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Abstract 
In an effort to utilize technological advances in the field 

of computer science, often state of the art technology finds 

its way into previously existing activities and tools. Such 

as the case with driving a normal car, now advancing into 

autonomous vehicles aided with sensors and cameras to 

ensure a comfortable and safe trip for the car passengers. 

Similarly, this study will look into how SLAM technology 

could lead to advancements in the realm of smart bicycles, 

specifically in terms of making cycling safer and more 

comfortable. This will all be done by evaluating different 

SLAM algorithms, in terms of usability on a bike and the 

performance on the provided hardware, hence giving a 

realistic result into the usability of SLAM for the smart 

bike domain. After that we pursued implementing a 

variation on SLAM that could potentially allow for lower 

resource usage on embedded systems. 

The possibility of applying SLAM in a dynamic 

environment has been investigated in prior research 

articles[2]. Furthermore, the use of SLAM on autonomous 

bikes was investigated and shown to be feasible[1]. The 

potential applications of SLAM on smart bikes will be 

investigated in this study.  
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1. Introduction 
SLAM (simultaneous localization and mapping) 

algorithms, deal with navigation in previously unknown 

areas by creating a map of that given environment and 

simultaneously localizing the agent (bike, car, robot, 

etc...). The algorithm makes use of different types of 

hardware, namely: cameras, LIDAR sensors, and laser 

range sensors among others, all to better detect the 

surrounding environment to build the agent a map. 

SLAM algorithms are now being implemented on mobile 

robots as well as different types of autonomous vehicles. 

It is also being adopted on mass scale projects, which 

makes it an intriguing approach that is worthy of exploring 

in the implementation of smart bikes. However, since 

implementation on a smart bikes have not been done a lot 

and considering that smart bikes have some limitations in 

terms of budget and resources, this research aims to aid 

further implementations and research of SLAM on smart 

bikes by showing the possible use cases of the algorithm 

while also showing how the algorithms can run on lower 

resource systems such as a raspberry pi, and discuss the 

limitations that may come with such implementations. 

The main research question is: How can SLAM algorithm 

be used to aid the development of smart bikes? 

This simple research question will take into consideration 

a lot of aspects, and so because of that a few more research 

questions generically spawn such as: 

• How can a SLAM algorithm be improved or 

modified to serve the purposes of smart bikes? 

• Can a SLAM algorithm be used on a lower-end 

embedded system? 

To find answers to such research questions some extensive 

research into existing literature and solutions was done, 

after that some of these solutions were tried and tested on 

datasets that show similar footage to what would be 

expected in a smart bike setting, the features and 

functionality of such algorithms was noted. Furthermore, 

an alternate solution to one of these tested 

implementations was designed to try and make the 

algorithm run on a lower-end embedded systems, and then 

it was tested to see if smooth performance on smart bikes 

can be obtained using such method. 

2. Requirements 
To try and answer such research questions, planning for 

the implementation was divided into two stages, each 

stage having its own requirements. 

The first stage is just installing and building the SLAM 

algorithms that seemed to make sense in a smart bike 

context, this only requires the algorithms to run on the 

different datasets so that a frame of reference is obtained 

for when the improved algorithm is implemented. Some 

form of visual result must be obtained, such as seeing a 

map built from the dataset provided. 

The second stage concerns enhancing at least one of the 

SLAM algorithms by implementing a version of SLAM 

that uses socket connection, making it work on two 

machines in parallel to save resources on one of the 

machines. The algorithm is supposed to show higher 

performance than the regular implementation. What that 

implies is that the implementation should decrease 

resources used on the raspberry pi’s end. The algorithm 

that was chosen for this is ORB-SLAM2, since a lot of 

previous research has been done on the algorithm and so 

previous literature provided ideas into how such an 

algorithm can be enhanced. 

3. Existing solutions 
After reading some research papers it had been made clear 

in previous studies that building and installing SLAM on 

some embedded systems is possible[3]. However, the 



results vary from one system to the other, some high-end 

machines yield quick computation, like the Tegra X1, 

while some other systems were noticeably slower, such as 

the Panda-board ES.  

Since there are many libraries and approaches that exist 

for the implementation of SLAM, some filtering process 

needed to be done, and the criteria was simply to find 

algorithms that can be easily incorporated with a camera 

to test in real time. Another criteria was to try to find 

algorithms that would also allow easy incorporation of 

datasets. That being said, the two algorithms we chose to 

implement were ORBSLAM2[9] and VDO-SLAM[6]. 

3.1. ORBSLAM2 
ORBSLAM[8] is an open source feature based 

implementation of SLAM that allowed for various 

features such as loop closing and relocalization. 

Throughout the paper for ORBSLAM, various testing has 

been done for both indoor and outdoor environments. 

However, the algorithm lacked in accuracy, had some 

performance problems and only allowed for the 

implementation of monocular cameras. This is where 

ORBSLAM2 came in. 

ORBSLAM2[9] is a massive upgrade from ORBSLAM, 

it allows the implementation of monocular, RGB-D and 

stereo camera. It also enhances greatly on the problems 

ORBSLAM faced, such as the performance issues as well 

as the accuracy issues. By the time ORBSLAM2 was 

released, it would have been considered state of the art in 

many aspects of SLAM research. Another advantage 

ORBSLAM2 provided is that it is not so much outdated as 

to render it useless, and it is also not so new that no 

research or community discussion have been done on it. It 

was perfect for this research, given the time frame, as it is 

very well documented, and it has an active community 

reporting back and posting consistently about fixes to 

errors that may be encountered, hence resolutions to a lot 

of problem could be easily found. In addition to this, there 

already exists a lot of research that make use of 

ORBSLAM and ORBSLAM2. All these aspects made 

ORBSLAM2 a very advantageous algorithm, in terms of 

both time and functionality, to use for this research 

project. 

That is not to say that no roadblocks were faced when 

dealing with ORBSLAM2. However, these will be 

documented in greater detail in the upcoming sections. 

But despite such problems, the initial hypothesis was 

right, the extensive documentation came in handy when 

faced with the many problems encountered throughout the 

research and further research provided the basic idea in 

which the attempted improvement of ORBSLAM2 was 

conducted. 

3.2. VDO-SLAM 
VDO-SLAM[6] is another open source implementation 

that takes another approach for using SLAM, since this 

implementation focuses more on dynamic environments.  

VDO-SLAM is intended to be used in dynamic 

environments, the reason as to why it was chosen for the 

project can be plainly clear. The algorithm provides 

features ORBSLAM does not, such as dynamic object 

tracking, which was a feature that seemed to offer great 

value to a smart bike provided it can work with reasonable 

performance on embedded systems. The paper on VDO-

SLAM[6] provides decent documentation on the  

implementation, as well as an extensive performance 

results on analysis on different datasets providing a 

dynamic environment, these environment include indoors 

as well as outdoor settings. 

Further, another reason VDO-SLAM was used, was due 

to the fact that, like ORBSLAM2, this algorithm is feature 

based, with relatively high accuracy. However, unlike 

ORBSLAM2, VDO-SLAM only has implementation for 

RGB-D camera. This can be considered a bit of a 

disadvantage but, if the final implementation on a smart 

bike only uses an RGB-D camera, both implementations 

will work fine. In addition to that, VDO-SLAM supports 

real time SLAM in a very easy manner.  

Again, there were many roadblocks that were faced while 

building and installing VDO-SLAM, these will also be 

discussed in further sections, however, the features VDO-

SLAM can greatly enhance the smart bike experience. 

Specifically, the dynamic object tracking feature, which 

allows the algorithm to identify moving objects, such as 

cars, and identify their velocity with good accuracy, 

which, again, can provide real world benefits to a smart 

bike.  

4. Implementations, proof of concept 

and SLAM using socket connection 
The approach that was taken throughout this research has 

varied in a lot of ways. Initially, all the SLAM algorithms 

were supposed to be run and tested in real time, providing 

more reliable and realistic results. However, the reason for 

the multiple change of plans that were done spawned from 

the problem that the hardware that was necessary to pursue 

this research did not arrive, and by mid-week 4 it had to 

be cancelled so that this research can carry on with 

whatever time was left. For about a week more, some 

reviewing of a bit of literature was done to try and detour 

from the initial subject to a more time appropriate subject 

and research question, but ultimately the choice to carry 

on with this research with the same research questions was 

taken. However, the approach was slightly varied. 

Initially a LIDAR sensor was to be used with a 

combination of SLAM algorithms such as 

BreezySLAM[4], further RGB-D cameras would have 

also been used. This approach has entirely changed and 

the entire project will be based on working with the same 

algorithms that would’ve been used with the RGB-D 

cameras.  

However, instead of working on hardware that can 

provide some real time results, such as the RGB-D 

camera, this research instead worked solely on datasets to 

test the algorithms, specifically the KITTI dataset[9]. The 

choice of the dataset was taken since KITTI provides 

outdoors videos next to cars and bikes, and it also shows 



footage traveling in narrow lanes, making it a reasonable 

dataset when looking into viewing a bike experience. The 

dataset also has almost 20 gigabytes of material, and thus 

providing a lot of footage to work with.  

Furthermore, since the budget of a smart bike needs to be 

accounted for, the research is extended to enhance 

ORBSLAM2, which is an implementation of SLAM, in 

such a way that it can run better on lower end hardware 

such as a raspberry pi. This is done by implementing a 

version of SLAM using online socket connection with the 

ORBSLAM2 source. 

As was mentioned before in the requirements section, the 

first part of the project concerns installing and building the 

libraries, while also getting familiar with the classes of 

each algorithm and the features they provide. 

Furthermore, for each algorithm, the difficulties faced 

while installing them will be mentioned, as well as how 

each algorithm was tested using datasets to make sure each 

implementation works. 

In the second part of this section, the improvements made 

to ORBSLAM2 will be mentioned, as well as the 

difficulties faced while attempting to implement such 

improvements. Regarding the improvement of 

ORBSLAM2, two approaches were taken, each one will 

be explained in extensive detail and why each was 

implemented. 

Most of the testing is done on virtual machines, where two 

virtual machines are used, one to simulate a higher-end 

machine, which will be referred to as server VM, and the 

other is to simulate a raspberry pi, which will be referred 

to as pi VM. This made testing the alterations to the 

algorithm a quicker process. 

Various problems were faced throughout these processes, 

some are due to personal inexperience with building and 

installing libraries and programs on Linux, and some are 

due to various factors that have to do with the libraries, 

these issues are all detailed below. All in all, it took four 

trails on five different virtual machines to get both 

libraries to work on two different virtual machines, these 

two will come in handy when improving ORBSLAM2. 

4.1. Building ORBSLAM2 
As previously mentioned, the process of building 

ORBSLAM2 had many difficulties throughout. The main 

problem has to do with the library being a bit outdated, 

and that caused some trouble due to two reasons, one 

being the outdated installing instructions, and the other is 

that the install instructions do not mention the versions of 

some of the dependencies used.  

For example, the install instructions only mention 

installing the Pangolin library, but it is only through trial 

and error that we uncovered that Pangolin version 0.5 is 

the version needed. Similar problems are faced with other 

dependencies such as Eigen3, as referencing Eigen3 in 

C++ headers has changed slightly since ORBSLAM2 was 

last updated. 

In addition to that some problems were encountered with 

installing the different versions of OpenCV, these were 

due to multiple wrong assumptions that were made. One 

such assumption is that ORBSLAM2 can work fine with 

the newer OpenCV 4.0+ versions, which was not the case, 

this wasted about a day trying to understand why 

ORBSLAM2 does not build. 

Whilst building ORBSLAM2 an issue was encountered in 

which the virtual machine would freeze until it was forced 

to shut down, that problem also caused some delay, 

between 1 to 1.5 days. The problem being that, by default, 

ORBSLAM2 builds by doing 8 processes at a time, this 

caused the machine to overload, the solution was just 

changing the build settings. Although the solution was 

simple, it was not obvious at the time. 

4.2. Building VDO-SLAM 
VDO-SLAM was faster to build because most of the 

dependencies had been installed already, additionally, 

some experience had built up while resolving errors in 

similar situations for ORBSLAM2. And so installing and 

building VDO-SLAM only took about half a day worth of 

work. 

The only problem faced was that the documentation does 

not make it clear that OpenCV must be built with the extra 

modules. This took some time to figure out but not too 

long. 

4.3.  Socket connection ORBSLAM2 
Socket connection SLAM refers to the implementation 

that was done during this research. The concept of the 

implementation is rather simple, one lower-end system is 

running on the smart bike gathering the image data from 

the camera, it then sends the data over to a higher-end 

computer over socket connection and then that computer 

runs the SLAM algorithm and returns the results for 

viewing back to the lower-end system. In the previous 

section the problems with resources on the virtual machine 

was discussed, as well as taking a look into the processing 

time of each frame, this online socket SLAM solution is 

aimed at either decreasing the processing time for the 

raspberry pi, or decreasing the resources used on the 

machine, making more space in the hardware for other 

processes to run. 

To do such implementations a python wrapper[10] was 

needed to be installed. The reason for that was, again, to 

save as much time as possible since we were more familiar 

with python sockets and serialization unlike the 

alternatives in C++. The python wrapper uses Boost to 

make C++ functions work in python. However, the 

developers only provided python alternatives for the 

example classes in ORBSLAM2 and not the src classes.  

Two variations of the “online socket SLAM” algorithm 

have been done during this research. One is more of a 

naïve approach that does not fulfill the complete vision of 

the algorithm. The second one did not fully work. The two 

approaches will be explained in detail in the following 

subsections. 



4.3.1. Approach one: Naïve approach 

The first approach was easy to implement, it is referred to 

as the naïve approach because it does not fully give the 

working result that was pursued. However, after seeing the 

results, it does show somewhat of a proof of concept. This 

allowed me to pursue a better approach. 

The approach is done in two steps, the first one is sending 

the data gathered, in this case the data was from the 

dataset, on the raspberry pi VM and sending it over by 

using a socket connection to the server VM. The server 

VM carries on with the ORBSLAM2 algorithm and the 

results are shown.  

Although this serves as a good proof of concept, this 

implementation is still flawed. The reason for that is that 

the results are not sent back to the raspberry pi VM, and 

so all the SLAM visualization happens on the server VM 

side. This can be a problem since it does not help the smart 

bike rider much. The reason the results are not just sent 

back to the raspberry pi VM is due to the way that 

ORBSLAM2 classes are structured. The python file uses 

one of the C++ source files called System.cc which in turn 

calls functions from Tracking.cc. As the tracking, in the 

Tracking.cc file, is updated the viewing of the results is 

done and thus happens simultaneously. And so, the 

problem remains that getting the results back to the 

raspberry pi VM will require a bit more work than what 

was expected, which is where the second approach comes 

in. 

Even if this approach did not provide the demanded 

results, after seeing the results it encouraged more work 

into the second approach, and so this naïve approach 

worked more as a proof of concept. The reasoning for this 

as well as the results for the naïve approach are mentioned 

in the results section. 

4.3.2. Approach two 

The second approach requires more hacking into the 

source code of ORBSLAM2. This is where the python 

wrapper becomes a slight disadvantage, since whenever 

changes are made to the ORBSLAM2 source code, the 

python wrapper needs to be updated by making new 

functions that make use of the changes done, then 

ORBSLAM2 needs to be rebuilt and then finally the 

python wrapper needs to be rebuilt. This can get time 

consuming, so preferably this process is done the 

minimum number of times. 

Since this second approach did not work, the explanation 

is all theoretical backed up by the results shown for the 

first naïve approach. The second approach works by 

sending the data from the raspberry pi VM to the server 

VM as done in the previous approach, then the System.cc 

file returns the Frame datatype that is updated in the 

variable mCurrentFrame, which is found in the function 

GrabImageMonocular belonging to the Tracking.cc file, 

to the python code. This Frame stuct is then serialized and 

sent back to the raspberry pi VM through a socket 

connection. The raspberry pi VM then should update the 

map and carry on with the tracking function. 

This approach is a more realistic algorithm, since it would 

provide useful results to the person riding the smart bike. 

However, it will of course have more processing time than 

the first (naïve) approach. 

5. Results 
This section discusses the results of building and running 

the algorithms and their use cases, while also showing the 

results of the improvements made using both approaches. 

5.1. Build results of ORBSLAM2 and VDO-

SLAM 

 
Figure 1 shows ORBSLAM2 operating on the KITTI dataset for monocular 

camera 

 

Figure 2 shows part of the map built by the ORBSLAM2 algorithm 

Even though, some problems occurred during building, 

however, after ORBSLAM2 was built, the results were as 

expected on the KITTI dataset as shown in figure 1. 

ORBSLAM2 was simple to use and test the datasets on. 

ORBSLAM2 constructs a map of the road, as seen in 

figure 2, which can be of great help to smart bike users. 

 

Figure 3 shows VDO-SLAM operating on the KITTI dataset for an RGB-D 

camera 

 

Figure 4 shows VDO-SLAM operating on the KITTI dataset for an RGB-D 

camera 

The same results apply for the build of VDO-SLAM. The 

results were in line with what was expected as shown in 

figure 2, and it was also easy to test datasets on. As can be 

seen in figure 3, VDO-SLAM can calculate the velocity of 



a vehicle on the street, which is a unique feature that can 

help users. 

5.2. Results of both algorithms on VMs 

Average time of processing one frame (s) 

 Average time 

using 

Monocular (s) 

Average time 

using RGB-D 

(s) 
ORBSLAM2 0.002114 - 

VDO-SLAM - 1.258050 

Table 1 shows the average time taken to process a frame for the different 

algorithms on virtual machines 

For ORBSLAM2 the average is calculated based on using 

the processing time for the first 200 frames. VDO-SLAM 

does not have an implementation for monocular cameras 

which is why the cell is left empty. Table 1 shows the 

average time to process one frame for both algorithms 

using both a monocular camera and an RGB-D camera, 

these results are obtained on a virtual machine that has the 

same hardware resources as a raspberry pi, virtually 

simulating it.  

The results obtained in using ORBSLAM2 are good in 

terms of processing time, however the problem that was 

encountered concerns the resources used. Operating 

ORBSLAM2 is demanding in terms of computer 

resources, and the more time it keeps running, the more 

resources it needs. Figure 3 shows the CPU and RAM 

usage on the virtual machine had almost 1.8 GB of the 2 

GB ram being used as seen in figure 4. This system is only 

running ORBSLAM2, which will not be reasonable for 

the implementation of a smart bike since more algorithms 

will be needed to run. The problem only gets worse the 

more time the algorithm runs, taking up more RAM. 

 

Figure 5 shows CPU usage on virtual machine 

 

Figure 6 shows RAM usage on virtual machine 

Additionally, the algorithm was also run on a virtual 

machine with more resources put into it. The average time 

for processing one frame in ORBSLAM2 was 0.001850 

seconds. Surprisingly, the time difference between the two 

virtual machines was not that great, just about 0.000264 

seconds.  

5.3. Results of both algorithms on a raspberry 

pi 4 

 Average time of processing one frame (s) 

Trials ORBSLAM2 VDO-SLAM 

1 0.007077 8.110560 

2 0.007272 4.967875 

3 0.007146 5.326230 

4 0.007117 4.780151 

5 0.007088 7.179776 

6 0.007132 6.699401 

7 0.007072 4.531626 

8 0.007072 4.415732 

9 0.007006 3.730072 

10 0.007161 4.626327 

11 0.007184 4.850431 

12 0.007171 7.498999 

13 0.007255 6.637877 

14 0.007130 5.288502 

15 0.006928 7.014448 

Table 2 shows the average time taken to process a frame for the different 

algorithms on a raspberry pi 

15 trails were carried out for each algorithm on the 

raspberry pi. ORBSLAM2 showed consistent results, with 

an average of 0.00712057 seconds, however that was not 

the case for VDO-SLAM which showed very inconsistent 

results, ranging from 3.730072 seconds at its lowest to 

8.11056 seconds at its highest. 1.2 GB of the 1.88 GB on 

the raspberry pi where used, with almost 800 GB from the 

memory swap also being used. These figures further 

illustrated the problem cause by running SLAM on lower-

end embedded systems. These surprising results also show 

the large difference between running the two algorithms 

on a virtual machine versus running both on the raspberry 

pi. As can be seen, the difference is almost 3.37 times 

more on the raspberry pi for ORBSLAM2 and the 

difference can range from almost 3 times to 6.4 times on 

a raspberry pi for VDO-SLAM. 

One reason for the large increase in running time might be 

the fact that the raspberry pi is running on Ubuntu 18.04 

which was not made to be run on a raspberry pi. This 

version of Ubuntu was needed to mimic the environment 

that can support both OpenCV 3.2 and OpenCV 3.4, the 

environment was also needed to be able to build 

ORBSLAM2, which is a bit outdated. To make that 

happen, Ubuntu 18.04 server for raspberry pi was installed 

on the device and then we installed the desktop version 

from the terminal. Further to counter the performance 

problems as much as possible, we tried to increase the 

memory swap to almost 5 GB, which was the best that 

could be done given the SD card which was only 32 GB.  

5.4. Socket connection SLAM: approach one 

(Naïve approach) 
I mentioned previously that the Naïve approach is 

considered a proof of concept that encouraged working on 

and developing a better solution. Given that, the most 

important part of this section is to reveal why such 

consideration was done and what it can reveal about the 

eventual application of the second approach. 

 Average time using 

Monocular (s) 
Raspberry pi VM 4.642626e-06 

Server VM 0.002629 

Table 3 shows the average processing time for both virtual machines. 

First, the most noticeable difference is the processing time 

of the Raspberry pi VM which is significantly decreased. 

However, this result is not greatly impressive or important 

because using this implementation, the only thing the 

system functionally does is send the data to the Server 

VM. Absolutely no SLAM processing or result viewing is 



done on that side, so the results of the second approach 

will not be expected to have such low processing times, 

on the contrary. Given that the second approach works, the 

time for it to show the results will be the time it already 

takes to send the files, which is virtually next to nothing, 

plus the time for the Server VM to process that frame, plus 

the time for the Server VM to send back the frame. 

The second difference is clearly the rather mysterious 

increase in the processing time on the Server VM side. We 

frankly could not find a valid reason for this increase in 

processing time for the SLAM algorithm, but it is 

consistently present. 

With that being said, the enhancement that could be 

expected from the second approach would be the decrease 

in resources used on the Raspberry pi VM, rather than a 

better processing time overall. This could still be helpful 

to the system, since the increase in time would still not be 

excessive to the point where the system is rendered 

useless, however, the decrease in resource use can make 

way for multiple functionalities to be implemented for the 

smart bike. 

5.5. Socket connection SLAM: approach two 
The second approach to the socket connection 

ORBSLAM2 did not work out as planned, in the end it 

didn’t function properly to be able to obtain final results 

on the resource usage of the algorithm, in this section we 

will explain why that happened and what the alternatives 

may be. The problem simply has to do with the python 

wrapper that was used, as that converter does not convert 

all the data types and functionality of ORBSLAM2. That 

causes the conflict, since in order to send the results to the 

server VM we must first return the struct variable to the 

python file with the Frame dataset, which was not 

converted to python, so that causes the error. Trying to 

change the datatype to its python equivalent would not be 

the best way to go, a better alternative is to not use the 

python wrapper all together and instead do the socket 

connection and serialization on C++, however this could 

not be done during the time of this research due to time 

constraints. 

6. Conclusion  
Throughout this research, different SLAM algorithms 

were run and tested, where each algorithm can bring 

benefit to the implementation of a smart bike. Further, a 

method was developed to try to improve the algorithm for 

the smart bike use case. The use cases for SLAM on smart 

bikes was also shown, as it can be used to map out places 

the user has not visited before, which can be seen when 

using ORBSLAM2, and it can also be used to show the 

user the velocity and trajectories of the surrounding 

vehicles, as shown using VDO-SLAM, which can be an 

additional safety measure. 

Further, some adjustments to the ORBSLAM2 algorithm 

using socket connections to allow for lower resource use 

on the embedded system working on the smart bike. The 

first approach, that worked as a proof of concept, showed 

that the system can be helpful for the smart bike provided 

some additional changes are made, which is where the 

second approach comes in, however, it is still not fully 

functioning. Regardless, this paper shows the SLAM can 

be used on some lower-end embedded systems such as the 

raspberry pi, which may encounter some problems due to 

hardware limitations, but the online (socket) slam 

implementation may eliminate such problems. 

6.1. Future work 
For further research, the implementation of the socket 

ORBSLAM2 could be resumed, with testing to show how 

useful the approach may be. Also, testing on live feed 

using a monocular camera and ROS could be done, to 

ensure that the algorithm fully works in real world 

scenarios. 

Although the research showed some promising results, 

some further research into more use cases can be 

beneficial, specifically use cases of LiDAR sensors and 

SLAM. 
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