
SLAM for smart bikes
Omar Mohamed Anwar Mohamed Elkady

University of Twente
PO Box 217, 7500 AE Enschede

the Netherlands

omarmohamedanwarmohamedelkady@student.utwente.nl

Abstract
In an effort to utilize technological advances in the field

of computer science, often state of the art technology finds

its way into previously existing activities and tools. Such

as the case with driving a normal car, now advancing into

autonomous vehicles aided with sensors and cameras to

ensure a comfortable and safe trip for the car passengers.

Similarly, this study will look into how SLAM technology

could lead to advancements in the realm of smart bicycles,

specifically in terms of making cycling safer and more

comfortable. This will all be done by evaluating different

SLAM algorithms, in terms of usability on a bike and the

performance on the provided hardware, hence giving a

realistic result into the usability of SLAM for the smart

bike domain. After that we pursued implementing a

variation on SLAM that could potentially allow for lower

resource usage on embedded systems.

The possibility of applying SLAM in a dynamic

environment has been investigated in prior research

articles[2]. Furthermore, the use of SLAM on autonomous

bikes was investigated and shown to be feasible[1]. The

potential applications of SLAM on smart bikes will be

investigated in this study.

Keywords
SLAM, simultaneous localization and mapping, smart

bikes, LIDAR, bike safety.

1. Introduction
SLAM (simultaneous localization and mapping)

algorithms, deal with navigation in previously unknown

areas by creating a map of that given environment and

simultaneously localizing the agent (bike, car, robot,

etc...). The algorithm makes use of different types of

hardware, namely: cameras, LIDAR sensors, and laser

range sensors among others, all to better detect the

surrounding environment to build the agent a map.

SLAM algorithms are now being implemented on mobile

robots as well as different types of autonomous vehicles.

It is also being adopted on mass scale projects, which

makes it an intriguing approach that is worthy of exploring

in the implementation of smart bikes. However, since

implementation on a smart bikes have not been done a lot

and considering that smart bikes have some limitations in

terms of budget and resources, this research aims to aid

further implementations and research of SLAM on smart

bikes by showing the possible use cases of the algorithm

while also showing how the algorithms can run on lower

resource systems such as a raspberry pi, and discuss the

limitations that may come with such implementations.

The main research question is: How can SLAM algorithm

be used to aid the development of smart bikes?

This simple research question will take into consideration

a lot of aspects, and so because of that a few more research

questions generically spawn such as:

• How can a SLAM algorithm be improved or

modified to serve the purposes of smart bikes?

• Can a SLAM algorithm be used on a lower-end

embedded system?

To find answers to such research questions some extensive

research into existing literature and solutions was done,

after that some of these solutions were tried and tested on

datasets that show similar footage to what would be

expected in a smart bike setting, the features and

functionality of such algorithms was noted. Furthermore,

an alternate solution to one of these tested

implementations was designed to try and make the

algorithm run on a lower-end embedded systems, and then

it was tested to see if smooth performance on smart bikes

can be obtained using such method.

2. Requirements
To try and answer such research questions, planning for

the implementation was divided into two stages, each

stage having its own requirements.

The first stage is just installing and building the SLAM

algorithms that seemed to make sense in a smart bike

context, this only requires the algorithms to run on the

different datasets so that a frame of reference is obtained

for when the improved algorithm is implemented. Some

form of visual result must be obtained, such as seeing a

map built from the dataset provided.

The second stage concerns enhancing at least one of the

SLAM algorithms by implementing a version of SLAM

that uses socket connection, making it work on two

machines in parallel to save resources on one of the

machines. The algorithm is supposed to show higher

performance than the regular implementation. What that

implies is that the implementation should decrease

resources used on the raspberry pi’s end. The algorithm

that was chosen for this is ORB-SLAM2, since a lot of

previous research has been done on the algorithm and so

previous literature provided ideas into how such an

algorithm can be enhanced.

3. Existing solutions
After reading some research papers it had been made clear

in previous studies that building and installing SLAM on

some embedded systems is possible[3]. However, the

results vary from one system to the other, some high-end

machines yield quick computation, like the Tegra X1,

while some other systems were noticeably slower, such as

the Panda-board ES.

Since there are many libraries and approaches that exist

for the implementation of SLAM, some filtering process

needed to be done, and the criteria was simply to find

algorithms that can be easily incorporated with a camera

to test in real time. Another criteria was to try to find

algorithms that would also allow easy incorporation of

datasets. That being said, the two algorithms we chose to

implement were ORBSLAM2[9] and VDO-SLAM[6].

3.1. ORBSLAM2
ORBSLAM[8] is an open source feature based

implementation of SLAM that allowed for various

features such as loop closing and relocalization.

Throughout the paper for ORBSLAM, various testing has

been done for both indoor and outdoor environments.

However, the algorithm lacked in accuracy, had some

performance problems and only allowed for the

implementation of monocular cameras. This is where

ORBSLAM2 came in.

ORBSLAM2[9] is a massive upgrade from ORBSLAM,

it allows the implementation of monocular, RGB-D and

stereo camera. It also enhances greatly on the problems

ORBSLAM faced, such as the performance issues as well

as the accuracy issues. By the time ORBSLAM2 was

released, it would have been considered state of the art in

many aspects of SLAM research. Another advantage

ORBSLAM2 provided is that it is not so much outdated as

to render it useless, and it is also not so new that no

research or community discussion have been done on it. It

was perfect for this research, given the time frame, as it is

very well documented, and it has an active community

reporting back and posting consistently about fixes to

errors that may be encountered, hence resolutions to a lot

of problem could be easily found. In addition to this, there

already exists a lot of research that make use of

ORBSLAM and ORBSLAM2. All these aspects made

ORBSLAM2 a very advantageous algorithm, in terms of

both time and functionality, to use for this research

project.

That is not to say that no roadblocks were faced when

dealing with ORBSLAM2. However, these will be

documented in greater detail in the upcoming sections.

But despite such problems, the initial hypothesis was

right, the extensive documentation came in handy when

faced with the many problems encountered throughout the

research and further research provided the basic idea in

which the attempted improvement of ORBSLAM2 was

conducted.

3.2. VDO-SLAM
VDO-SLAM[6] is another open source implementation

that takes another approach for using SLAM, since this

implementation focuses more on dynamic environments.

VDO-SLAM is intended to be used in dynamic

environments, the reason as to why it was chosen for the

project can be plainly clear. The algorithm provides

features ORBSLAM does not, such as dynamic object

tracking, which was a feature that seemed to offer great

value to a smart bike provided it can work with reasonable

performance on embedded systems. The paper on VDO-

SLAM[6] provides decent documentation on the

implementation, as well as an extensive performance

results on analysis on different datasets providing a

dynamic environment, these environment include indoors

as well as outdoor settings.

Further, another reason VDO-SLAM was used, was due

to the fact that, like ORBSLAM2, this algorithm is feature

based, with relatively high accuracy. However, unlike

ORBSLAM2, VDO-SLAM only has implementation for

RGB-D camera. This can be considered a bit of a

disadvantage but, if the final implementation on a smart

bike only uses an RGB-D camera, both implementations

will work fine. In addition to that, VDO-SLAM supports

real time SLAM in a very easy manner.

Again, there were many roadblocks that were faced while

building and installing VDO-SLAM, these will also be

discussed in further sections, however, the features VDO-

SLAM can greatly enhance the smart bike experience.

Specifically, the dynamic object tracking feature, which

allows the algorithm to identify moving objects, such as

cars, and identify their velocity with good accuracy,

which, again, can provide real world benefits to a smart

bike.

4. Implementations, proof of concept

and SLAM using socket connection
The approach that was taken throughout this research has

varied in a lot of ways. Initially, all the SLAM algorithms

were supposed to be run and tested in real time, providing

more reliable and realistic results. However, the reason for

the multiple change of plans that were done spawned from

the problem that the hardware that was necessary to pursue

this research did not arrive, and by mid-week 4 it had to

be cancelled so that this research can carry on with

whatever time was left. For about a week more, some

reviewing of a bit of literature was done to try and detour

from the initial subject to a more time appropriate subject

and research question, but ultimately the choice to carry

on with this research with the same research questions was

taken. However, the approach was slightly varied.

Initially a LIDAR sensor was to be used with a

combination of SLAM algorithms such as

BreezySLAM[4], further RGB-D cameras would have

also been used. This approach has entirely changed and

the entire project will be based on working with the same

algorithms that would’ve been used with the RGB-D

cameras.

However, instead of working on hardware that can

provide some real time results, such as the RGB-D

camera, this research instead worked solely on datasets to

test the algorithms, specifically the KITTI dataset[9]. The

choice of the dataset was taken since KITTI provides

outdoors videos next to cars and bikes, and it also shows

footage traveling in narrow lanes, making it a reasonable

dataset when looking into viewing a bike experience. The

dataset also has almost 20 gigabytes of material, and thus

providing a lot of footage to work with.

Furthermore, since the budget of a smart bike needs to be

accounted for, the research is extended to enhance

ORBSLAM2, which is an implementation of SLAM, in

such a way that it can run better on lower end hardware

such as a raspberry pi. This is done by implementing a

version of SLAM using online socket connection with the

ORBSLAM2 source.

As was mentioned before in the requirements section, the

first part of the project concerns installing and building the

libraries, while also getting familiar with the classes of

each algorithm and the features they provide.

Furthermore, for each algorithm, the difficulties faced

while installing them will be mentioned, as well as how

each algorithm was tested using datasets to make sure each

implementation works.

In the second part of this section, the improvements made

to ORBSLAM2 will be mentioned, as well as the

difficulties faced while attempting to implement such

improvements. Regarding the improvement of

ORBSLAM2, two approaches were taken, each one will

be explained in extensive detail and why each was

implemented.

Most of the testing is done on virtual machines, where two

virtual machines are used, one to simulate a higher-end

machine, which will be referred to as server VM, and the

other is to simulate a raspberry pi, which will be referred

to as pi VM. This made testing the alterations to the

algorithm a quicker process.

Various problems were faced throughout these processes,

some are due to personal inexperience with building and

installing libraries and programs on Linux, and some are

due to various factors that have to do with the libraries,

these issues are all detailed below. All in all, it took four

trails on five different virtual machines to get both

libraries to work on two different virtual machines, these

two will come in handy when improving ORBSLAM2.

4.1. Building ORBSLAM2
As previously mentioned, the process of building

ORBSLAM2 had many difficulties throughout. The main

problem has to do with the library being a bit outdated,

and that caused some trouble due to two reasons, one

being the outdated installing instructions, and the other is

that the install instructions do not mention the versions of

some of the dependencies used.

For example, the install instructions only mention

installing the Pangolin library, but it is only through trial

and error that we uncovered that Pangolin version 0.5 is

the version needed. Similar problems are faced with other

dependencies such as Eigen3, as referencing Eigen3 in

C++ headers has changed slightly since ORBSLAM2 was

last updated.

In addition to that some problems were encountered with

installing the different versions of OpenCV, these were

due to multiple wrong assumptions that were made. One

such assumption is that ORBSLAM2 can work fine with

the newer OpenCV 4.0+ versions, which was not the case,

this wasted about a day trying to understand why

ORBSLAM2 does not build.

Whilst building ORBSLAM2 an issue was encountered in

which the virtual machine would freeze until it was forced

to shut down, that problem also caused some delay,

between 1 to 1.5 days. The problem being that, by default,

ORBSLAM2 builds by doing 8 processes at a time, this

caused the machine to overload, the solution was just

changing the build settings. Although the solution was

simple, it was not obvious at the time.

4.2. Building VDO-SLAM
VDO-SLAM was faster to build because most of the

dependencies had been installed already, additionally,

some experience had built up while resolving errors in

similar situations for ORBSLAM2. And so installing and

building VDO-SLAM only took about half a day worth of

work.

The only problem faced was that the documentation does

not make it clear that OpenCV must be built with the extra

modules. This took some time to figure out but not too

long.

4.3. Socket connection ORBSLAM2
Socket connection SLAM refers to the implementation

that was done during this research. The concept of the

implementation is rather simple, one lower-end system is

running on the smart bike gathering the image data from

the camera, it then sends the data over to a higher-end

computer over socket connection and then that computer

runs the SLAM algorithm and returns the results for

viewing back to the lower-end system. In the previous

section the problems with resources on the virtual machine

was discussed, as well as taking a look into the processing

time of each frame, this online socket SLAM solution is

aimed at either decreasing the processing time for the

raspberry pi, or decreasing the resources used on the

machine, making more space in the hardware for other

processes to run.

To do such implementations a python wrapper[10] was

needed to be installed. The reason for that was, again, to

save as much time as possible since we were more familiar

with python sockets and serialization unlike the

alternatives in C++. The python wrapper uses Boost to

make C++ functions work in python. However, the

developers only provided python alternatives for the

example classes in ORBSLAM2 and not the src classes.

Two variations of the “online socket SLAM” algorithm

have been done during this research. One is more of a

naïve approach that does not fulfill the complete vision of

the algorithm. The second one did not fully work. The two

approaches will be explained in detail in the following

subsections.

4.3.1. Approach one: Naïve approach

The first approach was easy to implement, it is referred to

as the naïve approach because it does not fully give the

working result that was pursued. However, after seeing the

results, it does show somewhat of a proof of concept. This

allowed me to pursue a better approach.

The approach is done in two steps, the first one is sending

the data gathered, in this case the data was from the

dataset, on the raspberry pi VM and sending it over by

using a socket connection to the server VM. The server

VM carries on with the ORBSLAM2 algorithm and the

results are shown.

Although this serves as a good proof of concept, this

implementation is still flawed. The reason for that is that

the results are not sent back to the raspberry pi VM, and

so all the SLAM visualization happens on the server VM

side. This can be a problem since it does not help the smart

bike rider much. The reason the results are not just sent

back to the raspberry pi VM is due to the way that

ORBSLAM2 classes are structured. The python file uses

one of the C++ source files called System.cc which in turn

calls functions from Tracking.cc. As the tracking, in the

Tracking.cc file, is updated the viewing of the results is

done and thus happens simultaneously. And so, the

problem remains that getting the results back to the

raspberry pi VM will require a bit more work than what

was expected, which is where the second approach comes

in.

Even if this approach did not provide the demanded

results, after seeing the results it encouraged more work

into the second approach, and so this naïve approach

worked more as a proof of concept. The reasoning for this

as well as the results for the naïve approach are mentioned

in the results section.

4.3.2. Approach two

The second approach requires more hacking into the

source code of ORBSLAM2. This is where the python

wrapper becomes a slight disadvantage, since whenever

changes are made to the ORBSLAM2 source code, the

python wrapper needs to be updated by making new

functions that make use of the changes done, then

ORBSLAM2 needs to be rebuilt and then finally the

python wrapper needs to be rebuilt. This can get time

consuming, so preferably this process is done the

minimum number of times.

Since this second approach did not work, the explanation

is all theoretical backed up by the results shown for the

first naïve approach. The second approach works by

sending the data from the raspberry pi VM to the server

VM as done in the previous approach, then the System.cc

file returns the Frame datatype that is updated in the

variable mCurrentFrame, which is found in the function

GrabImageMonocular belonging to the Tracking.cc file,

to the python code. This Frame stuct is then serialized and

sent back to the raspberry pi VM through a socket

connection. The raspberry pi VM then should update the

map and carry on with the tracking function.

This approach is a more realistic algorithm, since it would

provide useful results to the person riding the smart bike.

However, it will of course have more processing time than

the first (naïve) approach.

5. Results
This section discusses the results of building and running

the algorithms and their use cases, while also showing the

results of the improvements made using both approaches.

5.1. Build results of ORBSLAM2 and VDO-

SLAM

Figure 1 shows ORBSLAM2 operating on the KITTI dataset for monocular

camera

Figure 2 shows part of the map built by the ORBSLAM2 algorithm

Even though, some problems occurred during building,

however, after ORBSLAM2 was built, the results were as

expected on the KITTI dataset as shown in figure 1.

ORBSLAM2 was simple to use and test the datasets on.

ORBSLAM2 constructs a map of the road, as seen in

figure 2, which can be of great help to smart bike users.

Figure 3 shows VDO-SLAM operating on the KITTI dataset for an RGB-D

camera

Figure 4 shows VDO-SLAM operating on the KITTI dataset for an RGB-D

camera

The same results apply for the build of VDO-SLAM. The

results were in line with what was expected as shown in

figure 2, and it was also easy to test datasets on. As can be

seen in figure 3, VDO-SLAM can calculate the velocity of

a vehicle on the street, which is a unique feature that can

help users.

5.2. Results of both algorithms on VMs

Average time of processing one frame (s)

 Average time

using

Monocular (s)

Average time

using RGB-D

(s)
ORBSLAM2 0.002114 -

VDO-SLAM - 1.258050

Table 1 shows the average time taken to process a frame for the different

algorithms on virtual machines

For ORBSLAM2 the average is calculated based on using

the processing time for the first 200 frames. VDO-SLAM

does not have an implementation for monocular cameras

which is why the cell is left empty. Table 1 shows the

average time to process one frame for both algorithms

using both a monocular camera and an RGB-D camera,

these results are obtained on a virtual machine that has the

same hardware resources as a raspberry pi, virtually

simulating it.

The results obtained in using ORBSLAM2 are good in

terms of processing time, however the problem that was

encountered concerns the resources used. Operating

ORBSLAM2 is demanding in terms of computer

resources, and the more time it keeps running, the more

resources it needs. Figure 3 shows the CPU and RAM

usage on the virtual machine had almost 1.8 GB of the 2

GB ram being used as seen in figure 4. This system is only

running ORBSLAM2, which will not be reasonable for

the implementation of a smart bike since more algorithms

will be needed to run. The problem only gets worse the

more time the algorithm runs, taking up more RAM.

Figure 5 shows CPU usage on virtual machine

Figure 6 shows RAM usage on virtual machine

Additionally, the algorithm was also run on a virtual

machine with more resources put into it. The average time

for processing one frame in ORBSLAM2 was 0.001850

seconds. Surprisingly, the time difference between the two

virtual machines was not that great, just about 0.000264

seconds.

5.3. Results of both algorithms on a raspberry

pi 4

 Average time of processing one frame (s)

Trials ORBSLAM2 VDO-SLAM

1 0.007077 8.110560

2 0.007272 4.967875

3 0.007146 5.326230

4 0.007117 4.780151

5 0.007088 7.179776

6 0.007132 6.699401

7 0.007072 4.531626

8 0.007072 4.415732

9 0.007006 3.730072

10 0.007161 4.626327

11 0.007184 4.850431

12 0.007171 7.498999

13 0.007255 6.637877

14 0.007130 5.288502

15 0.006928 7.014448

Table 2 shows the average time taken to process a frame for the different

algorithms on a raspberry pi

15 trails were carried out for each algorithm on the

raspberry pi. ORBSLAM2 showed consistent results, with

an average of 0.00712057 seconds, however that was not

the case for VDO-SLAM which showed very inconsistent

results, ranging from 3.730072 seconds at its lowest to

8.11056 seconds at its highest. 1.2 GB of the 1.88 GB on

the raspberry pi where used, with almost 800 GB from the

memory swap also being used. These figures further

illustrated the problem cause by running SLAM on lower-

end embedded systems. These surprising results also show

the large difference between running the two algorithms

on a virtual machine versus running both on the raspberry

pi. As can be seen, the difference is almost 3.37 times

more on the raspberry pi for ORBSLAM2 and the

difference can range from almost 3 times to 6.4 times on

a raspberry pi for VDO-SLAM.

One reason for the large increase in running time might be

the fact that the raspberry pi is running on Ubuntu 18.04

which was not made to be run on a raspberry pi. This

version of Ubuntu was needed to mimic the environment

that can support both OpenCV 3.2 and OpenCV 3.4, the

environment was also needed to be able to build

ORBSLAM2, which is a bit outdated. To make that

happen, Ubuntu 18.04 server for raspberry pi was installed

on the device and then we installed the desktop version

from the terminal. Further to counter the performance

problems as much as possible, we tried to increase the

memory swap to almost 5 GB, which was the best that

could be done given the SD card which was only 32 GB.

5.4. Socket connection SLAM: approach one

(Naïve approach)
I mentioned previously that the Naïve approach is

considered a proof of concept that encouraged working on

and developing a better solution. Given that, the most

important part of this section is to reveal why such

consideration was done and what it can reveal about the

eventual application of the second approach.

 Average time using

Monocular (s)
Raspberry pi VM 4.642626e-06

Server VM 0.002629

Table 3 shows the average processing time for both virtual machines.

First, the most noticeable difference is the processing time

of the Raspberry pi VM which is significantly decreased.

However, this result is not greatly impressive or important

because using this implementation, the only thing the

system functionally does is send the data to the Server

VM. Absolutely no SLAM processing or result viewing is

done on that side, so the results of the second approach

will not be expected to have such low processing times,

on the contrary. Given that the second approach works, the

time for it to show the results will be the time it already

takes to send the files, which is virtually next to nothing,

plus the time for the Server VM to process that frame, plus

the time for the Server VM to send back the frame.

The second difference is clearly the rather mysterious

increase in the processing time on the Server VM side. We

frankly could not find a valid reason for this increase in

processing time for the SLAM algorithm, but it is

consistently present.

With that being said, the enhancement that could be

expected from the second approach would be the decrease

in resources used on the Raspberry pi VM, rather than a

better processing time overall. This could still be helpful

to the system, since the increase in time would still not be

excessive to the point where the system is rendered

useless, however, the decrease in resource use can make

way for multiple functionalities to be implemented for the

smart bike.

5.5. Socket connection SLAM: approach two
The second approach to the socket connection

ORBSLAM2 did not work out as planned, in the end it

didn’t function properly to be able to obtain final results

on the resource usage of the algorithm, in this section we

will explain why that happened and what the alternatives

may be. The problem simply has to do with the python

wrapper that was used, as that converter does not convert

all the data types and functionality of ORBSLAM2. That

causes the conflict, since in order to send the results to the

server VM we must first return the struct variable to the

python file with the Frame dataset, which was not

converted to python, so that causes the error. Trying to

change the datatype to its python equivalent would not be

the best way to go, a better alternative is to not use the

python wrapper all together and instead do the socket

connection and serialization on C++, however this could

not be done during the time of this research due to time

constraints.

6. Conclusion
Throughout this research, different SLAM algorithms

were run and tested, where each algorithm can bring

benefit to the implementation of a smart bike. Further, a

method was developed to try to improve the algorithm for

the smart bike use case. The use cases for SLAM on smart

bikes was also shown, as it can be used to map out places

the user has not visited before, which can be seen when

using ORBSLAM2, and it can also be used to show the

user the velocity and trajectories of the surrounding

vehicles, as shown using VDO-SLAM, which can be an

additional safety measure.

Further, some adjustments to the ORBSLAM2 algorithm

using socket connections to allow for lower resource use

on the embedded system working on the smart bike. The

first approach, that worked as a proof of concept, showed

that the system can be helpful for the smart bike provided

some additional changes are made, which is where the

second approach comes in, however, it is still not fully

functioning. Regardless, this paper shows the SLAM can

be used on some lower-end embedded systems such as the

raspberry pi, which may encounter some problems due to

hardware limitations, but the online (socket) slam

implementation may eliminate such problems.

6.1. Future work
For further research, the implementation of the socket

ORBSLAM2 could be resumed, with testing to show how

useful the approach may be. Also, testing on live feed

using a monocular camera and ROS could be done, to

ensure that the algorithm fully works in real world

scenarios.

Although the research showed some promising results,

some further research into more use cases can be

beneficial, specifically use cases of LiDAR sensors and

SLAM.

7. References

[1] Sotirios Stasinopoulos, Mingguo Zhao, and

Yisheng Zhong. 2017. Simultaneous localization

and mapping for autonomous bicycles.

International Journal of Advanced Robotic

Systems 14, 3 (2017), 172988141770717.

DOI:http://dx.doi.org/10.1177/172988141770717

0

[2] Oliver Roesler and Vignesh Padubidri

Ravindranath. 2019. Evaluation of slam

algorithms for highly dynamic environments.

Advances in Intelligent Systems and Computing

(2019), 28–36.

DOI:http://dx.doi.org/10.1007/978-3-030-

36150-1_3

[3] Mohamed Abouzahir, Abdelhafid Elouardi,

Rachid Latif, Samir Bouaziz, and Abdelouahed

Tajer. 2018. Embedding slam algorithms: Has it

come of age? Robotics and Autonomous Systems

100 (2018), 14–26.

DOI:http://dx.doi.org/10.1016/j.robot.2017.10.01

9

[4] Joachim Clemens, Thomas Reineking, and

Tobias Kluth. 2016. An evidential approach to

slam, path planning, and active exploration.

International Journal of Approximate Reasoning

73 (2016), 1–26.

DOI:http://dx.doi.org/10.1016/j.ijar.2016.02.003

[5] Suraj Bajracharya. 2014. BreezySLAM: A

Simple, efficient, cross-platform Python package

for Simultaneous Localization and Mapping

(thesis).

[6] Jun Zhang, Mina Henein, Robert Mahony,

Viorela Ila. 2020. VDO-SLAM: A visual

dynamic object-aware SLAM

system.DOI:https://doi.org/10.48550/arXiv.2005.

11052

[7] Andreas Geiger, Philip Lenz, and Raquel

Urtasun. 2012. Are we ready for autonomous

driving? The KITTI vision benchmark

suite. 2012 IEEE Conference on Computer

Vision and Pattern Recognition (2012).

DOI:https://doi.org/10.1109/cvpr.2012.6248074

[8] Raul Mur-Artal, J. M. M. Montiel, and Juan D.

Tardos. 2015. ORB-SLAM: A Versatile and

Accurate Monocular SLAM System. IEEE

Transactions on Robotics 31, 5 (2015), 1147-

1163.

DOI:https://doi.org/10.1109/tro.2015.2463671

[9] Raul Mur-Artal and Juan D. Tardos. 2017. ORB-

SLAM2: An Open-Source SLAM System for

Monocular, Stereo, and RGB-D Cameras. IEEE

Transactions on Robotics 33, 5 (2017), 1255-

1262.

DOI:https://doi.org/10.1109/tro.2017.2705103

[10] John Skinner and Dmytro Mishkin.

ORB_SLAM2-PythonBindings. GitHub.

Retrieved June 26, 2022 from

https://github.com/jskinn/ORB_SLAM2-

PythonBindings

