
UNIVERSITY OF TWENTE

MASTER THESIS

Inherently interpretable Machine
Learning for Probability of Default

Estimation in IRB Models

Author:
Wouter Hottenhuis

University Supervisors:
dr. B. Roorda

dr.ir. W. van Heeswijk

Company Supervisors:
M. Mackay

S. Haro Alfaro

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the field of

Financial Engineering and Management

July 12, 2022

http://www.utwente.nl
https://www.utwente.nl/en/education/master/programmes/industrial-engineering-management/specialisations/financial-engineering-and-management/


i

UNIVERSITY OF TWENTE

Abstract
Master of Science

Inherently interpretable Machine Learning for Probability of Default Estimation
in IRB Models

by Wouter HOTTENHUIS

In this thesis, we investigate the topic of inherently interpretable machine learning
algorithms for the use in internal ratings-based models. Three different high po-
tential models will be assessed and compared on their applicability for the use in
internal ratings-based models, specifically on the probability of default component.

To effectively assess and compare potential machine learning algorithms, a
framework is constructed to score the different models. Research on the industry’s
perspective and the regulatory context showed that there are three main categories
on which the models should be evaluated: interpretability, performance, and im-
plementation. These categories are split up into criteria, which are used to score
the different models. The status quo in probability of default modelling, a logistic
regression model, is also included in the comparison as a baseline. The investi-
gated models are i) Logistic Model Tree (LMT), ii) Generalized Additive Models
with Structured Interactions constructed with disentangled feed forward neural
networks (GAMI-Net), and iii) Genetic Programming based Symbolic Regression
(GPSR). Credit data of the lending platform Lendingclub is used to construct those
models and evaluate their performance.

In terms of performance, the LMT and GAMI-Net showed to outperform the
logistic regression with respectively an increase of 1.29% and 2.03% in terms of area
under the ROC curve. Although the GPSR did not outperform the logistic regression
in terms of performance (-1.33%), it has some other interesting qualities that can
be proven to be of use in future research. The GAMI-Net sacrificed less in terms
of interpretability than the LMT did to get to a better performance. On average,
the GAMI-Net scored a 7.4 and the LMT a 6.2 in terms of interpretability, whereas
the benchmark logit model scored an 8. The LMT has more disadvantages, which
makes it less suitable to be adopted in the IRB model landscape when compared to
the GAMI-Net. Additionally, the GAMI-Net shows to have several advantages over
the logistic regression. However, the algorithm does make use of neural networks
in the construction of the final model, which is the main disadvantage of the GAMI-
Net. To conclude, after the LMT as runner-up, the main competitor of the logistic
regression model is the GAMI-Net, which seems to have the right balance on the
interpretability-performance trade-off.

HTTP://WWW.UTWENTE.NL


ii

Acknowledgements
With the completion of this thesis, I fulfill the requirements for the Master of Science
degree in Industrial Engineering and Management, with a specialization in Financial
Engineering and Management. Therewith, an end has come to my life as a student
in Enschede. Looking back at six great years, I am extremely grateful for the time
that has passed.

The last six months were dedicated to writing my thesis at the Financial Risk
Management team at Deloitte Risk Advisory. I would like to thank the team for
offering me the opportunity to write my thesis while being part of their team. I
enjoyed many moments together, especially also with my fellow interns in the team.
A big thanks to Mats Mackay and Stef Haro Alfaro for the continuous guidance
throughout the process. Specifically, Mats helped me with reviewing several drafts
and discussing a variety of matters, for which I am very thankful.

From the university, I like to thank my supervisors Berend Roorda and Wouter
van Heeswijk. My first supervisor, Berend, showed to be interested in the topic, and
was helpful in all discussions we had. My second supervisor, Wouter, was a useful
addition in the supervision process as he had valuable feedback in the last stages of
the thesis process.

Furthermore, I would like to express my gratitude to my friends from my study
and student association, with whom I experienced tremendous valuable moments.
Lastly, I am extremely grateful for the continuous support of my parents, my broth-
ers, and Diede during the writing of my thesis.

Wouter Hottenhuis
Amsterdam, 12th of July 2022.



iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Research context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Recent development . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Context 5
2.1 Credit risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Credit risk modelling . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Classification algorithms . . . . . . . . . . . . . . . . . . . . . . . 7
Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . 8
K-nearest neighbors . . . . . . . . . . . . . . . . . . . . . . . . . 9
Generalized additive models . . . . . . . . . . . . . . . . . . . . 9
Support vector machine . . . . . . . . . . . . . . . . . . . . . . . 10
Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Tree ensemble: bagging . . . . . . . . . . . . . . . . . . . . . . . 11
Tree ensemble: boosting . . . . . . . . . . . . . . . . . . . . . . . 11
Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Explaining black boxes . . . . . . . . . . . . . . . . . . . . . . . . 13
Post-hoc explanations versus inherently interpretability . . . . 14
Global versus local explanations . . . . . . . . . . . . . . . . . . 16

2.3 Conclusion on theoretical context . . . . . . . . . . . . . . . . . . . . . . 17

3 Assessment Framework Development 18
3.1 Industry perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Motivation for the Internal Ratings Based Approach . . . . . . . 18
3.1.2 Challenges for implementing ML identified by the industry . . 19

3.2 Regulatory context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Bank for International Settlements . . . . . . . . . . . . . . . . . 20
3.2.2 European Union . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 EBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Components of the framework . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Decomposing interpretability . . . . . . . . . . . . . . . . . . . . 26



iv

3.3.2 Input-output relationship . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Classification performance . . . . . . . . . . . . . . . . . . . . . 28
Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Model use and implementation . . . . . . . . . . . . . . . . . . . 31
3.4 The assessment framework . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Using the assessment framework: scoring . . . . . . . . . . . . . . . . . 33
3.6 Conclusions on the assessment framework development . . . . . . . . 35

4 Model Selection and Data Preparation 37
4.1 Model selection: inherently interpretable ML . . . . . . . . . . . . . . . 37
4.2 Data selection and preparation . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Peer-to-peer lending . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 40

Data imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Correlation and collinearity . . . . . . . . . . . . . . . . . . . . . 41
Handling outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Train-test split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Model tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 LMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 GAMI-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 GPSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Conclusions on model selection and data preparation . . . . . . . . . . 49

5 Model Assessment and Results 51
5.1 Model output description . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 LMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 GAMI-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.3 GPSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Model assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Simulatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Algorithmic transparency . . . . . . . . . . . . . . . . . . . . . . 56
5.2.4 Economically justifiable relationships . . . . . . . . . . . . . . . 57
5.2.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.6 Governance and documentation . . . . . . . . . . . . . . . . . . 59

5.3 Overview of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusions & Discussion 62
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1 Reflection on results . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.2 Reliability and validity . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.3 Contribution and relevance . . . . . . . . . . . . . . . . . . . . . 67
6.2.4 Recommendations for further research . . . . . . . . . . . . . . 68

Bibliography 70

A Data Pre-processing 75



v

B Full Visualizations of Results 82



vi

List of Figures

2.1 Credit loss function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Linear regression versus logistic regression . . . . . . . . . . . . . . . . 8
2.3 Examples of shape functions from a GAM . . . . . . . . . . . . . . . . . 9
2.4 The working of a decision tree . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Comparison of tree-based methods . . . . . . . . . . . . . . . . . . . . . 11
2.6 The working of a neural network . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Trade-off for interpretability and accuracy . . . . . . . . . . . . . . . . . 14
2.8 Difference in black box and white box models. . . . . . . . . . . . . . . 15
2.9 Visualization of local and global explanations . . . . . . . . . . . . . . . 16

3.1 Risk weights distribution in the SA and IRB approach . . . . . . . . . . 19
3.2 Key challenges of using ML identified by the industry . . . . . . . . . . 20
3.3 A confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Example visualizations of ROC curve and AUC . . . . . . . . . . . . . 29
3.5 ROC curve and precision-recall curve . . . . . . . . . . . . . . . . . . . 30
3.6 Example of how ranking scales are generally visualized . . . . . . . . . 34
3.7 Rating scales being more intelligible compared to ranking scales . . . . 35

4.1 Visualization of interpretability-accuracy for selected algorithms . . . . 39
4.2 Data imputation techniques influencing data distribution . . . . . . . . 41
4.3 Box plot of two numerical features . . . . . . . . . . . . . . . . . . . . . 43
4.4 Log loss values for a binary target variable . . . . . . . . . . . . . . . . 45
4.5 The architecture of the GAMI-Net . . . . . . . . . . . . . . . . . . . . . 46
4.6 AUROC scores of five-fold cross validation GAMI-Net . . . . . . . . . 47
4.7 Learning process of the GAMI-Net in three stages . . . . . . . . . . . . 47
4.8 Evolutionary concept and interactions between models . . . . . . . . . 48
4.9 Example of how a Pareto front is created with possible solutions . . . . 49
4.10 Evolutionary concept and interactions between models . . . . . . . . . 50

5.1 Visualization of the trained LMT . . . . . . . . . . . . . . . . . . . . . . 51
5.2 LMT visualization for a selection of features . . . . . . . . . . . . . . . . 52
5.3 Validation loss values for different number of features in GAMI-Net . 53
5.4 Plots of main effects and interactions of the GAMI-Net . . . . . . . . . 53
5.5 GAMI-Net’s global feature importance . . . . . . . . . . . . . . . . . . . 54
5.6 GPSR final model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.7 The ROC curves of the chosen ML models . . . . . . . . . . . . . . . . . 58
5.8 The PR curves of the chosen ML models . . . . . . . . . . . . . . . . . . 58
5.9 Final result: evaluation of the alternatives . . . . . . . . . . . . . . . . . 60
5.10 Final result: averages of each criteria category . . . . . . . . . . . . . . 61

A.1 Correlation matrix of the numerical features . . . . . . . . . . . . . . . 75
A.2 Boxplots of all numerical values (1 of 3) . . . . . . . . . . . . . . . . . . 78
A.3 Boxplots of all numerical values (2 of 3) . . . . . . . . . . . . . . . . . . 78



vii

A.4 Boxplots of all numerical values (3 of 3) . . . . . . . . . . . . . . . . . . 79

B.1 LMT visualization for all features . . . . . . . . . . . . . . . . . . . . . . 82
B.2 All features and interactions included in the GAMI-Net (1 of 2) . . . . 83
B.3 All features and interactions included in the GAMI-Net (2 of 2) . . . . 84



viii

List of Tables

3.1 FSI’s summary of regulatory expectations relating to the AI . . . . . . . 21
3.2 Regulations and guidelines that impact the use of ML in IRB models . 25
3.3 The assessment framework for evaluating ML in IRB models . . . . . . 32
3.4 Levels of measurement with the respective properties . . . . . . . . . . 33

4.1 Overview of loan statuses in the raw dataset . . . . . . . . . . . . . . . 40

5.1 AUC scores for the different ML models . . . . . . . . . . . . . . . . . . 58

A.1 High correlations between features . . . . . . . . . . . . . . . . . . . . . 76
A.2 Iterative feature deletion based on VIF scores . . . . . . . . . . . . . . . 76
A.3 Percentage of outliers in the numerical features . . . . . . . . . . . . . . 77
A.4 Final variable inclusion and exclusion with motivation . . . . . . . . . 80
A.5 Feature description of the features that are used as inputs for the models 81



ix

List of Abbreviations

AI Artificial Intelligence
ALTAI Assessment List for Trustworthy Artificial Intelligence
AUC Area Under the Curve
AUPRC Area Under the Precision Recall Curve
AUROC Area Under the ROC curve

BCBS Basel Committee on Banking Supervision
BIC Bayesian Information Criteria
BIS Bank for International Settlements

CART Classification and Regression Trees
CRR Capital Requirements Regulation

EAD Exposure At Default
EBA European Banking Authority

FSI Financial Stability Institute

GAM Generalized Additive Models
GDPR General Data Protection Regulation
GPSR Genetic Programming based Symbolic Regression

IIF Institute of International Finance
IML Interpretable Machine Learning
IQR InterQuartile Range
IRB Internal Ratings-Based

LGD Loss Given Default
LIME Local Interpretable Model-agnostic Explanations
LMT Logistic Model Tree

ML Machine Learning

PD Probability of Default
PDP Partial Dependence Plot

ROC Receiver Operating Characteristic

SA Standardized Approach
SHAP SHapley Additive exPlenations

VIF Variance Inflation Factor

WCDR Worst Case Default Rate

XAI eXplainable Artificial Intelligence
XML eXplainable Machine Learning



1

Chapter 1

Introduction

1.1 Research context

1.1.1 Background

Globally, data collection increased exponentially over the last two decades. Indus-
tries are making more and more use of the potential that data analytics have. Among
others, the financial industry benefits from this data overload: improved customer
service or experience, more effective fraud detection, and many other examples can
be named in risk estimation and management. To translate this into numbers, the
expected compound annual growth rate of the big data banking analytics market is
nearly 13%, meaning that within five years the total market value will be doubled
from nearly $30 billion to over $60 billion (Petrov, 2022).

All this use of data is enabled by technological innovations and an exponential
increase in computational power, allowing us to effectively process these enormous
flows of data. In particular, the increase in computational power has showed to be a
good match with large volumes of data. Machine learning has proven to outperform
existing methods in many domains. These often highly complex algorithms used in
machine learning can distinguish faces from each other, are keeping us up-to-date to
our preferences on social media, and assists us in driving cars more safely by using
autonomously emergency braking and lane assist, for example.

However, as always, along with innovation and new trends, there often is a justi-
fiable lack of trust. Even some resistance to fully adopt these novel concepts is often
present, as there are many examples in which machine learning does not deliver on
promises. Since within the financial industry machine learning has proven to out-
perform traditional operations, it is especially the lack of trust in black box models
that predominates the discussion on fully adopting this new techniques within the
company’s models.

1.1.2 Recent development

Recently, the European Banking Authority (EBA) published a discussion paper aim-
ing to get a better understanding of the challenges and opportunities coming from
machine learning (EBA, 2021). The paper is specifically aimed at machine learning
techniques that have the potential to be applied in the context of internal ratings-
based (IRB) models to calculate regulatory capital for credit risk. The motivation for
the EBA to publish this discussion paper is caused by the discrepancy between the
use of ML in different areas of the financial industry. Illustrative, machine learning
algorithms are adopted very quickly in so-called FinTech. However, the adoption
of machine learning in credit risk with respect to regulatory purposes is lagging be-
hind.
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In a survey of the Institute of International Finance (IIF, 2019) credit institutions
reasoned that regulations bound the use of machine learning in practice: “regula-
tory requirements do not always align with the direct application of ML models, due to the
fact that regulatory models have to be simple, while ML models might be more complex
(although not impossible) to interpret and explain”. In that same survey, it was found
that credit institutions shifted the use of machine learning away from regulatory
purposes, such as capital requirements, towards business-related solutions, such as
monitoring outstanding loans (Alonso and Carbó, 2020).

The regulatory burden for applying machine learning techniques in regulatory
capital calculations has several reasons. In different areas of the financial service in-
dustry, the main objective is accuracy, in which machine learning algorithms have
proven to outperform traditional models. Although some find evidence that ML
models yield at most similar results compared to traditional benchmark models such
as logistic regression (Bacham and Zhao, 2017), more often, others find that several
ML models outperform traditional models (Albanesi and Vamossy, 2019; Petropou-
los et al., 2019), sometimes even with an improvement for default classification of
over 20% compared to those traditional models (Alonso and Carbó, 2020). How-
ever, within credit risk management, there are more regulations in place. For ex-
ample, guidelines require that credit providers do not “discriminate against protected
classes and that consumers are offered explanations for denial of credit” (Breeden, 2020). As
mentioned earlier, these highly complex machine learning algorithms are extremely
hard to interpret and explain. Therefore, the inner workings of a model are not clear,
resulting in a so-called “black box” model. Without a clear link between inputs and
outputs, the overview is missing, and one might not be able to identify issues such
as discrimination, or non-intuitive relations between inputs and outputs in credit
decision processes.

1.1.3 Motivation

Before zooming in on the research question, we will briefly motivate why it is im-
portant to have non-”black box” algorithms in the area of credit risk. As with the
healthcare industry, the financial industry is also an industry recognized to be of
high priority. In many decision-making processes in these industries, output of
models need to be explained, especially when (legal) persons are involved, such
as in credit provision practices.

To illustrate this, one can think of a person applying for a mortgage loan. First,
when a decision is made about the approval of the loan, the customer may want an
explanation for it, which is also a legal obligation of a credit provider. Additionally,
one needs to determine the pricing, i.e., the interest on the loan, and also justify
that. Next to that, the model developer benefits from interpretable models, when
trying to tune the model or trying to solve issues. On top of that, all stakeholders
involved want to trust the model, which can be assured by transparency. Another,
very significant, aspect that comes with an interpretable machine learning model, is
the possibility for regulators and auditors to check the model’s inner workings. Does
the model, for example, satisfy all legal requirements? Especially this last reason is
of high interest, since regulators saw credit institutions shifted the use of machine
learning away from regulatory purposes.

In short, interpretable algorithms will benefit 1) the customer with enhancing
trust in the decision-making process, 2) the financial institution by allowing for more
efficient problem diagnosing and solving, and 3) the regulatory agencies with more
effective checking on compliance issues.
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1.2 Research questions

The main research question of this thesis is:

Which interpretable machine learning algorithms are applicable for
the use in IRB models and how do they differ from each other?

The question above is from a credit providing organization’s perspective and
focuses on IRB models. This focus means that the model must be inherently explain-
able, as post-hoc explainable artificial intelligence transpire not to satisfy the appli-
cable guidelines and regulations (this will be discussed in more detail in Chapter 2).
The perspective from the credit providing organization is also relevant, as the pos-
sible algorithms should also yield these companies benefits. This is among others
that algorithms should outperform current models. For the probability of default
models, the logistic regression model should be outperformed, which is currently
the status quo in IRB models (Triple A – Risk Finance, 2022).

In order to answer the main research question, the research is divided into four
subquestions. These are listed below, with a short motivation.

A) What is the current state of machine learning adoption within IRB models
in the industry and in terms of regulations and guidelines?
Answering this question gives us an overview of the problem at hand. This in-
sight enables us to identify the current problems with implementing machine
learning in IRB models. The aim is to also get to know the current regulations
and guidelines with respect to machine learning and, to a lesser extent, AI.

B) What is an appropriate way of comparing machine learning algorithms in
terms of applicability for the use within IRB models?
As stated in the main research question, we want to be able to measure ’appli-
cability in IRB models’. This will include aspects of interpretability and also,
for example, classification performance. The deliverable of this subquestion is
an assessment framework with criteria which can be used to assess and score
different machine learning methods on their applicability for the use within
IRB models. This framework will be used in the final subquestion.

C) What are appropriate machine learning algorithms from the literature for
application in IRB models?
From the literature, we will explore the variety of machine learning algorithms
available, and more specifically those models that are explainable by nature.

D) How do the different algorithms score based on the assessment framework,
and what are their key distinctions?
At last, we can actually compare and contrast the chosen models and highlight
their strengths and weaknesses. We will do this by performing a quantitative
analysis, based on an open-access credit-lending database. Different models
will be developed, fitted, and ultimately, compared to each other and a bench-
mark model.

1.3 Methodology

The methodology used for this research consists of at least the points listed below.
When these steps are followed, we have also answered the research questions (de-
noted by RQ X).
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• Qualitative research
We start by addressing literature to get to know the current state of machine
learning in credit risk. This will serve as the basis of the theoretical framework
used in this thesis. The following topics will be addressed:

– Credit risk

– Machine learning (algorithms)

– RQ A - Regulations in credit risk

– RQ B - Finding useful assessment criteria

– RQ B - Composing the assessment framework

– RQ C - Possible ML algorithms for in IRB

• Quantitative research
After identifying promising algorithms, we will use a publicly available data
set to evaluate the chosen algorithms. The dataset consists of a peer-to-peer
loans, entailing characteristics of the loan, and the applicant of the loan. First,
we need to construct the chosen algorithms and build the models. This enables
us to answer RQ D, where we evaluate the performance of the algorithms with
the chosen evaluation criteria. This part of the research will encompass:

– Data cleaning

– Data preparation

– Model development

– Model tuning

• Evaluation
RQ D - The final step is to evaluate the different models on the basis of the
chosen assessment criteria from the qualitative research method. To finalize
the thesis, we draw conclusions, state the limitations of the research and give
some recommendations for further research.

1.4 Outline

To assist the reader in maintaining an overview throughout the reading of this thesis,
we will outline the structure of this thesis. In Chapter 2 we will perform a qualita-
tive research. We introduce some main concepts and definitions for this study, and
therewith we define the scope of the research. Subsequently, in Chapter 3 we answer
research question A by zooming in on the current situation, including the regulatory
context of machine learning in IRB models. After that, we zoom in on how we can
measure the appropriateness of machine learning algorithms for adoption in IRB
models. In that way we constructed an assessment framework, which is the de-
liverable of research question B. In Chapter 4 we will answer research question C,
in which we will choose machine learning models from the literature that we will
compare. Afterwards, the data will be prepared which will enable us to answer re-
search question D in Chapter 5, in which we actually use the assessment framework
to compare the algorithms.
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Chapter 2

Theoretical Context

In this chapter, we will bring up different definitions and concepts necessary to un-
derstand the structure and content of this thesis. Getting more familiar with the
topics of credit risk, machine learning, and interpretability of machine learning will
enable us to articulate the scope of the research better at the end of this Chapter 2.

2.1 Credit risk

In this thesis, we define credit risk the same as the Basel Committee on Banking
Supervision does: “credit risk is the potential that a bank borrower or counterparty will fail
to meet its obligations in accordance with agreed terms” (BCBS, 2000). Most traditional
and large banks’ main source of income comes from providing credit to lenders.
That makes that most of the financial risk that banks face is credit risk. However,
a bank does not lend out capital for free, therefore it requires some interest on the
credit from the borrower. By aggregating these premiums, the bank is able to afford
an expected loss. Therefore, a bank wants to quantify this credit risk as accurately as
possible, to define a fair interest on the loan.

Next to the intrinsic incentive of a bank to quantify credit risk, there is also an
external body that compels banks to do so. The European Banking Authority (EBA)
has the duty to maintain financial stability within the European Union and is man-
dated to assess risks and vulnerabilities in the EU banking sector (EBA, n.d.). One
way of doing this is by enforcing banks to hold a capital buffer for when there is
economic downturn or crises. In contrast to the money held for the expected loss,
the regulatory capital is generally held for the unexpected loss. These two concepts
are depicted in Figure 2.1. In the case that multiple clients will fail to meet their
obligations, the bank will still have a capital buffer to continue its operations. This
is all enforced in the EU Regulation No 575/2013, the Capital Requirements Regu-
lation (CRR). We will specifically address the regulations regarding ML and AI in
Section 3.2, where we address the regulatory context. With regard to this thesis, we
will focus on how credit risk is quantified. We will address the calculations of the
expected and unexpected loss after we explain the three main components of credit risk
modelling below.

2.1.1 Credit risk modelling

In Figure 2.1 the well-known loss curve is depicted, with the expected and unexpected
loss mentioned earlier. As we can see, the first part of the graph corresponds to
the expected loss. Therefore, the bank wants to quantify how many losses they can
expect and subsequently base their pricing policy on that. The gray second part
corresponds to the unexpected loss, and is, from a regulator’s perspective, extremely
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FIGURE 2.1: Total credit loss function with explanations (Gonzalez,
Savoia, and Sotelino, 2012).

important to quantify correctly as this is necessary to calculate the capital to be held
to ensure stable operations.

The quantification of this risk is done in terms of expected and unexpected losses,
which corresponds to the x-axis of Figure 2.1. To quantify and model credit risk
adequately, one needs three components to do this accurately.

• Probability of Default (PD)
A default occurs when an outstanding loan is not paid back timely. Generally,
a loan is considered to be a default when the obligor is past due more than 90
days. To quantify the risk of not getting paid back the loan and interest as a
bank, the bank estimates the probability of default. Given some loan character-
istics, macroeconomic variables, and/or characteristics of the obligor, the bank
is able to estimate the probability of default. In IRB-models, this is often done
with the use of logistic regression. Obviously, the probability of default is a
number between 0 and 1. Often, in estimating the PD, a one-year time horizon
is taken into account (CRR Articles 160, 163, 179 and 180 (EBA, 2013)).

• Exposure at Default (EAD)
The exposure at default depicts the amount of the loan that is not yet paid
back. Often, the closer to maturity of the loan, the lower the exposure at default
becomes.

• Loss Given Default (LGD)
The loss given default is defined as a fraction (of the EAD). The loss given
default among others depends on the collateral that is used in the lending con-
tract. If, given a default, the bank is able to recover a collateral or a certain
amount of the loan, then that will impact the loss given default. A higher re-
covered amount will correspond to a lower LGD. Ab LGD of 100% means that
the full loan is lost when the client defaults (corresponding to no collateral or
no recovery of the collateral). Generally, in the European market, the empirical
LGD distribution has a U-shape (Vujnovic, Nikolic, and Vujnovic, 2016). That
is quite intuitively, namely, most observed LGDs are around low numbers, be-
tween 0 and 0.2, or around high numbers, between 0.8 and 1.

Finally, to quantify the credit risk, the three components are multiplied for each asset
or portfolio denoted by i, and aggregated to a total amount (Hull, 2007):

Expected Loss = ∑
i

PDi · LGDi · EADi (2.1)
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This corresponds to the left white area under the curve in Figure 2.1. Also, the gray
area under the curve, the unexpected loss, can be calculated with this formula. For
this, we need to quantify one extra concept, namely the Worst-Case Default Rate
(WCDR)1. This number is calculated with the PD-component and a correlation co-
efficient between the different i portfolios. It corresponds to the area under the loss
curve for which capital should be held. The area is determined with a confidence
level, which is often set by the regulator to 99.9%. Only the 0.1% largest losses are
not taken into account in the WCDR. Now, the unexpected loss can be calculated by
(Hull, 2007):

Unexpected Loss = ∑
i
(WCDR99.9%, i − PDi) · LGDi · EADi (2.2)

As shown above, credit risk consists of multiple components. Each of these com-
ponents can be modeled by itself, and also their correlation can be modeled and
analyzed. To limit the scope of this thesis, we will from this point onward only
consider the PD-component in credit risk modelling. This enables us to focus on a
binary classification problem; a default or no default, which is the topic where the
application of machine learning arises.

2.2 Machine learning

Another important topic to introduce for this thesis is machine learning. To ensure
comparability of this thesis with other research, we will use the definition of the In-
ternational Organization for Standardization on IT Governance: “machine learning is
a process using algorithms rather than procedural coding that enables learning from exist-
ing data in order to predict future outcomes” (ISO, 2017). Note that machine learning
(ML) is a subset of the artificial intelligence (AI) domain. Where AI covers the area
of making a computer or machine do the same task as a human (e.g., robotics, or
voice-assistants), ML only covers the part where the computers or machines learn
from data by the use of a (ML) algorithm.

2.2.1 Classification algorithms

As this thesis will be focusing on the PD-component of IRB models, the scope of
algorithms to be considered is reduced to probabilistic classification algorithms
(Braak, 2021). That is the case, since we are interested in finding the PD. Differently
formulated, we are interested in the probability (probabilistic) that a loan belongs
to a certain class (classification), default in this case. To further specify this, we
limit ourselves to binary probabilistic classification, since there are only two classes:
non-default or default, i.e., binary. Knowing that these are the aspects of ML to take
into account when estimating the PD, helps us narrow down the point of focus in
the wide ML landscape.

Below, we will introduce some of the most well-known ML algorithms used for
binary classification. We want to stress that this is not meant to be a comprehensive
list, neither a full-explanation of these algorithms, as that would go beyond the pur-
pose of giving an introduction to these methods. Some ML algorithms are consid-
ered to be inherently interpretable, also many are not. There are many alterations to
these most commonly used ML algorithms, which need not be treated to introduce
the reader to the ML field. We will explicitly treat those highly specific alterations to

1This number can be determined with Vasicek’s model (see Vašíček, 1987)
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those common algorithms after Chapter 3, where we take a deep dive into current
regulations, interpretability, and other criteria to evaluate the applicability of ML in
IRB models.

Logistic regression

Following the definition of ML stated in the beginning of this section, we should
treat logistic regression as an ML algorithm. However, this has been the standard for
binary classification for the past decades, and is thus often not treated as ’ML’. Lo-
gistic regression makes use of a linear combination of the predictor variables. Math-
ematically, this linear combination can be written as:

f (x1, x2, ..., xn) = β0 + β1x1 + β2x2 + ... + βnxn (2.3)

Where all β are coefficients that need to be learned by the algorithm, and all x are
predictor variables. The β0 is called the bias term that is included to scale to the
outcome. To translate the linear combination of coefficients multiplied by the pre-
dictor variables into a binary classification (i.e., choose either class 0 or 1), logistic
regression makes use of the logistic function:

y =
1

1 + exp(− f (x1, x2, ..., xn))
(2.4)

This results in an S-shaped curve on the interval [0, 1], see Figure 2.2. In this il-
lustrative example, the predicted variable y, in this case Probability of Default, takes
only one predictor, namely the Balance of a person. In general, a logistic regression
learns, based on the available predictors, the best coefficients, β, that maximize the
so-called likelihood function of the coefficients. Simply said, the algorithm finds the
coefficients that yield the lowest error between the predicted and actual outcome,
just like the well-known least squares method. In this thesis, we assume readers are
familiar with common topics such as maximum likelihood method, therefore we do
not further explain this concept.

FIGURE 2.2: Left: A linear regressor fitted on a binary classification
problem, predicting negative probabilities. Right: The logistic func-
tion mapping the outcomes of a logistic regression to the interval [0, 1]

(James et al., 2021).

As we will address at a later stage in this chapter, in Section 2.2.2, the logistic
regression is one of the few methods that is perceived as interpretable enough to use
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within IRB models. That is, among others, the reason for it being the standard for
estimating the PD in the IRB approach.

K-nearest neighbors

The k-nearest neighbors algorithm is a way to classify a data point based on the
distance from the features corresponding to that data point and the features of other
data points. The K stands for how many neighbors are considered. For example,
when considering only 1 neighbor, the data point will be labeled the same as the
closest other data point. When K = 10, for example, the data point will be labeled
the same as the majority of the 10 closest data points, e.g., when 7 of the 10 are
labeled 1, the data point will also be classified as 1.

Although this method is often recognized as easy to interpret, it does have two
major disadvantages. First, the algorithm’s workings are only well-understood and
visualizable when there are at most 2 dimensions in the feature space. Second, K-
nearest neighbors lacks the ability to produce meaningful probabilities, just as deci-
sion trees. It can produce some kind of probability, but that actually is the proportion
of neighbors that have that specific class. That is, for the example given in the exam-
ple above, a proportion of 70%. It is clear, that this cannot be interpreted as a real PD
but is more like a height of the certainty that it belongs to that class. With calibration
methods, the probabilities can be mapped onto more realistic areas of probabilities
to overcome this problem. This is outside the scope of this thesis.

Generalized additive models

Generalized additive models (GAMs) are a bit more sophisticated than logistic re-
gression, but still belong to the more interpretable models. That is because a GAM
essentially does the same as a logistic regression. The only difference is that the logit
model only allows for linear combinations which are summed (i.e., coefficient β mul-
tiplied by x), whereas a GAM sums non-linear combinations, so-called smoothing
or shape functions, see Figure 2.3. GAMs are thus additive, just like logit models.
Mathematically, it can be written as follows:

f (x1, x2, ..., xn) = β0 + g1(x1) + g2(x2) + ... + gn(xn) (2.5)

FIGURE 2.3: Examples of shape functions from a GAM (Xue et al.,
2018).
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In contrast to Equation 2.3, the additive components of Equation 2.5 are now func-
tions, gi(), of the predictor variable xi. This can either be linear, or non-linear. Again,
the final prediction is made, by substituting f (x) in the logistic function (from Equa-
tion 2.4).

Support vector machine

Given a training sample of defaults and non-defaults, a support vector machine tries
to find a boundary between these two classes in the feature space. It therefore uses
a function to maximize the separation between the two classes and the boundary. In
a two-dimensional space, the support vector machine is clearly visualizable, but the
algorithm also works well for higher dimensional feature spaces. However, it is also
a non-probabilistic binary classifier, and therefore not ideal for a direct interpretation
of PDs.

Decision trees

Decision trees are tree structured classification algorithms, which are intuitive and
easy to understand, even by nonexpert users (Fürnkranz, 2010). It consists of split-
ting the data at each node. These are binary splits, for example: “Income > $5.000”.
After each split, another split can be made, and in such a way a tree is grown. See
Figure 2.4, on the right side such a small tree is made. On the left side, the so-called
decision boundaries are provided. Observe that these boundaries are all vertical or
horizontal lines, but the degree of fragmentation increases as the tree size increases.
To overcome a tree algorithm to grow a large tree that is sensitive to overfitting, often
a tree is pruned. In this way, using a validation data set, one removes leaves nodes,
until a certain threshold value of decrease in accuracy is reached, or the desired tree
size is established.

A decision tree performs best when, at each leaf node where the final classifica-
tion is made, either 1 or 0, all the data observations belong to that given class. This
is therefore a very transparent ML approach. A disadvantage is that it does suffer
from not being able to produce meaningful probabilities that are necessary for a PD
model. However, there are different methods and techniques to infer probabilities
from the model, but these will not be further explained here.

FIGURE 2.4: The working of a classification tree, with the correspond-
ing decision boundaries.
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FIGURE 2.5: A comparison of tree-based methods. Left: a regular
decision tree that is grown by the dataset. Middle: bagging uses mul-
tiple bootstrap samples to grow many trees parallel. Right: boosting

makes use of a sequential learning algorithm.

Tree ensemble: bagging

The term bagging is an abbreviation for bootstrap aggregating, and belongs to the
ensemble methods within ML. The widely known ML algorithm ‘random forest‘
is an example of bagging. To understand this method, we explain the two terms,
bootstrapping and ensemble/aggregating.

Bootstrapping is a sampling method where random samples with replacements
are picked. In this manner, it is possible to artificially generate several new datasets
from the first dataset. For a random forest, this number is often chosen in the range
of 100 to 2000 datasets.

For each bootstrapped dataset, a classification tree is grown. Since each tree is
optimized for that specific bootstrap sample, every tree can be different from one-
another. If we then want to make a prediction on a new data record, this data record
is passed through every individual tree. Following this procedure, each tree has one
vote in the final prediction. For example, when 750 of the 1000 trees classify the
record as a default (= 1), the final prediction is also a default. It is often shown in
literature that the proportion of votes in a random forest actually can be used as an
actual PD (Olson and Wyner, 2018). See Figure 2.5 for a conceptual illustration of
bagging, and a comparison with a regular decision tree and the boosting algorithm
that is treated below.

The disadvantage of random forests is the size of the model. Although built
up with the relatively simple classification trees, the size, which is the number of
trees, causes the model to be not transparent. On top of that, composing such a
large number of trees can be computationally expensive, especially when datasets
are large.

Tree ensemble: boosting

Boosting is, just like bagging, an ensemble method, but differs from bagging in the
way that it creates the individual trees. The main difference becomes clear from
Figure 2.5, where it is shown that there is a sequential flow of information instead of
a parallel-wise flow.

The algorithmic procedure is as follows. A decision tree is grown from the initial
dataset. From this classifier, the data records that were mislabelled, will be assigned
a higher weight for the next iteration. This higher weight that belongs to a data
observation has an impact to the learning procedure, specifically when evaluating
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a loss function. When the next tree will be grown, also called a weak learner, it
incorporates those higher weights from the previous trees, therewith extra focus is
put on the data records that are not easy to classify. In that sense, each next decision
tree will learn from the mistakes of the previous tree. This continues up to a pre-set
number of trees or specific loss criterion, such as no increase in prediction power.
The final decision is made with a weighted average of all weak learners, where the
weights of the weak learners are based on the error of that weak learner2 (Zhang,
2019).

Boosting also suffers from being not interpretable. It is a bit more sophisticated
than bagging. It is even less traceable, since one should follow hundreds or even
thousands of paths from tree to tree to see what happens inside the model. It is also
computational more expensive, as it cannot be run in parallel, such as a bagging
algorithm.

Deep learning

Deep learning is a method that makes use of a neural network. It consists of several
layers of nodes, the first one being the input features. Each node is then connected
with every other node of the next layer. Eventually, the final layer consists of one
node (in binary classification), fed with values from the previous layer it uses sig-
moid, softmax, and/or logistic functions to calculate the PD. A visualization of this
design is given in Figure 2.6.

FIGURE 2.6: The structure and inner workings of a deep neural net-
work (based on Kimura et al., 2019; TIBCO, n.d.).

Also visualized in the same figure is the internal working, which is a bit more
complicated. Each connection has its own weight. Within each node, the sum of the
product of the previous output of a node and its corresponding weight becomes the
input for the current node. Within a node, the input plus a bias term is processed in
an activation function, which becomes the output of that specific node. The power
of a deep neural network is that all the functions formed in the net are differentiable
(Sarıgül, Ozyildirim, and Avci, 2019). Given that characteristic, with the use of back-
propagation, one is able to adjust each weight in the learning process to minimize a
loss function.

Obviously, the inner-workings of a deep learning model consisting of more than
three layers is not traceable. Additionally, the possibly high predictive power comes
at the cost of transparency. For example, one cannot know in a deep learning model

2This is a minimal explanation of the boosting concept. To get a thorough understanding of boost-
ing, we refer the reader to other literature, such as Zhang, 2019.
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when the variable Income rises, whether the PD goes up or down. In a logistic re-
gression, for example, this is a lot easier, as the corresponding coefficient is the only
term having an effect on the outcome. On top of that, a neural network needs to
learn many weights in the learning phase, which makes it computationally heavy,
and it therefore needs also a lot of data records to be properly trained.

Evolutionary algorithms

Although not an ML algorithm on its own, we will also consider evolutionary al-
gorithms in this section, as they are related to ML and can be used in the learning
process. It is, however, a relatively less commonly used concept in ML. Evolution-
ary algorithms are inspired by Darwin’s evolution theory, and can be classified as a
heuristic. It makes use of mechanisms like mutation, selection, and recombination
to efficiently search the solution space. One specific type of evolutionary algorithm
is genetic programming, where the final computed solution is in the form of a com-
puter program, which can also be used in combination with classification problems.

As the name of evolutionary algorithm already implies, they are in some sense
different from the ’regular’ learning algorithms. The former are used for evolution,
for heuristically optimization of solutions in evolution and the latter are to train
agents to perform better or to increase their performance (Iqbal, 2015). However,
evolutionary algorithms have also been used for learning, also referred to as learning
classifier systems (Urbanowicz and Moore, 2009). Given training data, a learning
classifier system efficiently searches the solution space, by evolving through each
iteration. In that way, it actually acts as a learning algorithm by getting a better fit
throughout the learning phase.

We can best illustrate this with an example. Consider the environment, the solu-
tion space, where there are living lots of individuals, the possible solution models.
The individuals (models) with a higher fitness (better fit with the to-be-predicted
outcome) have a higher chance of surviving, just like actual evolution. In each gen-
eration, or iteration, the individuals (models) reproduce themselves. In this stage,
the concepts of mutations, and crossovers between families find place. This might
lead to even better fitted models in the next generations. This continues until a cer-
tain stopping criterion is reached. From a possible infinite solution set, one is able to
efficiently narrow down to a single well-fitted model.

To conclude this subsection, we present Figure 2.7. This figure is no ground-
truth and is not intended to be such. The placement of the algorithms in the plot is
a combination of perceptions in the literature. The goal of this figure is to give the
reader a feeling of how the different ML algorithms relate to one-another in terms
of interpretability and accuracy. In here, the evolutionary algorithms are not placed,
as they are more like a heuristic with some learning characteristics of which there
is not an unambiguous perception on its interpretability and accuracy within the
literature.

2.2.2 Explaining black boxes

It is often the case that people use the term ’black box’ as a synonym for machine
learning. ML models are referred to as black boxes since they are often not seen
as intelligible concepts. Given some inputs; e.g., some features from a loan such
as interest rate and maturity, the black box processes it, where after it gives some
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FIGURE 2.7: A conceptual visualization of the traditional trade-off
between interpretability and accuracy.

output; e.g., 90% chance on a default. With the ever expanding field and complexity
of ML models, these models are thus all labeled as black boxes.

There is, however, an actual difference between ML models and black boxes,
since the latter is a subset of the former. Not all ML models are per se black boxes,
because some of them are perceived as being simple to understand, for example lin-
ear or logistic regression models (EBA, 2021). Although there is no clear distinction
between those simple and advanced models, we will in this thesis only focus on the
simple, interpretable, models.

Post-hoc explanations versus inherently interpretability

When addressing the interpretability or explainability of machine learning models,
often terms such as explainable artificial intelligence (XAI), explainable machine
learning (XML), or interpretable machine learning (IML) are mentioned in the lit-
erature. Since in the literature the terms explainability and interpretability are used
interchangeably, we will not try to distinguish between them in this thesis, and thus
also use them mutually.

The above-mentioned terms XAI, XML, and IML are most often referring to
model-agnostic post-hoc explanations (Molnar, 2022). That means, after running
a black-box model, the post-hoc explainer considers the inputs and outputs of
the model, and based on that, generates explanations. Figure 2.8b illustrates this.
Well known examples are, for example, Shapley Additive Explanations (SHAP)
(Lundberg and Lee, 2017), Local Interpretable Model-Agnostic Explanations (LIME)
(Ribeiro, Singh, and Guestrin, 2016), or TreeExplainer (Lundberg et al., 2019). Gen-
erally, these explanations consist of tricks such as visualizing partial dependence
plots, showing counterfactuals, or finding feature interactions. Interestingly, these
XAI techniques are also mentioned in the discussion paper of the EBA that we high-
lighted in the recent development Section 1.1.2. There, the supervisor is cautiously
hinting at the potential advantages that XAI techniques can bring in the near future.
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FIGURE 2.8: Conceptual overview of different ML pipelines. (a) Tra-
ditional supervised ML such as logistic regression. (b) Standard black
box approach, where the result between the model and predictions is
unclear, so post-hoc explanation techniques are needed. (c) White box
approach, showing an interpretable model, that does not need post-

hoc explanation techniques by design

However, the key-disadvantage of XAI techniques, is that their explanations are
often not reliable, and can be misleading (Rudin, 2019). The EBA also acknowledge
that XAI only helps to partially understand some model. Rudin further explains
that explanations of XAI/XML must be wrong. “They cannot have perfect fidelity with
respect to the original model. If the explanation was completely faithful to what the original
model computes, the explanation would equal the original model, and one would not need
the original model in the first place, only the explanation”. Having such an extra model,
which also does not provide truthful explanations all the time, establishes even more
model risk. In short, a post-hoc explainer is only able to approximate some causal re-
lationship that happens in the model, without knowing and showing what actually
happens.

Instead of finding a way around black box models with post-hoc explanations,
recent research has focused its point of attention on inherently interpretable models.
In literature, these are also often recognized as white box models, or referenced to
as explainability / interpretability by nature or design. All those elegant variations
boil down to the overview that is given in Figure 2.8c. Just as in Figure 2.8a, the
model should be well comprehensible for humans, however, in the ideal situation,
the white box model leverages advanced ML techniques in order to remain as accu-
rate as the most advanced black box models. Therefore, they are placed separately
from the traditional ML in Figure 2.8. To further explain, in Figure 2.8b, we see
that the post-hoc explanation is needed, as the prediction does not follow logically,
that is, a human cannot make the same prediction using the input parameters due
to interpretability issues. Since XAI is sometimes helpful, it is illustrated in Figure
2.8a and 2.8c as optional techniques to be used. Examples of ML algorithms that are
inherently interpretable (excluding the traditional linear and logistic regression) are
classification and regression trees (CART) (Breiman et al., 1984), k-nearest neighbors,
and generalized additive models (GAMs) (Burkart and Huber, 2021).

The increased interest in white box models did not bypass the financial industry.
According to the IIF, a growing number of firms are expressing interest in using in-
herently interpretable machine learning models. N. Bailey, policy advisor for digital
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finance at the IIF, also acknowledges this: “When we first started looking at what meth-
ods firms were using for explainability, initially it was for post hoc techniques. But that has
changed in the last couple of years, where now there is an understanding that these models
are being built from the ground up, and you’re not sacrificing performance” (retrieved from
interview of Marlin, 2021). This citation is an example that highlights the relevance
of this research.

Global versus local explanations

Since a traditional logistic regression and white box models are interpretable by de-
sign, it does not mean that no post-hoc explanations can be applied. Sometimes
those explanations can yield some extra benefits for the user or modeler in order
to quickly get a rough estimation on how the model performs. This was also indi-
cated in Figure 2.8a and 2.8c. Therefore, we shortly introduce the two main types of
explanations.

The main distinction is made between global and local explanations. A global
explanation tries to capture the overall working of a model, whereas the local one
explains one single instance. In Figure 2.9 we can see the global explanation of an
arbitrary model on the right side. This is specifically a feature importance expla-
nation. On average, the attribute SEX contributes the most to all predictions in the
model. However, if we look on the left side of the same figure, we see that for each
record (represented by a small dot) the impact of the individual value of SEX of that
specific record differs a lot from other records. In this case, your gender will either
hugely positively impact the result, or negatively impact the result. So, depending
on all other attribute values, you can also come up with a feature importance list per
individual. That might show very different results than the global explanation, as in
that case you compare an individual prediction with the average prediction. This is
thus also a disadvantage of this XAI technique, as the different explanations never
do separately explain the full model.

FIGURE 2.9: Example of visualizations of local and global explana-
tions using SHAP (Lundberg and Lee, 2017; Berenbaum, 2020). The
left part shows local explanations, where each dot at a feature rep-
resents a data point. The right part shows the global feature impor-

tance, i.e., on average for each feature.
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2.3 Conclusion on theoretical context

To conclude this part, we will shortly recapitulate what is discussed and how we
defined the scope of this thesis.

First, we addressed credit risk modelling. Although credit risk modelling covers
many different aspects, we have decided to limit our scope to the Probability of
Default component of it. The current standard for computing an estimation of the
PD is a logistic regression model.

Additionally, we found that there are many ML algorithms that are suitable for a
binary classification problem: logistic regression, GAMs, K nearest neighbors, deci-
sion trees, bagging, boosting and also deep learning. In choosing an ML algorithm,
one should be careful that the output of the model can be a meaningful probability,
since it is applied to the expected and unexpected loss function. Many of the ML
algorithms with a high predictive power are considered to be black boxes. In this
thesis, we will shift away our focus from black box models, and focus on inherently
interpretable ML models. These so-called white box models do have the property to
be understood by humans, and therefore are more applicable to be used within the
IRB models of banks. Also, these models ideally do not carry additional model risk,
which XAI-techniques suffer from.
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Chapter 3

Assessment Framework
Development

In this chapter, we answer research question A: “What is the current state of machine
learning adoption within IRB models in the industry and in terms of regulations and guide-
lines?”, and B: “What is an appropriate way of comparing machine learning algorithms in
terms of applicability for the use within IRB models?”. This encompasses A) getting an
overview of the problem at hand, i.e., the current state of ML in the industry and
in regulations, and B) developing a framework to assess ML-models’ applicability for
the use in IRB models.

To effectively develop a suitable assessment framework to compare different ML-
models, we will investigate different perspectives from important stakeholders in
answering research question A. The findings from these perspectives are inputs to
construct an assessment framework which considers different interests. First we
take the standpoint of banks, the industry perspective. After that, we zoom in on
the (financial) regulatory context, especially getting familiar with the current rules
and guidelines in the area of ML and AI. With that in mind, the assessment frame-
work to evaluate ML algorithms on their potential to be applied within IRB models
is constructed. To conclude this chapter, we will theoretically underpin the method
of scoring. This is necessary to evaluate the different ML models and draw interme-
diate conclusions in Chapter 5.

3.1 Industry perspective

3.1.1 Motivation for the Internal Ratings Based Approach

First, for a better general comprehension, we address why many banks are mo-
tivated to develop internal models for the Internal Ratings Based Approach. For
credit risk modelling, the EBA accepts two approaches: the Standardized Approach
(SA), and the Internal Ratings Based Approach. The SA is a more general approach,
whereas the IRB approach allows for a model designed by each bank individually,
to be more aligned with the true characteristics of their asset portfolio’s. The IRB
approach is thus the area where the most advanced and sophisticated models could
be used. Using advanced ML models can be leveraged to generate higher prediction
accuracy, one of the main advantages of using ML in PD models.

A better PD model in the IRB model landscape has many advantages on its turn.
Having better predictions, means that your estimates become closer to reality. Mean-
ing that for many cases, one can do a more accurate risk assessment. Besides, the PD
model in the IRB approach is also often used for other use cases, for example pric-
ing or credit acceptance. Improving these operations of a bank can make it both
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FIGURE 3.1: Average distribution of risk weights of exposures in both
the SA and IRB approach (areas under the graphs are both equal to

one) (Doeme and Kerbl, 2018).

more profitable, and more competitive. Lastly, for the capital requirements calcu-
lations, the SA uses fixed risk-weights for different assets, whereas in the IRB ap-
proach generally speaking, the risk weights are much smaller, see Figure 3.1. Lower
risk weights results in lower capital requirements, which frees up money to be in-
vested in the company. Although the advantages are clear and promising, there are
still some challenges to fully implement ML in the IRB approach.

3.1.2 Challenges for implementing ML identified by the industry

In a survey of the IIF, various challenges of using ML in credit risk management are
identified by a large group of respondents (IIF, 2019). In Figure 3.2 the key chal-
lenges are presented. Over 80% of the respondents feel that the main bottleneck to
implement ML originates at the supervisor. By either a lack of understanding, or by
the lack of willingness to adopt new processes, the supervisor is seen as an obstruc-
tion. This specific challenge will be zoomed in on in the next section, Section 3.2,
when we specifically take the standpoint of the regulator.

Just a little behind the most identified challenge, is the ’difficulty of explaining
processes’. Under this challenge, financial institutions report that they have concerns
about the transparency, auditability, and interpretability of results.

Another problem that is highly attached with other challenges, is the cost of im-
plementing the new technology. From Figure 3.2, IT infrastructure related problems,
and the availability of appropriately skilled staff, are ultimately related to costs.
However, these two also have their own origination why it is a challenge. IT related
challenges to the implementation of new techniques are for example that more data
and processing power are needed. Also, integrated IT infrastructures are needed as
more and more models will be connected to each other. This poses some extra lim-
itations, as legacy systems of banks often do not support modern coding languages
(IIF, 2019). The availability of appropriately skilled staff also causes costs to rise,
but additionally slows down the whole process of implementing ML. Since regula-
tors and financial institutions are both fishing in the same pond, there is not a quick
solution for this challenge to overcome.

Finally, it is noted that most of the financial institutions who have ML in pro-
duction in other areas of their operations, have engaged their supervisor in their
application of ML within IRB models.
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FIGURE 3.2: Key challenges identified by the industry of using ML
compared to previously used models (retrieved from the survey con-

ducted by IIF, 2019).

3.2 Regulatory context

In this section, we address the regulatory perspective on ML and AI. We do this in
order to get a view on the expectations that regulators and supervisors have in the
implementation of ML. As described by the Financial Stability Institute (FSI) of the
Bank of International Settlements (BIS) in a recent report (Prenio and Yong, 2021),
there is no standard-setting body that develops international guidance or standards
in the area of AI governance. Also, “authorities’ views on how these (AI governance
related) themes should be implemented are still evolving”.

Since there are no international standards, and many authorities or regulatory
bodies are still in the process of developing some guidance for the use of AI, there is
not yet a golden standard. In order for us to develop an assessment tool that reflects
the general opinion and guidelines, we will address the most significant bodies, their
regulations and some (discussion) papers below.

3.2.1 Bank for International Settlements

We start off with the BIS. The BIS is a guiding body, to promote global monetary and
financial stability through international cooperation. Other institutions and com-
mittees that are part of or closely linked with the BIS are the FSI and the BCBS. The
latter has very recently published a newsletter (Newsletter on artificial intelligence and
machine learning) in which it provides details on its internal discussions regarding AI
and ML (BCBS, 2022). In it, it highlights three focus areas for further investigation on
the supervisory implications. First, the extent and degree to which outcomes of mod-
els can be understood and explained. Secondly, ML model governance structures,
including responsibilities and accountability for ML-driven decisions. And thirdly,
it wants to further investigate the potential implications of broad usage of ML for the
resilience of individual banks and the broader financial stability. Especially the first
two focus areas, understanding & explainability and model governance, are impor-
tant factors to take into account when evaluating the applicability of ML algorithms
for IRB models.

Meanwhile, the FSI published their own insights in their report Humans keeping
AI in check – emerging regulatory expectations in the financial sector (Prenio and Yong,
2021). They have summarized the existing issuance of authorities’ expectations and
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guidance into five common principles: reliability/soundness, accountability, trans-
parency, fairness, and ethics. Additionally, it is noted that these principles are most
of the time also used in assessing the traditional, logistic regression, models. How-
ever, the current discussion revolves around how these principles are approached
differently in case of ML models. For example, in terms of accountability, for a logis-
tic regression model, a company can assign a single model owner, whereas for an ML
model this might not be as straightforward. One can imagine that different aspects
of the model, e.g., IT infrastructure and monitoring of several components of the
model, should be covered by different employees. The FSI also gives an overview
of these regulatory expectations relating to the aforementioned principles, see Table
3.1.

TABLE 3.1: FSI’s summary of regulatory expectations relating to the
AI common principles (Prenio and Yong, 2021).

Common principle Regulation/legislation/guidance
Reliability/soundness • Similar expectations as those for traditional models (e.g., model valida-

tion, defining metrics of accuracy, updating/retraining of models, ascer-
taining quality of data inputs).

• For AI models, assessing reliability/soundness of model outcomes is
viewed from the perspective of avoiding causing harm (e.g., discrimina-
tion) to consumers.

Accountability • Similar expectations as outlined in general accountability or governance
requirements, but human involvement is viewed more as a necessity.

• For AI models, accountability includes “external accountability” to ascer-
tain that data subjects (i.e. prospective or existing customers) are aware of
AI-driven decisions and have channels for recourse.

Transparency • Similar expectations as those for traditional models, particularly as they
relate to explainability and auditability.

• For AI models, external disclosure (e.g., data used to make AI-driven de-
cisions and how the data affects the decision) to data subjects is also ex-
pected.

Fairness • Stronger emphasis in AI models (although covered in existing regulatory
standards, fairness expectations are not typically applied explicitly to tra-
ditional models).

• Expectations on fairness relate to addressing or preventing biases in AI
models that could lead to discriminatory outcomes, but otherwise “fair-
ness” is not typically defined.

Ethics • Stronger emphasis in AI models (although covered in existing regulatory
standards, ethics expectations are not typically applied explicitly to tradi-
tional models).

• Ethics expectations are broader than “fairness” and relate to ascertaining
that customers will not be exploited or harmed, either through bias, dis-
crimination or other causes (e.g., AI using illegally obtained information).

3.2.2 European Union

On a European level, posing regulations cross-industry, stands the European Union.
This institution makes high-impact regulations, such as the well-known General Data
Protection Regulation (GDPR) (EU, 2016). Although the GDPR does have major im-
plications for banks, there are only a few articles and rules that have a direct link
to the use of ML. We will discuss those articles that are of use in constructing an
assessment framework to evaluate the applicability of ML in IRB models, and there-
fore choose to not incorporate, for example, data collection related articles, as this is
outside the scope of this thesis.
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One important note to make is that some of the articles mentioned below actu-
ally do not restrict ML models in the IRB approach. That is because in IRB models,
capital calculations are done, and data records of individuals do not impact the data
subjects itself. In contrast, for credit acceptance and pricing models, the data subject is
impacted by the decision of an ML model. As we will see when we treat the specific
regulations in CRR below in Section 3.2.3, PD-models from the IRB approach must
also play an essential role for other internal processes, such as credit approval and
decision-making processes. To increase the relevance of the assessment framework,
we will therefore also cover those regulations that deal with these other processes
where the PD-model is also used.

• First, article 5.1(c) states that personal data should be ’adequate, relevant and
limited to what is necessary in relation to the purposes for which they are pro-
cessed’. It is summarized thereafter in the GDPR as ’data minimization’, which
can yield troubles in implementing ML models. That is because other regula-
tions (CRR, article 180) oblige a bank to have five years of data history for
risk drivers. As more complex models also tend to have more risk drivers,
this is a limiting factor for the implementation in ML. On top of that, the dif-
ficulty of this data collection increases exponentially when a bank uses more
risk drivers, since the easy risk drivers, with easily accessible history, are used
first (Folpmers, 2021).

• Second, Article 15.1(h) gives the customer the right to access meaningful in-
formation about the logic involved in automatic decision-making. This makes
that the bank cannot use a deep neural network, that the controller itself can
also not explain to a customer in a logical way.

• On top of that, Article 22 states that the customer has the right to obtain human
intervention on the part of the controller. Again, this is not easily done with a
black box model.

Recital 71, which is a complementary document the regulator writes as an ad-
ditional explanation on the regulations in a nonbinding language, summarizes the
intention of the regulator comprehensively: "[an automated process] should be sub-
ject to suitable safeguards, which should include specific information to the data
subject and the right to obtain human intervention, to express his or her point of
view, to obtain an explanation of the decision reached after such assessment and to
challenge the decision."

In short, these guidelines and assessment list comprise the following aspects:

Another important view from the EU on AI and ML is written by a High-Level
Expert Group on AI (HLEG-AI, set up by EU), who formulated the Ethics Guidelines
for Trustworthy AI (HLEG-AI, 2019) and the Assessment List for Trustworthy Artificial
Intelligence (ALTAI) (HLEG-AI, 2020). The former served as non-binding guidelines
and was build upon four “Ethical imperatives”, which are: respect for human auton-
omy, prevention of harm, fairness and explicability. The latter, the ALTAI, is a tool
that supports the former in terms of actionability, based on seven key requirements:

1. Human agency and oversight

2. Technical robustness and safety
Including general safety, resilience to attacks, accuracy, and reliability in terms
of fall back plans and reproducibility.
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3. Privacy and data governance

4. Transparency
Covering traceability, explainability and communication

5. Diversity, non-discrimination and fairness

6. Environmental and societal well-being
Consisting of environmental well-being, impact on work and skills, impact on
society at large or democracy

7. Accountability
Including auditability and risk management.

3.2.3 EBA

Recall from Section 2.1 where we addressed the capital requirements that banks need
to hold on to. It was also shown in Section 3.1.1, specifically in Figure 3.1, that the
use of the IRB model can drastically reduce these capital requirements. Therefore,
the EBA’s Capital Requirements Regulation (CRR) imposes strict rules on the imple-
mentation of ML in an IRB model. Below, the most important, and most restricting
rules are itemized.

• CRR article 174: the institution shall complement the model by human judge-
ment and human oversight to review model based assignments and to ensure
that the models are used appropriately. In this case, the complexity of an ML
model can make it difficult to allow for human interference and judgement.

• CRR article 175: the institution shall document the design and operational de-
tails of its rating systems. It shall provide a detailed outline of the theory,
assumptions and mathematical and empirical basis of the assignment of esti-
mating PDs. One can imagine, that for a more complex model, this can become
exponentially difficult. On top of that, article 175.4(c) imposes that the bank
shall indicate any circumstances under which the model does not work effec-
tively. The more black box a model is, the harder it becomes to find out and to
document what can go wrong.

• CRR article 179: in quantifying the risk parameters (including PD), the IRB
model must be “intuitive”. There shall be an easy relationship between risk
drivers and risk parameters. A classic logistic regression is in this case allowed,
since, a positive coefficient will lead to a higher PD and the other way around.
A neural network would not fit this requirement, as there are no relationships
directly observable, and it is also not intuitive.

• CRR article 180: obliges a bank to have five years of data history for their risk
drivers. This article was already treated in the EU regulation which focused on
data minimization, which can together pose a problem when more risk drivers
will be used in complex models.

• CRR article 189: all aspects of the rating and estimation process of the PD shall
be approved by the management body and senior management. They shall
have a detailed comprehension of its management reports, and a good under-
standing of the rating systems designs and operations.
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Following the industry’s need for a more perspicuous standpoint of the EBA
with respect to ML, as well as, the EBA wanting to get input on current develop-
ments with regard to ML in IRB models, it developed the EBA discussion paper on
machine learning for IRB models (EBA, 2021). This thesis started off with the intro-
duction of this paper. Now, we highlight the things from within that paper that
indicate the standpoint of the EBA. It can be summarized in three identified chal-
lenges with complex models: 1) interpreting their results, 2) ensuring their adequate
understanding by the management functions, and 3) justifying their results to su-
pervisors. However, when moving towards more complex models, the EBA does
recognize that evaluating complexity of the model becomes more important. They
propose five characteristics that are useful for this process:

• The number of parameters.

• The capacity to reflect highly non-linear relations between the variables accu-
rately.

• The amount of data required to estimate the model soundly.

• The amount of data from which the model is able to extract useful information.

• Its applicability to unstructured data (reports, images, social media interac-
tions, etc.).

Additionally, they made three distinct recommendations: avoid unnecessary
complexity, make sure the model is correctly interpreted and understood, and set
up reliable validation processes.

Finally, we present an overview of the regulatory context in Table 3.2. (Note:
the central bank of the Netherlands, De Nederlandse Bank, also formulated Gen-
eral principles for the use of Artificial Intelligence in the financial sector. The concepts
in this paper, formulated by the ’lowest’ regulatory body, are already well covered
in the other above-mentioned guidelines and regulations.) This regulatory context,
together with the industry perspective, answers research question A. More impor-
tantly, they form the constructs for the assessment framework.

3.3 Components of the framework

After addressing the perspective of the industry, and the applicable regulations con-
cerning AI/ML in IRB models, we formed an idea on relevant aspects to take into
consideration in the assessment framework. In this section, we zoom in on these
aspects and eventually answer research question B by presenting the assessment
framework.

In order to structure the assessment framework, we make use of four different
components that one encounters when developing and implementing an ML model.
These are model design, input and output relationship, output of the model, and the
model use and implementation. They are discussed below.

3.3.1 Model design

The design of the model focuses on the operations within the model. This excludes
all concepts related to the output of the model. It does involve the construction of
the model with the algorithm, with the use of the inputs. Specifically, this touches
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TABLE 3.2: Regulations and guidelines that impact the use of ML in
IRB models.

From Act / guidelines / article Principles and findings
BIS BCBS Newsletters:

Newsletter on AI and ML
Continued focus areas:

• Explainability: transparency in model design, oper-
ation, and interpretability of model outcomes.

• Governance structures: including responsibilities
and accountability for AI/ML-driven decisions.

• Implications of ML models for the resilience and fi-
nancial stability

FSI Insight No 35:
Humans keeping AI in check

Challenges in implementing the AI-related expectations or
guidance (see Table 3.1):

• Transparency
• Reliability and soundness
• Accountability
• Fairness and ethics
• Addressing regulatory and supervisory challenges

through proportionality

EU GDPR:
• Art. 5.1(c)
• Art. 15.1(h)
• Art. 22 + recital 71

Regulations focus on:
• Data minimization
• Right for customer to access meaningful informa-

tion about the logic involved in automatic decision-
making.

• Right to obtain human intervention on the part of
the controller, to express his or her point of view
and to contest the decision of the automated deci-
sion.

ALTAI Actionable key requirements for AI:
1. Human agency and oversight
2. Technical robustness and safety
3. Privacy and data governance
4. Transparency
5. Diversity, non-discrimination and fairness
6. Environmental and societal well-being
7. Accountability

EBA CRR
• Art. 174
• Art. 175
• Art. 179
• Art. 189

Comprising:
• Include human oversight
• Extensive documentation
• Intuitive model design
• Detailed comprehension of senior management on

the systems designs and operations

Discussion paper:
On ML in IRB models

To evaluate model complexity:
• The number of parameters.
• The capacity to reflect highly non-linear relations

between the variables accurately.
• The amount of data required to estimate the model

soundly.
• The amount of data from which the model is able to

extract useful information.
• Its applicability to unstructured data (reports, im-

ages, social media interactions, etc.).
Additionally, three applicable recommendations: 1) avoid
unnecessary complexity, 2) make sure the model is cor-
rectly interpreted and understood, and 3) set up reliable
validation processes.
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upon the interpretability of the model itself. As we have seen in the previous sec-
tion, and in the summary of it in Table 3.2 a lot of regulations also comment on
the interpretability of ML. Throughout literature, the concepts of interpretability, ex-
plainability, and transparency are widely used, often with different definitions, but
all boil down to the same idea. There is a certain inconvenience in making an assess-
ment framework that should take into account the interpretability of models, since
it is an interrelated concept with many other principles and findings in Table 3.2. In
an FSI’s Insights paper, they highlight this issue as well: “Transparency of an AI/ML
algorithm is a prerequisite to fulfilling some of the other sound AI governance principles”
(Prenio and Yong, 2021). If it is not transparent, we cannot assess its reliability, per-
formance, fairness, or any other topic related to the inner workings of a model. As
for this reason, together with the reason that interpretability is not easily measur-
able in itself, we will decompose interpretability to more measurable concepts. In
this way, we can measure the suitability of a model design for the use in IRB models.

Decomposing interpretability

When addressing interpretability in ML, most literature focuses on explanation
methods, such as Robnik-Sikonja and Bohanec, 2018 and Barredo Arrieta et al.,
2020. However, in the decomposition of this subsection, we explicitly do not focus
on explanations of an ML model’s prediction. We step away from the concepts of
’XAI’, and center the attention on the ability for humans, from a customer to model
owner, to understand the model. In the paper of Lipton, 2018 the term transparency
is used for this. It considers three hierarchical dimensions in terms of going deeper
into the model, focusing on the human-level understanding of a model. First simu-
latability, which is the transparency at the level of the entire model, decomposability
at the level of individual components (e.g., parameters), and at the level of the
training algorithm we investigate the algorithmic transparency. Below, these are
explained further:

• Simulatability is the first level of transparency. It refers to a model’s ability to
be simulated by a human. Next to the simplicity of a model, also the size of
the model is of influence on this dimension. The most simulatable model is a
model that is fully understood by a human when it takes the input data and
all relevant parameters, and produce a prediction within a reasonable amount
of time. Taking size and the simplicity of the computations into one criterion
is because the trade-off between these two vary between models and is bet-
ter captured as one to resemble simulatability. The quantity of ’reasonable’ is
a subjective notion, however, as Lipton, 2018 describes, given the limited ca-
pacity of human cognition, this ambiguity might span only several orders of
magnitude, and is therefore justified. In 3.5 we will elaborate more on how this
is measured.

• Decomposability is the second level of transparency. It denotes the ability to
break down a model into several components. The components consist of the
inputs, and the computations involved, subject to the parameters of the mdoel.
As a prerequisite, the components must be intuitive, e.g., no advanced feature
engineering techniques are used to construct input parameters. The parame-
ters and computations can be seen as the interactions that input features have.
These interactions should be intelligible, or easily understandable. As an ex-
ample, Lipton, 2018 mentions that each node in a decision tree corresponds to
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a plain text description. Each interaction is therefore easy to understand: “If
variable X is larger than 10, and variable Z is lower than 6, then predict 1”.

• Algorithmic Transparency is the final, third level of transparency, which en-
compasses the algorithm itself. In entails the learning process that the algo-
rithm uses. For linear models, one can actually understand the shape of the
error function or surface. However, some of the larger and more complex al-
gorithms, a strong stochastic property of the learning process can make the
algorithm opaque. This makes outcomes less well reproducible. Some exam-
ples are heuristic optimization procedures of neural networks, or the heuristic
algorithm used in genetic programming (see subsection 2.2.1).

3.3.2 Input-output relationship

The relationship between input and outputs of a model form an important aspect of
an ML algorithm. We identified one important criterion to evaluate different algo-
rithms on.

To explain what we mean with input-output relationship, recall the previous
paragraph, where we touched upon the decomposability of a model. We can also
apply this concept to the input and output relationship. The decomposability of this
subject is better known as individual variable contribution. An additive model is
much more interpretable than a model in which variables use other operations such
as multiplications, or even nonlinear operations. That is because one can, for a given
input, give all individual variable contributions for the output. It relates to concepts
such as human oversight, mentioned in the CRR articles of the EBA and the ATLAI
of the EU. Also, with clear individual variable contributions, the customer is able
to challenge the outcome. A fully connected deep neural network is an example of
a model that does not have clear input-output relationships. The deep neural net-
work also has nontransparent individual variable contributions to the outcome. The
only way to distill some variable contribution from the model is by the use of XAI
or partial dependence plots (PDPs). These show the marginal effect of one feature
to the outcome, leaving all other variables the same. However, in such a neural net-
work, when changing two variables, the user is almost not able to know what the
outcome will be, and in fact cannot easily say whether the prediction is going up
or down, even with very logical features such as salary. This comes from one of
the two main disadvantages from PDPs, namely it assumes independence between
variables (which might not be the case, as illustrated above). Another disadvantage
is that it is not able to show the heterogeneous effects because PDPs only show the
average marginal effects. That is, when for half of the data the outcome is positively
impacted, and for the other half the same size negatively impacted, the PDP will
show a horizontal line of dependence, since on average there is no effect.

Decomposing the effects of one feature (or the interaction between multiple fea-
tures) on the final prediction, without making use of PDPs, is necessary for the
interpretation, but more importantly, also to comply with regulations. The BCBS
touched upon this with the implications of ML models for financial stability, and the
FSI mentioned the concept of reliability and soundness. It all boils down to hav-
ing an economically justifiable relationship between inputs and output. Within financial
institutions, this often implies having a monotonic relationship between input and
output when this is expected. The relationships should have an economic rational.
For example, when getting a higher income, the PD should always decrease (mono-
tonically decreasing), since a higher income would make the loan provider more
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FIGURE 3.3: A confusion matrix (retrieved from Jeppesen et al., 2019).

sure about getting paid back the loan. It is important to note, that this criterion does
not imply that all input variables relationship with the output should be restricted.
They, however, should make (economically) sense, and where necessary, the model
developer should ideally restrict the model to a relationship that is appropriate.

3.3.3 Output

With regard to the output of the model, there are two aspects that were mentioned
multiple times in the regulatory context. These are the performance of the model,
and the fairness.

Classification performance

As mentioned in the Introduction of this thesis in Section 1.1.2, ML models have
often shown to outperform traditional models. This performance is generally mea-
sured with a few well known metrics. We make use of the concept Area under
the Curve (AUC). This concept will become clear when we will further elaborate
on the ”curves we use. The two measures that are used in this thesis make use of
two different ’curves’, namely the Receiver Operating Characteristic curve, and the
Precision-Recall curve, which will be elaborated further below.

To explain these concepts, one first needs a thorough understanding of a confu-
sion matrix, which is depicted in Figure 3.3. The matrix is divided in four squares,
by the combination of positive (1) and negative (0) classes and the ground truth and
predicted value. The two squares in green form the correct predictions: either cor-
rectly predicted records of class 1, true positives, or correctly predicted records of
class 0, true negatives. The squares on the other diagonal are incorrectly predicted,
false negatives or false positives. All predictions of the models are of course proba-
bilities, since we are predicting the PD. That makes the distribution of data records
across the confusion matrix highly dependent on the so-called threshold level, the
point where we decide to predict 1 if the prediction is higher than the threshold, and
0 if it is lower.

After getting familiar with the confusion matrix, we can zoom in on the per-
formance measures. Starting with the AUC of the Receiver Operating Character-
istic (ROC) curve, which together are abbreviated as AUROC. The ROC curve is a
graph that shows the performance of a classification model at all threshold levels
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FIGURE 3.4: Example visualizations of the ROC curve, AUC, and true
and false positives (based on a figure from Swets, Dawes, and Mon-
ahan, 2000). The left figure shows an ROC curve with corresponding
AUROC of 85%, The right figure shows how the true positive and

false positive rates vary based on the threshold level.

(Narkhede, 2018). Figure 3.4 gives two examples of ROC curves. The curve shows
the true positive rate versus the false positive rate for all possible threshold levels.
The area that is under the ROC curve, which is the AUROC, is 85% in the left figure.
In the right figure of Figure 3.4, we see how choosing a different threshold level will
affect the true positive and false positive rates. A threshold level of 0.4 for exam-
ple, forces the model to classify a prediction as a default when it predicts the PD
to be above 40%. The threshold level can also be set to 0.9, shown in the right plot
of Figure 3.4 in the lower left corner of the ROC plot. In this case, very little data
observations will be classified as default, so there is a low true positive rate, and a
low false positive rate. A perfect classification follows the left and upper border of
the plot. The area under the curve, the AUROC, would then be equal to 1, since the
total area of the 1× 1 square is 1. A fully random classifier has 50% of guessing right,
and therefore shows a diagonal line, see the left figure of Figure 3.4. The advantage
of the ROC curve is that it gives a good indication on how well the model is per-
forming. Next to that, the AUROC is used in many researches, as it has well-defined
interpretations of the AUC (probability that a positive is ranked higher than a nega-
tive), as well as other concepts such as the distance above the curve (probability that
an informed decision is made rather than guessing). However, for this research, we
will only focus on the values of the AUROC scores of different models.

Another commonly used performance indicator makes use of the precision recall
(PR) curve. Again, the measure is the AUC, which is now abbreviated with AUPRC.
Like the ROC curve, the PR curve also resembles all possible threshold levels that
can be chosen to predict a class positive, however, now the values plotted resemble
the precision and the recall. The precision versus recall is a commonly known trade-
off. Their calculations are also shown in the confusion matrix in Figure 3.3. A high
precision relates to a low false positive rate, and high recall relates to a low false
negative rate (Pedregosa et al., 2011). In Figure 3.5 the ROC and PR curve for two
models are depicted to show their differences. One can interpret the PR curve as
follows: to predict at least 50% of the defaults correctly (corresponding to a recall
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FIGURE 3.5: Example of two ROC curves and the corresponding
precision-recall curves.

of 0.5), we need to incur a precision of approximately 10%. That indicates that 90%
of the positively predicted will actually not default. The figure clearly illustrates
that although the AUROCs are fairly comparable, the PR curve shows that there is
an actual difference in the output of the model. Especially in highly imbalanced
datasets, the AUPRC is of added value as a performance measure (Sigrist, 2022).

The main difference between the AUROC and the AUPRC is that the AUROC
gives a general idea on how well a model is performing, and generally lies between
0.5 (random guessing), and 11. Whereas, the AUPRC is also dependent on the frac-
tion of positives and negatives in the dataset. To illustrate this, one can always say
that a model with an AUROC of 0.9 is a very good model, but a model with an
AUPRC of 0.9 does not yet tell anything about its performance without knowing the
data that it was tested on. To conclude, although the AUPRC is good to compare
models fitted on the same data with each other, it does not tell enough on the gen-
eral predictive power of the model. Therefore, we use the two metrics AUROC and
AUPRC in conjunction.

Fairness

Another aspect that should be addressed in the model’s output is fairness. Mentions
in among others the regulatory documents FSI Insight, the GDPR, and the ALTAI
(see Table 3.2) indicate the importance of this aspect. Fairness in ML and AI is also
an important topic that is often addressed in literature. However, the fairness of a
model can only be assessed when a dataset is available in which features are col-
lected that cannot be used in the model. In this way, one can check whether, based
on non-discriminatory features, the model can still discriminate. As this data is not
available in open source credit datasets, and since fairness in AI is a large research
area in itself, we will not cover the fairness of the model in the assessment frame-
work. Additionally, after all, an inherently interpretable model would theoretically
be less sensitive to unforeseen unfairness.

1Technically, the AUROC can also be lower than 0.5, but then the model performs worse than ran-
dom guessing.
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3.3.4 Model use and implementation

The last aspect to cover in the assessment framework is the use and implementation
of the model in the organization.

The most important aspect is the model governance. This encompasses a large
subset of characteristics of a model when it is in use. The degree of ’manageability’
of a model is important in this metric. It covers the range from business operations
and privacy and security management, to IT governance. These different roles are
important to address, but also the policies and procedures underlying it, which can
be seen as accountability. The accountability is most simple if only one model owner
is in place. However, model governance can also grow to be a task of several peo-
ple, all safeguarding a specific component, or process in the model. What is also
included in this criterion, is the documentation that comes with an algorithm. All
these related concepts will be combined in one criterion. That is because these con-
cepts are intertwined, they influence each other. Splitting these up, would not be of
added value, and could harm the interpretability of the assessment framework.

Lastly, one might consider the training time for the model as a criterion for under
the category of model use and implementation. However, since the model develop-
ment is only once in several years, and updating of the model is also happening only
approximately once per year, this is not a significant criterion to take into account
when assessing the models.

3.4 The assessment framework

After taking the components mentioned in this Section 3.3 into account, we design
an assessment framework to use for the comparison of several ML algorithms on
their applicability in IRB models. This assessment framework is depicted in Table
3.3 below. Therewith, research question B is answered, which enables us to compare
different ML-algorithms effectively in Chapter 5.

Multiple criteria, such as simulatability and decomposability are not straight-
forward to measure. In the ’explanation’ column, for one criterion, one can identify
multiple metrics. For decomposability, for example, the metrics cover both the
number of features and the number of interactions between them. As these metrics
are strongly intertwined, we choose to aggregate those metrics to one criterion. In
this way, we make sure that the criteria are as much mutually exclusive as possible.
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TABLE 3.3: The assessment framework for evaluating the applicabil-
ity of ML in IRB models.

Subject Criteria Category Explanation Related concepts
Model design Simulatability Interpretability The ability for a human to

achieve the same output,
given some input
parameters. This criterion
covers both the simplicity
and the size of the model

Simplicity, sparsity,
compactness

Decomposability Interpretability Consisting of the number of
features used in the final
(regularized) model, and
the degree of interactions
between those features

Sparsity, size of
feature space,
feature
interactions,
non-linearity

Algorithmic
transparency

Interpretability Covers the full algorithm,
including subcomponents
of the learning process of
the model. This focuses on
the ease to get a thorough
understanding of the
algorithm

Transparency,
thorough
understanding

Input - output
relationship

Economically
justifiable
relationship
between input
and output

Interpretability Economically justifiable
relationships often require
monotonicity, is this the
case? To what extent is it
possible to make additional
constraints in the learning
phase, or post-hoc
alterations to the model

Fairness,
(economically)
justifiably,
consistency,
soundness,
monotonicity,
challengeable
outcome, human
oversight

Output Performance -
AUROC

Performance Area under the ROC curve -

Performance -
AUPRC

Performance Area under the PR curve -

Model use and
implementation

Governance and
documentation

Implementation Covers the full length of
how well the model is
manageable, whether ’new’
problems arise in
comparison with traditional
models

Manageability,
accountability,
responsibility, IT
security,
documentation
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3.5 Using the assessment framework: scoring

Comparison of the algorithms is enabled by the assessment framework. All models
will be assessed by scoring them on all criteria. As one can see, the criteria are not
all straightforward to measure. To decide on how we should score the models, we
take a closer look at the literature on scoring different models using an assessment
framework.

First, the level of measurement is an important concept to understand. It tells
how precisely variables can be recorded. There are four different levels of measure-
ment, see Table 3.4. Starting from the top, the nominal measurement level is the
least explicitly defined. Nominal variables, such as country and gender, are cate-
gorical variables that only can be compared between instances of being equal, or not
equal. There is no hierarchical order between the values of that variable, in contrast
to ordinal variables. This second level of ordinal variables consists of variables such
as a likert-scale (strongly disagree up until strongly agree with 5 levels), and for ex-
ample learning ability, which would be scored from low, to medium, and high.
These variables can also be compared in terms of which observation is larger than
the other. Thirdly, interval variables are numerical variables without the property of
a true zero point. This specific level of measurement is used in for example measur-
ing temperature in Celsius or Fahrenheit and IQ points. Numerical values can be
compared quantitatively and also subtracted and added to get meaningful results,
i.e., ranges, for example. Without having a true zero point, these measurements do
not allow for multiplication or division. A true zero point is not present in for exam-
ple the variable IQ, or degrees of Fahrenheit; a zero on these variables do not mean
that there is a complete lack of that property. Having a true zero point is only appli-
cable at the ratio measurement level. Examples of this most explicit level are weight
and speed. The mathematical operations of multiplications and divisions make one
able to calculate ratios and percentages of the variables. Note that from the most
explicit level of measurement, one can always use properties of measurement levels
that have a lower explicitly to compare different variables.

TABLE 3.4: Levels of measurement with the respective properties
(Bhandari, 2020).

Level Categories Rank order Equal spacing True zero Math. oper.
Nominal X =, ̸=
Ordinal X X =, ̸=,<,>
Interval X X X =, ̸=,<,>,+,−
Ratio X X X X =, ̸=,<,>,+,−,×,÷

In the Assessment framework of Table 3.3 we see that most of the criteria are
ordinal variables. One is able to argue why one ML model is more simulatable than
the other, but cannot exactly say how much better. The performance measures on
the contrary are examples of ratios; the AUROC and AUPRC both have true zero
points, namely.

As most of the data is ordinal, we are restricted in what way we measure the
different criteria in the assessment framework. Cooper and Schindler, 2014 describe
for this type of data two different scaling types, namely rating scales and ranking
scales. These measurement scales are often used when measuring the more complex
constructs, Cooper and Schindler note.

“Rating scales are used when participants score an object without making a direct com-
parison to another object or attitude” (Cooper and Schindler, 2014). A few examples of
these are the Likert-type scale, the Multiple Rating List scale, and Graphical rating
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scale. These scales all require a definitive positive or negative statement, with which
one can agree or disagree, which makes it not applicable for this thesis. Another ex-
ample of a rating scale is a numerical scale, in which the numerical scores have equal
intervals that separate their numeric scale points. However, this scale needs con-
cepts that are standardized or defined, the numbers should anchor the end-points
and points along the scale. For example, in evaluating whether one would buy a
new product, the numerical scale from 1 to 7 has well-defined end-points: ’definitely
won’t buy’ and ’would definitely buy’. Concepts of the assessment framework such
as simplicity and decomposability do not possess these properties of well-defined
anchor points.

The other option is to use ranking scales. Ranking scales are used to directly
compare two or more objects. Three different options are possible for these types
of scales: Paired Comparison scale, Forced Ranking scale, and a comparative scale.
The first one consists of making unique pairs of all options, and comparing these
one by one. In our case, with four alternatives, we need to make six paired compar-
isons. This becomes numerous comparisons when assessing all the models across all
different criteria. The forced ranking scale on the other hand just asks the evaluator
to rank the alternatives from first to last place. The advantage of this is that fewer
comparisons need to be made. Additionally, this type of scaling does not require
anchored end-points. Lastly, the comparative scale takes one alternative, to which
all other alternatives should be contrasted. In our case, naturally, the logistic regres-
sion becomes the reference level. However, since the new models are naturally a
bit more complex than the standard logistic regression models, this type of scoring
does not satisfy the requirements because the scale does not allow for a well-defined
distinguishing between the other alternatives.

Ultimately, following the literature, the forced ranking scale is the best choice for
evaluating which ML models are applicable for the use in IRB models by means of
the assessment framework. To illustrate how to compare and contrast the alterna-
tives, Figure 3.6 shows an often used visualization for these kinds of problems. In
here, one can see which model performs better on which criteria compared to others
in just a moment of time. Although the lines between data points may mislead the
reader that there is some chronological order, it is often used, as it is more readable
in this manner.

However, one large flaw on using this type of ranking scale and visualizations
for the scoring of the models on all criteria has the major flaw of ’losing’ information.
For example, the distance between the number one and number two might be very
little, whereas between the number two and number three there is a huge difference.

FIGURE 3.6: A simple example of how ranking scales are generally
visualized. Only the rank is visualized, and one cannot distill how

much better one option is over another.
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FIGURE 3.7: Example of how rating scales give a better picture, closer
to the truth, compared to a ranking scale.

To reduce the loss of information, we will actually make use of a rating scale. Since
we do not have anchor points that are generally needed for the rating scale, we will
base this rating on the comparison with the benchmark model. In this way, there
is no need for a scoring table, but we can still score all models compared to the
reference level (which is also used in the well-known Simple Multi-Attribute Rating
Technique (Edwards, 1977)). The benchmark model will be assigned a rating that
corresponds to what is generally perceived in literature about it. That is done with
the use of commonly known grading scale, i.e, from 5: insufficient and 6: sufficient
up to 8: good, and 9: very good. After that, we can compare the alternative models
with the benchmark model. In this way, we will not exclude important knowledge.
The advantage of using a scoring method with the ’grades’ mentioned above, is that
we can leverage the general intuition about a rating scale from 1 to 10 that is build
up throughout the use of the decimal numeral system.

With scoring in this manner, we can see in the illustrative Figure 3.7 that the
perception can change of how models are actually scoring. Now, for the same data,
Figure 3.7 tells a whole different and more compelling story than Figure 3.6. We
can conclude that this way of scoring is of added value in drawing conclusions in
this thesis. However, we must note that this way of scoring is contingent upon a
subjective opinion of the evaluator. This is the main disadvantage of using a scoring
scale.

Lastly, we could choose to use a weighting scheme. However, we do not make
use of weightings for the criteria, which is often done, also in the aforementioned
Simple Multi-Attribute Rating Technique (Edwards, 1977). That is because when
using such methods, one needs to assume that all variables are fully compensatory
in making the final prediction, i.e., a low score of an alternative on a certain crite-
rion may be compensated by a high score on another criterion. This assumption
is not correct in the assessment framework, and thus making use of rating scales,
and scoring each criterion individually and a qualitative comparison based on the
assessment framework is the best way to proceed in this thesis.

3.6 Conclusions on the assessment framework development

In this chapter, we found that industry’s attention for ML is increasing. However,
it shifts focus from the regulatory area towards other non regulated areas in the
financial industry. The two main challenges that financial institutions identify are:
1) a lack of supervisory understanding, and 2) difficulty of explaining processes.
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Regulators generally acknowledge these problems. They constructed several
documents, guidelines, or regulations to ensure a proper use of ML in the financial
industry. Concluding, the key topics that need to be taken into account when using
ML in IRB models are interpretability, performance, and implementation challenges.

An assessment framework to evaluate the applicability of ML models for PD
estimation in IRB models was constructed using the aforementioned topics. The cri-
teria are as follows: simulatability, decomposability, algorithmic transparency, eco-
nomically justifiable relationship between input and output, AUROC, AUPRC, and
governance and documentation.

To make use of the assessment framework, we showed that a rating scale is pre-
ferred over a ranking scale. In this way, we are able to differentiate the key qualities
and vulnerabilities of the models better when compared to each other.
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Chapter 4

Model Selection and Data
Preparation

Besides that the assessment framework will enable us to compare ML models with
one another, the assessment framework is also a stepping stone to select potential
ML algorithms to be compared. Knowing that we need to focus on interpretability,
we will in this chapter select several promising ML algorithms. The selection of these
algorithms is the deliverable of research question C: “What are appropriate machine
learning algorithms from the literature for application in IRB models?”. After that, we will
describe, clean, and process the data that we will use. This enables us to properly
design and tune several ML models with the chosen algorithms. The goal of this
Chapter 4 is to choose and tune the models and prepare the data. Eventually, these
deliverables are combined with the assessment framework produced in Chapter 3.
Together they enable a proper comparison that is addressed in Chapter 5: Results.

4.1 Model selection: inherently interpretable ML

In this section, we zoom in on a very specific part of ML algorithms, namely inher-
ently interpretable algorithms. As described in Section 2.2.2, in the literature this is
also known as interpretability/interpretable by design, white box models, etc. In
order to come up with a short list of algorithms that we will compare, the literature
is addressed.

The current most simple classification techniques comprise classification trees,
and the simple logistic regression. Recall from Section 2.2.2 where we mentioned
the very basic classification (and regression) tree algorithm CART. Throughout the
years, many alterations have been formulated in constructing the tree, amongst oth-
ers the well known C4.5, and C5.0 algorithms (Quinlan, 1993). These use rule-sets
and include weighted classification errors in the training phase. They, however, have
not proven to be very accurate in PD estimation. One seemingly logical step is to
combine a classification tree, with logistic regression. The Logistic Model Tree (LMT)
was proposed by Landwehr, Hall, and Frank, 2005. The algorithm constructs a tree,
and at every leave node, a logistic regression model is fitted. The advantage of this is
that features actually can interact, because based on an attribute value, each split will
eventually lead to other coefficients being used in the logistic regression. This ad-
vantage, together with the fact that the model is a combination of two interpretable
models, is the reason the LMT is one of the selected models to be compared.

Another relatively interpretable ML-algorithm is a generalized additive model
(recall, abbreviated to GAM). Initially proposed by Hastie and Tibshirani, 1990,
GAMs currently come in very many different alterations in recent literature. Firstly,
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the way that the functions of single features, also called shape functions, are con-
structed can be different. The way that this is done does not harm the interpretabil-
ity of the model itself. Therefore, the shape function construction can be rather com-
plex. Methods used for this are ordinary classification trees, bagging, boosting (Lou,
Caruana, and Gehrke, 2012), and also recently deep learning, such as NODE-GAM
(Chang, Caruana, and Goldenberg, 2022). A second possible alteration on the regu-
lar GAM is that more advanced GAMs also allow for interactions between variables.
Recall Formula 2.5, when interactions are added this becomes for example:

f (x1, x2, ..., xn) = β0 + g1(x1) + g2(x2) + ... + gi(xi, xj) + gn(xn) (4.1)

where i ̸= j. In this example gi(xi, xj) is the interaction component. One can still
comprehend this well, as we can plot the two-dimensional graph corresponding to
the interaction using a heatmap, for example. Higher orders of interactions might
allow for more predictive power, but immediately suffer from being too complex
to comprehend and almost impossible to visualize while staying interpretable. The
combination of 1) using a deep neural network in the shape function creation, and 2)
allowing for interactions, is exactly what Yang, Zhang, and Sudjianto, 2021 propose.
Their GAMI-NET is “a disentangled feedforward network with multiple additive subnet-
works; each subnetwork consists of multiple hidden layers and is designed for capturing one
main effect or one pairwise interaction”. We select this specific GAMI-Net algorithm for
the model comparison.

As we saw in Figure 2.7, the other ML algorithms such as SVM, bagging, boost-
ing or deep learning are all too ’black box’ to be made inherently interpretable. We
therefore take a look at one very specific algorithm, which originates from the ge-
netic programming domain, namely symbolic regression. Genetic programming
based symbolic regression (GPSR) has showed to outperform several traditional
black box models in regression and classification tasks (Orzechowski, Cava, and
Moore, 2018). GPSR is a heuristic to efficiently search the infinite possibilities of
models that can be build for a classification problem. This algorithm is part of the
evolutionary programming domain (cf. Section 2.2.1), and specifically uses all kinds
of mathematical expressions to let input parameters interact, to construct a single
output value. In each iteration, these mathematical expressions are altered, in or-
der to see what relationships between variables have the most predictive power. In
Section 4.3 we will further elaborate on the inner-workings of this model.

Having chosen three models; LMT, GAMI-Net, and GPSR, we are able to make a
comparison. In order to effectively contrast the models to the current situation, we
will also fit a logistic regression model. That is the benchmark model of this thesis,
and it will also be referenced as such throughout the comparison. The three models
discussed above are constructed in Python with the use of the libraries lineartree,
gaminet, and feyn. To conceptually illustrate how these models relate to the tradi-
tional ML models shown in Figure 2.7, we added them in Figure 4.1. Note that this
is no ground truth, but its purpose is to aid the reader in the conceptual placement
of the interpretable ML algorithms on the interpretability-accuracy trade-off graph.
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FIGURE 4.1: A conceptual visualization of the interpretability and
accuracy trade-off for the algorithms to be assessed.

4.2 Data selection and preparation

4.2.1 Peer-to-peer lending

As mentioned in the methodology in Section 1.3, we will be using a publicly avail-
able dataset from LendingClub. LendingClub is a US based peer-to-peer lending
platform. A characteristic belonging to peer-to-peer lending is quick and easy trans-
fers of money from (private) investors to lenders. To efficiently connect investors
with lenders, the platform makes use of a transparent online marketplace. This
data is collected and published by LendingClub, and is a useful source for many
researchers. Although this thesis is focused on ML in IRB models, we will use this
LendingClub dataset since it is a rich dataset, containing a lot of data records and
features and is specifically focused on credit risk. The use of ’real’ bank data is not
a possibility, as this data contains a lot of personal information, which makes it not
allowed to publish this thesis when describing and reporting on that data.

4.2.2 Data description

We use the most recent version of the dataset1, covering a period from 2007 Q1 up
until 2020 Q3. Shortly after that date, LendingClub stopped its peer-to-peer lending
branch. To the best of our knowledge, this had no influence on the available loans
and investors. The raw dataset contains 2.93 million data records, covering 141 sepa-
rate features. Each data record represents a loan, having certain characteristics, and
most importantly a loan status. The loan_status feature is a ten-level categorical
variable, of which only two are absorbing states: ’Fully Paid’, and ’Charged Off’.
These are the loan statuses that are of interest, which respectively translate to ’No
Default’, and ’Default’. The default rate in this dataset, i.e., the proportion of de-
faults, is 19.5%. We note that this is a relatively balanced dataset compared with

1Retrieved from Kaggle on 12th of April, 2022

https://www.kaggle.com/datasets/ethon0426/lending-club-20072020q1?select=Loan_status_2007-2020Q3.gzip
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TABLE 4.1: Overview of loan statuses in the raw dataset

Status Count Percentage
Fully Paid 1, 497, 783 51.20%
Current 1, 031, 016 35.24%
Charged Off 362, 548 12.39%
Late (31-120 days) 16, 154 0.55%
In Grace Period 10, 028 0.34%
Late (16-30 days) 2, 719 0.09%
Issued 2, 062 0.07%
Does not meet the credit policy. Status: Fully Paid 1, 988 0.07%
Does not meet the credit policy. Status: Charged Off 761 0.03%
Default 433 0.01%
Sum 2,925,492 100.00%

bank’s data on different portfolio. The relatively high fraction of defaults in this
LendingClub dataset is another characteristic that belongs to peer-to-peer lending.

4.2.3 Data pre-processing

As described above, there are only two absorbing states2. That means that the rest of
all the loans, are not yet in a final state and therefore cannot be used in a probability
of default estimation model. Current outstanding loans are therefore discarded, see
Table 4.1. These include Current loans, Late and In Grace loans, Issued loans, and
also Defaulted loans. This latter loan status does not correspond to a ’default’ as we
defined it in this thesis and is therefore not in an absorbing state and for that reason
removed.

After removing these rows, we take a closer look at all the features in the dataset.
Since the dataset contains information on the loan that was not known at the point
of origination, we need to exclude these features to prevent so-called data leakage.
That means that we only use information based on characteristics of the loan and
applicant that were known when the applicant applied for the loan. This makes this
research and the PD model also applicable for loan acceptance and pricing, besides
the use of within IRB models. Next to those post-origination features, multiple fea-
tures are also removed since they do not contain any valuable information, e.g., the
URL to the loan on LendingClub’s platform.

Data imputation

After removing the rows and columns that we cannot use, we are left with a dataset
with dimensions 1, 860, 331 x 48. Many columns and rows still contain missing val-
ues, which can cause trouble when implementing the models. Many of the features
show exactly the same number of missing values. This indicates that a few data
records have missing data throughout the feature space, and are therefor not use-
ful in our analysis. After deleting those rows, the column mths_since_recent_inq
is left with approximately 10% missing values. Disregarding all these data records
could have an impact on the validity of the results. Therefore, we choose to impute
the data. Imputation can be done in multiple different ways, and there is no ’right’
or ’wrong’ method for this. To name a few examples, one can impute missing val-
ues by the mean, median, or mode. The advantage of this is that it is an easy and
fast way to do. However, it has also the disadvantages that a bias is introduced and

2Although the two status that include ’Does not meet the credit policy.’ are also absorbing states,
these are excluded, as they should not have been approved as loans given the current credit policy.
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that the distribution of the data can be largely affected. This influences the learning
capabilities of the model, and possibly the predictive power of the feature. Another
way of dealing with these missing values is by treating them as a separate category.
In this way, one can investigate whether having a missing value on feature ’x’
is a good predictor in the model. Since we are looking at a numerical value (months
since most recent inquiry), and the previously mentioned imputation methods do
not suffice for this feature, we use another option that is a bit more sophisticated.
We fit a linear model to impute the missing data. In this way, we can, based on a few
highly positively or negatively correlated features, predict what the value could be.
We selected the three features with the highest and three features with the lowest
correlations with the feature of concern. By selecting multiple features for the linear
model, we make sure that the imputation will not hurt the models’ interpretabil-
ity too much regarding collinearity, see the next section below. Eventually, a linear
model was fitted to impute the 10% missing values of this feature. Additionally, to
prevent extremely high or negative values, the minimum and maximum values in
the data were capped to remain the same as the original training set. A visualization
of mean imputation and the chosen linear model imputation is shown in Figure 4.2.

FIGURE 4.2: Data imputation techniques with their influence on the
distribution of the data of the feature mths_since_recent_inq.

Correlation and collinearity

When trying to predict a certain outcome, ideally, we want predictors with a high
correlation with the target variable. However, when two predictor variables have a
high correlation with each other, the model’s performance and interpretability can
suffer from it. That is because the two predictors will move together (i.e., it is not
possible to change one predictor and leaving the other remain the same), and there-
fore we cannot observe the individual linear relationship of the one predictor vari-
able with the target variable. In short, it makes the effects of X1 on Y difficult to
differentiate from the effects of X2 on Y (Goyal, 2021).

To deal with this, we first produced a correlation matrix, enabling investigation
of the highly correlated features. See Appendix A, Figure A.1 for the plotted cor-
relation matrix. The features with a correlation larger than 0.8 were selected, see
Table A.1, and subsequently investigated with the use of the Variance Inflation Fac-
tor (VIF). The VIF is a commonly used expression to detect (multi)collinearity, and
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it is calculated by formula 4.2 below:

VIFi =
1

1 − R2
i

(4.2)

where R2 is the well-known statistical metric that measures how much of the vari-
ance from the target variable is explained by the predictor variable, which is the
same as the square of the correlation. To calculate this fraction, one uses a single
predictor variable, and make a regression model with the other predictor variables
to predict the single other predictor variable. In that way, we can find the R2

i . When
this is high, we observe that the other predictor variables capture the variance of
the single variable that we tried to estimate, feature i. This results in a high VIF. A
high VIF means that the feature can be disposed without losing significant perfor-
mance, and simultaneously improving the interpretability and computation time of
the model. As a rule of thumb, a VIF > 5 is a significant concern, and is therefore
disregarded in the model (Menard and SAGE., 2002). This is an iterative approach,
outcomes of the VIF in each iteration, and the deletion of the features are given in
Table A.2 in Appendix A. In total, six features are disregarded in this step.

Handling outliers

One other pre-processing step that is often performed in ML projects is the treat-
ment of outliers. Outliers should be treated carefully, as they can occur for several
reasons, such as measurement errors, human errors, or just extreme observations.
Specifically, one needs to find the right balance in distinguishing between data er-
rors/noise, and genuine patterns. However, when not dealt with appropriately, out-
liers can harm the learning ability of an algorithm significantly (James et al., 2021).
A common approach is deletion of data records, or capping the outliers. In this
thesis, we detect outliers by using the interquartile range (IQR), which is the differ-
ence between the 75th percentile (Q3), and the 25th percentile (Q1) of an attribute.
For all numerical values, we plotted a box plot to visualize the Median, the 25th
and 75th percentile. Additionally, the box plot’s whiskers show Q1 − 1.5 · IQR and
Q3 + 1.5 · IQR.

With the use of this visualization, and with the use of the fraction of observations
that are outliers, we are able to effectively process these outliers. The percentage of
outliers is given in Table A.3. Specifically for numerical features with a large num-
ber of outliers, deletion, or capping might not be the best option. To illustrate this,
Figure 4.3 presents two box plots, one without outliers, and one with many outliers.
The red dots, which overlap each other, represent 17% of the data. Additionally, it
is observable that Q1, the median, and Q3 overlap each other. From the description
of pub_rec it is defined as follows “Number of derogatory public records”. When over
17% of the data has a derogatory public record, it is not sensible to cap or delete
these records. We do however think that this can be an explanatory variable and
therefore choose to binarize this feature. That means that the data will be binary for-
matted, where 0 belongs to “having no derogatory public record” and 1 means “having
a or multiple derogatory public records”. This is done for multiple features that showed
the same behavior. For the remaining features, where the outliers made up less than
10%, the outliers were capped to be maximum Q3 or Q1, plus or minus 1.5 · IQR.

We note that although the treatment of outliers used above is a common ap-
proach in the literature, it is not the only right perspective on outliers. Some also
argue that outliers are actually the data records that are the rare extreme cases from
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FIGURE 4.3: Box plot of two numerical features in the dataset, one
showing no data points outside the whiskers and one with many out-

liers.

which can be learned most. To follow this perspective, one needs to thoroughly do
an extensive research on data outliers, possibly interpreting each outlier individu-
ally, to distinguish data errors from genuine patterns. Due to time limitations, this is
not possible to do in this thesis, and the research on outliers is furthermore outside
the scope of this thesis.

Scaling

One of the final pre-processing steps is making use of a scalar function to scale the
data in a way that makes it easier for the algorithm to learn from. This normalization
step is often necessary as the range of values of all numerical predictor variables vary
widely. Algorithms that make use of the Euclidean distance or gradient descent
in the learning process will observe a much faster convergence when all features
consist of the same data ranges (Ioffe and Szegedy, 2015).

Several scalars are often used such as mean normalization, a robust scalar, or
min-max scaling. The latter has the advantage that it will scale all features to be in
the range [0, 1]. The min-max scalar makes use of the following formula:

x′i =
xi − min(x)

max(x)− min(x)
(4.3)

where xi is the instance that is being transformed, and min(x) and max(x) are re-
spectively the lowest value of the specific feature, and the highest value. Within this
research, the min-max scalar is chosen to be used.

Train-test split

To train our models on the data, and eventually also evaluate the performance of the
models, we make use of a train-test split. We split the raw data in an early stage of
the data pre-processing, to ensure that we do not infer information from the test set
into the processing of the data. In this way, we apply the exact same data processing
steps on the test set, only based on information from the train set. To illustrate this,
for data imputation, a linear model was trained on the non-missing values of the
train set, and subsequently used to predict the missing values of the train set, as
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well as the test set. Another example, in which data leakage was prevented, is in
the outlier detection and processing step. We only learn the IQR of the train set, and
based on that place a cap on the train and test set.

After all the aforementioned pre-processing steps are performed, we formed a
training set with dimensions 1, 201, 802 x 37 and a test set of 515, 058 x 37. All 37
features with their corresponding descriptions are added to Appendix A, Table A.5.

4.3 Model tuning

In Section 4.1 we presented the three models. In this section, we will zoom in on
these models. We elaborate on the design of each algorithm, the learning technique
used, and model tuning. Additionally, depending on the model, some extra data
processing operations might be needed in order to make the data applicable for the
specific algorithm, and to retrieve the best performance possible. This is discussed
below for each model that we investigate: the logistic model tree, the GAMI-Net,
and the genetic programming based symbolic regression.

4.3.1 LMT

The LMT builds a tree and fits logistic regression models at each leave nodes. In
Section 2.2.1 the normal classification tree was discussed. For all different kind of
tree algorithms, the goal is to split the data in such a way that the child nodes are
homogeneous in terms of target variable. In contrast to splitting based on the purity
of the child nodes, the LMT needs to split the data in such a way that the at the
child nodes, the target data is linearly separable. That means that for each extra split
that is considered, a logistic regression is fitted on the child nodes. Then these two
child notes must perform better than the previous parent node did individually. The
algorithm makes use of a cross-entropy loss function in determining whether a split
makes it into the final model, by calculating the weighted sum of the training losses
over the child and parent nodes. The cross-entropy loss function calculates the log
loss in the following way:

Loss = −(y log (p) + (1 − y) log (1 − p)) (4.4)

where y is the target variable, and p the predicted probability. Figure 4.4 shows how
this log loss value behaves under different predictions and target variables. One
learns from Figure 4.4 that the loss increases more when it further diverges from the
actual target.

In order to train the model, one extra pre-processing step was performed. Cat-
egorical features cannot be used in the model directly, and are therefore encoded.
This is done with a regular dummy encoding, which creates an extra column, for
each level in a categorical variable. All these dummy variables are thus binary vari-
ables.

Aiming to get the best performance possible and simultaneously minimize the
risk of overfitting, we make use of five-fold cross-validation in finding the best hy-
perparameters. In order to restrict the complexity of the model, we choose to limit
the depth of the tree to be at most three. That means at most three consecutive
splits, resulting in a maximum of 23 = 8 leaf nodes. On top of that, we want
a minimum depth of one, as otherwise the LMT would not make an actual tree,
and would behave as a regular logistic regression model. Subsequently, we perform
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the cross-validation on the hyperparameter of the minimum fraction of samples at
a leaf node together with the regularization strength parameter for the so-called
l1-regularization for fitting each logistic regression model in a leaf node. Also, a
few parameters were fixed. We instructed the algorithm to use a balanced sample
weighting. Especially when there is not an equal distribution of classes, it helps the
algorithm by putting more emphasis on the minority class in learning. The way
this is done, is by putting more weight on the loss function for the minority class.
It is called balanced weighting, as the weights become the inverse of the fraction
the class takes up in the whole dataset, e.g., an 80:20 sample size distribution will
be respectively weighted with 1.25, and 5. We deliberately choose not to use any
sampling techniques (over- or undersampling). These are techniques that artificially
increase or decrease the number of observations of respectively the minority and
majority class. We do not need to use this artificial resampling technique since the
dataset is large, and the class labels show a low imbalance in terms of proportion
default:non-default. On top of that, several studies and online competitions on
the same dataset showed that these techniques did not yield any better performance.
To conclude, the results of the model tuning and training will be given in the next
chapter, Chapter 5, on the model assessment and results.

4.3.2 GAMI-Net

The GAMI-Net is a GAM which allows for interactions in a two-dimensional space.
The shape functions of the GAM are constructed with the use of fully connected deep
neural network. Although these networks are not interpretable, the final model will
be so, on the contrary. That is because the neural networks are means to compute
a shape function. After that, the neural networks can be disregarded, and only the
shape functions, which are very intuitive and interpretable by design, will make it
into the final model.

Recall from Section 2.2.1 how a neural network is build. In contrast to Figure 2.6,
that showed multiple input features for a neural network, the neural networks that
are used in the GAMI-Net are only using one input feature for the so-called main
effects, and two features for the interactions. In Figure 4.5 the GAMI-Net architec-
ture is depicted. The construction of the GAMI-Net follows three stages: 1) fitting
main effects, 2) fitting interactions, and 3) fine-tuning. The left-hand side of Figure
4.5 shows the first stage, three neural networks are fitted, all constructed with only

FIGURE 4.4: Log loss values for a binary target variable for different
predicted probabilities.
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FIGURE 4.5: The architecture of the GAMI-Net (Yang, Zhang, and
Sudjianto, 2021).

one input feature xi and several hidden layers. The right-hand side comprises the
second stage, in which two input features are used to interact with each other. The
advantage of these two stages is that they produce respectively one-dimensional
curves, and two-dimensional surfaces. The curves (shape functions) and surfaces
(heatmaps) will ultimately be linearly combined with a bias and inserted in a link
function, just like logistic regression, which eventually outputs the PD.

To tune the model, different hyperparameters can be set. In order to give the
learning of the shape functions and heatmaps enough ’freedom’, we follow the de-
veloper’s default settings, namely having 5 ReLu-hidden layers with 40 nodes per
layer. Due to computational time limitations, this architectural design of the sub-
networks is not tuned or validated. Parameters that will be cross-validated are the
learning rate and the boolean argument "heredity". Yang, Zhang, and Sudjianto,
2021 included this argument to impose extra restrictions to the use of interactions in
the model. This heredity concept is also often used in literature covering variable
selection techniques (Bien, Taylor, and Tibshirani, 2013; Choi, Li, and Zhu, 2010).
When the heredity argument is set to be true, only interactions can be used in the fi-
nal model when at least one of the interacted variables is also included in the model
as a single main effect. However, releasing this constraint can possibly significantly
improve the performance of the model when two features only have a strong predic-
tive power when combined. Again, as a result of computational time limitations, we
cannot cross validate these parameters by running the whole model multiple times.
As an approximation, we use for the cross validation less epochs. See Figure 4.6 for
the outcomes of the five-fold cross validation for these parameters.

First of all, we note that a lower learning rate performs better, where there is a
marginal performance improvement from 0.01 to 0.001. Remarkably, we note that
when the heredity argument is set to false, the model tends to under-perform in
contrast to setting it to true. Only for the largest learning rate this differs. That is,
because the purpose of using heredity constraint is to help reduce the search space
of interactions, and simultaneously make the model structurally more interpretable
(Yang, Zhang, and Sudjianto, 2021). Having a higher learning rate, will make the
model search the solution space faster, and in that way possibly find interactions
that are not allowed with the heredity constraint in place. Naturally, we expect that
when running for a longer number of epochs, the results of the models without the
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FIGURE 4.6: AUROC scores of five-fold cross validation of the learn-
ing rate and heredity parameter in the GAMI-Net. The whiskers
show the standard deviation of the cross validated AUROC scores.

FIGURE 4.7: Learning process of the GAMI-Net in three stages. On
the left the training loss is depicted, and on the right the 20% hold-out

validation loss is depicted.

heredity constraint will increase and possibly bypass the ones with the constraint.
However, we observe that the inclusion of the constraint does not have significant
influence on the predictive performance, and therefore choose to include the con-
straint to increase the interpretability.

The final model will be run with a learning rate of 0.01 and with the heredity con-
straint. The model makes use of the Adam optimizer to develop the neural network
sub-models3. It will run for 1000 epochs for each stage, with a stopping criterion if
the validation loss does not decrease significantly for a length of 50 epochs. Lastly,
the model is given the same balanced weights for the classes as in the LMT.

In Figure 4.7 the learning process in terms of the loss function is visualized for
the three aforementioned stages. Notice that there is not a significant decrease of the
loss function in stage 2, the interactions training. This gives us an indication of the
features in the data being exploratory in itself, and no interactions have outstanding
exploratory power.

4.3.3 GPSR

In Section 4.1 we briefly addressed GPSR and explained that it is a combination of
symbolic regression and genetic programming. First, symbolic regression is a way

3In this paragraph, extremely specific learning settings were mentioned that need a very detailed
explanation in order to understand the technical details of it. These explanations are not added to this
thesis and are treated outside the scope of this thesis.
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FIGURE 4.8: Evolutionary concept and interactions between models
in genetic programming based symbolic regression.

to fit a model by making use of mathematical operations. Instead of fitting only
additive components, such as in a linear and logistic regression, we now allow for
far more interactions between features. In symbolic regression, addition, multiplica-
tion, linear transformation, exponents, logarithms, and so on can be used. One can
imagine that when having a variety of mathematical operations, that can be applied
to many different features, and also combined in many ways, an infinite solution
space is created.

That is where genetic programming’s power comes in helpful. Genetic program-
ming is a heuristic to efficiently search an infinite solution space and makes use of
the concept of evolution. In Figure 4.8 on the left-hand side, the concept of evolu-
tion in model estimation is depicted. The start is by generating multiple random
initial models, the initialization. After that, the models are all evaluated, using the
loss function that we described earlier. Then the process of generating a new gener-
ation takes place. All models are assigned a weight, having a higher weight when
a model’s loss is lower. This weight resembles the survival chance, just like in evo-
lution, corresponding to the fitness of the individual model. Given these weights,
models are randomly selected for the next generation. Before evaluating these mod-
els again, two different interactions between those models take place. These are de-
picted on the right-hand side of Figure 4.8. Either some of the operations within a
symbolic regression model are altered, which is called a mutation, or two models
interchange parts of its model, which is called a crossover. After that, the process
of evaluation, selection, and mutations and crossovers starts over again, until no
further improvement is found. In this way, the algorithm tries to find near-optimal
solutions for the given solution space.

This algorithm does not need any further pre-processing, as it can handle cate-
gorical variables, although it also uses dummy encoding within the algorithm. There
are not many hyperparameters to tune in this algorithm, as the heuristic is already
well-defined without much inference from a developer. What we can control for, is
the level of complexity of the final model. We can do this automatically with the
use of the build in Bayesian Information Criteria (BIC). It makes use of a likelihood
function and adds a penalty term for the number of parameters in the model, reduc-
ing the risk of overfitting. Using BIC as criterion will yield the model that should
generalize the best to out-of-sample test data (Larsen, n.d.). To familiarize us with
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FIGURE 4.9: An illustrative example of how a Pareto front is created
with possible solutions.

the trade-off on complexity and performance, we can plot an approximation of the
Pareto front. The Pareto front consists of models that cannot be outperformed by
any other model in the solution space. For example, given a model i with complex-
ity Xi, and performance Yi, there is no model j with Xj > Xi when keeping Yj <= Yi.
This also holds vice versa (Neumann, 2012). See Figure 4.9 how the Pareto front is
created for different possible solutions. In the figure, two functions are being mini-
mized, therefore the most optimal point is in the lower left corner.

We ran the GPSR multiple times, with the use of balanced weighting, and al-
lowing for different types of complexities. The complexity is measured in terms of
’edges’, i.e., how many variables are linked to each other in the model. After each
run of 10 epochs, the average loss is calculated, which is, just like complexity, an ob-
jective function to be minimized. Figure 4.10 shows the results of these experiments
as a Pareto front plot. In contrast to the example given in Figure 4.9, this Pareto front
is a stepwise function. That is caused by the fact that the complexity of the GPSR is
measured in integers, instead of a fully continuous variable.

Looking at the Pareto front of Figure 4.10, we wee that the Pareto front is created
by some outliers. We therefore take into account the concentration of the investi-
gated models around the levels of complexity. From that, we can conclude that for
the construction of the final model in Chapter 5, we can restrict the learning process
to have at most 6 edges, since performance does not increase after that. We will
still use the BIC, but restricting complexity reduces the solution space, and therefore
improves the computation time.

4.4 Conclusions on model selection and data preparation

To conclude, in Chapter 4 of this thesis, we selected three interpretable ML algo-
rithms that have a high potential to be applicable for the use in IRB models. The
three models are the LMT, GAMI-Net, and GPSR. After that, the data of a peer-to-
peer loan website was pre-processed. This was done until the point where every
algorithm desires its own specific formatting. All models were individually tuned
on the training set by making use of cross-validation. We choose to restrict the LMT
to a maximum depth of 3 to allow only interpretable models. Also, a minimum
depth was used, since otherwise a regular logit model was fitted. Cross-validation
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FIGURE 4.10: Pareto front plot of complexity versus loss in the GPSR
model. Only a sample of 50% of the investigated models is plotted to

illustrate the concept of Pareto optima.

of the GAMI-Net shows that a learning rate of 0.01 yielded the best results. We in-
clude the heredity constraint to increase the interpretability of the model. Lastly,
experiments with the GPSR shows that the GPSR learning process can be restricted
to a maximum complexity of six edges, i.e., the number of interactions and features
used.

In the next chapter, Chapter 5, the outputs of the ML models will be shown. For
a good comparison, also the benchmark model, a logistic regression model will be
included in the analysis of the different models.4

4The hyperparameters of the benchmark model are also tuned with five-fold cross validation. The
results are not described in the thesis, as they are not part of the core of the modelling and analysis.
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Chapter 5

Model Assessment and Results

In this chapter, the final models are presented. In Section 5.1 we highlight the most
important outputs of each model. These also include explanatory visualizations.
These help us to assess the models in Section 5.2. In that section, we assess the mod-
els’ applicability in IRB models with the use of a ranking scale. A motivation of the
scoring on each criterion is also provided. The final deliverable of this chapter is
the scoring of our three chosen ML models and the benchmark logistic regression
model based on the assessment framework. The content of this chapter gives an
answer to research question D: “How do the different algorithms score based on the as-
sessment framework, and what are their key distinctions?” Afterwards, conclusions can
be drawn in Chapter 6.

5.1 Model output description

For every selected model, we present the outputs of the models in visualizations and
complementary explanations. This full description of the outputs is necessary to be
able to compare and contrast them in the next section.

5.1.1 LMT

An advantageous property of a tree-method is that the tree can be visualized, see
Figure 5.1. Looking at the figure, one sees that in total, six splits are performed and
seven logistic regression models are fitted. The node id’s depicted in Figure 5.1 are

FIGURE 5.1: Visualization of the trained LMT with at each leaf node
the number of samples and average loss.
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FIGURE 5.2: LMT visualization for a selection of features: coefficients
of the fitted logistic models at the leaf nodes of the model tree.

also used in Figure 5.2. That figure shows a snippet of all the coefficients for each fea-
ture in the seven different leaf node models. The full image, with coefficients for all
73 (dummy-)features, can be found in Appendix B in Figure B.1. Looking closely at
some of the differences in the coefficients in Figure 5.2, and the corresponding splits
in Figure 5.1, it is possible to get some insights. For example, in general, the vari-
ance across similar coefficients at different leaf nodes is an indication that the LMT
has an advantage over a regular logistic regression, since it has identified significant
differences on how ’important’ a feature is based on a split in the data. However,
one needs to be careful in drawing conclusions on this, since all coefficients only
combined form a logistic regression model at a leaf node. This implies, that a larger
coefficient at one leaf node does not immediately imply that it is more important
compared to a second node, since the former could have many (and large) negative
coefficients that balance out the effect of the large positive coefficient. This behavior
is also observable in for example leaf node 5 (blue), as across all the features, it tends
to have higher positive, or higher negative values compared to the rest.

5.1.2 GAMI-Net

The GAMI-Net is developed using the hyperparameters and the results of the cross-
validation of the previous chapter. Figure 5.3 shows the size of the model. The left
side of the figure plots the number of main effects and the resulting loss value. The
higher the number of main effects, the more one can reduce the loss function, al-
though with a chance on overfitting. The same holds for the right-hand side of the
figure, in which the number of interactions is plotted against the loss values. The
optimal number of main effects and interaction are denoted by the red star. How-
ever, taking the sparsity of the model into account, the red dot is more favorable as
it allows for a relatively small increase in loss, by significantly reducing the number
of features used.

To give an example of how the GAMI-Net is build up, we can easily visualize the
additive components of the GAMI-Net. As an illustration, the three most significant
main effects, and three most significant interaction effects are plotted in Figure 5.4.
For the overview of all main effects and interactions that are included in the model,
see Appendix B, Figure B.2 and Figure B.3. The advantage of using shape functions
instead of linear functions (that a logistic regression makes use of) immediately be-
comes clear. For example, in the upper left shape function of int_rate, the interest
rate. There is no linear relationship between the target variable and interest rate: for
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FIGURE 5.3: Validation loss values plotted against the number of fea-
tures in the GAMI-Net. Left: individual features. Right: number of

interactions in the model.

FIGURE 5.4: Plots of the most important main effects (upper row) and
interactions (second row) of the GAMI-Net.

instances below 10%, the effect of a low interest rate in predicting the PD becomes in-
creasingly negative. Above 10%, the effect is decelerating positive. This is known as
a concave relationship. Apparently, this non-linear relationship is a better predictor
than the linear relationship that in a logistic regression can only be used.

On top of each plot in Figure 5.4, the variable or variables are depicted and a
corresponding percentage is printed. The percentage represents the amount of vari-
ance explained by that specific component and can be interpreted as the importance
of the variable(s). These are scaled such that the sum of all percentages is equal to
100%. These global importance values are also depicted in Figure 5.5 for all features
and interactions in the model. The insight from Figure 4.7, about the relatively low
impact of adding interactions, can also be recognized in Figure 5.5. The seven in-
teraction terms that made it into the final model are all at the tail of the descending
importance graph.

Important to note, is that the GAMI-Net itself consists of only the components
mentioned above: 19 main effects (shape functions), and 7 interactions (heatmaps).
Therefore, the whole learning process, consisting of many neural networks, is not
part of the model anymore. The outputs of each neural network is an interpretable
visualization. Each visualization is one component for the final model. That makes
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FIGURE 5.5: GAMI-Net’s global feature importance, depicted for the
main effects and interactions of features.

the GAMI-Net still a very interpretable ML model, while using an advanced ML
model, a deep neural network.

Finally, the GAMI-Net has one specific advantage, just like other GAMs, namely
a final check on the shape functions can help to identify data issues that were not
resolved during the pre-processing. This can be found by unexpected movements
in the shape functions. For example, when mean imputation is used for missing
values. However, this is only of a real advantage when the data is retrieved from
an external source, and the researcher does not know what was done with the data
before the acquirement of it, see for example the research of Christensen et al., 2022.
Although a bank retrieves and holds its own data about their loans and clients, it
is a well conceivable situation that a data team processes the data for the modelling
team. Given that there are always communication flaws between departments, one
extra safety check is definitely desirable in that situation.

5.1.3 GPSR

We run the GPSR for 50 epochs, evaluating over 40000 models in the learning pro-
cess. As we found in the previous chapter, we restrict the model to have at most 6
edges. The final model is a simple formula, a combination of features with mathe-
matical operations. The output is given in Figure 5.6. This simplified visualization
does not include biases and weights. When including this, the formula that is put
into the logistic function becomes:

1.8 − 0.71 · e 2(term−0.28)2+1.2(0.19·avg_cur_bal−0.83·int_rate+1)2
(5.1)

FIGURE 5.6: Visualization of the final GPSR model, excluding bias
terms and weights.
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where term, avg_cur_bal and int_rate are the features used. For the categorical
variable term, each category gets assigned a value that the algorithm learned. In
this case, for example, a loan term of 36 months will be replaced with −0.1195 and a
loan of 60 months gets assigned 0.1858. Additionally, a bias term for both values is
included, namely −0.2795.

To illustrate the simplicity of this specific model, we give an example. Given a
term of 36 months, an avg_cur_bal of 0.740951 and an int_rate of 0.077337, the
exponent term becomes:

2 · (−0.28 − 0.12 − 0.28)2 + 1.2(0.19 · 0.74 − 0.83 · 0.077 + 1)2 = 2.27

Substituting that into Formula 5.1 yields:

1.8 − 0.71 · e2.27 = −5.12

Finally, this is put into the logistic function with a bias weight, resulting in a PD of
0.1187. The mathematical operations are comparable to a regular logistic regression,
where only now one needs to use exponents and multiplications. The advantage on
the other hand is that the model gets its best performance already by making use of
only three features in the feature space with a size of 36 features.

5.2 Model assessment

For each criterion, an explanation will be given for the ranking and scores of the
different models. Eventually, this section concludes with an overview visualization,
such as in Figure 3.7.

5.2.1 Simulatability

Starting with the simulatability criterion, which was the ’first level of transparency’,
referring to a model’s ability to be simulated by a human. The simulatability focuses
on the simplicity but also refers to the total size of the model, i.e., is someone able
to take the input data, simulate the model, and produce the same prediction in a
reasonable amount of time.

All three models, and the benchmark logistic regression model, use the logistic
function to restrict predictions between 0 and 1. Therefore, we focus on the com-
ponents that are substituted within this function for each model. First, the logistic
regression model makes use of only some additive components. Each component
is the multiplication of a single coefficient and the value of the feature. The reg-
ulated benchmark model has only 16 of the 73 (dummy-)features. The GAMI-Net
makes also use of additive components. However, for the 23 variables, and 7 inter-
actions in the model, every graph needs to be investigated to get the right values to
be summed. The GPSR scores higher in terms of simulatability than the GAMI-Net,
as the GPSR only uses three features. The relatively harder computations (i.e., multi-
plications and exponents) of the GPSR are outweighed by the many variables of the
GAMI-Net, and the burdensome way of getting all the right values out of the graph.
The LMT scores last. This stems from that the model uses many features and one
needs to perform a large number of operations, i.e., first following the tree, and then
handling a logistic regression with many features, as we showed in the previous
section and in Appendix B in Figure B.1.
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5.2.2 Decomposability

Decomposability is the second level of transparency, as stated in Section 3.3. This
denotes to what extent a model can be broken down into several components: in-
puts, parameters, and the computations. On top of that, the components itself are
ideally intelligible.

Again, since all models make use of the logistic function to restrict predictions
between 0 and 1, we can neglect that part in the assessment. The most simple model,
the logistic regression model, is the easiest to decompose. All components are addi-
tive, and all components in itself are only linear transformations of the feature value,
using a single coefficient. The GAMI-Net follows the logistic regression closely. It
makes use of additive components, which are easily detachable, and they are each
also easy to investigate individually. Although a linear transformation of features is
a bit easier to interpret, a shape function or heatmap does not compromise much of
its interpretability. The computation to come up with the additive component is only
a bit heavier (either producing the mathematical outcome of the function, or reading
the graph). After the GAMI-Net, LMT follows in terms of decomposability. Al-
though larger in terms of size, the GAMI-Net is very well decomposable. After that,
the LMT is most decomposable; the tree is a structure that is very intelligible in itself.
That is, since every split can be rephrased in a plain text description (Lipton, 2018).
Then, following the tree towards a leaf node, a regular logistic regression model is
found which is also well decomposable. The size of the LMT makes it less well to
be decomposed compared to the GAMI-Net. At last, the GPSR is a rather lengthy
formula, with interactions between the variables that are not easily understandable.
One needs to put some effort in and have some strong basis in mathematics to grasp
the effect of one variable on the outcome of the final prediction.

5.2.3 Algorithmic transparency

The third level of transparency covers the algorithmic transparency. Therefore, the
focus is on the learning process that is used.

Starting off with the regular logistic regression, this is the most well-known and
basic algorithm used for learning. It makes use of relatively old statistical knowl-
edge, such as maximizing a likelihood function. Therefore, the learning of the lo-
gistic regression can be properly conceived. After that, the LMT is most transparent
as an algorithm. With the tree, it splits the data in such a way, that it tries to make
buckets of data that are well separable with a logistic regression model. It makes use
of an iterative approach to fit the tree, and simultaneously fit the coefficients of the
logit models in the leaf nodes. That leaves GAMI-Net and GPSR left. Both make use
of complicated algorithms to come up with the final model, which on its turn is rela-
tively transparent. The GAMI-Net makes use of multiple deep neural network, with
a batch gradient descent. The output of each neural network is a shape function, con-
taining only one variable, or two for structured interactions. The main advantage of
the GAMI-Net’s neural networks, is that the neural networks do not involve more
than one (or two for interactions) input parameters. In that respect, one can observe
what the learning process is doing. The GPSR on the contrary is an algorithm that is
less traceable. Since it makes use of a heuristic to search an infinite solution space,
it also has a dominant stochastic property. The stochastic learning process, in which
each iteration survival of a model depends partly on chance, makes it less tractable
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and less reproducible and therefore opaque. For the opaqueness of the GPSR algo-
rithm and the verifiable outputs of the deep neural networks of the GAMI-Net, we
note that the GAMI-Net scores higher than GPSR in algorithmic transparency.

5.2.4 Economically justifiable relationships

Coming to the relationship between inputs and output in the assessment framework,
we note that an economically justifiable relationship between those parameters must
be ensured. As this is a prerequisite, all models do adhere to this. However, the
extent to which the relationships are justifiable and the extent to whether they are
representing the common perception of the relationship between inputs and output
differs across the models.

Often, a economically justifiable relationship restricts the relationship between
input and output to be monotonically increasing or decreasing. A logistic regression
satisfies this constraint, one should only take care that the direction of the mono-
tonic relationship is correct. However, there are several examples in which a linear
relationship is not the most favorable relationship. For example, income is a good
indication whether you can pay your bills. However, a linear relationship is prob-
ably not the most justifiable or in line with the actual relationship, since an income
increase from $3, 000 to $4, 000 is more important than an increase from $10, 000 to
$11, 000. Another example in the GAMI-Net is int_rate. The variable is a good
proxy for the risk that is involved with a loan. However, a linear relationship is not
suitable, which the GAMI-Net also learned, see Figure 5.4 in the previous section.
Additionally, the GAMI-Net algorithm allows for monotonicity constraints within
the learning process, while still keeping the flexibility of learning non-linear relation-
ships. With these properties, the GAMI-Net scores better than the logistic regression
model. With regard to the GPSR, we note that it can only have monotonic relation-
ships with the output variable, since it consists of one formula with mathematical
operations only allowing monotonicity for the feature values inserted (which are in
[0, 1]). Generally, it therefore comes up with more justifiable relationships than the
linear relationships of logistic regression, but does not allow for as much freedom
in construction of the relationship as the GAMI-Net does. Lastly, the LMT makes
use of linear relationships, just like the logistic regression model. However, due to
the splits in the tree, the relationships between inputs and output can change when
there is a change in the feature value. As an illustration, one can think of a salary
increase. Before the salary increase, the person fell in leaf node i, where the vari-
able salary had a large positive coefficient. After the salary increase, the LMT could
place the data record in another leaf node where the coefficient is negative, since
other positive coefficients level out the negative coefficient of salary. Although this
is not something that is likely to happen, this is still an inherent disadvantage of the
LMT. Therefore, it scores last.

5.2.5 Performance

Now, changing the point of attention to the output of the model; performance is
extremely important for the financial institutions, as this is the area where they take
most advantage of. With regard to performance, two performance criteria are used,
the AUROC and the AUPRC. For the three selected interpretable ML models and the
benchmark model we used exactly the same train and test set in order to compare
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FIGURE 5.7: The ROC
curves of the chosen

ML models

FIGURE 5.8: The PR
curves of the chosen

ML models

TABLE 5.1: AUC scores for the different ML models.

Logit LMT GAMI-Net GPSR
AUROC 0.7051 0.7142 0.7194 0.6957
difference with Logit - +1.29% +2.03% -1.33%
AUPRC 0.3575 0.372 0.3784 0.3457
difference with Logit - +4.06% +5.85% -3.30%

them effectively1. Having four prediction arrays with PDs, and one array of true
values containing whether a client defaulted or not gives the ability to plot four
ROC curves, and four PR curves. Therefore, see respectively Figure 5.7 and Figure
5.8.

As we see, for both plots, the different lines run past each other. The ROC curves
plot in Figure 5.7 shows the same pattern as the PR curves plot from Figure 5.8,
namely the lowest line belongs to the GPSR, followed by the benchmark model, next
LMT, and shortly followed by the GAMI-Net. Interesting to note are the differences
in PR curves. For example around a precision of 0.5, one can choose to use a GAMI-
Net instead of the benchmark logistic regression, and double the recall from 0.09 to
0.18, while maintaining a precision of 0.5.

The AUC values for all curves in both plots are given in Table 5.1. For the ROC
curve, the differences are a bit smaller, and also harder to differentiate in the plot.
However, the PR curves and the corresponding AUPRCs show a larger variance
between them. Obviously, the order of the lines from bottom to top described above
is the reverse order in terms of performance in the AUC metrics. The final scores in
the assessment overview in the next section are calculated using a spread of 4 points.
In that way, the differences in performance scores can be divided over the spread of
points, with the same distribution as in Table 5.1.

1Below we report only the scores that were retrieved by predicting on the test set, that has carefully
been excluded in the data processing to prevent data leakage. The test scores correspond to the training
scores, therefore there is no sign of under- or overfitting.
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5.2.6 Governance and documentation

The last component of the assessment framework focuses on the use and implemen-
tation of the models. Related concepts are the governance, documentation, manage-
ability, and responsibility.

The logistic regression is the status quo in the current IRB models. The property
of being a traditional, thoroughly researched method, and being the tradition for
years, makes it a model with which many are familiar. In Section 3.2.3 we mentioned
CRR article 189: “all aspects of the rating and estimation process of the PD shall be approved
by the management body and senior management. They shall have a detailed comprehension
of its management reports and a good understanding of the rating systems and operations”.
Especially this article thwarts the implementation of new ML models. However, for
logistic regression this is not an issue, since in every regular statistics class, logistic
regression is treated. One could argue that the LMT would then also score high on
this last criterion on the assessment framework, as it makes use of merely logistic
regressions. However, there are multiple reasons why the governance of the model
is not that easy. First of all, the size makes it hard to get a thorough understanding
of all components. Therefore, multiple persons should be involved. On top of that,
as was described when discussing the economically justifiable relationships, several
branches of the tree can contradict each other in weights given to the same feature.
All this makes it certainly less easy to implement and to use on a daily basis. In
between the LMT and the logistic regression model, we score the GAMI-Net. The
GAMI-Net itself is tractable, consisting of shape functions and interactions. The ba-
sic knowledge of fitting log odds from a logistic regression can also be applied in
the GAMI-Net. The interactions do not hurt the manageability. The main disadvan-
tage in terms of manageability is the use of deep neural networks to construct the
components. Although, these are no real black boxes (because they only have one
input variable), it is still necessary to have sufficient knowledge on how to construct
these neural nets, and tune them. On last place, the GPSR is placed. This is due
to the relatively innovative use of evolutionary programming. The algorithm does
not allow for human interference. On top of that, the stochastic process can cause
finding completely different models after refitting the model on some new data. The
instability caused by the stochastic property makes it less usable for IRB models.

5.3 Overview of the results

In this section, we present the results of our analysis that is made in this chapter.
We use the assessment framework, that is developed in Chapter 3, to assess an ML
model’s applicability for the use in IRB models. With a scoring scale, we can as-
sess the models individually, but it also allows for a thorough comparison based on
the criteria. In that way, the framework can be applied by companies wanting to
make a decision on which ML model to use in IRB modelling, or to assess which
vulnerabilities and strength a model has compared to a benchmark model.

In Figure 5.9, the final overview of the assessment done in the previous subsec-
tions is given. We want to stress that the use of this assessment framework with
the scoring scale includes the opinion of the one using the assessment framework.
We emphasize that this comparison is not a ground truth, but is a thoroughly moti-
vated comparison which also includes the knowledge and experiences retrieved in
constructing and tuning all models.

Figure 5.9 presents the three areas of interest: interpretability, performance, and
implementation. The scores are depicted in the large circles, and connected to the
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FIGURE 5.9: Evaluation of the applicability of ML models in IRB
models. Three selected interpretable ML models are plotted, together

with the benchmark, a logit model.

other scores of the same model within the same area of interest for an easier com-
prehension. We observe that the logistic regression is the best model in terms of
interpretability and ease of implementation. On the other hand, it scores relatively
low on performance, where we observe that the LMT and GAMI-Net outperform
the benchmark. The GPSR is clearly scoring lower than the logistic regression on all
three areas of interest, and is therefore not the best candidate to be adopted in IRB
models.

On top of the overview of all criteria in the figure mentioned above, we present
an overview of averages of each criteria category in Figure 5.10 on the next page.
This aggregated score is of extra support in drawing conclusions in the next chapter.
We note that averaging scores implies equal weighting, therefore we only make this
overview supplementary and only average scores per category.

On an aggregated level, the logistic regression scores an 9.0 in terms of inter-
pretability, whereas the runner-up, the GAMI-Net scores a 7.3. The rest scores below
a 6.5 and is therewith less competitive with regard to the logistic regression. How-
ever, in terms of performance, the logistic regression scores a 6.0, whereas the LMT
and GAMI-Net now clearly outperform the benchmark. The GPSR is in terms of
performance of no use in IRB modelling, as it has a score below 5. At last, the imple-
mentation criterion is topped by the logistic regression. Followed by the GPSR and
LMT, we see roughly the same ranking as on the interpretability criteria.

Figures 5.9 and 5.10 are the final deliverables of the last sub research question of
this thesis. Having answered all sub research questions, we are able to draw conclu-
sions and develop recommendations in the final chapter, Chapter 6: Conclusions &
Discussion.
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FIGURE 5.10: Final result: averages of each criteria category per
model.
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Chapter 6

Conclusions & Discussion

6.1 Conclusions

The research subject of this thesis was motivated by the discussion paper published
by the EBA, 2021. Advanced machine learning models are perceived as black boxes,
which raises concerns at the European Banking Authority. They identified three key
challenges that restrict the adoption of machine learning in IRB models: 1) interpret-
ing results of ML models, 2) ensuring adequate understanding by management, and
3) justifying the results to supervisors.

To resolve these issues, this thesis shifts the focus away from ’black-box’ machine
learning models, and focuses on inherently interpretable ML algorithms. Ideally, the
use of inherently interpretable ML algorithms result in transparent models, which
subsequently help to ensure an adequate understanding by management and helps
in justifying results to supervisors. Therefore, we formulated the following main
research question:

Which interpretable machine learning algorithms are applicable for
the use in IRB models and how do they differ from each other?

Beginning with the determined scope, we limited this research to the probabil-
ity of default (PD) component within credit risk modelling, particularly in Internal
Ratings Based (IRB) models. Under the IRB approach, banks have more freedom in
modelling their own risk, including the modelling of the PD component. Regarding
the current state of ML adoption in IRB models, we found that especially within the
area where there is an approval needed from supervisors, ML adoption is lacking
behind. In fact, for the use of ML in financial institutions, a negative trend in the
regulatory area is observed, and a positive trend in many other financial areas. We
found that a lot of regulations apply to banks using IRB models. Most of the regula-
tions are opaque, consisting of guidelines that often mostly overlap with each other.
The main area of interest from the industry as well as the supervisor is interpretabil-
ity. However, the industry’s attention is also focused on increasing performance
with respect to the status quo in PD estimation, a logistic regression.

To effectively compare ML models, there was a need to develop a method to
do so. We developed an assessment framework to compare the ML algorithms in
terms of applicability for the use within IRB models. The assessment framework
focuses on the two main areas of interest: interpretability and performance of an
ML model. For the measurement of interpretability of ML in IRB models, we found
that one should look at: simplicity, decomposability, algorithmic transparency, and
justifiable economic relationships between inputs and output. For the performance
assessment, at least the industry standard of the area under the ROC curve should
be used. On top of that, the area under the precision-recall curve is of added value
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when comparing the performance between models, since these can yield more in-
sights. We also included a third area of interest in the assessment framework, which
is the implementation and use of the model within an organization. This last area
of interest is specifically important in order to make the assessment framework rele-
vant for the use in practice.

In a literature review, we found three state-of-the-art interpretable ML algo-
rithms to be promising in terms of applicability for the use within IRB models: the
Logistic Model Tree (LMT), the Generalized Additive Models with Structured In-
teractions (GAMI-Net), and the Genetic Programming based Symbolic Regression
(GPSR). The LMT is an algorithm that constructs a tree, and adds a logistic regres-
sion at each leave node. The GAMI-Net makes use of a deep neural network to
construct the components of a generalized additive model. It also allows for inter-
actions of at most two variables for each additive component. Lastly, the GPSR is an
algorithm build on the principles of evolution. It heuristically searches the infinite
space of all kinds of mathematical operations combined with all available features.
After we selected these three models, we consecutively developed, tuned, and eval-
uated the three aforementioned models and the benchmark logistic regression. We
made use of an open source peer-to-peer credit lending dataset from the lending
platform Lendingclub.

We used a rating scale to score the models. A rating scale was preferred over a
ranking scale, as we could make the differences between models more explicit. This
gave us a good overview of the strength and weaknesses of the ML algorithms and
how they relate to each other. With this overview, we can answer the final research
question, and draw conclusions on this research:

General conclusions on results

• The investigated models all have their strength and weaknesses. In general, we
conclude that in terms of interpretability, the logistic regression is not matched
by others. Based on our scoring, the logistic regression performs better than
the alternatives on all but one interpretability criteria, which results in a score
of 8, whereas the runner-up, the GAMI-Net scores a 7.3 and the rest below 6.5.
The unparalleled interpretability of a logistic regression is one of the reasons
why it is still the status quo. However, by sacrificing a bit of interpretability,
alternative, still inherently interpretable ML models show to outperform the
logistic regression in terms of predictive power (for a critical reflection on this,
see Section 6.2.1). The GAMI-Net shows a significant 2.03% increase in terms
of AUROC and the LMT outperforms the logit with 1.29%. The GPSR does not
outperform the logistic model.

• From the compared algorithms, the only real challenger of the logistic regres-
sion is found to be the GAMI-Net when considering the scores on interpretabil-
ity, performance, and implementation. This has two important reasons. First,
the GAMI-Net is an all-rounder. Looking at the assessment framework and the
scores, the GAMI-Net does not have major weak spots, and performs above av-
erage on all three areas of interest. Secondly, the GAMI-Net is a good alterna-
tive since it least sacrifices interpretability of the researched methods. Specif-
ically because most of the hesitant external parties’ documents on ML (e.g.,
guidelines, regulations, and other statements of supervisors) center around
the diminishing degree of interpretability. That makes the GAMI-Net there-
fore also the most interesting from a regulator’s point of view.
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Key insights of differences in models

• The LMT shows to outperform the logistic regression in terms of performance.
Although there is a positive difference in performance, the LMT sacrifices in-
terpretability when compared to the benchmark. The most prominent weak-
ness of the LMT is that the relationship of an input to the output is not al-
ways economically justifiable. The relativity and dependency of coefficients
amongst each other at each leaf node makes it extremely challenging to com-
pare leaf node models. This results in the significant reduction in terms of
interpretability. The choice to use the LMT in IRB thus depends on the prefer-
ences of a company, and how much interpretability it wants to sacrifice for an
increase in performance.

• The GAMI-Net is the most favorable option as alternative for the logistic re-
gression. The final model does not suffer from components that are not inter-
pretable. The only debatable flaw is that the GAMI-Net algorithm makes use
of deep neural network. In order to be able to confidently use these, the devel-
oper of the model needs to have sufficient knowledge on this topic. However,
the opaque construction algorithm of the model, does not punish the inter-
pretability of the model itself. In terms of performance, the GAMI-Net is the
best of the compared models, and it therefore is a model that has a good bal-
ance on the classic interpretability-accuracy trade-off. It is a real challenger of
the logistic regression, as it only sacrifices a bit of interpretability, while signif-
icantly increasing performance.

• We conclude that the GPSR is not of use within the modelling of the PD com-
ponent in IRB models. It scores lower on all criteria that it was assessed on
compared to the benchmark model. The relatively low performance, and its
low degree of manageability, makes it not a viable alternative. However, we
must note that the algorithm is innovative in such a way that it searches an
infinite solution space efficiently. On top of that, the model does have a re-
markably high performance for only using three features.

6.2 Discussion

In the discussion, there is room to reflect on the results, we will elaborate a bit more
on the ’why’ of the results. On top of that, we discuss the reliability and validity of
the research. Another aspect that is treated in the discussion is the contribution to
the theory and the relevance in practice of this research. Finally, we will conclude the
section, and therewith this thesis, with some recommendations for further research.

6.2.1 Reflection on results

In general, the results make sense in terms of expectations. Below, we will reflect and
elaborate on the results and conclusions drawn in this thesis, specifically for two of
the three investigated models:

• Regarding the Logistic Model Tree, we found that it did outperform the logis-
tic regression model by sacrificing interpretability significantly. We restricted
the learning algorithm to find at least one split in the data in order to fit a
real LMT, otherwise it could become a regular logistic regression. During this
tuning, it was found that when this restriction was lifted, with the use of BIC
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regularization, the LMT favored no split at all in the data. That means, that
no tree would grow, and the LMT would be actually the same as the logistic
regression. This is a fair indication of that in this specific dataset, the LMT is
not favorable.

We can further extend this reasoning, with the fact that the researched dataset
only contains peer-to-peer loans, which is a fairly specific type of loan, and
can thus be seen as a large portfolio of a bank. Correspondingly, banks actu-
ally also have all kinds of portfolios, on which they each fit another logistic
regression. Looking at the broader perspective of a bank, we see that the bank
actually already has a large LMT heuristically designed on its own, with splits
resembling the path that leads each data record to the right portfolio / leaf
node. We can thus argue, that a further split in the data could be seen as a
redundant step, which sacrifices too much interpretability to improve perfor-
mance.

• Although the GPSR is found to be not a good alternative, the model has a
remarkably high score by only using very few features. That makes the algo-
rithm a very strong algorithm, however, not for the use of estimating the PD
in the IRB models. This does not mean that it is of no use for banks. As long
as the logit model is the status quo, and a lot of feature engineering is done to
pull the maximum performance out of such a model, the GPSR can be of help.
The GPSR can construct artificial new features (by combining some features
in the existing feature space), and sequentially those can be used in a logistic
regression. The efficient way of searching an infinite solution space in terms of
models to come up with near-optimal outcome is a promising concept.

Furthermore, it should be noted that although the increase in terms of perfor-
mance is already convincing, this can only become more in the (near) future. With
more and more unstructured data being collected, these investigated models can
possibly thrive even more. Because, currently, we are using risk drivers that banks
have been using for decades. However, new data features of the loan and borrower
that are not yet used currently, can possibly be leveraged with ML. New features
could be retrieved from, for example unstructured data, such as social media use and
other online behavior, or transaction data, which are extremely many data records
on the level of transactions of each client. With the use of these features, one can
imagine that the investigated models in this thesis can widen the gap in terms of per-
formance with respect to the logit model. Especially, when data becomes available
that together, as interactions, have large predictive power. After all, that is where
ML operates best; efficiently finding patterns in data, that traditional methods do
not capture.

Lastly, we note that in this thesis we wanted to create a level playing field for all
ML approaches and the logistic regression by doing all pre-processing steps on all
features that are necessary to let the ML models learn from data. However, we did
not use any feature engineering technique, nor did we tune specific features. Since
logistic regression has been used for a long time in PD modelling, many feature
specific transformations have been learned by humans in the process of working with
it. For example, the salary of a person can be transformed by making use of a
logarithm, to better resemble the perceived relationship between the salary and the
PD. In that way, we could slightly increase the performance of the logistic regression
model. However, since we are also not tuning individual features specifically for
other ML models, we believe that we made the best level playing field as possible.
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After all, the strength of ML is that an algorithm learns how it can use a feature best
to yield the best predictions.

6.2.2 Reliability and validity

Part of the discussion comprises the reliability and validity of the research. Since
we have been making use of an assessment framework with a scoring scale, we are
most interested in the reliability and validity of the way of measurements and the
measurements itself. Cooper and Schindler, 2014 mention several aspects for both
reliability and validity to assess, which we will mention the most important ones of
below.

Reliability is defined as the extent to which the results can be reproduced when
the research is repeated under the same conditions. In general, literature such as
Cooper and Schindler, 2014 or Middleton, 2019, describe three types of reliabil-
ity: test-retest, interrater, and internal consistency. We will shortly address those
reliability assessment areas. The test-retest reliability assesses the consistency of a
measurement across time. This thesis is reliable if it is repeated at a later moment,
although we note that new guidelines or regulations can impact the assessment
framework. With respect to the iterrater reliability, the measure whether different
observers would get consistent results, this thesis shows room for improvement.
Although different observers would probably rank the different ML models in the
same order, likely their scores would be slightly different. This, however, does not
mean that the conclusions are inconsistent, since the fluctuations in scores are not
that significant, and the conclusions can be distilled from the ranking. In order to
increase the iterrater reliability of this thesis, one could reach out to an expert panel,
and aggregate different evaluations to an average score. We touch upon that in the
final subsection of this chapter: recommendations for further research. Lastly, the
internal consistency is about the measurement itself, for example, whether different
parts of a survey are consistent with each other. This last aspect cannot be deter-
mined in this research, as the assessment framework is compact form, that does not
have iterative questions such as in a large survey.

With regard to the reliability of the outcomes of this thesis, we must also note
that in this thesis we shifted our focus to inherently interpretable ML, and com-
pletely neglected XAI techniques. However, it could be the case in the near future
that the regulator is of the opinion that black boxes in combination with XAI tech-
niques satisfy their requirements sufficiently. In this case, also black box models are
applicable for the use in IRB models, which will probably overrule the inherently
interpretable ML models treated in this thesis in terms of performance. However,
that does not imply that this research is not of significance, as we state in the next
section on contributions and relevance.

When assessing the validity of the research, we can distinguish internal and ex-
ternal validity. Starting with internal validity, three types are defined by Cooper and
Schindler, 2014: content, criterion-related, and construct validity. Content validity is
the degree to which the content of the items adequately represents the universe of
all relevant items under study. In this thesis, the content is well validated by taking
a perspective from all stakeholders involved, the financial institutions and the su-
pervisor/regulator. On top of that, we made use of most recent literature and guide-
lines on ML in financial institutions. Criterion-related validity measures the degree
to which the predictor is adequate in capturing relevant aspects of the criterion. That
means, that what we measure, is also the thing that we are trying to measure. We
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covered this mainly by doing further research on concepts described in regulations.
For example, we decompose interpretability by investigating all relevant aspects in-
volved. In this way, we were able to come to more measurable criteria. Lastly, in
construct validity, we try to answer the question: ’what accounts for the variance in
the measure?’. Just like the last aspect of consistency, internal consistency, this is not
applicable to our research, as we do not have multiple scores for each criterion. To
address this and to exclude bias, one could, as mentioned before, opt for an expert
panel.

Finally, next to internal validity, we should also address the external validity.
“The external validity of research findings is the data’s ability to be generalized across per-
sons, settings, and times” (Cooper and Schindler, 2014). This is something that is
currently not known, and can be seen as a limitation of this research. Specifically, we
used a US-based peer-to-peer lending dataset. That means, although there is no spe-
cific reason to assume otherwise, the results of this thesis are location specific. Also,
the type of loans is fairly specific, which harms the external validity. Extrapolating
the results of this thesis to a ’regular’ bank portfolio is not directly possible, since
these portfolios are probably a lot different compared to peer-to-peer lending. How-
ever, the research, the data processing steps, and the assessment framework itself
actually can be directly used by a bank to come to their own conclusions in terms of
interpretability, performance, and ease of implementation per model.

6.2.3 Contribution and relevance

In this subsection, we want to shortly highlight this thesis’ contribution to theory
and its relevance in practice.

Regarding the contribution to the scientific body of knowledge, this thesis can be
seen as an exploratory study on the use of ML in IRB models. We distinguish sev-
eral contributions. First, we introduced a good overview of the current industry’s
perspective, and the current state of regulations and guidelines on the use of ML in
IRB models. On top of that, we constructed a novel assessment framework to com-
pare and contrast ML models on their applicability for the use in IRB models. The
concepts used in this framework can also be of use for research on XAI techniques.
Finally, the assessment of three state-of-the-art ML models, is a new addition to the
literature, and is of added value in the research area of inherently interpretable ML,
or, white boxes.

In terms of relevance in practice, this thesis can be of added value for multi-
ple purposes. First, this research, and specifically the assessment framework, can be
used as a checklist or tool by financial institutions. It can help them find out whether
their proposed ML approach satisfies the criteria of the regulator and their own in-
terests. Additionally, it could help them to define on which criterion or criteria their
focus should be placed in convincing the regulator for the use of a certain ML ap-
proach, or in the documentation and validation of an ML model. Next to financial
institutions, the regulator can use this thesis as a stepping stone to define prudent
and clear regulations for the use of ML in IRB models, or at least communicate their
expectations clearly. This helps to manage expectations from the financial industry
and could ultimately lead to a fair and effective evaluation of ML in IRB models by
the supervisor. Lastly, this thesis is a novel way to assess this type of applicability
of ML in the industry. It can serve as inspiration for the abovementioned parties,
financial institutions, regulators, and supervisors, to keep the conversation going on
this hot topic that needs a collaborative attitude of all actors involved.
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6.2.4 Recommendations for further research

To finalize this research, we advise on some topics that can be researched in the
future. The recommendations for further research cover two areas: 1) technical rec-
ommendations to make improvements on or extend this research, and 2) recommen-
dations for further research if we look at this thesis in a broader context:

Technical recommendations for improvements

• Starting with the recommendation that we touched upon earlier, one could
find a panel of experts in the field of IRB models and ML. The panel of experts
can be used to let them all score the investigated models on the different cri-
teria. Since there is no ground truth for the evaluation of models on relatively
vague constructs such as simplicity and decomposability, one can filter out the
bias of one opinion by asking multiple experts. On top of that, one can perform
a quantitative analysis on the results of the survey that is filled in by multiple
experts. In this way, the results are not dependent on one researcher’s opin-
ion. This makes it also possible to quantitatively evaluate the aspects of both
reliability and validity.

• To increase the relevance and possibly find some other interesting insights,
one can train and test the chosen models on different datasets. First, it is use-
ful to validate whether we observe the same performance ranking amongst
the different models on different datasets, and possibly different industries.
Secondly, looking at the characteristics of datasets, one can gather valuable in-
sights on strength and weaknesses of the models. For example, is a specific
ML model very good in highly imbalanced datasets, are they robust in multi-
ple data areas, and do they perform well on extremely high or low dimensional
data?

• Since the GPSR is an efficient way to find correlations of high order between
features, it can be specifically interesting to look whether it can be used to con-
struct proxy variables, or other artificial new features. Proxy variables can be
used in a classification problem when the ’real’ feature is not available in the
dataset. Artificial new features can be of added value when used in a clas-
sic logistic regression, to improve predictive performance without sacrificing
interpretability and shifting to new models.

• Next to that, one can take a closer look at the degree of imbalance of the
data, and the way of tackling this. Over- and under-sampling techniques have
shown to be of no use in other research on Lendingclub data, since the dataset
was relatively balanced. However, one could research which algorithms work
better on extremely imbalanced datasets by artificially generating different im-
balanced datasets. It could, for example, possibly be found that some are
very robust for extremely imbalanced datasets, for example, 0.1% default rate,
which make them extra interesting for low default portfolios of banks.

• Lastly, an increased of computing power could be of use to further improve
the modelling of the algorithm. Specifically, the hyperparameter tuning can
be extended thoroughly. First of all, the learning algorithms were instructed to
use a balanced weighting scheme. The weight assigned to each class is actually
also a hyperparameter that can be tuned. For the GAMI-Net, we used default
settings on all neural networks, while these could also be tuned to improve the
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performance. Likewise, there are many more hyperparameters that could be
tuned closer to the optimal solution.

Further research in a broader context

• Looking beyond the scope of this thesis, one can also dive deeper into the prob-
lems that arise when trying to implement ML into the organization. Although
many interpretable models are already developed, and ML models have also
shown to be promising, it is still not the case that they are adopted in IRB
models. What could be interesting to look at, is whether organizational bur-
dens also slow down the process of ML adoption. For example, the fear of
change is something that can be woven into the culture of a company. If the
company’s culture is a bottleneck for the implementation, maybe another ap-
proach to solve this problem is interesting to look at.

• Another thing that can be interesting to research is to find out what can be done
in the supervisory landscape to increase the adoption speed of innovative tech-
niques such as ML. The point in many complex and automated technologies
is that one will be more and more focused on the outputs of the models. Es-
pecially, when advanced techniques become the standard in the industry, one
should not neglect that a company implementing such a model has many op-
portunities during selection, testing and training processes to tune a model
towards its preferences. In the case of an IRB model, this could be, for ex-
ample, a strong focus on minimizing capital requirements. It is up to further
research how we can ensure a strict supervision on the data processing and
model construction in the future, when models become more and more com-
plex. Also within the industry, this is an ongoing concern: “Adjustments in the
risk management framework will need to be made in order to address AI-associated
risks. For example, model development assumptions and methodologies, model input,
and control measures will all need to be revisited” (Deloitte China, 2022). But also,
the BIS acknowledges that a full validation in the AI governance process be-
comes unacceptably large: “Overly onerous regulatory requirements to ‘prove’ the
accuracy of an ML algorithm may not be achievable. (. . . ) In practice, this (model
validation) requires a line-by-line review of the source code, a comprehensive analysis
of all datasets used, and an examination of the model and its parameters, which some
firms view as unachievable” (Prenio and Yong, 2021). One research area could be
to find a right balance between the intensity of governance measures and the
impact of the AI solution in place.
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Appendix A

Data Pre-processing

FIGURE A.1: Correlation matrix of the numerical features in the train-
ing set.
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TABLE A.1: High correlations between features

Feature (1) Feature (2) Correlation
fico_range_low fico_range_high 1.00
num_sats num_op_rev_tl 0.83
num_tl_op_past_12m acc_open_past_24mths 0.76
open_acc num_op_rev_tl 0.83
open_acc num_sats 1.00
percent_bc_gt_75 bc_util 0.85
tot_cur_bal avg_cur_bal 0.84
tot_hi_cred_lim avg_cur_bal 0.80
tot_hi_cred_lim tot_cur_bal 0.98
total_bc_limit bc_open_to_buy 0.84
total_rev_hi_lim revol_bal 0.80
total_rev_hi_lim total_bc_limit 0.74

TABLE A.2: Iterative feature deletion based on VIF scores

Iteration
High correlated features 1 2 3 4 5 6 7
acc_open_past_24mths 2.82 2.82 2.82 2.82 2.82 2.81 2.81
avg_cur_bal 5.38 5.38 5.38 4.58 4.50 4.48 1.22
bc_open_to_buy 9.44 9.43 9.39 9.39 7.23
bc_util 4.80 4.80 4.80 4.80 4.79 4.13 4.13
fico_range_high 7.06M 1.71 1.70 1.68 1.67 1.61 1.61
fico_range_low 7.06M
num_op_rev_tl 4.06 4.06 4.05 4.02 3.88 3.87 3.81
num_sats 447.81 447.81 4.45 4.29 4.26 4.25 3.49
num_tl_op_past_12m 2.43 2.43 2.43 2.42 2.42 2.42 2.42
open_acc 449.82 449.82
percent_bc_gt_75 3.59 3.58 3.58 3.58 3.58 3.55 3.55
revol_bal 7.35 7.35 7.34 6.94 1.96 1.69 1.59
tot_cur_bal 36.83 36.83 36.82
tot_hi_cred_lim 33.80 33.79 33.78 5.76 5.61 5.60
total_bc_limit 7.13 7.13 7.12 7.12 7.06 2.02 1.93
total_rev_hi_lim 10.49 10.49 10.48 9.65
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TABLE A.3: Percentage of outliers in the numerical features

Feature Percentage of outliers
acc_open_past_24mths 2.12
annual_inc 4.23
avg_cur_bal 4.58
bc_util 0.0
delinq_2yrs 17.01
dti 0.63
fico_range_low 2.22
int_rate 1.6
loan_amnt 0.96
mo_sin_old_il_acct 2.36
mo_sin_old_rev_tl_op 2.63
mo_sin_rcnt_rev_tl_op 6.91
mo_sin_rcnt_tl 5.14
mort_acc 1.08
mths_since_recent_bc 7.69
mths_since_recent_inq 1.04
num_accts_ever_120_pd 20.65
num_il_tl 3.7
num_op_rev_tl 1.84
num_sats 2.13
num_tl_90g_dpd_24m 4.86
num_tl_op_past_12m 2.46
pct_tl_nvr_dlq 0.0
percent_bc_gt_75 0.0
pub_rec 15.01
pub_rec_bankruptcies 11.25
revol_bal 5.27
revol_util 0.01
tot_coll_amt 13.62
total_bc_limit 5.18
total_il_high_credit_limit 4.53
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FIGURE A.2: Boxplots of all numerical values (1 of 3).

FIGURE A.3: Boxplots of all numerical values (2 of 3).
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FIGURE A.4: Boxplots of all numerical values (3 of 3).
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TABLE A.4: Final variable inclusion and exclusion with motivation

Variable Inclusion/Exclusion Variable Inclusion/Exclusion

acc_now_delinq Drop: insufficient data num_accts_ever_120_pd Keep
acc_open_past_24mths Keep num_actv_bc_tl Drop: post-origination
addr_state Keep num_actv_rev_tl Drop: post-origination
all_util Drop: post-origination num_bc_sats Drop: post-origination
annual_inc Keep num_bc_tl Drop: post-origination
annual_inc_joint Drop: insufficient data num_il_tl Keep
application_type Keep num_op_rev_tl Keep
avg_cur_bal Keep num_rev_accts Drop: post-origination
bc_open_to_buy Drop: based on VIF num_rev_tl_bal_gt_0 Drop: post-origination
bc_util Keep num_sats Keep
chargeoff_within_12_mths Drop: post-origination num_tl_120dpd_2m Drop: post-origination
collection_recovery_fee Drop: post-origination num_tl_30dpd Drop: post-origination
collections_12_mths_ex_med Drop: post-origination num_tl_90g_dpd_24m Keep
debt_settlement_flag Drop: post-origination num_tl_op_past_12m Keep
deferral_term Drop: post-origination open_acc Drop: based on VIF
delinq_2yrs Keep open_acc_6m Drop: insufficient data
delinq_amnt Drop: post-origination open_act_il Drop: post-origination
dti Keep open_il_12m Drop: insufficient data
dti_joint Drop: post-origination open_il_24m Drop: insufficient data
earliest_cr_line Drop: irrelevant open_rv_12m Drop: post-origination
emp_length Drop: irrelevant open_rv_24m Drop: post-origination
emp_title Drop: irrelevant orig_projected_additional_accrued_interest Drop: post-origination
fico_range_high Drop: based on VIF out_prncp Drop: post-origination
fico_range_low Keep out_prncp_inv Drop: post-origination
funded_amnt Drop: post-origination payment_plan_start_date Drop: post-origination
funded_amnt_inv Drop: post-origination pct_tl_nvr_dlq Keep
grade Drop: dep. on int_rate percent_bc_gt_75 Keep
hardship_amount Drop: post-origination policy_code Drop: irrelevant
hardship_dpd Drop: post-origination pub_rec Keep
hardship_end_date Drop: post-origination pub_rec_bankruptcies Keep
hardship_flag Drop: post-origination purpose Keep
hardship_last_payment_amount Drop: post-origination pymnt_plan Drop: post-origination
hardship_length Drop: post-origination recoveries Drop: post-origination
hardship_loan_status Drop: post-origination revol_bal Keep
hardship_payoff_balance_amount Drop: post-origination revol_bal_joint Drop: irrelevant
hardship_reason Drop: post-origination revol_util Keep
hardship_start_date Drop: post-origination sec_app_chargeoff_within_12_mths Drop: irrelevant
hardship_status Drop: post-origination sec_app_collections_12_mths_ex_med Drop: irrelevant
hardship_type Drop: post-origination sec_app_earliest_cr_line Drop: irrelevant
home_ownership Keep sec_app_fico_range_high Drop: irrelevant
id Drop: irrelevant sec_app_fico_range_low Drop: irrelevant
il_util Drop: post-origination sec_app_inq_last_6mths Drop: irrelevant
initial_list_status Drop: irrelevant sec_app_mort_acc Drop: irrelevant
inq_fi Drop: post-origination sec_app_num_rev_accts Drop: irrelevant
inq_last_12m Drop: post-origination sec_app_open_acc Drop: irrelevant
inq_last_6mths Drop: post-origination sec_app_open_act_il Drop: irrelevant
installment Drop: dep. on loan_amnt sec_app_revol_util Drop: irrelevant
int_rate Keep sub_grade Drop: dep. on int_rate
issue_d Drop: data leakage tax_liens Drop: post-origination
last_credit_pull_d Drop: post-origination term Keep
last_fico_range_high Drop: post-origination title Drop: irrelevant
last_fico_range_low Drop: post-origination tot_coll_amt Keep
last_pymnt_amnt Drop: post-origination tot_cur_bal Drop: based on VIF
last_pymnt_d Drop: post-origination tot_hi_cred_lim Drop: based on VIF
loan_amnt Keep total_acc Drop: post-origination
loan_status Keep total_bal_ex_mort Drop: post-origination
max_bal_bc Drop: post-origination total_bal_il Drop: post-origination
mo_sin_old_il_acct Keep total_bc_limit Keep
mo_sin_old_rev_tl_op Keep total_cu_tl Drop: post-origination
mo_sin_rcnt_rev_tl_op Keep total_il_high_credit_limit Keep
mo_sin_rcnt_tl Keep total_pymnt Drop: post-origination
mort_acc Keep total_pymnt_inv Drop: post-origination
mths_since_last_delinq Drop: insufficient data total_rec_int Drop: post-origination
mths_since_last_major_derog Drop: insufficient data total_rec_late_fee Drop: post-origination
mths_since_last_record Drop: post-origination total_rec_prncp Drop: post-origination
mths_since_rcnt_il Drop: insufficient data total_rev_hi_lim Drop: based on VIF
mths_since_recent_bc Keep url Drop: irrelevant
mths_since_recent_bc_dlq Drop: insufficient data verification_status Drop: irrelevant
mths_since_recent_inq Keep verified_status_joint Drop: irrelevant
mths_since_recent_revol_delinq Drop: insufficient data zip_code Drop: dep. on addr_state
next_pymnt_d Drop: post-origination
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TABLE A.5: Feature description of the features that are used as inputs
for the models.

Variable Description
acc_open_past_24mths Number of trades opened in past 24 months.
addr_state The state provided by the borrower in the loan application
annual_inc The self-reported annual income provided by the borrower during reg-

istration.
application_type Indicates whether the loan is an individual application or a joint appli-

cation with two co-borrowers
avg_cur_bal Average current balance of all accounts
bc_util Ratio of total current balance to high credit/credit limit for all bankcard

accounts.
delinq_2yrs_01 Ever 30+ days delinquency in borrower’s credit file for the past 2 years
dti A ratio calculated using the borrower’s total monthly debt payments

on the total debt obligations, excluding mortgage and the requested
LC loan, divided by the borrower’s self-reported monthly income.

fico_range_low The lower boundary range the borrower’s FICO at loan origination be-
longs to.

home_ownership The home ownership status provided by the borrower during registra-
tion or obtained from the credit report. Our values are: RENT, OWN,
MORTGAGE, OTHER

int_rate Interest Rate on the loan
loan_amnt The listed amount of the loan applied for by the borrower. If at some

point in time, the credit department reduces the loan amount, then it
will be reflected in this value.

loan_status Current status of the loan
mo_sin_old_il_acct Months since oldest bank installment account opened
mo_sin_old_rev_tl_op Months since oldest revolving account opened
mo_sin_rcnt_rev_tl_op Months since most recent revolving account opened
mo_sin_rcnt_tl Months since most recent account opened
mort_acc Number of mortgage accounts.
mths_since_recent_bc Months since most recent bankcard account opened.
mths_since_recent_inq Months since most recent inquiry.
accts_ever_120_pd Account of user ever gone 120 or more days past due
num_il_tl Number of installment accounts
num_op_rev_tl Number of open revolving accounts
num_sats Number of satisfactory accounts
num_tl_90g_dpd_24m01 Ever a account 90 or more days past due in last 24 months
num_tl_op_past_12m Number of accounts opened in past 12 months
pct_tl_nvr_dlq Percent of trades never delinquent
percent_bc_gt_75 Percentage of all bankcard accounts >75% of limit.
pub_rec01 Ever a derogatory public record
pub_rec_bankruptcies01 Ever had publicly record bankruptcies
purpose A category provided by the borrower for the loan request.
revol_bal Total credit revolving balance
revol_util Revolving line utilization rate, or the amount of credit the borrower is

using relative to all available revolving credit.
term The number of payments on the loan. Values are in months and can be

either 36 or 60.
coll_owned Collections ever owned, binarized
total_bc_limit Total bankcard high credit/credit limit
total_il_high_credit_limit Total installment high credit/credit limit
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Appendix B

Full Visualizations of Results

FIGURE B.1: LMT visualization, including all coefficients for the fit-
ted logistic models at the leaf nodes of the model tree.
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FIGURE B.2: All features and interactions included in the GAMI-Net
(1 of 2).
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FIGURE B.3: All features and interactions included in the GAMI-Net
(2 of 2).
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