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Everyone has social interactions in their lives. The way these social interac-

tions occur might depend on the kind of person with whom is interacted.

Different social relationships can be defined for this. These social relation-

ships can be very different. Think of how the interaction with a stranger is

different than with a friend. This research focuses on conversations between

different relationships. Audio signal analysis is performed to determine

whether the social relationship can be predicted purely on audio features.

After this, different audio feature groups are compared to see whether one

is more important for the prediction than the other. Then, the importance

of the separate acoustic features is looked into. In order to do this, audio

features are extracted from labelled conversations for which the social rela-

tionship is known. Random Forest performs the best on the data, achieving

a balanced accuracy of 0.54 ± 0.06.

Additional Key Words and Phrases: social interaction, relationships, audio

signal analysis, phonetics, emotions, conversation, audio features

1 INTRODUCTION
Everywhere in the world, people are constantly interacting with

each other. Be it a mother that tries to teach her child something or

the samemother that is firing an employee from her company. These

are two very different social interactions. Also two very different

social relationships. The mother speaks differently to her child than

to her employees. This difference in speech between different social

relationships is the core of this research. In what way do we speak

differently to different persons? The goal of this research is to find

out what audio features are key predictors for social interactions

and then find a way to classify audio fragments to the correspond-

ing social relationship between the people in the fragment. The

final product should be able to predict whether the conversation is

between e.g. strangers, a couple or different social relationships.

Social interaction is a concept that exists for tens of millions of

years. Already in the Age of Dinosaurs, forms of social behaviour

have been captured [36]. These social interactions come with differ-

ent social relationships. The social relationship a son has with his

mother is a different one than the one he has with e.g. his teacher

or his brother. Many aspects of their preferred interaction will be

different between the different relationships. An important way of

social interaction is conversation. As you can imagine, a conversa-

tion with the cashier (a stranger) might sound very different from a

conversation with your partner. The goal of this research is to find

out what this audible difference is in different social interactions.

When speaking, there are different things that we (automatically)

alter depending on the social relationship between you and the other

person. For example, when you want to speak with confidence, pitch

and speech rate are important properties that determine how this

confidence is perceived [15]. In this research, properties such as
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mean pitch, mean loudness or mean alpha ratio will be referred to

as features.

For this goal, different social relationships must be established and

defined. Eight different labels are defined. This was done based on

research by Liu et al. [18]. Two labels are left out because they could

not be inferred confidently from the videos, namely Sibling and

Opponent. This leaves six labels that will be used in this research,

namely Friend, Stranger, Service, Colleague, Parent-Offspring and

Couple.
OpenSmile [9] is an open-source software package that can ex-

tract all different kinds of audio features. The Extended Geneva

Minimalistic Acoustic Parameter Set (eGeMAPS) [10] is used to

define the different features that will be extracted. This set of param-

eters describes Low Level Descriptors (LLD’s) of the audio such as

pitch or loudness. A total of 25 LLD’s are described in the eGeMAPS

[10]. These result in 88 different acoustic features.

1.1 Aim
Although research has been done in the field of social interactions

and audio signal analysis, there is little research on the combination

of the two. The role of audio and speech in particular for social rela-

tionships is to be investigated. The paper will analyze conversations

from the Ego4D data set to find out whether certain audio features

can help in distinguishing social relationships. The following re-

search question (RQ) is raised.
RQ. How can we predict a social relationship based on audio sig-

nals?

We try to answer this question using the following sub-questions

(SQ):
SQ 1 Are we able to accurately predict social relationships based

on audio?

SQ 2 What (groups of) audio features are important for predicting

social relationships?

1.2 Contribution
By answering the research question that was proposed above, we

hope to find out how the audio signals of a conversation are influ-

enced by the social relationship between people. With this paper,

we try to provide more knowledge about the audio features that

are important when distinguishing social interactions. The paper

should give more insight in classifying social interactions without

using visuals.

1.3 Organization of the paper
In this paper, first, the related works are discussed. In this section,

past research about audio signal analysis and social interaction will

be analyzed. The next section provides the proposed methodology.

The steps for finding answers to the research questions are described

here. In the Experiments section, the data set is presented with

the validation part where the metrics will be presented to test the

performance of the models. The results are also in this section. The
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results will be discussed in the following section; the Discussion

section. Then, conclusions will be drawn with how they contribute

to the field. Finally, some ideas are presented on how to continue

working on this topic.

2 RELATED WORK
Audio signal analysis is not something new. Speech recognition,

which is a theme within the audio signal analysis, is implemented

in all kinds of new equipment nowadays. With the rise of Deep

Learning, advanced models are available that can extract useful

features from audio signals. Frameworks such as Wav2Vec (1.0 or

2.0) [25, 4] can give useful vector representations of audio files.

Software packages such as OpenSMILE [9] and Praat [24] have

proven to be very versatile. OpenSMILE offers an open-source audio

feature extractor with a huge range of different extractable features.

This is used a lot for emotion recognition but also for other things

like sentiment extraction [23] or autism analysis [27].

Social interactions have been researched a lot in the field of so-

ciology and psychology. In the last years, social interactions have

also started to become a more interesting topic to data scientists

and more research started happening in this field. However, most of

this research is on the visuals of these interactions and not on the

audio. These models often use Deep Neural Networks to classify the

visual interactions [29, 2]. Even research has been done on social

interaction from an egocentric view [12] which is interesting since

the data set used in this research is also from an egocentric view

[14].

The eGeMAPS feature set that is used in this research is developed

to include features that can indicate emotional changes in voice

production, features that have proven their values in other studies

and features that have shown theoretical significance. After being

created in 2016, many researches have used this feature set for

emotion recognition. Not only is there a lot of emotion recognition

research done using this feature set but [11, 33, 38], the set is also

used for other purposes. The feature set has proven to be effective

in the assessment of Parkinson’s disease [35] but also in assessing

psychiatric disorders [19]. This range of applications indicates the

versatility of the set.

Phonetics in different social contexts have been researched in

the past. For example, research has been conducted to find out the

role of acoustics/audio features in communicating politeness [6, 17].

Also, the acoustic differences between acted and authentic emotional

vocalizations have been researched. [3] The features that are used

in these researches are similar to the features that are used in this

research.

Something very applicable to this research and to which a lot of

research has been done is the field of emotion. For the last 2 decades,

emotion prediction through audio signals has been attempted many

times. Some of them are on both the text and the speech, but some

of them are also only on the speech/audio. An important returning

conference in the field of this research is the INTERSPEECH con-

ference [27, 26]. This yearly conference comes up with a challenge

every year. The challenge in 2009 aimed to do emotion recognition

from audio signals [26]. These challenges have resulted in differ-

ent feature sets that can extract more information from the audio.

In the last decades, much growth is seen in audio signal analysis.

Where there was only binary arousal classification a decade ago,

researchers have built models that can distinguish 5+ emotions with

an accuracy of up to 90 per cent [20].

3 OUR PROPOSED METHOD

3.1 Extracting features from audio signals
As mentioned earlier, in this research audio features are first ex-

tracted using OpenSMILE [9]. The eGeMAPS [10] is used to describe

which features should be extracted. Eyben et al. describe 88 features

in this set and divided them into 4 different parameter groups. These

parameter groups are as follows:

(1) Frequency-related parameters (24 features)

(2) Energy-related parameters (14 features)

(3) Spectral parameters (43 features)

(4) Temporal parameters (7 features)

A Python script is used to extract a total of 88 features per data

point.

3.2 Finding the right model
To find the right model, 10-fold cross-validation is used to compare

different algorithms. For the cause of usingmachine learningmodels,

the Python library scikit-learn [22] was utilized. First, the data was

standardized. For this, a StandardScaler is used which takes the

standard deviation 𝜎 and mean 𝜇 of a feature and calculates a score

per data point per feature according to Equation 1.

𝑧 =
𝑥 − 𝜇

𝜎
(1)

Both normalized input and non-normalized input are tried on the

models. These sets are stratified to ensure that the training and test

set have the same class ratio. Since the data set contains multiple

sub-videos that are from the same video, Group k-fold testing should

be used. This ensures that the train and test set never contain the

same video. This is done in order to protect the model against data

leakage. This way, the model is protected against overfitting to the

video itself. This combination of grouping and stratifying is referred

to as Stratified Group k-Fold cross-validation.

3.3 Testing models
The different algorithms that are used are the Random Forest Al-
gorithm (RF) [16], the Support Vector Machine (SVM) [8] and the

k-nearest neighbours algorithm (KNN) [1]. Hyper-parameter tuning

was used to find better hyper-parameters for the different models.

To do this, Bayesian Search [31] was used. This way, a big variety of

hyper-parameters are tested. The different hyper-parameters that

are tuned are in Table 1. The goal of the tuning is to find the model

that has the highest average balanced accuracy in the 10-fold cross-

validation. After choosing the classification algorithm that performs

best, the data set can be split up into a training set (80 per cent) and

a test set (20 per cent). The next step is training the best performing

algorithm on the training set.
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Table 1. Hyperparameter space of three different classification algorithms + found values

Algorithm Hyperparameter Range Found Value
SVM C (1e-1 , 1e+2) 51

gamma (1e-4, 1) 0.001
kernel ‘rbf’, ‘poly’, ‘sigmoid’ ’rbf’

KNN leaf size (1, 50) 11
no. neighbours (1, 30) 9

p (1, 2) 1
Random Forest no. estimators (200, 2000) 1551

max features ‘auto’, ‘sqrt’ ’sqrt’
max depth (10, 110) 81

min samples split (2, 10) 5
min samples leaf (1, 4) 1

bootstrap (0, 1) 0

3.4 Finding the importance of feature groups
To find out whether there are feature groups that are more important

than others for this research, Random Forest models are trained

on a subset of features where one feature group (see par. 3.1) is

excluded. Again, Stratified Group Cross-Validation is used to check

the performance. However, this time 5-fold cross-validation was

performed.

3.5 Finding the most important features
To answer RQ2, the importance of the different features has to be

found. To do this, feature importance methods are used from the sci-

kit learn library [22]. In this research, two ways of extracting feature

importance are compared. Firstly, there is the feature importance

based on the mean decrease in impurity (MDI) [5]. The second way

to get feature importance is permutation feature importance [13].

These feature importance methods are compared by sorting the

features on their importance and then building the model with an

increasing number of top features.

By ordering the features on the extracted importance and train-

ing models on only a specific number of important features, it will

become clear which features are (not) necessary for classification.

Since there are two different orders of feature importance (permu-

tation vs decrease in impurity), the performance of the models with

a limited number of features will tell us which way of extracting

feature importance works better. The scoring of these models will

be evaluated again with Stratified Group 10-fold Cross-Validation.

4 EXPERIMENTS

4.1 Data set
The data set that was used in this research is the Ego4D data set

[14]. This data set consists of 3,670 hours of video, all filmed from an

egocentric perspective. The material consists of all kinds of different

scenarios, including social interactions. The videos are filmed by 931

unique camera wearers from 74 worldwide locations. Since the focus

lies on finding out more about social interactions and relationships,

only a subset of the videos is used. This subset is found by using

the transcripts provided by Ego4D. The algorithm that was used to

Table 2. Example distribution in a fold of 10-fold cross-validation

Label Train Test Total
Friend 436 48 484

Stranger 99 10 109

Service 121 14 135

Colleague 93 10 103

Parent-Offs 49 5 54

Couple 95 11 106

split the videos into pieces with social interactions considered the

following things.

• Conversation is longer than 10 seconds

• Both persons say more than 25 characters

An algorithm that takes these rules into consideration results in 996

separate videos that contain conversation. These (sub)videos are

parts of 255 unique original videos. A summation of all the video

lengths results in 30,767 seconds / 513 minutes of conversation

material. This material has been manually labelled by watching the

videos. Since the visual material is not needed within the scope of

this research, the audio has been extracted. This is done using the

FFmpeg [32] library in Python [34]. In Table 2 the distribution of

labels in the sub-set is displayed. From the figure, it is clear that this

is a very imbalanced data set.

4.2 Validation
Since the data set is very imbalanced, with a lot of data on one

label (Friend) and five smaller/outvoted labels, good metrics are

important to test the performance.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Correct predictions

Total predictions

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

=
2 ∗𝑇𝑃

2 ∗𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4)
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Fig. 1. Normalized Confusion Matrix of Random Forest

The metrics in Equation 2, 3 and 4 are the base metrics on which

the model is tested. However, since the models are multi class clas-

sification ones, an average metric score per label should be taken to

test the performance of the overall model. As seen in Table 3, three

different metrics are used. Namely, Accuracy, Weighted F1-score and
Balanced Accuracy were chosen. Accuracy is calculated according

to Equation 2. The other two scores are however a bit more com-

plicated because they combine binary classification metrics and

take a calculated average of these per label. In the case of Balanced
Accuracy, this is calculated by taking the average of recall (as seen

in Eq. 3) that was obtained on each class [22]. The other one, the

weighted F1-score is calculated by obtaining the F1-score (as seen

in Eq. 4) per label and then finding their average weighted by the

number of true instances per label [22]. By using Stratified Grouped

10-fold cross-validation, the variation of the scores on the whole

data set can be tested and this makes sure that the model generalizes

well.

4.3 Results
4.3.1 Extracted audio features. Five data points resulted in a few

NaN values for some features. These five were excluded from the

research, leaving 991 data points. From the 991 remaining sub videos,

there were 88 audio features per piece. PCA and t-SNE are used

to present the different features in a figure [21]. First, the features

were scaled using a Standard Scaler (see Eq. 1). Then the dimension

reduction was performed with PCA and t-SNE. Figure 2a shows a

three-dimensional presentation of the extracted features per label

with PCA. Figure 2b also shows a three-dimensional presentation

but with t-SNE.

4.3.2 Comparison of classification algorithms. In Table 3 the results

of the 10-fold Stratified Group Cross-Validation are shown. The

Table 3. Stratified Group 10-fold Cross-Validation scores per classification
algorithm (normalized vs. non-normalized)

accuracy weighted f1 balanced accuracy

RF 0.67 ± 0.05 0.64 ± 0.05 0.54 ± 0.06
RF (norm.) 0.67 ± 0.05 0.64 ± 0.05 0.54 ± 0.06

SVM 0.48 ± 0.01 0.32 ± 0.01 0.16 ± 0.01

SVM (norm.) 0.65 ± 0.03 0.63 ± 0.03 0.52 ± 0.06

KNN 0.55 ± 0.02 0.49 ± 0.02 0.36 ± 0.03

KNN (norm.) 0.65 ± 0.03 0.62 ± 0.03 0.51 ± 0.03

10-fold cross-validation delivers 10 scores per metric. The results

are the mean scores with their standard deviations. The normalized

input is compared to the non-normalized input. The normalized

input seems to outperform the non-normalized input, except for the

Random Forest for which the normalization does not matter.

4.3.3 Random Forest results. The Random Forest turned out to be

the best working model. This can be found in Table 3. The tuned

Random Forest was then trained on the training set. After making

predictions and comparing them to the true labels, a confusion ma-

trix was created. This confusion matrix is normalized since this is

easier to read because the data set is very imbalanced. The normal-

ized confusion matrix can be found in Figure 1. With a balanced

accuracy of approximately 0.54, the model fits the data and does not

randomly predict.

4.3.4 Important features. This subset of features was chosen by

selecting the first N features, ordered by feature importance. Starting

from the first 3 features, in steps of 3 till N is equal to the total number

of features. The performances of these models were evaluated using

10-fold cross-validation. The results are in Figure 3. The glow in

the figure is the range of the scores. The dark line is the mean.

After comparing the two feature importance methods, the feature

importance on a decrease of impurity seems to converge faster. This

can be inferred from the fact that the values in Figure 3a converge

faster to a higher score than in Figure 3b. This is supported by the

fact that the area under the line (e.g. balanced accuracy) is bigger

for the mean decrease in impurity feature importance (40.89) than
for the permutation importance (37.38).

4.3.5 Comparing the feature groups. To find out whether some fea-

ture groups are more important than others, a 5-fold cross-validation

was performed with a subset of features. Also, the score is included

when all groups are included. There are no significant differences

between the groups. The significance level was measured using a

Mann-Whitney U test. The results are in Figure 4.

4.3.6 Most important features. In Table 4 the top 15 features are

presented. More information on these features can be found in the

research by Eyben et al. [10].

5 DISCUSSION
This research aimed to find out more about the relationship between

audio signal features of a conversation and the social relationship.

Firstly, the dimension-reduced features were plotted in 3D graphs.

Unfortunately in these graphs there do not seem to be clear clusters
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(a) eGeMAPS extracted features (3-dimensional PCA) (b) eGeMAPS extracted features (3-dimensional t-SNE)

Fig. 2. Dimension reduced extracted features - PCA vs. t-SNE
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(a) Feature importance on a decrease of impurity
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(b) Permutation feature importance

Fig. 3. Comparing feature importance algorithms

for the labels. However, the ’Colleague’ labels can be most distin-

guished from the big group.

After testing the different classification algorithms, it became clear

that the Random Forest (RF) performed the best on this data. For

this reason, the rest of the research was performed using the RF

algorithm. The balanced accuracy of 0.54 for this multi-class clas-

sification indicates a model that found relationships between the

audio features and the social relationship. The SVM and KNN clearly
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Table 4. Top 15 feature importances sorted from high to low (mean decrease in impurity) - Random Forest

Group Parameter Functional MDI
Spectral (balance) Spectral Flux stddevNorm 0.040

Energy/Amplitude related Loudness stddevNorm 0.032

Spectral (balance) Spectral Flux V stddevNorm 0.030

Spectral (balance) Spectral Slope V 0-500Hz amean 0.026

Spectral (balance) Spectral Slope V 0-500Hz stddevNorm 0.024

Spectral (balance) Spectral Slope UV 0-500Hz amean 0.022

Spectral (balance) MFCC 1 V amean 0.022

Energy/Amplitude related Loudness percentile20.0 0.022

Spectral (balance) Spectral Flux UV amean 0.022

Spectral (balance) Hammarberg Index UV amean 0.019

Frequency related Pitch amean 0.018

Spectral (balance) MFCC 1 amean 0.017

Spectral (balance) Alpha ratio UV amean 0.016

Frequency related Formant 3 bandwith amean 0.016

Energy/Amplitude related Harmonics-to-noise ratio amean 0.016

Fig. 4. Balanced accuracy of Random Forest after removing a feature group

benefit from the normalisation of the data but Random Forest works

just as well with non-normalized data as with normalized data. Af-

terwards, this could have been foreseen by knowing how tree-based

models (such as RF) work. As expected, there is a wide gap between

the accuracy and the balanced accuracy or weighted f1. This empha-

sizes the importance of using a metric that takes imbalanced data

into account.

As the Random Forest was trained on the training set (80 per cent)

and tested on the test set (20 per cent), a confusion matrix was cre-

ated by comparing the true labels in the test set with the predicted

labels. In this confusion matrix, the ’Friend’ label, which has the

most data entries, is predicted more often than the other 5 outvoted

labels. The ’Colleague’ label was also predicted very well by the

model. The prediction of the Parent-Offs label performs very poorly

but this label was also the smallest in the data set.

Testing different feature importance methods was a good idea. The

expectation was that permutation importance would work better

because of the bias towards continuous and high cardinality features

in Mean Decrease in Impurity (MDI) [28]. However, MDI turned out

to give better feature importances, supported by Figure 3.

When comparing the feature groups, there was not one feature

group that is significantly more important than the other ones.

However, the Spectral and Frequency related parameters seem more

responsible for the performance than the other two groups. As Fre-

quency is a smaller group of features, we can conclude that these

are more important than the Spectral (balance) features.

Looking at the top 15 features, it is noticeable that there are a lot of

Spectral (balance) parameters that have an important contribution

to the model. The Spectral Flux, Loudness and Spectral Slope are

the most important parameters of the model.

Spectral Flux is defined as the difference in the spectra of two consec-

utive frames [10]. This corresponds with earlier research in which

Spectral Flux was found to be the best overall speech arousal feature

[37]. The fact that loudness is important is understandable when

thinking about our voice usage in different social contexts. Spectral

Slope has proven to be important for stress detection [30] and this is

apparently also a determinative acoustic feature in different social

interactions.

6 CONCLUSIONS
In this paper, an approach was presented on how to predict a social

relationship from a conversation based on commonly used acous-

tic features. The used audio features were based on the Extended

GenevaMinimalistic Acoustic Parameter Set [10] and extracted from

a subset of the Ego4D data set [14]. The following contributions are

presented:

• Social relationships are predictable using audio features.
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• Classic ML algorithms such as SVM or Random Forest can

be used for building predictive models for analyzing social

interactions.

• Acoustic features that are used for emotion prediction can

be used for analyzing social relationships in conversation as

well.

7 FUTURE WORK
Looking at the work that is presented in this paper, there are things

that could be considered in future research.

In this research, the imbalance of the data set has an effect on the

performance of the model for the outvoted labels. In future research,

a more balanced data set could be used to improve this. Also, in

order to improve the performance on the same data set, techniques

could be used to balance the set. Under-sampling the biggest class

could improve the performance of the model but leaving data out

is probably not desired. Using techniques like SMOTE [7] can help

the model achieve higher performance by oversampling minority

classes.

In this research, the only parameter set that was used was the

eGeMAPS-set. In future research, different parameter sets could

be compared. There are probably acoustic features that were not

considered in this research but that play a role in social interactions.

Also data augmentation could be done to make the model better. By

adding for example noise or background sounds to the audio, the

model might perform better on never seen data.
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