
1 

Comparison between traditional and modern option 

pricing models 

Alexandru Tudor 
University of Twente 

PO Box 217, 7500 AE Enschede 

the Netherlands 

a.tudor@student.utwente.nl 

ABSTRACT 
Today's financial markets include incredibly sophisticated 
mechanisms and offer a large spectrum of financial instruments. 
Retail investors could previously only invest in simpler products 
such as equities or bonds. Nowadays, derivatives are available to 
the general public. The lack of education made some of these 
financial products shift from their original aim to speculative 
investments since they can provide a lot of leverage. 
In this research paper, we want to take a deeper look into 
options, one of the most commonly traded derivatives, and make 
a comparison between the well-known option pricing models, 
such as the Black-Scholes or the Binomial model, to the AI-driven 
pricing models that are on the horizon. 
The quantitative comparison of the models will be the basis of 
the thesis research. We intend to do so by coding a Python tool 
that can retrieve the required data and compute option prices 
using the Black-Scholes and Binomial models. Then we will have 
to conduct a literature study to find pre-computed option prices 
using the AI-driven models. The final step will be to assess how 
close each estimate came to the actual market price of the option 
and draw the results to the research question.  
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1 INTRODUCTION 

The return on our investments is a very important aspect of 
our financial well being. Making good investment decisions that 
can preserve or multiplicate money over time takes a lot of 
research and know-how. As a result, most people delegate the 
responsibility of investing their money to others. You can now 
entrust your money to professional institutions such as mutual 
funds, fixed-income funds, equities funds, or hedge funds for a 
tiny percentage charge. The major purpose of these funds is to 
generate as much money as possible from the investments they 
make in order to keep contracting new clients. In order to do so, 
these institutions invest in various securities such as stocks, 
bonds, and commodities. But when the investments they make 
don’t go as planned, a key aspect is to make sure they are 
protected from the downside risk. They do so by using financial 
instruments such as options. Option prices vary on a day-to-day  

 

basis therefore it is critical for a wealth manager to know what a 
fair price for the option contract is. The price of the option 
fluctuates based on multiple variables. There are a few 
traditional pricing models that focus on a 
mathematical/statistical approach such as the Black-Scholes 
model [2] or the Binomial model [3]. These are widely known 
models that have proven to be effective over time such that 
financial institutions use them regularly. Although these models 
are complex and take into account a variety of criteria, they are 
not designed to consider qualitative information about the 
underlying asset, thus pricing may be inaccurate in some 
instances. Therefore, we want to compare their performance 
with the newly implemented AI-driven data-based models that 
are on the rise [4, 5, 6, 7, 8]. 

2 PROBLEM STATEMENT AND RESEARCH QUESTION 

As of today, there is research done on the comparison 
between multiple mathematical option pricing models but not so 
much on the AI-driven models. The problem the statistical 
models are facing is that they only take the past performance of 
the stock into account without looking into how the actual 
business is doing nowadays and how it will perform in the 
future. Data-based models want to fill in this gap and create 
algorithms that have higher predicting power by using machine 
learning on available data to price options with this information. 
This paper will analyze whether this new technology is evolved 
enough to outperform traditional models, or whether there is 
still potential for improvement. In order to try and solve the 
problem stated above, we need to come up with the main 
research question.  

RQ: Which option pricing model between the statistical (Black-
Scholes and Binomial) and the modern AI-driven models are 
predicting more accurate market option prices? 
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This research question generates several sub-questions, the 
answers to which can help us further define the solution and 
gather more information. 

SQ1: What are the factors that influence the price of an option? 

SQ2: Which of the Black-Scholes and Binomial models calculate 
closer option prices compared to the market prices? 

SQ3: According to the literature, which data-driven model that 
uses AI to price options has the closest estimates to market 
prices? 

SQ4: According to statistical measures, which model is more 
accurate at predicting market option prices? 

Answering SQ1 provides crucial knowledge for this research. 
Without knowing exactly what determines an option’s price we 
cannot judge option pricing models. To answer SQ2 we need to 
compare the prices calculated using the traditional models with 
the market prices of those options. This leads us to answer SQ3 
which is critical in order to make the desired comparison 
between the traditional and modern option pricing models. The 
answer to the last sub-question wraps up the whole information. 

3 METHODOLOGY 

To perform this research we will need to follow a specific 
methodology. The model that calculates the closest prices to the 
actual market prices will be considered the best performer. We 
are going to measure this based on two statistical measures 
“RMSE” and “MAPE”. Both measure the deviation of the 
calculated prices from the market prices. Step 1 of the research 
is gathering the data of traditional option pricing models. This 
will be done by creating a Python implementation of the models 
and using it to calculate option prices for highly liquid stocks. 
With the gathered data, we will compute the statistical 
measures. Step 2 is to find the same statistical measures for the 
modern option pricing models. We are going to do so by 
performing a systematic literature review as explained in part 6 
of this paper. Step 3 of the research is to compare the statistical 
measures of both types of models and draw the conclusions. 
 

4 BACKGROUND 

Options are financial derivative instruments that have 
underlying securities such as stocks. In essence, an option is a 
contract between the seller (writer) and the buyer. There are 
two types of option contracts, call options and put options. A call 
option contract gives the buyer the right to buy one hundred 
shares of the underlying stock from the seller. These can be 
bought for a previously agreed price (strike price) until the date 
when the contract expires (maturity). A put option is very 
similar to the call option but instead of buying the one hundred 
shares, the buyer of the put option has the right to sell one 
hundred shares to the seller (writer). The benefit of being the 
writer of an option contract is that you receive the “premium” 
which is the price of the option. The premium is collected when 
the option is sold to a buyer, and it represents the maximum 

profit the seller can gain from the transaction [15]. In options 
trading, “to exercise” an option contract means to put into effect 
the right to buy or sell the underlying security that is specified in 
the options contract. There are a lot of different types of options 
but in this research paper, we will focus on the two most known 
types: European and American style options. The only difference 
between the two is that an American option can be exercised at 
any point in time while the European option can only be 
exercised at the expiry date. Although the owner of an option has 
the right to exercise it, in most cases, it is better to sell the option 
instead [16]. In order to comprehend why this is the case, we 
need to understand how options work. Therefore, we will take a 
look into the break-even analysis of options. Figure 1 represents 
the Break-Even graph of a call option. On the X-axis we have the 
Profit and Loss of the call buyer while the Y-axis displays the 
share price. Since it is a call option, the buyer profits if the 
underlying price is going up. 

 
Figure 1. Call Break-Even 

 

The initial P/L is -250$ which represents the premium paid for 
the option (2.5$ * 100). It is important to note that this is the 
maximum amount a call option holder could lose, no matter how 
low the share price falls. Once the share price goes past the strike 
price, the option starts to build value and hits the Break-Even 
point at 100$ per share, any further increase leads to a profit. We 
can observe that the Break-Even point for a call option is the 
strike price plus the premium paid. 
 

Call B/E = Strike price + Premium                     ( 1 ) 
 

The Break-Even graph of a put option is shown in Figure 2. The 
put buyer's profit and loss are displayed on the X-axis, while the 
share price is displayed on the Y-axis. Because it is a put option, 
the buyer will profit if the underlying price falls. The initial P/L 
is -250$ which represents the premium paid for the option (2.5$ 
* 100). It is vital to remember that no matter how high the stock 
price rallies, this is the maximum amount a put option holder can 
lose. Once the stock price falls below the strike price, the option 
begins to gain value and eventually reaches the Break-Even 
point at 97.5$ per share; any further decline in the share price 
results in profits. Therefore, the Break-Even point of a put option 
is calculated by subtracting the option premium from the strike 
price. 

Put B/E = Strike price – Premium                    ( 2 ) 
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Figure 2. Put Break-Even 

 

Table 1 shows the option chain for AAPL Calls expiring on June 
3rd, 2022. The first column separates the options into three 
types: In-the-money (ITM), At-the-money (ATM), and Out-of-
the-money (OTM). ITM options are the options that have a lower 
strike price than the underlying current price. ATM options have 
a strike price very close to the current trading price of the 
underlying while OTM options have a higher strike price than 
what the underlying is trading at. For put options, everything is 
the opposite since the buyer profits if the underlying price goes 
down. 

Table 1. June 3rd, 2022 AAPL Calls1 

AAPL Price : 145 $ Strike Price Option price 

ITM 

125.00 22.35 
130.00 17.25 
135.00 13.47 
140.00 8.20 

ATM 145.00 5.06 

OTM 

150.00 2.71 
155.00 1.27 
160.00 0.54 
165.00 0.24 

 
We will take the ITM 140$ strike price AAPL Call option expiring 
on June 3rd, 2022, as an example for our illustration. Buying this 
call option would cost a total of 820$. Suppose that by June 3rd 
AAPL’s price rises to 160$ (a 10.35% increase). Since it is the last 
day before the contract expires, we exercise the option. In this 
scenario, we turned the initial investment of 820$ into 2000$ 
(144% increase). The difference between the stock and options 
return perfectly shows the leverage effect that options provide. 
On the flip side, if by June 3rd the stock price would remain flat at 
145$, the option would expire worthlessly, and the buyer would 
lose 820$. This is a -100% return compared to a 0% return 
holding the stock.  
SQ1: What are the factors that influence the price of an option? 
According to Hall (2000) [1] in his research paper “What you 
need to know about stock options.”, the price of an option can be 
divided into two parts, Intrinsic and Extrinsic Value. One could 

 
1https://finance.yahoo.com/quote/AAPL/options?p=AAPL&dat
e=1660867200 

 

buy the call option and immediately exercise it since the option 
is ITM, exercising the option would result in a positive value of 
500$ (buying 100 AAPL shares at 140$ and immediately selling 
them at the market price). This is referred to as the option's 
Intrinsic Value. An OTM option has no Intrinsic Value since 
exercising the option after buying it would not derive any value. 
The rest (320$) is known as Extrinsic Value and it is derived 
from two main factors [2]. The days until expiration is one of 
them. The further the maturity date is, the bigger the extrinsic 
value is. This relationship is caused because a later maturity date 
implies more time for the option to become profitable. 
Therefore, a call option on AAPL with the same strike price but 
expiring on August 19th, 2022 is more expensive than the one in 
our example (8.20$ vs 14.15$2). The second factor that 
influences the Extrinsic Value of an option is Implied Volatility 
(IV). IV is the amount of movement the market is expecting for 
the specific underlying asset. Higher volatility implies higher 
option prices since the chances of the option becoming profitable 
are higher. Since volatility is a measure of movement rather than 
direction, no matter the type of option (call/put), the same rules 
apply [2]. Options are traded like stocks, on exchanges, so the 
price is subject to changes in offer and demand. In fact, this is 
what drives the implied volatility higher or lower. A market that 
believes a stock will rally in the upcoming days will rush to buy 
call options in order to profit from the upcoming movement. This 
creates an increase in demand and therefore an increase in 
option prices. Besides the time value and IV, interest rates and 
dividends may influence the Extrinsic Value of an option, 
however, these two do not change on a daily basis and the 
influence on the price is not so significant. 
 

5 TRADITIONAL OPTION PRICING MODELS 

Black-Scholes Model 
The Black-Scholes model (BS) is one of the most important and 
fundamental ideas in the world of finance. It was developed in 
1973 by Fischer Black and Myron Scholes [2] and still to this day, 
is one of the most commonly used mathematical equations for 
estimating the theoretical value of derivative financial 
instruments. The model uses the assumption that stock prices 
follow a “Random walk” [16], a theory that was well emphasized 
by Malkiel Burton in his book “A Random Walk Down Wall 
Street”[17]. The theory assumes that the stock prices must not 
follow any pattern in order for the market to be efficient. 
Otherwise, the stock price change could be predicted, and there 
would be a chance for financial gain. Besides this, the BS model 
also assumes that no dividends are paid until the maturity date 
of the option, the risk-free rate and volatility are known 
variables and remain constant, the option is European and there 
are no transaction fees associated with buying the contract. To 
calculate the price of an option with the Black-Scholes Model, 
five variables are required. The variables are the price and the 
volatility of the underlying asset, the time until maturity, the 
strike price, and the risk-free interest rates. In addition, the 

2https://finance.yahoo.com/quote/AAPL/options?date=16608
67200 
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model predicts that asset prices will move in a geometric 
Brownian motion [18] with continuous drift and volatility. When 
applied to a stock option, the model takes into account the 
stock's constant price movement, the time value of money, the 
strike price of the option, and the period until the option expires. 
The mathematic equation goes as follows: 

C = S ∗ N(d1) − K ∗ e−rfT ∗ N(d2)                      ( 3 ) 

𝑑1 =
ln

𝑆
𝐾 + (𝑟𝑓 +

𝜎2

2 ) ∗ 𝑇

𝜎√𝑇
                              ( 4 ) 

 

𝑑2 =
ln

𝑆
𝐾 + (𝑟𝑓 −

𝜎2

2 ) ∗ 𝑇

𝜎√𝑇
                              ( 5 ) 

The formula for a put option is fairly similar, 𝑑1 and 𝑑2 are the 
same while the main equation is the following:  
 

𝑃 = 𝐾 ∗ 𝑒−𝑟𝑓𝑇 ∗ 𝑁(−𝑑2) − 𝑆 ∗ 𝑁(−𝑑1)                 ( 6 ) 
Where: 
C = Price of the call option 
P = Price of the put option 
S = Current price of the underlying asset 
N(d) = Cumulative normal probability density function 
K = Strike price of the option 
𝜎 = The historical volatility of the underlying asset 
T = Trading days until expiration of the option 
𝑟𝑓 = Risk-free interest rate 

e = Euler’s number 
 
Binomial Model 
The Binomial Model was first proposed by William Sharpe in 
1978 and one year later, Cox, Ross and Rubinstein formalized it 
and created the model that is still widely used for pricing 
options. Compared to other models, the Binomial model looks at 
the underlying price over a long period of time (using iterations) 
rather than focusing on a single point in time. can handle a 
variety of conditions and that is what sets it apart. To understand 
the limitations of this model better, we will take a look into the 
assumptions it uses. First of all, at any given moment, the price 
of the underlying asset can go in two directions, either up or 
down. The risk-free rate and the discount factor remain constant 
throughout the whole period. The model does not account for 
any transaction fees or costs, and it considers the investors 
indifferent to risk. The model starts with the process of building 
the so-called binomial tree (Appendix) which calculates the 
potential price of the asset over the option contract. The model 
begins from the current price of the underlying assets and 
assumes that for each period (step) of the tree, the asset price 
will either move up or down. The probability of the price moving 
up is denoted by “p” while the probability of it going down is “1-
p” and it is calculated with the following formula: 

𝑝 =
𝑒𝑟𝑓∗𝑡/𝑛 − 𝑑

𝑢 − 𝑑
                                   ( 7 ) 

 

𝑢 =  𝑒𝜎∗√𝑡/𝑛                                         ( 8 ) 
 

𝑑 =  𝑒−𝜎∗√𝑡/𝑛                                       ( 9 ) 

For each step of the binomial tree, the price is multiplied by the 
value of u or d as seen in this figure. After the binomial tree has 
prices computed for the underlying asset it is time to calculate 
the intrinsic value of the option at each node of the tree. The 
intrinsic value can either be positive or 0 because for a negative 
intrinsic value someone would simply not exercise the option. 
We do so by using the following formula Max[(Sn − K), 0], for a 
call option or Max[(K − Sn), 0], for a put option. In this manner, 
we calculate the intrinsic value of each option at each node.  Now 
that we have the value of an option at each point in time (each 
node), the last step is to discount back to the present value. 
Starting from the last pairs of nodes, we multiply the specific 
intrinsic value with the probability associated with the stock 
price going in that direction and discount it with the risk-free 
rate as follows: 

𝑂𝑝𝑡𝑖𝑜𝑛 =  
𝑝 ∗ 𝑂𝑝𝑡𝑖𝑜𝑛𝑈𝑝 + (1 − 𝑝) ∗ 𝑂𝑝𝑡𝑖𝑜𝑛𝐷𝑜𝑤𝑛

(1 + 𝑟𝑓)𝑇/𝑛
       ( 10 ) 

 

In Figure 3 we have an example of a Binomial tree with actual 
numbers. The stock is trading at 100$, the strike price is at-the-
money, and the up, down, and probability are given. The purple 
cells represent the stock price while the yellow ones show the 
option price at each node. Starting from the final node we 
discount each value and arrive at the present value of the 
contract 8.52$. 

 
Figure 3. Example Binomial Tree 

 
SQ2: Which of the Black-Scholes and Binomial models calculate 
closer option prices compared to the market prices? 

Now that we have a clear understanding of the traditional option 
pricing model, the next step is to find out how we can obtain the 
best performance out of them. The book “Principles of corporate 
finance” by Brealey, et. al. (2018) [15] outlines which strategy 
should be used depending on the option's type. The Black-
Scholes formula is mostly suited for European-style options. 
This is because the formula does not allow for early exercise but 
rather focuses on a static point in time. The Binomial model fits 
best the American style option since it accounts for early 
exercise In the book, it is demonstrated that it is never 
advantageous to exercise American calls early, on stocks that do 
not pay dividends. This is because the option carries extrinsic 
value until the expiration date and an investor would prefer 
selling the option instead of exercising it. Therefore, it can be 
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considered an European option and it can be valued with the 
Black-Scholes formula. To answer SQ2, each model performs 
better in certain scenarios therefore we will create a Python tool 
for both of them. We will use the Binomial model to price 
American styled options and the Black-Scholes model for pricing 
European options. 

6 MODERN OPTION PRICING MODELS 

In order to respond to the third sub-question, we will 
conduct a systematic literature review that will enable us to 
comprehend the nature of modern option pricing models, how 
they operate, and how efficient they are. The protocol used to 
find the best literature reviews was PRISMA. We started from a 
high number of research papers and trimmed the numbers down 
by adding filters until the remaining articles were fully relevant. 
For the research we used an all-subject database (Scopus), a 
finance specialized database (SSRN), and a full text database 
(Google Scholar). We first used SSRN for finding a literature 
paper on the subject. We used the search phrase: “option 
pricing” AND “neural networks” and received 35 results. We 
then searched for the word “literature” within the papers and the 
database returned 4 results. The most relevant one was the work 
of Ruf, & Wang (2019) [5] which proved to be an amazing match 
for our study since it summarized over one hundred papers 
related to the topic. Since this study has covered so many other 
papers, we used a lot of the references to form knowledge.  We 
then used Google Scholar because we needed in text searches to 
find keywords such as “RMSE” that were crucial in the 
comparison. The first phrase used was: "option pricing" AND 
"machine learning" AND "rmse"→ 855 results. We added the 
year interval 2018-2022 since we want the comparison the be as 
relevant as possible and trimmed down to 416 results. To shrink 
the results even more, we added “moneyness” which assures 
that the comparison is done on different strike prices (ITM, ATM, 
OTM). The most relevant article was the one written by Ivașcu. 
(2021) [24]. The second search phrase was: "option pricing" 
AND "neural networks" AND "mape” → 465 results. After 
adjusting for the time period there were 127 results. We added 
“moneyness” to the search and shrinked the results to 46. Here 
we found the important articles by Cao, Liu, & Zhai. (2021) [25] 
and Jang, & Lee. (2019) [26]. We then used Scopus with the 
following search phrase: TITLE-ABS-KEY (option AND pricing 
AND machine  AND  learning ) → 91 results. We used the same 
time interval and restricted to 56 results. Later on, we added the 
word “rmse” which is critical for our comparison. This limited 
the results to a single article by Gaspar, Lopes, & Sequeira (2020) 
[22] which turned out to be very useful.  
 
The modern option pricing models are represented by AI-driven 
algorithms that use machine learning to price the value of 
options. The staple of our literature research is going to be the 
research of Ruf & Wang (2019) [5]. This publication is very 
important since the authors read over one hundred research 
papers on the topic of AI-driven option pricing models and 

 
3 https://www.datasciencecentral.com/the-artificial-neural-
networks-handbook-part-1/ 

compiled the whole information into a single study. Artificial 
intelligence (AI) has entered a new epoch. While the concept of 
robots capable of displaying human levels of intellect was first 
implemented in the 1950s, progress in constructing AI machines 
was limited, and AI was mostly seen as a failed venture. There 
has been a renaissance of AI in recent years, and based on the 
available studies, we will understand how it is applied in finance. 
There are multiple different branches of Artificial Intelligence 
but in option pricing, most models are based on building 
machine learning on Artificial Neural Networks (ANNs). ANNs 
attempt to mathematically replicate the way the human brain 
functions by creating a collection of connected nodes also known 
as artificial neurons. These neurons can communicate with each 
other through connections like the biological brain does through 
synapses. Besides the ethical reasons, human brains cannot be 
replicated because of the technological limitation we face 
nowadays [13], however, these models replicate a scaled-down 
version of a brain. As explained by Culkin, & Das (2017) [4], 
ANNs receive a wide range of stimuli as input and then this 
information is parsed through layers of neurons that learn to 
associate the input with output by experience. In the study, this 
process is associated with how children learn that touching a hot  

 
Figure 4. Artificial Neural Network3 

stove causes pain and quickly learn not to go near one. Figure 4 
illustrates how an artificial neural network looks like. First, we 
observe the Input Layer which represents the data introduced 
into the algorithm. In between the input and output, there is a 
hidden layer. Each hidden layer can have one or more neurons 
that are interconnected with each other. No matter how many 
nodes are in one layer, all of them are interconnected with the 
nodes in previous layers. Neurons receive as input, the output 
produced by the previous layer. For the model to work, a training 
data set is provided, and the model enters learning mode. 
Neurons apply random weights to the input and an activation 
function and then pass the output to the next layer. The 
activation function of a node in an artificial neural network 
determines the output of that node given an input. The result is 
compared to the desired output and an error is calculated. The 
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model then calibrates the weights in order to minimize the error. 
As the studies show, the number of inputs is a choice, as well as 
what the inputs are. Since over one hundred research papers 
were read, each of them having an unique ANN model, the inputs 
and outputs are different. However, most of the outputs are 
designed to calculate the option price. As for the inputs, models 
take a wide range of features into consideration such as strike 
price, stock price, interest rate, option greeks [19], volatility 
from calibration, historical volatility, implied volatility, GARCH-
generated volatility, Kalman filter volatility, time to maturity, 
and, macroeconomic variables that influence volatility. The two 
indispensable variables fed into ANNs are the stock price and the 
strike price. Some models feed this data as separate variables 
while others use a ratio of the two, also known as moneyness. 
This reduces the number of inputs which makes the training of 
the ANN easier. Another very important feature is the volatility, 
which is calculated in various ways throughout the studies. Some 
of the studies even compare the differences between volatilities. 
Blynski and Faseruk (2006). [20] discovered that the used ANN 
has better results when using historical volatility rather than 
implied volatility. Another study by Y.-H. Wang (2009). [21] 
argues that GARCH volatility is the most efficient way to find 
option prices. Artificial Neural Networks present a lot of 
advantages when it comes to option price estimations as 
explained by G. Cybenko in his study [23]. The main advantage is 
that these models are universal approximators. Any continuous 
function, even ones with non-linear characteristics, can be fitted 
by the models. This property is demonstrated to be a product of 
the general architecture and training process. These proofs are 
extremely important because they demonstrate that any 
sufficiently big network may arbitrarily well approximate a 
given function. Only architectural choices and data quality are to 
blame for the constraints. However, according to Gaspar, Lopes, 
& Sequeira (2020) [22] several drawbacks may exist, such as the 
requirement for a complete and extensive dataset of historical 
data to train the modeling framework. This means that more 
complex options, particularly options not traded on public 
markets, cannot be priced as fairly by the ANNs as compared to 
other derivatives that are more widely available and have a 
bigger trading volume and data available. As a result, when using 
ANNs, we need to keep in mind that the model is calibrated to 
past data, which means that any changes in the future status of 
financial markets, such as a major financial crisis, could change 
the values of options, resulting in price miscalculations and the 
need to retrain models. Another drawback is that the models 
have almost no explanatory power. It is not known how much 
each of the attributes in the model contributes to the final result. 
Moreover, an attribute could bring zero contribution to the final 
result and the user will not know this since no explanation is 
provided. This is different compared to normal regressions 
where one can make significance tests on different parameters 
to see how much they contribute to the final result. 
 

 
4 https://finance.yahoo.com/ 

7 COMPARISON 

The first step towards the comparison is to prepare the 
dataset for the traditional option pricing models. We created a 
Python tool that replicates the Black-Scholes and Binomial 
models. To retrieve the required data for these models, we used 
the Investpy API which retrieves stored historical data for 
publicly traded companies in the US and around the world. We 
used other libraries such as NumPy and Pandas to be able to 
manoeuvre the data and do complex calculations. Next up, we 
created the algorithm that calculates the prices based on the 
Black-Scholes and Binomial model. To get the most optimal 
results we chose a wide range of stocks as underlying for the 
options (25 European and 25 American stocks). As explained in 
part 5 of this study, the most efficient way to estimate option 
prices was to use the Binomial model for the American style 
options and the Black-Scholes for the European style options. 
The list of stocks consists of stocks with high market 
capitalization, high liquidity, and high trading volume since 
these are requirements for efficient market option prices. We 
created three separate data sets of option prices based on the 
strike price (ITM, ATM, and OTM options). The ITM and OTM 
options had strike prices approximately 15% outside the live 
stock price. For each data set, we calculated prices for call and 
put options on each stock. Moreover, we computed the prices for 
multiple expiration dates (one month, three months, six months, 
and one year). Therefore, for each stock, we computed a total of 
twenty-four different option prices resulting in a total of 1200 
different option prices in all three data sets. We used Yahoo 
Finance4 and the Euronext5 website to search for live market 
prices. The gathering of data was a very intensive and time-
consuming process because we chose to compute the prices 
while the markets are closed so that there are no fluctuations in 
prices. Hence, the whole set of data had to be calculated and 
retrieved from the online sources within a weekend which was 
very challenging but in the end rewarding. Before analyzing the 
results, we would like to point out some factors that could 
negatively influence the performance of the models. One 
important parameter was the historical data which was used to 
compute the historical volatility. For each option price, we used 
historical data starting from the 1st of January 2018. The 
reasoning behind this choice was that the last couple of years 
had a lot of rare events such as the pandemic and the Ukraine 
invasion. These resulted in a very high volatility in the stock 
market, so we chose a larger period in order to capture periods 
of the market where these events were not around. This decision 
turned out to be effective for the options with more distant 
expiration dates since the volatility is not expected to stay at high 
levels for periods as long as six months or one year. However, 
considering the recent big moves in the markets caused by rising 
inflation and possible future monetary policies changes, the 
markets are pricing in a higher volatility than the average for the 
last four years. This can lead to a slight undervaluation of close 
to expiration options by the traditional models. The last bias in 
our methodology might be the way we choose the market price 
for options. Our approach was to take the last price (meaning the 

5 https://live.euronext.com/en/products/stock-options/list 
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last transaction) as the market option price. However, in some 
cases, the bid-ask spread was completely different than the last 
transaction price. Often this is due to a big price change in the 
underlying that has not yet been corrected in the option market. 
In these cases, the correct approach in our opinion was to take 
the average between the bid and ask prices which is the most 
probable future settlement price. The first step after computing 
option prices and retrieving market option prices from the web 
was to calculate the difference between these two. The stocks 
analyzed had different prices some cost only a few dollars while 
others go into the thousands. This means that the option prices 
are not relative to each other and performing statistics on the 

raw difference is not relevant. Therefore, we divided the 
differences to the market prices to have a relative set of data and 
we called it an “error”.  Since the error could be either a positive 
or negative number, the best statistic measure to use was the 
root mean squared error (RMSE). This measure is the obvious 
choice in our case because we do not account for the direction of 
the error, we only look at its magnitude. Table 2, presented 
below, displays the RMSE values. These are categorized by 
moneyness (ITM, ATM, OTM), by option type (call or put) and by 
the option style (American [A] or European [E]). Each of these 
values were calculated from individual datasets of one hundred 
values each.

Table 2. Traditional Models RMSE by Option Type, Style and Moneyness. 

ITM ATM OTM 

A CALL A PUT E CALL E PUT A CALL A PUT E CALL E PUT A CALL A PUT E CALL E PUT 

0.0792 0.0861 0.2608 0.1530 0.1308 0.1060 0.4500 0.5103 0.4984 0.3041 0.8595 0.3698 

The ATM American calls and puts had an RMSE of 0.130 and 
0.106 which classify the Binomial as a good predictor for option 
prices. For the European options, the error was higher (0.450 
and 0.510 ) but still at reasonable values. The negative impact on 
the RMSE was made by the one-month until expiration options 
that were mispriced by the tool. In the case of Vivendi (Ticker: 
VIV), one of the options was mispriced with a value four times 
higher than the market price. Removing this outlier from the 
data would lower the RMSE score for put European options from 
0.510 to 0.313. Although the improvement would have been 
massive, we preferred to keep the data raw. The traditional 
models had the best predicting power for In-the-Money options. 
The Binomial model had an RMSE of 0.079 and 0.086 for 
American calls and puts while the Black-Scholes model averaged 
an RMSE of 0.261 and 0.153 respectively. We had the pleasure to 
see calculated prices matching exactly the market prices in some 
cases. For the AXA company (Ticker: CS) two out of four options 
had an error of zero since the compared values were exactly 
equal. These values are very promising and show how powerful 
the traditional option pricing models are in optimal situations. 
On the other side of the spectrum, computing OTM option prices 
are the weak spot for the traditional models. The Black-Scholes 
model averaged an RMSE of 0.860 for call options which is the 
worse score in the whole dataset. This mainly resulted from 
overpricing close to maturity call options. As an example, Casino 
Guichard Perrachon (Ticker: CO) had a one-month OTM call 
price of 0.02 € while the calculated price was 0.08 €. Although 
the nominal difference is small (0.06 €) the difference to market 

price ratio is 3 which is a high value that negatively influences 
the overall RMSE. For put options the RMSE was 0.370, lower 
than for call options but still not an amazing result. For American 
options the narrative was similar, OTM call options averaged an 
RMSE of 0.498 while the put options had a slightly lower value 
of 0.304. The close expiration options had a negative influence 
on the score. For comparison, we chose the values from the work 
done by Gaspar, Lopes, & Sequeira (2020) [22]. In the research, 
they look into two ANN models. The values in Table 3 represent 
an average RMSE between the two ANN models and the RMSE 
resulted from our data. The first thing we can observe is that the 
ANN used performs the best with OTM options which is the exact 
opposite with the traditional models. The RMSE of ANNs is 
0.1716, a clearly better score than the BS and Binomial model 
(0.6146 and 0.4012). For At-the-Money options the score is tight. 
ANNs average an RMSE of 0.1954. The score is beaten by the 
Binomial model (0.1184) but the Black-Scholes model has a 
higher error (0.4789). The ITM options is where the ANNs 
performed the worst, and the traditional models performed the 
best. The ANNs averaged an RMSE of 0.3804 way higher than 
both the Black-Scholes model (0.2069) and the Binomial model 
(0.0827). Ivașcu (2021) [24] performed a similar study looking 
into multiple option pricing models in his research paper 
“Option pricing using machine learning”. The Artificial Neural 
Network tested in his study showed the same pattern as seen 
before. The ITM option pricing performed the worst with an 
RMSE of 0.59. The ATM options were priced slightly better with 
an RMSE score of 0.43 while the OTM options had a score of 0.13. 

 

Table 3. RMSE on moneyness. 

ITM ATM OTM 

BS Binomial ANN BS Binomial ANN BS Binomial ANN 

0.2069 0.0827 0.3804 0.4789 0.1184 0.1954 0.6146 0.4012 0.1716 
 
Since some studies measured the accuracy of ANNs with MAPE 
(mean absolute percentage error), we computed the MAPE 
values for our dataset. This measure is very similar to RMSE but 
instead of squaring the error to get rid of negative values, it takes 
the absolute value of the error so that it accounts for the 

magnitude of the error, not the direction. In the work of Jang, & 
Lee (2019) [26] the authors test the Bayesian neural network, 
and the improved version named the Generative Bayesian neural 
network. The improved version outperforms in pricing all types 
of options. The worst MAPE score was 0.2391 when pricing OTM 
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options while the best was 0.0459 for pricing ITM options. 
Pricing At-the-Money options proved to be in the middle with a 
score of 0.1142. This research shows that there is a lot of room 
for improvement in the modern option pricing models since 
there is no exact theory behind and a lot of optimisations can be 
made. In Table 4 we can observe the values of the BS and 
Binomial models and also the results of two AI-driven models 
(deep neural network and Andreou et al. Neural Network) that 
were tested in the study paper of Cao, Liu, & Zhai (2021) [25]. 
According to the authors, these are one of the best performing 
neural networks for pricing options. The results were not what 
we expected considering the previous results. The modern 
pricing models performed the worse for OTM options, even 
worse than the traditional models. For pricing ATM options the 
results were close, the Binomial model achieved the highest 
score (5.75%). Both NNs had under 9% scores while the Black-
Scholes model had a score of 12.35%. Lastly, the ITM options 
were priced better by the AI models, both scoring under 7% 

MAPE while the traditional models averaged 18.9%. In this 
research, the authors are constructing a brand new 
“economically meaningful” ANN model that combines the best 
out of the traditional and modern option pricing models. Hence, 
the model is called hybrid gated neural network (hGNN). The 
model uses the best neural architecture while considering for 
traditional no-arbitrage constraints that formed the base of 
option pricing in the past. Morover, the model has a separate 
neural network just for predicting the volatiliy that uses the 
Black-Scholes implied volatilites instead of realized volatilites 
which significantly improves option pricing  accuracy. The 
results of the hybrid model are outstanding with no MAPE values 
higher than 0.02 and values as low as 0.0063. These values prove 
that the model outperforms any type of option pricing model 
seen before. This highlights that the most efficient option pricing 
model, is not one of the various studied models but a 
combination between the traditional and modern models.

Table 4. MAPE on moneyness. 

 

8 RECOMMENDATIONS 

We developed a Python program that uses the Black-
Scholes and Binomial models to calculate option prices after 
examining the option pricing theory and comprehending the 
variables that affect option prices. We simultaneously conducted 
research on contemporary pricing models represented by 
artificial neural networks and chose the most effective models 
for comparison. The first important aspect that we found is that 
the calibration of the models is often more important than the 
model type. A poorly designed ANN model can perform very well 
if the training data is adequate. At the same time, a traditional 
model that normally performs very well can show no predictive 
power if the inputs (historical data, risk-free rate) are subpar. 
The next important aspect is that ANNs have no exact theory or 
formula behind them, as the traditional models do. Because the 
ideal number of layers and nodes is unknown, there are many 
different versions of neural networks, each having advantages 
and disadvantages. However, the final results of our research 
paper show that even without an exact theory behind ANNs, they 
still provide incredible results. To answer the main research 
question, we will summarize the findings. The traditional models 
have performed very well when pricing ITM options and started 
to lose accuracy as the strike price went further Out-of-the-
Money. The ANNs had different results based on the architecture 
of the models. Overall, the modern models proved to have real 
potential in pricing options, beating the traditional models in 
some of the cases. The best model out there seems to be the 
hybrid gated neural network (hGNN) developed by Cao, Liu & 
Zhai [25]. The model mixes classic and modern models, bringing 
the best of both worlds together to create an incredible model. 

This proves that the Artificial Intelligence involved brings 
massive improvements, but the fine tuning is done by the old 
models. 

9 LIMITATIONS 

There were several restrictions because this research 
study was completed in a constrained amount of time. The 
assessment of the risk-free rate for European stocks was one of 
them. The yield on treasury bonds for the eurozone was used as 
the risk-free rate, which was set at 2%. One could argue that 
using the risk-free rate of the country in which the company has 
the largest operating activity would have been the most accurate 
way to carry out the data collection. Even more exact would be a 
weighted average of risk-free yields depending on the revenue 
from each nation the company operates in. However, this would 
have required much more investigation outside the subject of 
study. Another limitation we faced was finding an open-source 
ANN software that we could use to gather data on the modern 
models. We were unable to build an ANN from scratch because 
to time constraints, but we were able to solve this issue by 
conducting a literature review, which gave us the information we 
needed. 

10 FUTURE WORK 

We covered a lot during this research and achieved very 
great results. However, there are ideas that can be further 
worked upon. An interesting approach would be using an ANN 
on the same exact data as for the traditional models. This could 
not be done here due to the lack of time. Working on merging 
both conventional and contemporary models is also required in 
order to advance option pricing models even further. More effort 
in this direction will result in new, more effective models.

 

ITM ATM OTM 

BS Binomial dNN AnNN BS Binomial dNN AnNN BS Binomial dNN AnNN 

0.2877 0.0906 0.0579 0.0691 0.1235 0.0575 0.0644 0.082 0.3799 0.2735 0.2714 0.4246 



Comparison between traditional and modern option pricing models  TScIT 37, July 8, 2022, Enschede, The Netherlands 

9 

REFERENCES  
[1] Hall, B. J. (2000). What you need to know about stock options. Harvard 

Business Review, 78(2), 121-121. 

[2] Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate 

Liabilities. Journal of Political Economy, 81(3), 637–654. 

[3] Conroy, R. M. (2009). Binomial option pricing. 

[4] Culkin, R., & Das, S. R. (2017). Machine learning in finance: the case of deep 

learning for option pricing. Journal of Investment Management, 15(4), 92-

100. 

[5] Ruf, J., & Wang, W. (2019). Neural networks for option pricing and hedging: 

a literature review. arXiv preprint arXiv:1911.05620. 

[6] Ferguson, R., & Green, A. (2018). Deeply learning derivatives. arXiv preprint 

arXiv:1809.02233. 

[7] Palmer, S. (2019). Evolutionary algorithms and computational methods for 

derivatives pricing (Doctoral dissertation, UCL (University College London)). 

[8] Hirsa, A., Karatas, T., & Oskoui, A. (2019). Supervised deep neural networks 

(DNNs) for pricing/calibration of vanilla/exotic options under various 

different processes. arXiv preprint arXiv:1902.05810. 

[9] Malliarakis, N. (2020). Profitability comparison between option pricing 

models for American stock options after Subprime crisis (Doctoral 

dissertation, Theseus). 

[10] Dar, A. A., & Anuradha, N. (2018). Comparison: binomial model and Black 

Scholes model. Quantitative finance and Economics, 2(1), 230-245. 

[11] Lee, C. F., Chen, Y., & Lee, J. (2016). Alternative methods to derive option 

pricing models: review and comparison. Review of Quantitative Finance and 

Accounting, 47(2), 417-451 

[12] Jang, H., & Lee, J. (2019). Generative Bayesian neural network model for risk-

neutral pricing of American index options. Quantitative Finance, 19(4), 587-

603. 

[13] Hahn, J. T. (2013). Option pricing using artificial neural networks: an 

Australian perspective. Bond University. 

[14] Hull, J., Treepongkaruna, S., Colwell, D., Heaney, R., & Pitt, D. (2013). 

Fundamentals of futures and options markets. Pearson Higher Education AU. 

[15] Brealey, R. A., Myers, S. C., Allen, F., & Mohanty, P. (2020). Principles of 

corporate finance. Tata McGraw-Hill Education. 

[16] Fama, E. F. (1965). Random Walks in Stock Market Prices. Financial Analysts 

Journal, 21(5), 55–59. 

[17] Malkiel, Burton Gordon. (2003). A random walk down Wall Street : the time-

tested strategy for successful investing. New York :W.W. Norton. 

[18] Osborne, M. F. M. (1959). Brownian Motion in the Stock Market. Operations 

Research, 7(2), 145–173. 

[19] Paunović, J. (2014). Options, Greeks, and risk management. Singidunum 

Journal of Applied Sciences, 11(1), 74-83. 

[20] L. Blynski and A. Faseruk. Comparison of the effectiveness of option price 

forecasting: Black–Scholes vs. simple and hybrid neural networks. Journal of 

Financial Management & Analysis, 19(2):46–58, 2006. 

[21] Y.-H. Wang. Nonlinear neural network forecasting model for stock index 

option price: hybrid GJR–GARCH approach. Expert Systems with 

Applications, 36(1):564–570, 2009a. 

[22] Gaspar, R. M., Lopes, S. D., & Sequeira, B. (2020). Neural network pricing of 

american put options. Risks, 8(3), 73. 

[23] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal 

function. Mathematics of control, signals and systems, 2(4), 303-314. 

[24] Ivașcu, C. F. (2021). Option pricing using machine learning. Expert Systems 

with Applications, 163, 113799. 

[25] Cao, Y., Liu, X., & Zhai, J. (2021). Option valuation under no-arbitrage 

constraints with neural networks. European Journal of Operational 

Research, 293(1), 361-374. 

[26] Jang, H., & Lee, J. (2019). Generative Bayesian neural network model for risk-

neutral pricing of American index options. Quantitative Finance, 19(4), 587-

603. 

 

APPENDIX 

A.1 Binomial Tree 

 


