored 

using the condition-based monitoring. Both monitoring of environment and condition of 

components are utilized in the wind energy sector, which can be combined for determining the 

optimal replacement age of a component. Thus offers a great framework for the application of age-

based replacement policies. 

 

Block replacement 

Block replacement policies are an alternative to age-based replacements, where time is split up 

periodically, with each time slot called a block. At the end of each block the replacement of 

components is performed, or a component is replaced if it failed before the end of the block (Hua 

& Kai, 2016). This can be beneficial by combining various periodic maintenance or replacement 

activities all together. The block is described as “the time between two consecutive preventive 

maintenance instances,” with a fixed cycle length (Heijden M. v., sd). To determine the expected 

number of failures within a block, the renewal function from renewal theory is used, where it is 

equal to the infinite sum of the n-fold convolution of the time to failure. The n-fold convolutions 

are distribution dependent. Additionally, several variations on the basic block replacement policies 

have been discussed in literature. (Nakagawa, 1982) (Sheu, 1992) both suggest a failed component 
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can be replaced by a used component or undergo small repairs, while the replacement block has 

not been reached. Where (Sheu, 1992) adds that it can remain inactive as well if that is the most 

cost-efficient solution.  

Block replacement can offer a great solution for the offshore wind industry, as you can replace 

various components at the same time while only having to use a single Jack-Up vessel. However, 

for the scope of this project we will not look further into the block replacement of multiple 

components.  

 

3.4 Inventory Models 

Most spare components inventories are managed according to a monotonic failure rate, with the 

memoryless property of the exponential distribution of the time between demand occurring. This 

indicates that once a part is replaced it is likely to fail shortly again. However, this often leads to 

excessive stock. In this section we will discuss various spare component inventory management 

systems proposed in literature for maximizing the service level and minimizing excessive inventory 

for a non-homogeneous failure rate. 

3.4.1 Application of Inventory Management in Offshore Wind Sector 

There have been some studies regarding the inventory management of Offshore wind parks. 

However, they have been limiting as the offshore wind industry is regarded as still being in its 

initial state (Tusar & Sarker, 2022). One of the methods takes a part from the playbook of aviation 

and applies it to the offshore wind sector (Soraghan & Lewin, 2017). However, they only take 

improvement measures from aviation and do not incorporate any inventory management. A 

different study utilizes agent-based modelling for the development of analysing the benefits of a 

central shared storage location. Here the behaviour of the supply chain is modelled and evaluated 

based on generated profit margin, and the Mean Time to Repair (MTTR) (Jäger-Roschko, Weigell, 

& Jahn, 2019). Here they compare the risk factors for each of the inventory management policies 

in place and calculate the corresponding costs. They conclude that the right spare part strategy lies 

in maximizing the revenues by increasing the MTTR rather than reducing the costs included.  
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3.4.2 Inventory Optimization Model Using Weibull Failure Function 

Since inventory management models are very limiting in the offshore wind sector, we expanded 

our scope to general non-homogenous failure rate inventory models. Failure rates are of profound 

effect as input parameters for determining the optimal spare component levels. Where most models 

assume a monotonic failure rate derived from exponential interarrival times between failures, this 

fails to mimic increasing failure rates of the wear out stage of a components lifetime. Therefore, 

widely used inventory models, like VARI-METRIC (Sherbrooke, 1986), which are focussed on 

monotonic failure rates are therefore not applicable in their standard form for the problem context. 

(Slay, 1996) considers a non-stationary failure rate dependent on the number of hours the 

component has been in use and is based on the non-stationary (non-homogeneous) Poisson process. 

This provides a general form for non-stationary failure rate inventory models. (Moon & Lee, 2017) 

propose an extension to this model by incorporating the Weibull failure function for minimizing 

the total costs (purchase costs and shortage costs). They used the Weibull distribution as a basis 

for the non-homogeneous Poisson process of the non-stationary failure rate. The Weibull 

distribution was hypothesised for the fitting of the data, and the parameters η, and β are estimated 

according to one of the methods proposed by (Lei, 2008) and (Abernethy, 2001). The various 

estimations methods are the Maximum Likelihood Estimation, Methods of Moments, and Least 

Squares Method. After estimating the parameters, the time-varying failure rate for each of the 

components is determined. According to (Axsäter S. , 2006), “a common assumption in stochastic 

inventory models is that the cumulative demand can be modelled by a nondecreasing stochastic 

process with stationary and mutually independent increment”. Therefore, we can assume the 

demand rate at time to be constant, despite the non-homogeneous Poisson process. According to 

as can be seen in Figure 9  (Slay, 1996).  

Using the demand rate as mentioned above, an optimization model is created for determining the 

optimal stock level for each type of component at each echelon level. The optimization model is 

formulated as a linear integer program, where the echelon index and repair probability are not 

considered for the scope of this research objective. The optimization model minimized the purchase 

costs and shortage costs. It achieves this by limiting the purchase costs with a maximum budget M, 

and by saying that the total purchase costs should always be larger than the total shortage costs 

(Moon & Lee, 2017). 
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3.4.3 Inventory Model  

Using the Weibull or Gamma failure function as input for a demand distribution has multiple 

applications other than discussed in Section 3.4.2. When the shape parameter is equal to 1, the 

distributions are equal to a (shifted) exponential distribution between interarrival times, where the 

count of arrivals over the given time interval has a homogeneous Poisson distribution (Rausand & 

Hoyland, 2004). Using this information, the continuous failure rate of a components wear of the 

bathtub curve can be approximated by assuming Poisson demand rates with time varying demand 

rates. These changing demand rates are determined based on the either the Weibull or Gamma 

demand rates, where the continuous time domain is split up into discretised intervals and thereby 

approximating the continuous changes, see Figure 9, where the y-axis represents the failure rate, 

and the x-axis represents time. In the figure you see the horizontal lines, which represent the 

homogeneous failure rates approximated by a Poisson distribution. Splitting the continuous failure 

rates into discretised intervals of homogeneous Poisson failure rates can offer the basis for most 

inventory models, like (VARI-) METRIC because of their requirement of a constant demand rate 

(Sherbrooke, 1986) (Topan, Transform Weibull Failure Rate into homogeneous Poisson failure 

rates, 2022).  

 

Figure 9. Assuming Constant Demand Rate 

 

(VARI-) METRIC 

As mentioned, (VARI-) METRIC is one of the more commonly used inventory models in reliability 

engineering. METRIC assumes Poisson demand rates allows backordering, uses a (S-1,S) 

inventory policy, and assumes failed components are either repaired or discarded. The inventory 

level of a multi-item problem can be determined based on the desired performance measures. The 

efficient frontier is an example of this, which shows the optimal service level given a certain 
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investment in spare components. An easy way of solving this is by using a “Greedy Heuristic,” 

according to the following steps (Heijden M. v., Multi-item, single site spare part optimization, 

2020) (Axsäter S. , Inventory control, 2nd edition, 2006): 

1. Initialize all stock levels to 0. 

2. Calculate the marginal EBO reduction for all components, which indicates how much the 

EBO decreases per euro invested in one spare component. 

3. Select component, which offers the “biggest bang for the buck” if budget is sufficient. 

 

Supply Chain Inventory Control System 

The policies, like mentioned in Section 3.3.1 have a different application, where the inventory level 

or order-up-to level is determined by the forecasted demand during lead time, and if applicable 

review period. Combining these periods gives the demand during which a replenishment order 

arrives. Additionally, it is also determined by the preferred performance measure. A policy which 

is often used for slow moving items, is the (R,S)-policy. Since slow moving items often only must 

be updated on a periodic basis instead of the continuously. Combining this with the varying failure 

rate on a monthly basis, a variable order-up-to level is required for the optimal cost-efficient 

solution. The order-up-to level of a (R,S)-policy can be adjusted on a periodic level (R) based on 

the forecasted demand during review period plus lead time, which is one of the main advantages 

of this policy. In Section 3.3.2 we see the calculation for the order quantity (Q), which can be 

modified to Demand times Review period for the (R,S)-policy (Axsäter S. , Inventory control, 2nd 

edition, 2006) (Silver, Pyke, & Thomas, 2017).  

 

Supply chain inventory control systems can determine stock based on two different approaches. 

The first approach indicates demand during lead time (and review period) and safety stock based 

on customer service, such as demand satisfied from inventory (fill rate). The second approach 

determines stock based on demand during lead time (and review period) and the safety stock based 

on minimizing costs. For the problem context, we are interested in minimizing the costs between 

storing and lost revenue. Minimizing costs for safety stock can be described in four different ways, 

namely: specified fixed cost per stockout occasion (B1), specified fractional charge per unit short 

(B2), specified fractional charge per unit short per unit time (B3), and lastly the specified charge 

per customer line item short (B4) (Silver, Pyke, & Thomas, 2017). A unit short results in wind 
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turbine downtime, which results in lost revenue. The most appropriate case for the problem context 

is B3, which specifies the fractional lost revenue per unit short per unit time and is described by 

the lost revenue calculations. 

3.4.4 Inventory Model Using Erlang Failure Function 

To ensure no overstocking is of place, a spare part demand by renewal process is more 

appropriately modelled by a varying failure rate demand interval distribution. As mentioned in 

Section 3.2.1, an Erlang distribution covers a continuous treatment of time for a various selection 

of spare part demand. (Saidane, M., M., & Ouajdi, 2011) propose a model for spare part demand 

following an Erlang distribution for the failure rate, with demand size following a Gamma 

distribution with a base-stock (S-1,S)-policy, which is often used in inventory management. They 

assume this increasing failure rate to follow an Erlang-k distribution, which is advantageous 

according to (Gupta, 2010), since Erlang-k distributions can follow a wide range of distributions 

dependant on a varying k parameter. The demand inter arrival times are independent and identically 

distributed according to Erlang-k distribution, meaning that rate λ gives mean inter arrival times of 

T=1/λ, implying that duration between failures is exponentially distributed. Where λ is determined 

based on calculations as shown in Section 3.2.1. Unfortunately, this can only be achieved once the 

demand rates of components stabilizes.  

 

The steady-state probabilities, giving the probabilities of m number of components failed 

(demanded) during lead time are given based on the renewal theory (Kleinrock, 1975) (Larsen & 

Thorstenson, 2008) . This is slightly simplified to Formula26(3.24). 

 

 𝑃𝑚 =∑
(𝑘λL)(𝑘𝑚+𝑖)

(𝑘𝑚 + 𝑖)!
𝑒−𝑘λL

𝑘−1

𝑖=0

 26(3.24) 

 

 

Using these steady-state probabilities, the minimum expected total costs can be calculated for S*, 

which represent the optimal stock policy, which gives the minimum expected total costs. S* can 

be determined by studying the convexity of the expected total costs expression with respect to S. 

However, since an infinite number of solutions are possible, a truncation is required to determine 

the lower bound Sl and upper bound Su of S*, which is proposed by (Babai, 2011) such that Sl ≤ 

S* ≤ Su. 
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3.5 Validation and Accuracy 
To validate whether a fitted distribution fits the data properly, or whether an inventory model 

suffices the necessary needs, various validation and evaluation/accuracy techniques are available. 

In this section we will go over various techniques to ensure the suggested model functions 

appropriately.  

3.5.1 Goodness-of-fit Test 

The goodness-of-fit test is a test that statistically hypothesises whether variability of observations 

is likely from a specific distribution under the null hypothesis. It provides this information by 

evaluating if the sample data set is a good representation and fit of the distribution for the entire 

population. The most common goodness-of-fit test, the Chi-Square, is commonly only applicable 

for discreet distribution (Glen, 2014). Luckily, the Kolmogorov-Smirnov Goodness-of-fit test 

provides an alternative only for continuous distributions. However, it has a serious limitation in 

that the distribution must be fully specified, where the parameters have to be known instead of 

estimated. Otherwise, it causes the critical values to be invalidated (Stephanie, 2016). To overcome 

this problem, a Monte Carlo simulation for determining the parameters is required. Alternatively, 

some tables of various distributions have been published for various distributions, like the Normal 

and Exponential distribution. However, due to the limitations of this research where the real 

parameters are unknown, and a Monte Carlo simulation is not available, such an approach becomes 

not applicable to the situation.  

To still give an indication of the fit of the distribution, one can still perform a Chi-Square test on a 

continuous distribution using the method described in (Winston, 2004). It works by taking n 

observations, then creating k time intervals, where 𝑘 =  √𝑛  and each interval having equal 

probability, being equal to 𝐹(𝑆𝑖+1) − 𝐹(𝑆𝑖). Then, determining the number of observations per 

interval, and calculating the expected number of observations per interval my multiplying the 

number of observations with the probability per interval. After which, the test statistic can be 

calculated using Function27(3.25).  

 𝑄𝑘−1 =∑
(𝑂𝑖 − 𝑃𝑖)

2

𝑃𝑖

𝑘

𝑖=1

 27(3.25) 
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The test statistic can then be compared with the value of the Chi-Square distribution with k-1 

degrees of freedom. If the test statistic is lower, you can accept the H0-hypothesis stating that with 

95% certainty that the observed data can be classified as the predetermined distribution (Winston, 

2004).  

 

3.5.2 Sensitivity Analysis 

Sensitivity analysis describes the effect of changes in parameter on the optimal solution and shows 

how stable the given solution is. This is important since parameters in real life may often change 

due to various conditions or change in contracts. The sensitivity analysis offers a fast solution to 

these changes in parameters without having to rerun the entire model. The objective coefficient 

ranges provides the ranges for which the current solution remains optimal and is denoted by the 

allowable increase and allowable decrease of parameters (Winston, 2004). A common way to carry 

out a sensitivity analysis is to change the parameters one by one in increments and study the effects 

on the optimal outcome.  

 

3.5.3 Scenario Analysis 

To ensure the validity, accuracy and performance of any newly developed model, verification and 

validation is important. This can be ensured by the use of multiple scenarios as a sensitivity 

analysis. These scenarios are generated according to the formal scenario analysis method by (Hsia, 

et al., 1994) consisting of three steps. Initially, these scenarios will be created using a dummy 

dataset following the failure distributions as found in the study. Afterwards, the scenarios will be 

formalized and verified based on boundaries to ensure realistic situations and validated based on 

inconsistencies. To achieve this, a simulation of the problem can be created, to confirm in different 

scenarios the accuracy of the model. In addition, each scenario should be run for a determined 

number of replications, which should ensure the accuracy of the model outcome. 
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4. Modelling approach 

In this chapter, the modelling approach is discussed, which is based on the requirements as 

discussed in Section 1.3.3 and the literature found in Chapter 3. The model we constructed can 

determine expected failure rates and reliability of the MCs. Additionally, we use this information 

to determine the optimal inventory policy parameters for the optimal inventory management of 

MCs. Firstly, the lifetime distribution, and the corresponding parameters will be determined in 

Section 4.1. Followed by Section 4.2, where we will determine the demand rates of MCs. Lastly, 

in Section 4.3 we will compute the inventory management model and corresponding inventory 

levels.  

4.1 Lifetime Distribution & Parameters 
In this Section, we will discuss the most appropriate lifetime distribution based on the requirements 

given by Vattenfall in Section 4.1.1. Afterwards, we will fit this distribution with the given 

historical failure data to determine the corresponding parameters in Section 4.1.2.  

 

4.1.1 Requirement Lifetime Distribution 

To determine the most appropriate lifetime distribution, we look back at the requirements of 

Vattenfall mentioned in Section 1.3.3. Requirement 2 stated the following: “Demand rates of 

components should be computed based on historic failure data, including non-failed components. 

If this is not available, standard failure rate provided by the OEM should be used instead.” Both 

the Weibull distribution, as the Gamma/Erlang distribution can determine the demand rates based 

on historical data. However, we only found that Weibull can consider the non-failed components 

(long-life components), which should be incorporated to properly determine the corresponding 

parameters. Therefore, the Weibull distribution is the more appropriate lifetime distribution for the 

problem context. 

 

4.1.2 Weibull Distribution 

The lifetimes of the MCs are considered to be type I and IV censored as described in Section 3.1, 

which means that we still have non-failed components, and the components were put into place at 

different points in time. We adjusted the time points in such a way that all components start at time 
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t=0. This means that the location parameter is set to 0, which means the location parameter becomes 

unnecessary. This concludes that a two-parameter Weibull distribution can be used. First, dummy 

data for 100 wind turbines will be generated consisting of failed components, and non-failed 

components. The dummy dataset will therefore show the failure times and the corresponding 

lifetime durations of all the components. This dummy data will fulfil two requirements 

(Jacobebbinghaus, Müller, & Orban, 2010): 

1. Disclosure risk: The dummy data must be anonymous. Meaning there is no risk of 

disclosure, and no information shall be inferable to a person or firm. 

2. Utility: The model runs similarly on the dummy data as it would on real data.  

 

After the dummy data is created, to determine the Weibull distribution parameters, the second 

method mentioned in Appendix E. Multi-Censored Weibull Parameter Estimation by (Zaiontz, 

2022) will be used. We will use this approach because of the multi-censored data that is available. 

The method works as follows:  

 

We assume m+n components enter the system, which can be at various times, and they can be 

removed at various times from the system. Here we have n components failing at time 𝑋1, … , 𝑋𝑛 

and m components have not failed yet after 𝑌1, … , 𝑌𝑚  units of time. For the estimation of the 

parameters, the approach uses Newton’s method with the extension on an iterative approach, with 

the following two steps: 

- Make an initial guess for 𝛽𝑜 

- Iterative step: assume estimate of 𝛽𝑘 and define new more accurate estimate 𝛽𝑘+1, do this 

until 𝛽𝑘 converges. The steps look at follows: 

 

 𝛽𝑘+1 = 𝛽𝑘 −
ℎ(𝛽𝑘)

ℎ′(𝛽𝑘)
 28(4.1) 

where  

 

 ℎ(𝛽𝑘) =
1

𝛽
+
𝑢

𝑛
−
𝑝 + 𝑤

𝑟
 ,             ℎ′(𝛽𝑘) = −

1

𝛽2
−
𝑝′ + 𝑤′

𝑟
+ (

𝑝 + 𝑤

𝑟
)2  29(4.2) 

and  
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 𝑢 =∑ln (𝑋𝑖)

𝑛

𝑖=1

           𝑣 =∑𝑋𝑖
𝛽

𝑛

𝑖=1

            𝑧 = ∑𝑌𝑖
𝛽

𝑚

𝑖=1

          𝑟 = 𝑧 + 𝑣  30(4.3) 

 
𝑤 =∑𝑋𝑖

𝛽 ln(𝑋𝑖)       𝑤
′ =∑𝑋𝑖

𝛽 ln(𝑋𝑖)
2      

𝑛

𝑖=1

  

𝑛

𝑖=1

 

𝑝 =∑𝑌𝑖
𝛽ln (𝑌𝑖)         𝑝

′ =∑𝑌𝑖
𝛽 ln(𝑌𝑖)

2      

𝑚

𝑖=1

 

𝑚

𝑖=1

 

31(4.4) 

 

When 𝛽𝑘 converges, we calculate the Eta value as follows: 

 

 𝜂 = (
𝑟

𝑛
)1/𝛽 32(4.5) 

 

 

We carried out the above-mentioned steps for the MCs for which dummy data could be created in 

accordance with the requirements. Next, we used these calculated parameters for the calculation of 

demand/failure rates and eventually the inventory model, which we will elaborate on in the 

remainder of this chapter.  

4.2 Demand Rates 

In this section, we will elaborate on the demand rates of MCs, which is based on the calculated 

Weibull distribution parameters in Section 4.1. The demand rates are represented by the Weibull 

distribution failure rates but assumed to be Poisson distributed over a discretized timeline, as shown 

in Figure 9. To calculate the failure rate, we first look at the reliability of a specific component. 

Since we already know the component has survived a set amount of time T until now, the failure 

rate will be calculated using the conditional reliability function of the Weibull distribution given 

by Function33(4.6), where the reliability is calculated after the component has survived for T months 

already. After the conditional reliability, we also computed the PDF of the Weibull distribution 

using Function9(3.7). Using these two calculations, we can then calculate the conditional failure 

rate according to Function11(3.9).  

 

 𝑅(𝑡|T, η, β) = 𝑒
−((

𝑡+𝑇
𝜂
)
𝛽
−((

𝑇
𝜂
)
𝛽
))

 33(4.6) 
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To ensure enough stock is kept, we will also compute the failure rate of a component for the next 

months, since the components have between 1-4 months lead time from the OEM, which we will 

denote by L. However, when a failure occurs, we also require a Jack-Up vessel. The Jack-Up vessel 

is only ordered on a reactive basis (when the failure actually occurs) because the costs of ordering 

a Jack-Up vessel are in the in the hundreds of thousands. Because the Jack-Up vessel is only 

ordered on a reactive basis, this ensures that causes the component to always have a downtime at 

least equal to the lead time of the Jack-Up vessel. Therefore, it is not beneficial to order any spare 

components equal to the Jack-Up vessel lead time in advance. Thus the first available time of the 

Jack-Up vessel becomes the time of demand realization. To incorporate this, we therefore subtract 

the Jack-Up lead time, which is denoted by J, from the component lead time when deciding how 

far to look ahead for demand. This leaves us with the demand during component lead time minus 

Jack-up lead time, denoted by 𝐷𝐿−𝐽. We do this for all individual components of the same type, 

and then add all of them up to get the aggregated demand rate as mentioned in Section 3.2.2.  

Once the 𝐷𝐿−𝐽 is determined for a specific moment t, the demand is assumed to be Homogeneous 

Poisson distributed like in Figure 9, for the sake of simplicity in calculations. In addition, Poisson 

has the characteristic that the mean-to-var ratio is equal to 1. This means that the expected demand 

rate calculated is equal to the expected variance of the demand rate, which we will use in Section 

4.3.  

 

4.3 Inventory Model 

In this section, we will elaborate on the most appropriate inventory model and policy regarding the 

problem context. Selecting the right inventory policy is crucial for minimizing inventory costs, 

while maintaining optimal production/operating levels. In addition, we will describe the 

computations of the parameters of the selected inventory policies. 

4.3.1 Optimal Inventory Policies 

According to the requirements stated in Section 1.3.3, the inventory model should be updated at 

least every month. Additionally, most MCs are slow moving items, based on past experiences. This 

indicates that often no multiple spare components are required in the same month. These 

requirements show that a (R,S)-policy, (s,Q)-policy, or (S-1,S)-policy offer an appropriate inventory 
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management, which we discuss in Section 3.4.3. However, (R,S)-policy is usually used for items 

of lesser importance due to the less frequent ordering of components because of the review period. 

Additionally, when the review period is set to 0, it is equal to the (s,Q)-policy, which means that a 

(R,S)-policy can be taken out of the equation. Additionally, when the order quantity Q from the 

(s,Q)-policy is equal to 1, it becomes a (S-1,S)-policy. Therefore, it might be interesting to 

investigate whether having an order quantity bigger than one can be beneficial. This is dependent 

on the ordering and transportation costs of a component. Ordering multiple components at the same 

time will safe transportation costs since they can be transported simultaneously. However, firstly 

we will discuss how the different parameters of the two policies can be calculated.  

4.3.2 Policy Parameter Calculation 

(s,Q)-policy 

For the (s,Q)-policy, the order quantity Q can be predetermined, which is required for calculating 

the order-level s. To calculate the order-level s, we use Function34(4.7), where additional to the 

demand, we also require the Safety Stock (SS), which is denoted by SS.  
 

 𝑠 =  𝐷𝐿−𝐽 + 𝑆𝑆  34(4.7) 

 
 

The SS is additional inventory used for minimizing the risk of downtime weighted against the 

holding costs. To calculate the SS the following equation will be used (Silver, Pyke, & Thomas, 

2017): 

where, 
 

𝐿 = 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒; 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 

𝐽 = 𝐽𝑎𝑐𝑘 − 𝑢𝑝 𝑣𝑒𝑠𝑠𝑒𝑙 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒; 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 

𝑘 = 𝑆𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑟 = 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ; 𝑖𝑛 𝑒𝑢𝑟𝑜𝑠 
𝐵3 = 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ; 𝑖𝑛 𝑒𝑢𝑟𝑜𝑠 
𝐸(𝐷) = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑; 𝑖𝑛 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ 

𝜎𝑥 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 
𝜎𝐿−𝐽 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 𝑚𝑖𝑛𝑢𝑠 𝑗𝑎𝑐𝑘 − 𝑢𝑝 

𝐺𝑢(𝑘) = 𝑆𝑝𝑒𝑐𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑁𝑜𝑟𝑚𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 
 

 𝜎𝐿−𝐽 = √𝐿 − 𝐽 ∗ 𝜎𝑥 36(4.9) 

 

 𝑆𝑆 =  𝑘 ∗ 𝜎𝐿−𝐽 35(4.8) 
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 𝜎𝑥 = √𝐸(𝐷) 37(4.10) 

 

 𝐺𝑢(𝑘) =
𝑄

𝜎𝐿−𝐽
∗ (

𝑟

𝐵3 + 𝑟
) 38(4.11) 

 

 𝑘 =
𝑎0 + 𝑎1𝑧 + 𝑎2𝑧

2 + 𝑎3𝑧
3

𝑏0 + 𝑏1𝑧 + 𝑏2𝑧2 + 𝑏3𝑧3 + 𝑏4𝑧4
 39(4.12) 

where, 

 𝑧 = √ln (
25

𝐺𝑢(𝑘)2
) 40(4.13) 

 

 

𝑎0 = −5.3925569  

𝑎1 = 5.6211054 

𝑎2 = −3.8836830 

𝑎2 = 1.0897299  

𝑏0 = 1 

𝑏1 = −0.72496485  

𝑏2 = 0.507326622 

𝑏3 = 0.0669136868 

𝑏4 = −0.00329129114 

 

 

 
Following the equation steps as mentioned above from Function34(4.7) to Function40(4.13), we end 

up with the order-level s in a specified month. The expressions do not assume a specific distribution 

and can therefore be used in conjunction with any other distribution, which fits the Poisson 

distribution that we assumed (Silver, Pyke, & Thomas, 2017).  

 

Increasing the order quantity Q to two or more, can have financial benefits for Vattenfall. It can 

reduce the transportation costs, when multiple components can be transported at the same time, 

using the same transportation vehicle. Additionally, older components, which are taken out of 

production, are a lot more expensive due to requiring a new mould to be produced. Therefore, it 

can be more financially beneficial to order multiple components at the same time, reducing the 

costs per component drastically. Unfortunately, how much one can benefit from ordering multiple 

components at the same time is uncertain. Therefore, during the experiments we will experiment 

with various savings per order quantity.  
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(S-1,S)-policy 

For the base stock policy, we will use the exact (look ahead) method. For the method we use the 

same notations as the method described above. The method uses an enumerative approach to find 

the optimal stock level according to a predefined cost function. The enumerative approach works 

by first Initializing the base-stock at 0 and then following the steps as mentioned below: 

1. Determine the demand 𝐷𝐿−𝐽. 

2. Calculate the probability of the inventory level being equal to x according to the following 

Function41(4.14), which can be written as Function42(4.15). The expected inventory level is 

then calculated using Function43(4.16). 

 𝑃(𝐼 = 𝑥) =  {
𝑃(𝐷 = 𝑆 − 𝑥),
𝑃(𝐷 ≥  𝑆),       

         𝑥 = 1, . . , 𝑆
  𝑥 = 0  

 41(4.14) 

 𝑃(𝐼 = 𝑥) =

{
 
 

 
 

𝑒−𝜆𝐿(𝜆𝐿)𝑆−𝑥

(𝑆 − 𝑥)!
,   𝑥 > 0

1 −∑
𝑒−𝜆𝐿(𝜆𝐿)𝑢

𝑢!

𝑆−1

𝑢=0

,   𝑥 = 0

 

 

42(4.15) 

 𝐸[𝐼] =  ∑ (𝑥) 𝑃(𝐼 =  𝑥)
𝑆

𝑥=0
 43(4.16) 

   

3. Calculate the Expected Backorders (EBO) according to function: 

 

 𝐸𝐵𝑂 =  𝐸[𝐷] −  𝑆 +  𝐸[𝐼] 44(4.17) 

   

4. Calculate the cost function of the given stock level based on the expected inventory and 

expected backorders: 

 

 𝐶(𝑆) = 𝑟 ∗ 𝐸[𝐼] + 𝐵3 ∗ 𝐸𝐵𝑂 45(4.18) 
 

5. Increase S by one and go back to step 2, until cost function increases compared to the 

previous enumeration. Enumeration with lowest costs gives the optimal stock level (S) 

(Axsäter S. , 2006) (Shang & J-S., 2003).  
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4.4 Experimental Design 

In this section, we will introduce the experimental design, which we will use for the validation and 

the performance of the model. We will accomplish this by comparing various parameter settings 

and policies with the use of Monte Carlo simulation. 

4.4.1 Experimental Settings 

To determine the optimal inventory policy for the problem context given certain parameters. The 

(s,Q)-, and the (S-1,S)-policy will be compared using a Monte Carlo simulation. Here we will set 

the order quantity Q, of the (s,Q)-policy equal to 2, since if its equal to one, it is the same as a (S-

1,S)-policy. Furthermore, “A Monte Carlo simulation is a model used to predict the probability of 

different outcomes when the intervention of random variables is present” (Kenton, 2021). In this 

Monte Carlo simulation, we will increment over time simulating component failures and recreate 

the orders of components based on the given parameters of the policy following the calculations 

from Section 4.1, Section 4.2, and Section 4.3. The component failures will occur based on their 

reliability against a random number from a given random number seed, ensuring an even 

comparison for the different policies.  

The simulations will be run for a timeframe of three years, to demonstrate the component orders 

and order-up-to levels, which goes in accordance to the requirements in Section 1.3.3, which was 

formulated by the Supply Chain department of Vattenfall. Since three years in not enough to 

include different phases of the bathtub curve, we initialize the simulation of a park when the park 

has been operating for a set amount of years. To ensure, we also include a different time period of 

the bathtub curve, we change the commission date during the experiments to monitor the impact. 

The structure of the Monte Carlo simulation can be found in Appendix G. Oversight Model and 

Monte Carlo Simulation. 

 

Number of replications 

To ensure we can draw the right conclusions form the results, we must reduce the variability, 

increasing the significance, and increasing the confidence level of the results. We accomplish this 

by running multiple replications of the same experiment with different random numbers, which 

will ensure the validity of the decision of the best policy. To determine the number of replications, 
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we will use the method described by (Law, 2015), which is called “the sequential procedure”. The 

procedure works by increasing the numbers of replications incrementally until the confidence 

interval half width of the sample mean and sample variance using the Key Performance Indicator 

(KPI) is smaller than the relative error corrected target value. To determine the number of 

replications we continue running replications until this target is met. The steps and calculations of 

the procedure to determine the number of replications are as follows: 

1.Determine the accepted value of the relative error 𝛾 and desired confidence interval 𝛼. 

2. Determine the corrected value of the relative error 𝛾′ = 𝛾/(1 + 𝛾). 

3. Run the model on predetermined settings for a large number of replications. 

4. Calculate the sample mean and sample variance for each number of replications, 

according to the following Functions. 

5. Calculate the confidence interval half width for each number of replications, according 

to the following function.  

 

6. If the confidence interval half width is smaller than the corrected value of the relative 

error, than that is the minimum number of replications.  

 

KPI 

The KPI of interest is the Total Relevant Costs (TRC) given by Function49(4.22) by summing over 

all months of the simulation.  

where, 

𝑡 = 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠; 𝑡 = {1, . . , 𝑇} 

𝑟 = 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ; 𝑖𝑛 𝑒𝑢𝑟𝑜𝑠 

𝐵3 = 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ; 𝑖𝑛 𝑒𝑢𝑟𝑜𝑠 

𝐼𝑡 = 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

 

𝑋̅𝑛 =
1

𝑛
∑𝑋𝑗

𝑛

𝑗=1

  

𝑆𝑛
2 =

1

(𝑛 − 1)
∑|𝑋𝑗 − 𝑋̅𝑛|

2

𝑛

𝑗=1

 

46(4.19) 

 

47(4.20) 

 𝛿(𝑛, 𝛼) =  𝑡𝑛−1,1−𝛼/2√𝑆𝑛2/𝑛  48(4.21) 

 𝑇𝑅𝐶 =∑𝐼𝑡 ∗ 𝑟 + 𝑆𝑡 ∗ 𝐵3 + 𝐶𝐶𝑡 ∗ (1 − 𝑄𝐷)

𝑇

𝑡=1

  49(4.22) 
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𝑆𝑡 = 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝐶𝐶𝑡 = 𝐶𝑜𝑠𝑡𝑠 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑎𝑙𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑄𝐷 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑙𝑎𝑟𝑔𝑒𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑎𝑡 𝑜𝑛𝑐𝑒 

4.4.2 Sensitivity Analysis 

We use a sensitivity analysis to determine the variables, which have a significant impact on the 

performance of the model. An important aspect to consider when performing a sensitivity analysis 

is to use the same random numbers to have control over the randomness of the experiment. This 

ensures that the change in the KPI is not confounded by a change in the randomness (Law, 2015). 

In addition, when determining the sensitivity of multiple parameters, one can perform a cross-

statistical experiment showing the interactions between the parameters. However, in our case, we 

are not interested in the interaction between different parameters, which would costs a lot of time, 

but only the sensitivity of the solution when changing a single variable. Therefore, we will not 

perform a cross-statistical analysis. All parameters which we will vary, and their ranges are 

described in Table 5.  
 

Table 5. Experiment Settings 

Variable Range 

Jack-up lead time {2,3,4} months 

Component lead time * months 

Holding costs {20%, 25%, 30%} 

Order quantity** 2,3 

Order quantity discount** {0%, 5%, 10%) 

*One month longer and one month shorter than lead time stated in Table 2 

**Only applicable for the (s,Q)-policy 

Combining all these parameters in different experiments would result in 2+2+2= 6 different 

experiment for the (S-1,S)-policy, and 2+2+2+2+2=10 different experiments for the (s,Q)-policy. 

Additionally, we run each individual experiment until the confidence interval half width is smaller 

than the relative error or until 50 replications have been reached. To ensure a valid comparison can 

be made between the experiments, we will reset the random number seed for each experiment 

setting, ensuring the same failures occurring over time for the different replications of each 

experiment.  
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5. Experimental Results 
In this chapter we will elaborate on the validation and performance of the model, which consists 

of the generated results from the experimental design as discussed in Section 4.4. Firstly, the model 

and approach will be validated in Section 5.1. Secondly, the results of the experiments will be 

discussed in Section 5.2. Lastly, all the results and result findings will be concluded in Section 5.3. 

 

5.1 Model Implementation and Validation 
In this section, we will validate the model, which we proposed in Chapter 4. We will do this by 

performing a goodness-of-fit test, setting up the Monte Carlo simulation and determining the 

number of replications necessary. First, we performed the goodness-of-fit test as described in 

Section 3.5.1, to determine whether a Weibull distribution is indeed the prober distribution to use. 

Secondly, we implemented the model to prepare the calculations for the inventory management. 

Thirdly, we set up the Monte Carlo simulation to be able to run the model using various settings. 

Lastly, we ran the simulations and determined the optimal number of replications based on the KPI.  

5.1.1 Goodness-of-fit test 

To ensure that we are using the right distribution type, we will first perform a Goodness-of-fit test 

for one MC, since only for this one component enough data is available to perform this test. For 

this component we have 45 observations. Following the steps as mentioned in Section 3.5.1, this 

gives us 7 intervals (“bins”), where each interval has an equal probability with the size of 

𝐹(𝑆𝑖+1) − 𝐹(𝑆𝑖). Counting the observations per interval and calculating the expected number of 

observations per interval can be seen in  Figure 10. We then calculate the Chi-Square value using 

an alpha of 0.05 to give us a 95% confidence interval. This results in a value of 12.59, while the 

test statistic, which is calculated according to Function27(3.25), is 4. This means that we can say 

with 95% certainty that we can accept the H0-hypothesis stating that the observed values are 

according to a Weibull distribution. We assume that this will be true for all MC, since we cannot 

test this due to lack of data. 
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Figure 10. Chi-Square test 

5.1.2 Standard Model Settings 

We constructed the model described in the previous chapter in Python using the parameters found 

in literature, which can be seen in Table 6. These parameters are used as base setting for the model 

and will be changed during the sensitivity analysis using the Monte Carlo simulation, which we 

constructed in Excel VBA. Additionally, we implemented the static parameters like the component 

costs from Table 3, and the lost revenue as described in Section 2.4, based on Function2(2.2) and 

the settings from Table 6. These settings are based on the dummy park created for the experiments. 

The power rating is based on the average turbines as mentioned in Section 2.4. The practical ranges 

of the capacity factor is between 20% and 70% (TUDelft), for which we take the low average, and 

experiment with this in Section 5.2.4. For the number of turbines, we took from Appendix A. 

Offshore Wind Parks the biggest offshore wind park Vattenfall is operating.  

Table 6. Base Settings 

Parameter Setting 

Jack-up lead time 3 months 

Component lead time Dependent per component 

Holding costs 25% 

Order Quantity 2 

Order Quantity Discount 0% 

Number of turbines 100 

Power Rating 6.1 MW 

Capacity Factor* 0.2 

*varies per month, as it is a seasonal effect 
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Furthermore, for the Monte Carlo simulation, we determine the Weibull parameters, and the 

average failure rate of the three-year period based on the dummy data we created for 7 made-up 

components, as can be seen in Table 7. These dummy components use indications of real 

components such as the component price and lead times as we found in literature. Some of the 

dummy data ended up with very little failures, which is caused by the very high Eta value. Such 

high Eta values are likely not always representative. However, we will still use them to model their 

impact on the model results.  
 

Table 7. Weibull Parameters and Failure Rate 

MC Beta 
Eta 

(months) 

Average Expected 

Failure Rate Per Month* 

Price in Euros 

(*1000) 

Lead time 

(months) 

Component 1  3.271 467 0.037 1,761.2 1 

Component 2  5.297 186 0.389 151.5 1 

Component 3  3.023 191 0.403 96.8 2 

Component 4  2.202 70 1.084 1,024.0 4 

Component 5  1.067 1,119 0.071 272.9 4 

Component 6  1.826 962 0.036 284.8 3 

Component 7  4.126 143 0.425 104.7 3 

*Calculated for a park consisting of 100 wind turbines 

 

Because the later stages of the bathtub curve, with higher failure rates, are more interesting because 

more failures occur and thus inventory has a higher probability of being beneficial, we initialized 

the commission year at 2010 for all components. We did this except for component 4, since 

component 4 has a relative low Eta value. Therefore, we initialized the commission year for 

Component 4 at 2016.  

5.1.3 Monte Carlo Simulation 

We set up a Monte Carlo Simulation, where we iterate over the three-year period and simulate 

component failures using multiple replications. It consists of multiple steps. First, we take the 

dummy data set. From the dummy data set we determine the Weibull parameters as described in 

Section 4.1. Secondly, we calculate the expected demand over the future period as described in 

Section 4.2, and calculate the parameters of the given policy as described in Section 4.3. Once we 

know the policy parameters, we simulate a failure based on calculating the conditional reliability 

given the age of the component and drawing a random number. If the random number is higher 

than the conditional reliability, we assume the component to have failed in that month. Additionally 
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based on the inventory policy parameter we determine how many components should be ordered 

in each month on top of the failed components of that month. The components that have broken 

down, and thus the wind turbines stay out of order until a spare component has arrived or is ready 

from inventory and the jack up vessel has been ordered jack-up lead time beforehand. If a 

component is required for a broken wind turbine, but the jack up vessel is not ready yet, the 

component will be dropped in the inventory. Table 8 gives an example of the results of the first 

seven months of a single experiment running on the base parameters of the Component 4 and using 

the (S-1,S)-policy.  

We first determined whether an individual wind turbine breaks down by looking at the conditional 

reliability against a randomly generated number. All of these are summed and denoted in the first 

row as number of breakdowns in each month. Once a breakdown has occurred, a replacement 

component is required. Additionally, we also order the components to increase the pipeline level 

to match the Order-up-to level S. This results in the order quantity being equal to 5 in the first 

month (2 breakdowns, and an order-up-to level of 3). The pipeline represents how many 

components are in inventory or on their way from the OEM. The order-up-to level is determined 

based on the policy calculations. The order arrival represent when an earlier placed order has 

arrived (order from x component lead time before). Lastly, the #WT down, represents the total 

number of wind turbines down in month t, which are waiting for a part.  

 
Table 8. Monte Carlo Simulation 

 

Year 2022 2022 2022 2022 2022 2022 2022 

Month 1 2 3 4 5 6 7 

Breakdowns 2 3 4 0 4 0 0 

Inventory 0 0 0 0 0 0 2 

Order 5 3 3 0 4 0 0 

Pipeline 3 3 2 2 2 2 2 

S 3 3 2 2 2 2 2 

Order arrival 0 0 0 0 5 3 3 

#WT down 2 5 9 9 8 5 4 

 

Since Vattenfall is a commercial company and they are the user of the wind turbines, they are only 

interested in minimizing the costs. Therefore, we will only consider the corresponding costs per 

experiment as KPI, which is given by Function49(4.22).  
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5.1.4 Method Performance 

As mentioned, we will test the performance of the different policies and overall method by using 

the Monte Carlo simulation with the basic parameters as described in Section 5.1.2. The results can 

be seen in Table 9.  

Table 9. Method Performance  

  
MC 

No Inventory (s,Q) (S-1,S) 

 TRC TRC s TRC S 

  Component 1  2.87 4.24 - 2.87 - 

  Component 2  4.98 5.10 - 4.98 - 

  Component 3  4.31 4.38 - 4.31 - 

  Component 4  110.47 113.59 2.22 111.68 2.25 

  Component 5  1.07 1.72 1 1.11 0.11 

  Component 6  0.53 0.70 - 0.53 - 

  Component 7  8.76 8.82 - 8.76 - 

  *All values are in millions 

Al the best performing results can be seen in bold, and we see that No Inventory performs the best 

for each one of the MCs. For some of the MCs, the (S-1,S)-policy performs equally as good as the 

No Inventory. However, this is only true for the components, where the Component lead time is 

equal or shorter than the Jack-Up lead time. This is because when the Jack-Up lead time is equal 

or longer than the component lead time, the expected demand 𝐷𝐿−𝐽 is equal to 0, which means that 

the (S-1,S)-policy becomes equal to the no inventory (only order when you have demand). For the 

other components like the Component 4, and Component 5, we see that using the inventory policies 

the costs increase. We can explain this due to the costs of purchasing a component being so high 

that in the three-year period these costs still have not paid off. Increasing the period to 10 years 

decreases this gap but remains in the benefit of not keeping inventory. For Component 4 and 

Component 5, we see the average policy parameter over the time period and replications, which we 

will use later on in the sensitivity analysis as a reference. Additionally, when we look at Table 9 

we see that the (s,Q)-policy is outperformed, when not considering any order quantity discounts. 

This is expected, since for a lot of the components for the most months you only require one 

component, but you must order in quantities of 2. This results in having too many components.  
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Overall, when using these standard settings, we see that not using any inventory management is 

more economically beneficial than using any inventory. This concludes that with these settings, the 

Central warehouse offers no benefit for Vattenfall.  

5.2 Experimental Results 
In this section, we will explore the sensitivity analysis described in Section 4.4.2, where we will 

vary the parameters as described in Table 5. Doing so will give us an indication on how much 

impact these parameters have on the final outcome, and whether it is beneficial for Vattenfall to 

invest or safe money for different contracts.  

5.2.1 Sensitivity Analysis 

We performed the sensitivity analysis for all components and all policies, where we looked at the 

percentual change of the TRC when increasing or decreasing the variables as stated in Table 5. 

This shows us the impact each of these variables have on the TRC over the time period for different 

components. This percentual change is based on the TRC as provided in Table 9, and is shown per 

policy in the Figures below. From Figure 11 we see that most negative effects are from increasing 

the component or Jack-Up lead time, which indicates that the solution is quite sensitive to variations 

in the lead time. The most benefit is gained from either reducing the component lead time or 

reducing the Jack-Up lead time. However, reducing the Jack-Up lead time is only beneficial for the 

components who’s component lead time was not already bigger than the Jack-Up lead time. This 

makes sense as increasing this gap would result in ordering more components for stock, and thus 

paying more holding costs.  

 

Figure 11. (S-1,S) Sensitivity Analysis 
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Figure 12. (s,Q) Sensitivity Analysis 

From Figure 12 we can see a lot various effects on the different components. The main points that 

jump out are decreasing the Jack-Up lead time for component 6 has a dramatically bad effect on 

the TRC. This can be explained by the fact that the component lead time was equal to Jack-Up lead 

time, which would be offset by decreasing the Jack-Up lead time. This would lead to ordering extra 

components and keeping them on stock. However, because the Eta is so high and thus so little 

failures are expected, the extra costs of keeping inventory has major effects on the TRC.  

In addition, by increasing the Jack-Up lead time component 5 actually benefits a lot. This is cause 

because again this takes away the difference between component lead time and Jack-Up lead time, 

which takes away the need for inventory or unnecessary downtime, which explains the benefit in 

TRC.  

 

Figure 13. No Inventory Sensitivity Analysis 
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Lastly, Figure 13 shows results, which are expected, since you are not incorporating any inventory. 

Therefore, decreasing the component lead time or Jack-Up lead time generally decreases the TRC 

and increasing the component or Jack-Up lead time increases the TRC. As expected varying the 

holding costs is not effecting the TRC since no inventory is being held.  

 

All the intermediate results per component per policy can be found in Appendix F. Sensitivity 

Analysis. When comparing all the results and impacts, we see that only for component 7 the (S-

1,S)-policy to outperform no inventory by 600.000 when decreasing the Jack-Úp lead time from 3 

months to 2 months. This would result in an order-up-to level of 2 for most months. This benefit 

can be used to incorporate the (S-1,S)-policy and invest the benefit for a 1 month shorter Jack-Up 

lead time for all component 7 orders. For all other instances, the No Inventory stayed the optimal 

policy. Additionally, we see that varying the holding costs hardly has any effect on the TRC.  

 

5.2.2 Batching 

In this section we will look at the impact of batching on the performance of the (s,Q)-policy, and 

the impact of potential discounts when ordering larger batches. As discussed in 4.3.2, batching of 

MCs can be beneficial once certain components are no longer being produced or when a mould is 

no longer available and is required to be build. To see the impact of this, we set up a similar 

sensitivity analysis, which includes increasing the batch size to 3 or 4, and a component discount 

of 0%, 5%, or 10%. Figure 14 shows the average results in this specific order. 

 

Figure 14. Batching Effects 
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In Figure 14 we can see that including a quantity discount has a positive effect for all components, 

when the order quantity stays equal to 2. When the maximum order discount of 10% is applied to 

the order quantity of 2, we see that Component 4, Component 7, Component 3, and Component 2 

suddenly outperform the other policies resulting in lower TRC.  

Additionally, we see that increasing the order quantity has very strong negative effects on a few 

components, Component 1, Component 6, and a little bit the Component 5. We suspect this is 

caused by the high Eta value of these components, which makes failures quite uncommon, and thus 

having a high order quantity will result in having a lot of spare components in stock. All with all, 

we see that increasing the order quantity has worse effects on all components but by incorporating 

an order quantity discount, might lead to the (s,Q)-policy with an order quantity of two being the 

best solution for the problem. 

5.2.3 Impact of Aging and New Wind Parks on Inventory Policies  

An interesting aspect, which came forward in the Monte Carlo Simulation, is that aging of 

components can have quite an impact on the parameters such as the order-up-to-level of the 

inventory policies. Since only Component 4 and Component 5 have a component lead time longer 

than the jack-Up lead time and thus are the only components, which are interesting to look at. In a 

three-year period, the order-up-to-level of these components can change multiple times as a result 

of the components aging or failures occurring. When in a period of a few months no failures occur, 

the probability of a failure occurring in the next month’s increases, resulting in the order-up-to 

level to increase. When a lot of failures occur in a short timeframe, we see that the total number of 

expected failures decreases and so does the order-up-to level. Another interesting aspect to consider 

is the number of wind turbines, which use a specific component. In general, when more turbines 

are using the same component, we can say that the expected number of failures for that specific 

component is higher and thus keeping one in storage can be more beneficial. To see this effect, we 

tested it with the Gearbox by constructing a new wind park of 60 wind turbines, which are the same 

type. This creates a total population of 160 wind turbines, which is the near the same size of the 

biggest wind park in operation currently. Figure 15 shows the average order-up-to-level and 

expected failure rate over time of the normal park vs the park including a new park.  
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Figure 15. Effects of Aging and New Parks on Component 4 
 

Using this knowledge, we can say that when a new wind park is built, the likelihood of expecting 

a failure is relatively low in the beginning, with the opposite being true for older parks. All of these 

above-mentioned effects show the importance of updating the policy parameters on a monthly basis 

to ensure you always order the optimum number of components in a given month. However, no 

inventory still outperforms the (S-1,S)-policy within the three-year period.   

Additionally, to demonstrate the varying failure rate over time, we looked at the failure rate of each 

component over a 25 year period, which is the standard lifetime of a wind park, while using the 

Eta’s as stated in Table 7. You can see this in Figure 16. Here we see that apart from the Component 

4, Component 7, Component 3, and the Component 2 the failure rate hardly increases over a 25-

year period. This is caused due to their Eta’s begin relatively small compared to the other 

components. The Eta’s are within the 25-year period, meaning that a larger portion of these 

components will have failed. This is representative in the industry as some components are not 

resistant to all the environmental factor, and thus most of them will not last the 25-year period 

(Froese, 2018). For these components, the expected number of failures increases over time more 

drastically. However, for an older park with higher expected failure rates for these components, 

will still not overcome the high costs of ordering extra components by itself. It does however, make 

using the (S-1,S)-policy more beneficial than before, which in combination with a higher capacity 

factor and thus higher lost revenue, which we experiment with in the next Section, can result in the 

(S-1,S)-policy to outperform no inventory.  
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Figure 16. Failure Rate Over Time 

5.2.4 Downtime Costs 

From the results we saw that the high purchase costs of a component causes the benefit of keeping 

stock to become negligible .To ensure that these high component costs are overcome, a bigger 

benefit of using inventory (and thus reducing overall downtime) is required. One can achieve this 

by having higher downtime costs, which translates to higher power rated or capacity factor wind 

turbines. To see how much the downtime costs would have to be, we ran some experiments by 

changing he capacity factor from 0.2 to 0.165, 0.25, 0.33, and 0.4 but keeping the power rating the 

same at 6.1 MW. We ran these experiments only for Component 4 and Component 5, since these 

are the only components with a component lead time longer than the Jack-Up lead time. Table 10 

shows the results for Component 4, once the downtime costs are at least 80,000 euro’s per month, 

which translates to a capacity factor of 0.33, that over a 10 year period the base stock policy 

becomes more beneficial for Component 4 by a slight margin and thus it will be beneficial to keep 

stock according to the policy. Table 11 shows the for Component 5 the base stock policy only 

becomes beneficial after the ten-year period once the lost revenue costs reaches 160,000 on average 

per month. This corresponds to capacity factor of 0.66, which is twice as high as for Component 4. 

This difference can be explained by the Eta value of both components. The Eta value of Component 

4 is way lower than the Eta value of Component 5, which means that Component 4 has a lot more 

failures per month, which can be seen by the higher failure rate in Table 7. More failure means that 

they will have more inventory and thus benefit more from higher lost revenue in regards to less 

failures.  
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The average capacity factor for offshore wind turbines in the period from 2020/2021 is 0.381 

(SPARTA, 2021). This means that on average for most offshore wind turbines it will be beneficial 

to store spare parts for components similar to Component 4 over a 10-year period according to the 

(S-1,S)-policy but not for components similar to Component 5.  

 

Table 10. TRC with Varying Downtime Costs Experiment Component 4 

Capacity Factor 0.165 0.25 0.33 0.4 

Lost Revenue per Month 40,000 60,000 80,000 100,000 

No 
Inventory 

3 years 99.35 106.01 112.67 119.33 

10 years 650.61 693.75 736.89 780.03 

(S-1S) 
3 years 102.44 108.62 114.80 120.98 

10 years 651.64 694.24 736.84 779.44 

Difference 
3 years 3.09 2.61 2.13 1.65 

10 years 1.03 0.49 -0.04 -0.58 

  *TRC are in millions 

 
 

Table 11. TRC with Varying Downtime Costs Experiment Component 5 

Capacity rating 0.165 0.25 0.33 0.4 0.5 0.58 0.66 

Lost Revenue per month 40,000 60,000 80,000 100,000 120,000 140,000 160,000 

NO POLICY 
3 years 0.87 1.03 1.19 1.35 1.51 1.67 1.83 

10 years 3.78 4.44 5.10 5.76 6.42 7.08 7.74 

(S-1S) 3 years 1.24 1.38 1.52 1.66 1.80 1.94 2.08 

  10 years 3.98 4.60 5.22 5.84 6.46 7.08 7.70 

Difference 
3 years 0.38 0.36 0.34 0.32 0.30 0.28 0.26 

10 years 0.20 0.16 0.12 0.08 0.04 0.00 -0.04 

  *TRC are in millions 

 

Table 10 shows us that the higher the capacity factor, the higher the lost revenue per month, the 

more beneficial it will be to keep inventory against the lost revenue. In the future when the 

technology improves further and further, and bigger parts of higher power rated wind turbines are 

produced, the benefit of keeping a component in inventory according to the (S-1,S)-policy  becomes 

more and more beneficial.  
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5.2.5 Decoupling of the Jack-Up Vessel 

Until now we have used the assumption that the Jack-Up vessel is only ordered reactively. This 

means that when a failure occurs, the component will at least have a downtime equal to the lead 

time of the Jack-Up vessel regardless of inventory levels. However, for future instances the failure 

predictions will become more and more accurate resulting in a high certainty of expecting a failure. 

This means that it might be possible to order the Jack-Up vessel proactively just like the spare 

components, which would decouple the two lead times. To simulate this, we assume that we always 

have the Jack-Up vessel exactly when we need it, and thus in the simulation model set the Jack-Up 

lead time equal to zero. From Table 12 we can see the impact this has on the TRC compared to the 

basic situation. The full results can be seen in Appendix F. Sensitivity Analysis Table 17. We see 

that perfectly predicting the demand and ordering the Jack-Up vessel prematurely has major 

economically benefits for Vattenfall. For Component 3, Component 4, and Component 7 it even 

becomes more beneficial to utilize the (S-1,S)-policy in comparison to no inventory.  

 

Table 12. Reactive Jack-Up vessel 

  No Policy (S-1S) 

  No Jack-Up No Jack-Up 

Component 1 47.30% 47.30% 

Component 2 -61.34% -58.48% 

Component 3 -29.26% -45.35% 

Component 4 -0.56% -1.69% 

Component 5 -2.14% 0.00% 

Component 6 -18.53% -18.53% 

Component 7 -24.61% -46.54% 

 

From Table 12 we see that only for Component 1 it doesn’t have beneficial results. When further 

investigating this, we see that this is caused due to the very high Eta and thus only around 1-2 

failures occurring in the three-year time frame. In some replications one of these failures happens 

in the very last month of the simulation, where in the basic situation we would wait with ordering. 

However, when there is no Jack-Up lead time to take into account we immediately order, resulting 

in extra component costs, which make up this difference. Otherwise, it would have been beneficial 

due to the lower lost revenue. This shows how much Vattenfall is able to gain by accurately 

predicting the demand and prematurely ordering the Jack-Up vessel. However, more research has 
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to be done regarding the situation where the demand is not accurately predicted and the Jack-Up 

vessel is ordered without a job.  

 

5.3 Conclusion 
 
In this chapter, we have discussed the results resulting from the modelling approach and model as 

discussed in Chapter 4. We have achieved this in four parts, first we validated the distribution by 

using a Chi-Square test in Section 5.1.1. Secondly, we created the Monte Carlo simulation to run 

the model with standard settings to compare the different policies compared to using no policies. 

Lastly, we ran a sensitivity analysis to see the impact of the different variables on the result, which 

shows the magnitude of the variables impact on the TRC.  

 

From Section 5.1.1, we can conclude that the proposed Weibull distribution is a good 

approximation for the failures of MCs. Knowing this, we estimated the parameters, calculated the 

failure rates, and determined the policy parameters. To achieve this, we assumed the expected 

failure rates to be Poisson distributed, which provided us with an easy way of determining the mean 

and variance of the expected failures. Using all the above-mentioned information and using the 

base settings as found in literature, described in Table 6, we set up the Monte Carlo simulation as 

can be seen in Section 5.1.4. Here we can conclude that for all the MCs, using No Inventory is more 

economically beneficial when looking at the TRC compared to using an inventory policy.  

 

From Section 5.2 sensitivity analysis, we see that different changes have different effects on the 

various MCs. One would expect that decreasing the component lead time or Jack-Up lead, would 

have positive effects on all MCs. However, MCs mainly only benefit from it when it makes the 

component lead time equal to the Jack-Up lead time. This is because it results in the least amount 

of downtime and no inventory required. Additionally, reducing the holding costs will not result in 

an inventory policy outperforming No Inventory, due to having to order more components that even 

in a three-year period the component costs are higher than the money saved by downtime.  
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Lastly, we discussed the impact of batching, aging, increased lost revenue, and constructing new 

wind parks using wind turbines types that are already in use. Here we saw that batching only brings 

benefits when it goes combined with batching discount of at least 10%. This is likely way too much 

for such big and expensive parts that it becomes unrealistic for the (s,Q)-policy to be beneficial. 

From the aging we see that updating inventory policy parameters is very important, since they are 

likely to change over time. However, we see no increased benefit of an inventory policy once the 

components reach an older age and the probability of failure increases. Additionally, increasing the 

capacity factor, which directly increases the lost revenue, has major effects on the benefit of 

utilizing a inventory policy. The average capacity factor of 0.381 is above the threshold of 0.33 for 

when the (S-1,S)-policy becomes more beneficial than the no inventory over a 10-year time period.  

This means that on average over a prolonged period of time the keeping of inventory can actually 

be beneficial for components, which have a component lead time longer than the Jack-Up lead 

time. Finally, constructing new wind parks can benefit from using the same turbine types, but the 

exact benefit should be further investigated. 
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6. Conclusion and Discussion 
Throughout this report, we answered the research questions as mentioned in Section 1.4.2 to help 

achieve the research objective. The research objective: “Develop and validate an expected lifetime 

distribution, to predict expected failure rates of MCs given their current state and integrate it into 

a spare part optimization model to determine the optimal spare part policy, thereby achieving 

maximum cost efficiency.” The research questions are answered in the chapters following the 

research question. In Chapter 2, we provide an overview of the current situation in the offshore 

wind sector, the logistic complexity of MC replacements, and the current practises at Vattenfall. In 

Chapter 3, we discuss the found literature regarding lifetime distributions, failure rates, inventory 

models, and validation of the model. Using this knowledge, we set up our lifetime distribution 

calculations and inventory model in Chapter 4. The validation of this model by means of a Monte 

Carlo simulation is performed in Chapter 5, which also describes the results. Lastly, in Chapter 6 

we will conclude the findings, discuss the implications, and give recommendation.  

6.1 Conclusion 

6.1.1 Practical Contribution 

During this study, we developed a model for Vattenfall’s central warehouse related to the MCs 

storing of offshore wind turbines. The model makes use of inventory policies based on the logistical 

complexities. The inventory policy is dependent on the expected failures of MCs during lead time, 

minus Jack-Up lead time. Where we assume the Jack-Up lead time to be equal to three months and 

the component lead time dependent on the component, as can be seen in Table 2. We subtract the 

Jack-Up lead time, because it does not make sense to keep inventory when the Jack-Up lead time 

is equal or bigger than the component lead time, since you only order the Jack-Up vessel once a 

component has failed. Therefore, even if you have a component in inventory, you would still have 

to wait the lead time of the Jack-Up vessel to perform the replacement, which is time in which you 

could order the component.  

 

To determine the expected failures, we first determined the most appropriate lifetime distribution 

to be a Weibull distribution and evaluated the distribution using a goodness-of-fit test, with a test 

statistic of 4 being well below the Chi-Square value of 12.59, resulting in a good fit. Using this 

distribution we estimated the Weibull distribution parameters, which we used to calculate the 
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conditional reliability and PDF to determine the expected failure rate. Using this expected failure 

rate as input for the inventory management model. 

 

To evaluate which inventory policy performs best for the proposed settings and component, a 

Monte Carlo simulation is constructed, which will show the results for the coming three years given 

the knowledge of today. This Monte Carlo simulation is therefore used for the validation of the 

inventory model and used to evaluate the impact of changing the parameters of the model. From 

the results we see that while using the standard settings, using no inventory model is actually the 

best. When performing the sensitivity analysis, we see that only for the Component 7 when we 

decrease the Jack-Up lead time from 3 to 2 the (S-1,S)-policy outperforms No Inventory by 600,000 

TRC over the three-year period. This means that for this instance one can invest this 600,000 into 

shortening the Jack-Up lead time by one month only when requiring a Component 7 and applying 

the (S-1,S)-policy, which would result in a better outcome.  

 

Lastly, we looked at different aspect such as batching and batching discount, the impact of aging, 

impact of increased lost revenue, and the impact of constructing a new wind park using the same 

wind turbines as already in use. Firstly, when looking at batching, we see that using an order 

quantity of 2 performs overall better than 3 or 4, where when using an order quantity discount of 

at least 10% results in the (s,Q)-policy outperforming for Component 4, Component 7, Component 

2, and Component 3 suddenly outperform the No Inventory and the (S-1,S)-policy resulting in lower 

TRC. Secondly, the impact of aging and using the same wind turbines when constructing a new 

wind park both have impact on the parameters of the inventory policies, but it will not cause the 

policies to outperform not having any stock. Thirdly, the increase in lost revenue have big impacts 

on the benefit of keeping inventory. When the capacity factor reaches 0.33 and the lost revenue 

equals 80,000 per month it becomes more beneficial to incorporate the (S-1,S)-policy over a 10-

year period. Lastly, we see no benefit in the constructing of a new wind park using the same 

component types as already in use by Vattenfall.  

 

All with all, we can say from our results that it is economically beneficial for Vattenfall to not hold 

any stock in the central warehouse with the current setting unless the lost revenue of the wind 

turbines in question reaches a certain threshold. This will result in not requiring the central 
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warehouse for MCs storing. It is unfortunate that we discover this result after the central warehouse 

is already being built.  

6.1.2. Scientific Contribution 

With this research, we contribute to the field of inventory management by connecting non-

homogenous lifetime distributions to inventory policies, which includes logistical complications. 

To our knowledge some previous research has been performed regarding non-homogenous lifetime 

distributions for inventory management but lacked the logistical complexity as presented during 

our research. Incorporating this logistical complexity is the main contribution from our research, 

which includes the incorporation of the Jack-Up vessel, which makes keeping inventory a lot harder 

to be beneficial. Additionally, the Monte Carlo simulation helps provide insights into for what 

settings a specific inventory policy with the corresponding parameters might be beneficial 

compared to not utilizing any policy and not keeping any stock.  

 

Our scientific contribution will provide Vattenfall with a lot of insights and gives them the 

opportunity to further play with different settings to see how they can further optimize the benefits 

regarding the central warehouse in relation to the TRC.  

 

6.1.3. Research Limitations 

During our research we came across various limitations, limiting certain aspects of the research. 

Certain aspect which we will discuss are the limitations regarding the research, method and 

approach, and results.  

 

Firstly, the data regarding the failures, costs and lead times regarding the MCs are all very limited. 

In addition to the data being limited, the data that was available is not public. Therefore, we had to 

use data found in literature or data based on indications of the real data and use it in such a way 

that it is not retraceable to any of the OEMs. This made the assumptions of the research limiting in 

regard of the modelling results.  

 

Additionally, because of this limitation in data, we were somewhat limited in our methodology 

since we were not able to utilize cross-validation due to not having enough data to cross-validate 
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with. Furthermore, we were not able to use Machine learning for the calculations of expected 

failures as this also requires a larger data amount to train the model.  

Lastly, all the calculations are based on the biased that the lead times are fixed, which in practise 

can be unrealistic due to the fluctuations in production for the component lead time and changing 

weather conditions for the Jack-Up lead time. In the sensitivity analysis we saw the effects of 

changing these lead times by one month on the TRC.  

 

6.1.4. Future Research and Recommendations 

This research, just like many other research did not provide a complete overview of all the possible 

answers to all the scenarios. Thus, this research can be used as an initial starting point for answering 

more complex problems in the future. Therefore, we recommend Vattenfall to build upon this 

research by looking into a standardized way of utilizing the installed based information, which we 

talk about in Appendix C. Condition Based Monitoring, for the inventory model. This will increase 

the precision of the expected failures and create a more accurate model.  

 

Secondly, since most of the experiments show that it is more economically beneficial for Vattenfall 

to not keep any inventory. It might be interesting to investigate whether this can be outsourced to 

the OEM instead. This would mean that they set up a Service Level Agreement (SLA) with the 

OEM, which states that the OEM should keep spare components for them, which would drastically 

decrease the lead time.  

 

Additionally, more research can be done regarding the precise effects of constructing new wind 

parks, which use the same wind turbine types to increase the population, which can benefit from 

the same spare component. We recommend Vattenfall to further investigate these effects with their 

System Design Hub team, which looks into new wind parks with the use of simulations.  

 

Lastly, we advise Vattenfall to keep updating the failure dates of the MCs to get a more accurate 

estimation of the Weibull distribution parameters. These parameters are of great importance as 

these offer the basis of all calculations for the model but also for the Monte Carlo simulation. 

Therefore, it might be interesting for future research to request and validate these parameters from 

the OEMs and compare the results.  
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Appendix 

Appendix A. Offshore Wind Parks  

         

Country Location Turbines 

Commission 

year Manufacturer 

DK Offshore 24 2021 -  

DK Offshore 48 2021 -  

DK Offshore 21 2019 -  

DK Offshore 20 2019 -  

DK Offshore 79 2002 Vestas 

DK Offshore 49 2018 MHI  

GE Offshore 0 2009 

Multibrid 

& 

REPower 

GE Offshore 80 2014 Siemens 

GE Offshore 72 2017 Siemens 

NL Offshore 0 2022 - 

NL Offshore 0 2022  - 

NL Offshore 0 2006  - 

SE Offshore 0 -  - 

SE Offshore 0 -  - 

SE Offshore 48 2007 Siemens 

UK Offshore 11 2018 MHI 

UK Offshore 15 2015 Vestas 

UK Offshore 30 2005 Vestas 

UK Offshore 30 2011 REPower 

UK Offshore 100 2010 Vestas 
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Appendix B. Main Components 

1. The blades 

The blades are designed to convert wind into rotational energy at optimal output. The blades 

are made of fibre glass reinforced epoxy and carbon fibre for achieving high strength but 

maintaining flexibility. Most offshore wind turbines use blades with a length of 80-100 

meters, which is almost the size of a football field. Because of their aerodynamic shape, 

they catch wind, which decreases pressure on one side of the blade, and the difference in 

air pressure creates lift. The lift causes the rotor to spin (Wind Energy Technologies Office, 

sd). 

Because of the harsh marine environment, the blade's ability to generate lift is negatively 

impacted due to the extensive wear. Luckily, the necessity to repair only shows when the 

efficiency becomes drastically low, and it becomes more cost efficient to replace the blades. 

When this point is reached, we see the blades as having failed. This process of decreasing 

efficiency can be monitored and thus be used in failure predictions. However, the 

monitoring of components will not be part the research scope.  

 

2. Main bearing 

The main bearing supports the main axis in the transmit of rotational energy in the form of 

torque from the rotor to the gearbox by ensuring the main axis can rotate with the least 

amount of friction. Since the rotor generates high loads, the main bearing is subject to a 

broad range of dynamic loads, especially high axial loads. Therefore, the main bearing 

requires high resilience against these high loads to ensure high reliability. Unfortunately, 

the main bearings are susceptible to failure due to multiple aspects like environmental 

conditions, operating, and maintenance practices. These aspects can cause the lubrication 

of the bearing to degrade, or to cause vibrations within the bearing, which both cause the 

bearing to wear out before it should. The rest of the failures are just caused by the standard 

wear and tear of the bearing.  

 

The literature is divided around the failure rate of main bearings and whether it should be 

included in analysis or not, (Edward, et al., 2020) states “historically the main bearing has 

not been reported as resulting in high rates of failure. For example, prominent and often-
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cited reliability studies either neglect the main bearing entirely or appear to lump it in with 

other components.” While (Michele, 2020) shows that supplier Schaeffler obtained data of 

approximately 10,000 wind turbines, where a significant percentage of wind turbine failures 

occurred in bearings. Most damage was found internally on the axially loaded row primarily 

on the surface, also known as surface distress. This indicates that the bearings are of higher 

threat to the reliability of the wind turbine than other components. Additionally, they 

require a complex operation to replace them, which takes a longer period of time than other 

components.  

 

3. Main shaft 

The main shaft is a tube, which is responsible together with the main bearing for conveying 

the rotational energy from the rotor to the gearbox. The main shaft should be able to 

withstand high axial and radial loads and be operational in extreme conditions, which can 

continuously change and be the main factor in failures. Just like some other components, 

the main shaft is monitored using condition-based monitoring to continuously check the 

condition of the component based on all the axial and radial loads. Additionally, the main 

shaft is susceptible to debris of other component failures. To protect the main shaft from 

these environmental influences, and debris caused by other component failures, the main 

shaft can be covered with a seal. The seal is vital for ensuring the longevity of the main 

shaft by keeping everything out, and lubricant in, no matter the environmental conditions.  

 

4. Gearbox 

The gearbox is used to increase the rotational speed of the rotor hub, from 10-18 revolutions 

per minute (RPM), to at least the minimum RPM of 1500 RPM, which is required for a 

generator to produce the service rated power. This minimum RPM is based on the frequency 

of the connected network, which in Europe is 50 Hertz (Hz). A common gearbox used in 

wind turbines consists of two stages. Firstly, the multi- stage planetary (or epicyclic) 

system, see Figure 17, as this is capable of handling high incoming torque of the main shaft. 

It consists of three main components, the sun gear (in the middle), the planet gears (three 

gears around the sun gear), and the ring gear (surrounding all gears). A carrier is used to 
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connect the planet gears around the sun gear, to ensure they roll without slip. The rotor hub 

transfers the rotational energy onto the main shaft, which transfers it to the ring gear, and 

thereby the planet gears, which transfer their rotation into the sun gear. This transfer of 

rotations increases the rotational speed and reduced the high torque loads. The second stage 

consist of helical gears, where the big gears get transferred onto a smaller gear, which is 

part of the high-speed shaft, to increase rotational speed and reduce torque (Musial, 

Butterfield, & McNiff, 2007).  

 

 

Figure 17. Gearbox (Dvorak, 2017) 

 
The gearbox is prone to failure caused by numerous reasons, this includes the size, poor 

understanding of turbine loads, debris, or axial cracking. Especially axial cracking has 

become one of the leading causes of gearbox failure, it occurs on the inner ring during 

installation due to the excessive hoop stresses. These hoop stresses are created by heating 

up the ring during assembly and place it onto the shaft. After the ring cools of, it shrinks 

creating a lot of stress. This causes the gearbox to break down prematurely. Additionally, 

the gearbox is prone to failure caused by debris or small cracks from excessive loads. These 

can be picked up using the condition-based technologies described in Section 0. 
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5. Generator 

The captured kinetic energy caught by the blades and enhanced by the gearbox is converted 

to electrical energy by the generator. We distinguish two types of generators, the induction 

generator, and the synchronous generator. The induction generator, also called the three-

phase asynchronous generator is most used by wind turbines and is a type of alternating 

current electrical generator to produce electric power. It generates power when the high-

speed shaft spins faster than the synchronous speed, at 1500 RPM. Induction generators are 

ideal for wind turbines due to their ability to generate power at varying rotor speeds (Wildi, 

2000).  

 

The Synchronous generators are used for variable speed gearless wind turbines, where the 

rotor is directly connected to the generator without the use of a gearbox. It is called a 

synchronous generator because the generated waveform voltage is synchronized with the 

rotation of the rotor and thus the generator, this is also called Direct-Drive. This is possible 

by including multiple poles to control the speed of the generator. This results in a wider and 

larger diameter generator, which is more complex to manufacture, but less air pollutant. 

Additionally, the failure possibility of the gearbox is eliminated. This makes the 

synchronous generator a competitive solution to the more standardized induction generator 

despite having higher start-up costs (Goudarzi & Zhu, 2013). 

 

Generator reliability in wind turbines typically behave negatively when compared to other 

industries, and it is believed this is caused by the bothersome nature of the loading and 

unloading of the generator due to varying wind speeds, and the environment in which the 

generator operates (Whittle, 2013). This causes the generator in wind turbines to fail more 

often, and this will be represented in the historical data analysis.  

 

6. Transformer 

The transformer is the link between the wind turbines generator and the distribution grid. 

The transformer receives the low output voltage from the generator and increases it to a 

higher distribution voltage, thereby reducing the required current, which decreases the 
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possible power loss that happens when transmitting the current over great distances. (Jose 

& Chacko, 2014) State that the transformer is considered the sensitive and weak component 

of a wind turbine due to the widespread failures caused by the variable wind speeds and 

their varying loads. Since conventional transformers are not designed as wind turbine 

transformers, special transformers have to be produced for wind turbines. 

 

7. Switchgear 

A switchgear is used in large electrical power systems used to control, protect, and isolate 

electrical equipment when necessary. The switchgear in wind turbines consists of two main 

components. The first switching device is associated with the wind turbines transformer, 

and the second switching device is part of the control system containing control panels, etc. 

Switchgear's main purpose is protecting against interruption of overload and short-circuit 

failures, and thereby enhancing the availability of a wind turbine. Even though it protects 

against failures within the wind turbine, it is prone to failure itself due to lack of operating 

knowledge, faulty modifications, or inappropriate resets (RenewableUK, 2015). These 

failure types are hard to discover and can therefore only be expected based on historical 

failure data.  
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Appendix C. Condition Based Monitoring 

To monitor the condition of a MC is difficult tasks. This is caused by the fact that most of the MCs 

are inside the nacelle, where you are unable to perform field observation on the MCs. As commonly 

known, the monitoring of components is important for the understanding of the operational 

behaviour and additionally the structural safety of the offshore wind turbines. To overcome this 

problem, Vattenfall is using vibration monitoring as one of their monitoring systems, since this is 

a particularly helpful solution for pin-pointing problems in deterministic machines. A wind turbine 

can be seen as a deterministic machine, since if the rotational speed of the rotor or generator is 

known, then the rotational speed of all other shafts, bearings, and rollers can be determined based 

on the geometric data of these components. The rotational speed of components causes vibrations, 

and since the rotational speed of all components is known, the expected vibration frequency is 

known. The basic vibration off the offshore wind turbine is characterized under five different 

conditions: standstill, normal, start-up, shutdown, and extreme weather conditions. These different 

operational conditions are analysed to establish a relationship with the environmental factors. 

Vattenfall uses different vibration failure detection analysis techniques, one of which is an envelope 

analysis, which is used for bearing failure detection. An envelope analysis is a vibration analysis 

technique for studying the amplitude modulation of vibrations signals. It works by filtering out the 

unwanted vibration signals until a clear failure signal can be detected, enabling easier diagnosis of 

failures (Gaudel, 2001). Figure 18 shows an example of a vibration monitoring graph showing a 

developing failure over time, as can be seen by the increased vibration intensity. The x-axis 

represents time in a given time block, the y-axis represents vibration intensity, and the z-axis 

represents the time blocks over time. The advantage of vibration monitoring is that only a few 

sensors are required to monitor multiple components.  

 

Figure 18 Condition Based Monitoring 



 

 
85 

 

Confidentiality: C2 - Internal 

 

Vibration monitoring works best for repetitive signals since it is a strong tool for identifying 

significant change in vibrations, which indicates a developing failure. However, this means that 

certain failures are hard to detect like surface friction and material fatigue. This information of 

increasing vibrations is used at Vattenfall to estimate the remaining lifetime of a component. The 

estimation is forecasted for the remaining lifetime of a component and is used as input for the 

expected demand rates of MCs.  

 
Imperfect Advance Demand Information Inventory  
The failure of a component is a highly unpredictable and therefore by definition stochastic process, 

this often leads to a higher inventory than actually required. Condition monitoring as mentioned in 

Section 2.1.1 offers a framework for continuously monitor numerous condition indicators, which 

can navigate extracting useful information from the data to predict future failures. These indications 

of failures are considered Advanced Demand Information (ADI). However, these ADI’s can be 

imperfect in a way that they fail to produce a warning, uncertain when the failure will occur, or 

provide a false positive (Topan, Tan, Houtum, & Dekker, 2018). Auweraer, Zhu, & Boute (2021) 

propose an inventory model based on ADI, which is a dynamic program for generating 

replenishment orders assuming lost sales. Additionally, Topan, Tan, Houtum, & Dekker (2018) 

propose an alternative model by introducing imperfect information as mentioned before. Benjaafar, 

Cooper, & Mardan (2008) propose a production-inventory systems with imperfect demand 

information access. They formulated the production control problem as a continuous-time Markov 

decision process, showing an optimal state-dependent inventory policy. The theorem states that for 

each vector of announced orders based on the imperfect ADI a specific threshold exists, which 

indicates whether it is optimal to order a new spare component when the current spare inventory 

level is below a specified order point. Using this ADI in addition to expected failure rates increases 

the accuracy of expected demand rates and thus provide a more accurate inventory model.  
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Appendix D. Poisson & Exponential Distribution 

Poisson distribution 

Poisson is a commonly used discreet distribution is reliability analysis, such as failure predictions 

with a constant failure rate. It shows that if earlier failures have no influence, so no correlation, 

over the probability of a new failure occurring, where the interarrival time between failures is 

distributed according to an exponential distribution. This is described as a Homogeneous Poisson 

process, where the probability of new failure occurring increases exponentially over time. The 

failure may occur at any time in the interval. The Poisson probability density function is given by 

function below, were λ represents the rate at which a specific event is reached, and k represent the 

number of events. Poisson is only characterized by λ, and k is a support parameter (Axsäter S. , 

Inventory Control, 2000). The Poisson distribution shows the number of failures in each period, 

the failure rate.  

𝑓(k; λ) =
λ𝑘𝑒−λ

𝑘!
 

To also know the reliability of a component, the reliability function is given in function below.  

𝑅(𝑡) =  ∑
(λt)𝑥𝑒−λt

𝑥!

𝑟

𝑥=0

 

 
 
Exponential Distribution 

As where the Poisson distribution focusses on the number of failures in each time period. The 

Exponential distribution looks at the time between failures as time flows continuously. The 

Exponential distribution only has one parameter η which is the mean time between failures with a 

constant failure rate of: z(t) = 1/ η. It is like a Weibull distribution without a location/threshold 

parameter and a shape parameter equal to one. To determine the estimator of parameter η, the 

Method of Moments can be used, as seen in function below (Rameshwar & Debasis., 2007).  

 

η̂ =
1

𝑛
∑𝑡𝑖

𝑛

𝑖=1
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Appendix E. Multi-Censored Weibull Parameter Estimation 

There are various types of censored data, four main types are already described. However, 
combinations of these four are also possible, which makes the estimation of the parameters even 
harder. Here we will describe the approach, proposed by (Zaiontz, 2022) for a multi-censored 
Weibull distribution.  
 
We assume m+n components enter the system, which can be at various times, and they can be 
removed at various times from the system. Here we have n components failing at time 𝑋1, … , 𝑋𝑛 
and m components have not failed yet after 𝑌1, … , 𝑌𝑚 units of time. For the estimation of the 
parameters, two approaches are discussed. Firstly, the log-likelihood function for the Weibull 
distribution will be given, for which the parameters will be chosen that maximized the log-
likelihood function, as can be seen below: 
 

𝐿𝐿(𝛼, 𝛽) = −∑(
𝑦𝑖
𝜂
)𝛽 + 𝑛[ln(𝛽) − 𝛽 ln(𝜂)] + (𝛽 − 1)∑ln(𝑥𝑖) −∑(

𝑥𝑖
𝜂
)𝛽

𝑛

𝑖=1

𝑛

𝑖=1

𝑚

𝑖=1

 

 
The second approach uses Newton’s method with the extension on an iterative approach, with 
the following two steps: 

- Make an initial guess for 𝛽𝑜 
- Iterative step: assume estimate of 𝛽𝑘 and define new more accurate estimate 𝛽𝑘+1, do 

this until 𝛽𝑘 converges. The steps look at follows: 
 

𝛽𝑘+1 = 𝛽𝑘 −
ℎ(𝛽𝑘)

ℎ′(𝛽𝑘)
 

 
Where  

ℎ(𝛽𝑘) =
1

𝛽
+
𝑢

𝑛
−
𝑝 + 𝑤

𝑟
              ℎ′(𝛽𝑘) = −

1

𝛽2
−
𝑝′ + 𝑤′

𝑟
+ (

𝑝 + 𝑤

𝑟
)2  

 
and  

𝑢 =∑ln (𝑥𝑖)

𝑛

𝑖=1

           𝑣 =∑𝑥𝑖
𝛽

𝑛

𝑖=1

            𝑧 = ∑𝑦𝑖
𝛽

𝑚

𝑖=1

          𝑟 = 𝑧 + 𝑣 

 

𝑤 =∑𝑥𝑖
𝛽 ln(𝑥𝑖)       𝑤

′ =∑𝑥𝑖
𝛽 ln(𝑥𝑖)

2      

𝑛

𝑖=1

   𝑝 =∑𝑦𝑖
𝛽ln (𝑦𝑖)        𝑝

′ =∑𝑦𝑖
𝛽 ln(𝑦𝑖)

2      

𝑚

𝑖=1

 

𝑚

𝑖=1

𝑛

𝑖=1

 

 
 
When 𝛽𝑘 converges, we calculate the Eta value as follows: 

𝜂 = (
𝑟

𝑛
)1/𝛽 
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Appendix F. Sensitivity Analysis 

Table 13. Sensitivity Analysis for No-Inventory 

 
 
Table 14. Sensitivity Analysis for (s,Q)-policy 

 
 
Table 15. Sensitivity Analysis for (S-1,S)-policy 

 
 
Table 16. Impacts of Batching for (s,Q)-policy 

 
 
 
 
 
 

(No Policy) component - 1 component + 1 Jack up - 1 Jack up + 1 Holding - 5% Holding + 5 %

Gearbox -1,62% 1,98% -0,20% 0,22% 0,00% 0,00%

Generator -7,21% 7,07% 0,06% -0,06% 0,00% 0,00%

Blade 11,14% 4,03% 1,34% 0,00% 0,00%

Transformer -3,40% 7,78% -0,04% 4,38% 0,00% 0,00%

Switchgear -0,66% 14,82% 0,60% 12,43% 0,00% 0,00%

MainBearing -0,99% 3,29% -11,34% 12,67% 0,00% 0,00%

MainShaft 8,76% -6,27% 12,50% 0,00% 0,00%

(sQ) component - 1 component + 1 Jack up - 1 Jack up + 1 Holding - 5% Holding + 5 %

Gearbox -1,04% 1,11% 0,03% -1,95% -0,17% 0,86%

Generator -13,88% -1,15% -5,02% -25,27% -2,76% 2,76%

Blade -2,12% 6,89% 0,52% -2,69% 2,69%

Transformer 9,72% 16,75% 74,44% 15,24% 0,00% 0,00%

Switchgear -0,48% 11,32% -8,35% 12,59% 0,00% 0,00%

MainBearing -0,59% 2,86% -11,73% 12,79% -0,15% 0,15%

MainShaft 7,45% -6,33% 11,84% -0,17% 0,17%

(S-1S) component - 1 component + 1 Jack up - 1 Jack up + 1 Holding - 5% Holding + 5 %

Gearbox -2,68% 2,81% -1,01% -0,86% -0,11% -0,83%

Generator -10,59% 24,02% 15,65% -3,70% 20,58% -1,67%

Blade 11,14% 4,03% 1,34% 0,00% 0,00%

Transformer -3,40% 7,78% -0,04% 4,38% 0,00% 0,00%

Switchgear -0,66% 14,82% -8,46% 12,43% 0,00% 0,00%

MainBearing -0,99% 3,29% -11,34% 12,67% 0,00% 0,00%

MainShaft 8,76% -6,27% 12,50% 0,00% 0,00%

(s,Q)-policy OQ = 2 OQ = 2 OQ = 2 OQ = 3 OQ = 3 OQ = 3 OQ = 4 OQ = 4 OQ = 4

OQD = 0 OQD = 0.05 OQD = 0.10 OQD = 0 OQD = 0.05 OQD = 0.10 OQD = 0 OQD = 0.05 OQD = 0.10

Gearbox 0,00% -4,59% -9,18% 2,15% -2,53% -7,20% 3,65% -1,07% -5,80%

Generator 0,00% -3,65% -7,30% -0,84% -4,13% -7,41% 24,00% 19,90% 15,80%

Blade 0,00% -4,15% -8,30% 59,95% 53,72% 47,50% 119,89% 111,60% 103,30%

Transformer 0,00% -4,10% -8,21% 40,39% 34,26% 28,14% 80,77% 72,63% 64,49%

Switchgear 0,00% -2,81% -5,63% 0,70% -2,15% -5,00% 1,26% -1,62% -4,50%

MainBearing 0,00% -2,63% -5,26% 1,56% -1,12% -3,80% 2,74% 0,05% -2,64%

MainShaft 0,00% -3,16% -6,33% 2,34% -0,88% -4,10% 5,88% 2,52% -0,84%

Average 0,00% -3,59% -7,17% 15,18% 11,03% 6,88% 34,03% 29,14% 24,26%
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Table 17. No Jack-Up Lead Time 

  Component 1 Component 2 Component 3 Component 4 

  

No 

Inventory 
(S-1S) 

No 

Inventory 
(S-1S) 

No 

Inventory 
(S-1S) 

No 

Inventory 
(S-1S) 

No Jack up 4230000 4230000 1930000 2070000 3050000 2360000 109860000 109800000 

3 months jack up 2870000 2870000 4980000 4980000 4310000 4310000 110480000 111680000 

                  

% change 47,30% 47,30% -61,34% -58,48% -29,26% -45,35% -0,56% -1,69% 

 
 

  Component 5 Component 6 Component 7 

  
No Inventory (S-1S) No Inventory (S-1S) 

No 

Inventory 
(S-1S) 

No Jack up 1050000 1120000 440000 440000 6610000 4690000 

3 months jack up 1080000 1120000 540000 540000 8770000 8770000 

              

% change -2,14% 0,08% -18,53% -18,53% -24,61% -46,54% 
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Appendix G. Oversight Model and Monte Carlo Simulation 
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The Model 

The picture above shows the structure of the model and the Monte Carlo simulation. First, the 

inventory model calculates the expected Weibull distribution Parameters, based on the current age 

of the components and the time to failure of the failed components. These expected Weibull 

distribution parameters are then used in combination with the current age to determine the 

conditional reliability and the PDF, which are used to determine the expected failure rate of each 

component. Because we assume the same expected Weibull distribution parameters, we can 

summarize these expected failure rates without a problem. The total expected failure rate, in 

combination with the policy, component lead time, Jack-Up lead time, and all involving costs are 

used to calculate the parameters of the chosen policy.  

 

The Monte Carlo simulation uses these parameters in combination with the age, expected Weibull 

distribution parameters, current month, component type, park id, and downtime costs as input. Here 

the age and expected Weibull distribution parameters are first used to determine the conditional 

reliability for the upcomment month. Then a random number between 0 and 1 is taken and if it’s 

higher than the conditiona reliability of the specific component, we fail the component. Then based 

on how many components have failed in that specific month, policy paramteres, component lead 

time, and the Jack-Up lead time, we determine how many components to order that month. This is 

determined based on the pipeline of the previous month, the policy paramter (Order-up-to level), 

and the demand of the current month based on the lead times. If the Jack-Up lead time is longer 

than the component lead time, we wait the difference in months before ordering for that specific 

failure. If the Jack-Up lead time is shorter then we immediately order for that failure. Knowing all 

this information, we can determine when a component arrives, we know how many are used and 

how many are going to be stored in inventory and how many wind turbines are down waiting for a 

new component to arrive. Using all this information we can calcualte the TRC for each month and 

store this value in an array. We then run this entire experiment again (New replication) but with a 

different randomnumber stream to ensure different outcomes. After each replication we determine 

the confidence interval half width of the results and run a new replication untill the confidence 

interval half width is smaller than the relative acceptable error. We do this for each experiment 

type. 
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 Psuedo code 

Def Monte Carlo simulation 

 Define parameters 

 Initialize parameters 

 While enough replications 

  Call CalculateParameters (calculate expected parameters) 

Call ReadParameters (read remaining parameters from sheet) 

  Initialize parameters for each replications 

  For each month  

   Calculate expected Demand  

   Determine Policy parameters 

   Determine order quantity 

   Determine pipeline quantity 

   Determine inventory quantity 

   Determine how many wind turbines are still down  

   Add costs to TRC for this replication 

   

Determine confidence interval half width of new replication 

  

Return Average TRC of all replicati
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