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Abstract
This research presents a comprehensive study on the use of machine learning in the calibration prob-
lem of the Discrete Particle Model, with a particular focus on one bulk parameter: the static angle of
repose. Three machine learning algorithms have been tested, including GrainLearning - the unsuper-
vised algorithm explicitly developed for DPM calibration, and two other popular supervised learning
algorithms: Neural Network and Random Forest regressor. With GrainLearning, multiple attempts
have been made to analyze its ability to find the correct combinations of microparameters that can
reproduce the experimental static angle of repose in DEM simulations. Meanwhile, after a training
period consisting of hundreds of DEM simulations, the NN and RF are capable of providing a database
that can be used to find the microparameters that correspond to the experimental static angle of re-
pose. Subsequent validations of those combinations using DEM simulations indicate that multiple
combinations are correct, paving the way for future research on adapting more supervised machine
learning algorithms in the calibration problem with different contact laws and bulk parameters.

© Hung Nguyen 2022. This work is licensed under a CC BY 4.0 license.
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1 Introduction

Granular material is a family of materials characterized by its enormous bulk of densely packed parti-
cles, ranging from nanometers to centimeters [1], and is able to resist deformation and form heaps, i.e.,
behave like a solid and withstand strong shear force [2]. Examples of granular materials include sand,
gravel, clays, seeds, nuts, and all ranges of powders such as coffee powder and cement powder, shown
in figure 1. Furthermore, many processes and equipment in chemical plants use granular materials,
such as catalysis, adsorption, and heat exchangers. Granular materials are projected to make about
half of the products and three-quarters of the raw materials used in the chemical industry [3]. Thus,
understanding how granular materials behave is of great significance.

Figure 1: Examples of Granular Materials [4].

The simulation of granular material’s bulk mechanical behavior is done using the Discrete Particle
Model (DPM, or Discrete Element Method - DEM), which generates the movement of individual par-
ticles to capture the macro-scale behavior. The DPM is a family of numerical methods for computing
the motion of a large number of particles [5], first proposed by Cundall and Strack in the 1970s [6].
Since the properties of granular materials differ wildly, these simulations require an extensive calibra-
tion process designed individually for each type of granular material. Some parameters of the granular
material model can be measured directly, such as size distribution or density. However, other param-
eters are effective parameters (i.e., they result from a particle-particle contact, such as coefficient of
restitution, sliding and rolling friction,. . . ), making quantifying it an arduous task. Hence, these pa-
rameters are calibrated by choosing a few standard calibration setups (rotating drum, heap test, ring
shear cell) and simulating these setups in a DPM simulation. The missing parameters are determined
such that the response of the experimental and simulation setups match.

Recently, coupled with the rise of machine learning in other fields, it has also been applied to solve the
calibration problem. This has been done using a Neural Network [7, 8, 9, 10], Genetic Algorithm [11],
and a recursive Bayesian sequential Monte-Carlo filtering algorithm named GrainLearning [12]. This
research will discuss three machine learning algorithms: Neural Network, Random Forest (super-
vised model), and GrainLearning (unsupervised model). These three algorithms are set to treat the
calibration problem in two different ways: While GrainLearning looks to identify a specific set of mi-
croparameters from the experimental and DEM simulations’ bulk measurements (inverse problem), the
supervised models will help generate a database that can map different microparameters combinations
to their corresponding bulk parameters, generated by DEM simulations. In other words, NN and RF
will learn the built-in relationship between the micro- and macroparameters of the Discrete Particle
Model, thus allowing a much faster prediction compare to a full DEM simulation. One advantage of
GrainLearning compared to other supervised machine learning algorithms such as Neural Network is
that it can converge to an optimal solution for a single bulk parameter with a smaller amount of DEM
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simulation [12, 13, 14]. However, each material needs calibration for multiple bulk parameters, i.e.,
Static Angle of Repose, Dynamic Angle of Repose, shear tester, etc. since a set of microparameters
valid for one bulk parameter might not be valid for another [15]. Therefore, scaling up with a Neural
Network model might be simpler since a Neural Network can produce multiple valid combinations for
each bulk parameter.

In the next two sections, the characterization and experimental method will be discussed, including
static Angle of Repose, Discrete Particle Model, contact laws, and the material used in the simulation.
Section 4 will discuss in detail the different approaches and methods of each model. The result of
GrainLearning will be discussed in section 5, while section 6 discusses the supervised model’s per-
formance. Subsequently, section 7 will compare the models, discuss the strength and weaknesses of
each model, and the limitations. Finally, section 8 will summarize and conclude the research with
recommendations to further expand the use of machine learning in the calibration of DPM.

2 Characterization of granular materials

There is no established standard of characterization measurements for granular materials. Typical
measurements include heap test, rotating drum test, linear/ring shear cell test, and the silo flows
test. . . , in which the output is the bulk parameter, which defines how the granular material behaves
in large quantity - such as the angle of repose (AoR), shear stress, flow rate.

This research is focused on one of the essential bulk parameters to describe the characteristics of the
granular materials - the static angle of repose. Static AoR, described in Fig. 2, is defined as the angle
that granular solids form when piled with a flat surface and is essential to characterize the coarseness
and smoothness of materials. This, in turn, can help design a process involved with the material - lower
static AoR implies more flowable and thus easier to transport with less energy [16].

Figure 2: Static Angle of Repose measurement steps [17].
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3 Simulation Method

3.1 Discrete Particle Model

Discrete Particle Model simulates particle motion by applying forces and torques, which derive from
particle-particle interactions and external influences, on the basis of the given contact law. It performs
kinematics calculations that a given particle i exerts on another particle j, for each particle in the
system, among the peripheral factors such as gravity and walls. To achieve these results, the particles
are assumed to be (1) undeformable - deform therefore implemented as overlap, (2) unbreakable, (3)
all internal interactions are due to particle-particle interaction, (4) Each particle pair i, j has only one
contact point cij which the forces and torques act on, and (5) all external forces and torques are either
body forces and torques or by interacting with a wall [18].

3.1.1 Contact Laws

For each particle i on the system, Eq. 1 describes the internal and external forces, and Eq. 2 describes
the torque acting on it [18]:

Fi =

np∑
j=1

Fij +

nw∑
k=1

Fwik + F bi (1)

τi =

np∑
j=1

rijFij + τij +

nw∑
k=1

rikF
w
ik + τwik + τ bi (2)

With Fij interparticle forces, Fwik the interaction force between each wall and the particle, np = number
of particles, nw = number of walls, F bi body forces i.e., gravity, and rij as the branch vector, which
connects the particle position ri with the contact point cij . The same holds for torques equation, with
τ as torque.

The contact law used in the simulations is the Linear Spring-Dashpot model, implemented in Mer-
curyDPM as LinearViscoelasticFrictionReversibleAdhesiveSpecies. It defines the interaction
between two particles i and j as a damped harmonic oscillator [19]:

Fnij =

{
knδ

n
ij + γnv

n
ij if δnij > 0,

0 else,
(3)

In this equation, kn > 0 represents spring stiffness, γn ≥ 0 represents the damping coefficient, vn
the normal vector, and δnij is the overlap between the particles. Two particles interact with each
other if and only if they overlap. This contact model is simple, has an analytic solution, and is less
computationally expensive [20], while also suitable for large particles [18]. Meanwhile, the collision
time tc and the restitution coefficient r is defined in equation 4 and 5, respectively [19]. The collision
time represents the time that two particles overlap, and the restitution coefficient is the ratio between
the particle’s velocity before and after the collision.

tc =
π

ω
with ω =

√
(k/mij)− η2

n (4) r = exp(−ηntc) (5)

With ω defined as the eigenfrequency of the contact, ηn = γn/(2mij) the rescaled damping coefficient,
and mij = mimj/(mi+mj) the reduced mass. In addition to particle-particle interactions, the current
contact law also considers sliding friction, rolling friction, and adhesion. While sliding friction is defined
as the force that acts in the tangential direction between two particles when they collide and resist
lateral motion, rolling friction resists the angular motion of the particles (see equation 6, 7).
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|F tij | ≤ µlFnij (6) |τ ro
ij | ≤ µroreffFnij (7)

With F tij and τ ro
ij as the forces in the tangential direction, and rolling torques, respectively, and reff

the effective radius. When the lateral forces reach a particular threshold, the particle will begin to
slide. The sliding motion is modeled using the Coulomb yield criterion, which cuts off the elastic
displacement when it reaches a specific fraction (sliding friction µl) of the normal force. The same
applies to the rolling torque: it is cut off when it reaches a certain level, defined by the rolling friction
µro. Finally, the adhesive forces model is defined as [18]:

F aij =


−F amax if δnij > 0,

−F amax − kcδnij if − F amax/kc ≤ δnij < 0,

0 else,

(8)

The adhesive forces are reversible, i.e., equal during loading and unloading. The maximum adhesion
force F amax is calculated using the bond number:

F amax = gm50Bo (9)

With g denotes the gravitational acceleration, and m50 is the average mass of the particles. More
details about the sliding, rolling friction, and adhesion can be found in [18] and [19].

3.1.2 Angle of Repose measurement

In MercuryDPM, Static AoR is measured by a hollow cylinder simulation consisting of two cylinders
(instead of one cylinder and one plate in Fig. 2), with the cylinder’s diameter guaranteed to be at least
15 times larger than the mean particle diameter (dcyl > 15dpmean). For simplicity, all particles in the
simulation are assumed to be a perfect sphere. After all the particles are poured into the cylinder, it is
let to rest until the bulk’s kinetic energy is less than 1% compared to the potential energy (steady-state
condition). At this point, the top cylinder is removed, and all the particles that have fallen out of
the bottom cylinder below z = 0 are deleted. This will result in a cone-shaped heap of particles and
a drastic increase in kinetic energy due to gravity. The heap will be rested again until it reaches a
steady-state condition, as mentioned above, and then Static AoR can be measured. The measurement
will be done twice since the system’s kinetic energy can be increased again after the first measurement.
Figure 3 demonstrates an example simulation of MercuryDPM.

Figure 3: Angle of Repose simulation on MercuryDPM. From left to right: Initial fill stage, wall removed, and
final stage.
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3.2 Material and simulation properties

Experimental data on quartz sand is provided by Derakhshani et al. [21]. The density of quartz sand is
ρ = 2653 kg/m3, and the particle size distribution (PSD) given in Table 1, with the static AoR of 33◦.
Meanwhile, experimental data on limestone is provided by Shi et al. [22], specifically the Eskal 150
limestone, since this material has a similar static AoR and density (33◦ and 2761 kg/m3), while the
PSD is in a much lower range. These experimental data will be used as constant input values for each
DEM simulation, with collision time tc = 0.068ms. The collision time was chosen significantly smaller
than all other time scales of the system, in particular, the gravitational time scale tg =

√
(d/g), i.e.,

the particles are assumed to be stiff.

Having specified the density, particle size distribution, and collision time, four parameters of the DPM
model remain that need to be calibrated to match the static AoR, described in eq. 5, 6, 7, and 9 will be
varied to determine their respective static AoR: Restitution coefficient, sliding friction, rolling friction,
and bond number. The parameter range of restitution coefficient is 0 to 1, with 1 denoting a perfectly
elastic collision. All other microparameters has a positive bound - the value ranging from 0 to ∞;
however, in most realistic case, the value is also smaller than 1.

Material Diameter (µm) Cumulative volume distribution (%)

Limestone 97 10

138 50

194 90

Quartz sand 300 6.21

425 24.50

500 50.55

600 100

Table 1: Particle Size Distribution of materials.

4 Calibration methods of Discrete Particle Model

4.1 GrainLearning

GrainLearning is a calibration toolbox developed by Cheng et al. [12], which utilizes the recursive
Bayesian algorithm to estimate the uncertainty parameters in DPM. Initially, a wide range of pa-
rameter space is quasi-randomly sampled from the initial guess range to create a prior distribution
of each parameter. Then, conditioned on the experimental values, the posterior distribution of the
parameters is updated recursively by Sequential Monte-Carlo Filtering (SMC Filter) and fitted to a
Gaussian Mixture Model. This process is done iteratively until the desired value that minimizes the
loss function is reached. Algorithm 1 and the following sections will briefly describe the calibration
workflow implemented in GrainLearning [12].

4.1.1 Posterior distribution calculation

Initially, the measurement is assumed to have an error represented by a covariance matrix Σα = σωαyα,
with σ the covariance parameter, and important weight of the measurement ω. With Σ, the likelihood

of a given state Θ
(i)
k , i.e., the probabilistic prediction to the experimental data y can be estimated by

the multivariate normal distribution, with yt measurement data at time step t, and d the dimension

of the state vector Θ
(i)
k :

p(yt | Θ(i)
k ) ∝

1/(2π)d/2|Σ|

exp
(
− 1

2 (ykt − x(i)
kt )TΣ−1(ykt − x(i)

kt )
) (10)

8



Algorithm 1 GrainLearning

Input:
y: Experimental values
x = F(Θ): DEM solver
(Θmin,Θmax): Initial guess range

Main:
. Set uniform prior distribution: p(Θ) = U(Θmin,Θmax)
for k in range (0,K) do

. Sampling parameters:

if k = 0 then sample Np parameters values from initial distribution: Θ
(i)
k ∼ p0(Θ)

else if k > 0 then sample Np parameters values from prior distribution: Θ
(i)
k ∼ pk−1(Θ | y1:T )

. Evaluate DPM: x
(i)
k = F (Θ

(i)
k )

. Optimizing σ:
while True do

. Compute likelihood (Eq. 10): p(yt | Θ(i)
k ) ∝ N (ykt | x(i)

kt ,Σ)

. Compute posterior distribution of of Θ
(i)
k conditioned to y (Eq. 11).

. Compute Effective Sample Size (ESS) with Eq. 12.

. Stop if target ESS value is reached:
if k = 0 and ESS > 20% then break
else if k > 0 and ESS ∼ ESSmax then break

. Fit sampled posterior distribution to Gaussian Mixture Model: p(Θ | y) =
∑k
α λαN (µα, σα)

. Set new prior distribution: p(Θ)← p(Θ | y)

Output: Θopt in ΘK that minimizes |F (Θopt − y)|

With the calibration system being modelled as a hidden Markov model, the posterior distribution of

Θ
(i)
k can be calculated using recursive Bayes’ rule:

p(Θ
(i)
k | y) ∝

Nt∏
t=1

p(yt | Θ(i)
k )p(Θ

(i)
k ) (11)

4.1.2 Effective multi-level sampling

The Effective Sample Size (ESS) is calculated by summing the posterior distribution squared of all the
sampled parameters value Np:

ESS =
1

Np
∑Np

i=1 p(Θ
(i)
k | y)2

(12)

The main idea of GrainLearning is to draw the sample from the previously acquired knowledge about
the relationship between Θ and y. In the first iteration (k = 0), The uniform prior distribution is
chosen as the proposal density, and the parameter spaces are drawn from there. Subsequently, for
k > 0, the proposal density will be the posterior distribution from the previous iteration p(Θ | y).
After each iteration, the sampling space will get narrower - therefore, to ensure a proper proposal
density for the sampling of parameters, the optimization process will be continued until appropriate
σ, which maximizes ESS, is reached.

4.1.3 Identification of microparameters with GrainLearning

GrainLearning will initialize a set of parameter combinations in the first iteration of calibration using
the Halton sequence from the initial guess range provided. This set of parameters will be passed to
MercuryDPM to analyze with a Heap test, after which a static AoR is produced. From this data,
GrainLearning will compute the next set of parameters based on the previous MercuryDPM output,
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according to algorithm 1. For each attempt, GL will be running for a minimum of four iterations -
except when the simulations of that iteration take more than two days, and that attempt will be
classified as failed.

4.2 Neural Network

Artificial Neural Network (NN) is a set of algorithms that seeks to identify correlations in data utilizing
a technique inspired by how the human brain operates - mimicking how each neuron in the brain
signals each other. The most basic ANN model is the Feed-forward Multilayer Perceptron Neural
Network (MLPNN), in which the purpose is to define the mapping between the input and output
y = f(x; θ) and approximate the parameter θ which results in the best possible function. In MLPNN,
the data flows in one direction from the input to the output, hence the name feed-forward. Like other
supervised learning algorithms, an MLPNN needs to be trained before accurately describing the input
and output relations. This is typically done by feeding the network with pre-labeled data, comparing
the model’s output with the desired output, and updating the weights parameter θ - a process called
backpropagation. In this assignment’s context, Neural Network (NN) will be used when referring to
Feedforward Multilayer Perceptron Neural Network, and NN models implemented in this research are
provided by the open-source library TensorFlow [23]. Figure 4 presents a schematic design of the
neural network model, showing the input and output layer, among with a representation of a hidden
layer - there is commonly more than one hidden layer in a model.

Figure 4: Schematic design of the neural network model.

There are no general rules for determining the number of layers and the number of neurons per layer,
and it depends heavily on each use case. While Benvenuti et al. [7], He et al. [8], and Daniel et al. [9]
used only a single-layer ANN and varied the number of neurons, Ye et al. [10] vary both. However,
the ultimate goal in both case is to find the combinations which result in the minimum error while
also avoiding overfitting, i.e., the model excels on training but perform poorly on the validation step.
For each simulation material, 250 models ranging from 2 to 15 layers and 5 to 15 neurons per layer
are tested to determine the best model. Each model is trained for 50 epochs with a batch size of 32,
and the metric used to grade the model is the Mean Absolute Error. The optimization algorithm used
is Adam [24], which is easy to configure, combines the best features of other optimization algorithms,
and works robustly in most cases.

Another important component of a Neural Network is the activation function. Since each neuron per-
forms calculation by multiplying the input with weight and adding a bias, the activation function’s role
would be introducing a non-linear element into an otherwise linear neuron. According to Goodfellow
et al., [25], Rectified Linear Unit (ReLU) is the recommendation for most Deep Learning models, with
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its ability to preserve much of the properties due to its near-linear shape. ReLU activation function is
defined as f(x) = max(0, x).

4.3 Random Forest algorithm

This section will discuss different concepts of a Random Forest (RF) algorithm, starting with the basis
of the RF: Decision tree. Decision tree is an algorithm that generates a tree graph of decisions based
on the input provided and their possible outcomes, and as a consequence, it partitions the input space
into multiple regions, with each region accounting for a different outcome [26]. An example of a simple
decision tree based on two inputs is shown in figure 5.

The most significant advantage of the decision tree, and subsequently, random forest algorithm, is that
it is relatively simple, explainable, easy to train and interpolate with little computational resources.
However, one crucial drawback of a decision tree is its instability: minor data changes might affect
the tree structure, making the decision tree a high variance estimators [26]. Attempts have been
made to reduce the uncertainty of the decision tree, one of which is the so-called Random Forest
algorithm, which Breiman proposed in 2001 [27]. RF made up for the high variance of a single
decision tree by averaging the results over a “forest” of decision trees, with each tree representing an
independent sampled vector. The concept of decision tree and RF, therefore, fit within the scope of
the calibration problem. Random forest algorithm implemented in this research are provided by the
library scikit-learn [28]. For more informations on the Random Forest algorithm, the author refers
to [26] and [27].

Figure 5: Example of a decision tree regressor on a two-input problem [26].
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5 GrainLearning calibration results

This section discusses the calibration results for quartz sand and limestone’s static AoR with Grain-
Learning. For each material, calibration was performed in three different attempts, with the difference
between each attempt being the search range specified (see table 2), i.e., GL will try to sample different
combinations in the first iteration within that range. In the first attempt, the search range was in the
default setting, and the second and third attempts will be adjusted according to the first result.

Material Quartz Sand Limestone

Attempt 1 2 3 1 2 3

Restitution Coefficient [0.5 1] [0 1] [0 1] [0.5 1] [0.5 1] [0 1]

Rolling Friction [0 1] [0 0.5] [0.5 1] [0 1] [0 0.5] [0.5 1]

Sliding Friction [0 1] [0 0.5] [0.5 1] [0 1] [0 0.5] [0.5 1]

Bond number [0 1] [0 0.5] [0.5 1] [0 1] [0 0.5] [0.5 1]

Table 2: Calibration attempts using GL

5.1 Limestone

The calibration results by GL for limestone are described in table 3, and the details on how the
sampling algorithm performs, i.e., conditioned on the previous simulation, is the sampled parameters
for the next iteration make the simulation result converge to the experimental result, are described
in figure 6. In the third calibration attempt, the second iteration did not finish in time due to the
system’s high level of kinetic energy; therefore, only iteration 1 is shown.

In the first attempt, only four iterations were performed initially. However, one remarkable observation
is that GL clusters over the combinations produce a static AoR around 40◦. This is reflected in the
second iteration’s result, where the best combination results in a static AoR of 39.4803◦. Moreover,
although the third iteration’s result is 33.0979◦, this seems like an outlier of the cluster. Consequently,
an additional iteration was performed - and the results here verify the observation. The closest value
to experimental static AoR is 31.5243◦, and it is also an outlier.

After the first calibration attempt, it is clear that the combinations that would result in the desired
static AoR lie around 0.8 − 1.0 for restitution coefficient and in the lower-0.25 range for the rest of
the contact parameters. Therefore, two more attempts were performed, with different initial ranges:
attempt 2 with sliding friction, rolling friction, and bond number ranging from 0 to 0.5. With attempt
3, the sliding friction, rolling friction, and bond number range from 0.5 to 1, while the restitution
coefficient’s range is widened to 0 to 1.

As expected, the second attempt’s performance was the most robust, reaching a near-perfect solution
at the end of iteration 4. The clustering of the optimal result can also be seen clearly in figure 6.
Meanwhile, the results from the third attempt verify the conclusion from the first attempt about the
range of the optimal parameters - with higher rolling friction, sliding friction, and bond number, the
static AoR reaches a maximum value of around 65◦.
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Figure 6: From top to bottom, attempt 1, 2, and 3 at calibrating Eskal with GL. Scatter dots with different
colors denote each iteration, and red line denotes experimental value.

Attempt/Iter Restitution Coefficient Sliding Friction Rolling Friction Bond number Result AoR

1.1 0.7812 0.037 0.84 0.3061 32.3163

1.2 0.869 0.2725 0.3652 0.0325 39.4803

1.3 0.831 0.1194 0.484 0.064 33.0406

1.4 0.8332 0.135 0.5262 0.0137 31.5243

1.5 0.8348 0.1517 0.497 0.0297 33.6745

2.1 0.6406 0.037 0.36 0.3061 33.0979

2.2 0.9546 0.3983 0.032 0.0334 32.9993

2.3 0.8263 0.0917 0.2226 0.1411 34.1421

2.4 0.8025 0.0710 0.2802 0.1748 32.9812

3.1 0.0312 0.7963 0.66 0.6632 58.6606

Table 3: Calibration results of limestone with GL.
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5.2 Quartz sand

The calibration result for quartz sand is given in table 4, and the parameters sampling graph is given
in figure 7. In the control attempt, only the first iteration is shown, partly due to 6/40 simulations of
the second iteration does not finish in time, but also due to the results of the second iteration does not
cluster at the experimental value, with most averaging around 45◦ to 50◦. Due to the similarity between
quartz sand and limestone in terms of experimental static AoR, the second attempt of quartz sand will
be initialized with the same range as the second attempt of limestone. And as a result, attempt 2 has
the best performance out of the three. One noticeable thing here is that the rolling friction has two
different clusters identified by GL instead of one, compared to sliding friction, restitution coefficient, or
bond number. This denotes the multi-solution phenomena of a calibration problem since there could
be more than one combination that can produce a sufficient static AoR - which is shown in iterations
3 and 4 of attempt 2: the rolling friction for iteration 3 is 0.07, while for iteration 4 is 0.41. Different
experiments, i.e., Shear Cell test or Drum test (Dynamic AoR), would be needed in addition to the
heap test to find an ideal combination of microparameters. However, this is out of the scope of the
current research.

In the third attempt, although the range was specified as shown in table 2, the Gaussian Mixture
Model algorithm of GL sampled some of the values in iteration 3 and 4 outside the initial range. This
was a known bug in the current GL version implemented in MercuryDPM. Therefore, it was able to
generate a correct combination with very low sliding friction, which results in a static AoR of 34.2227◦,
remarkably close to the experimental value.

Figure 7: From top to bottom, attempt 1, 2, and 3 at calibrating quartz sand with GL. Scatter dots with
different colors denote each iteration, and red line denotes experimental value.
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Attempt/Iter. Restitution Coefficient Sliding Friction Rolling Friction Bond number Result AoR

1.1 0.5703 0.0493 0.288 0.2448 31.6303

2.1 0.4688 0.0617 0.024 0.1836 32.8394

2.2 0.992 0.2261 0.0987 0.0126 32.3687

2.3 0.6307 0.0606 0.0787 0.1795 32.8670

2.4 0.4800 0.0321 0.413 0.2946 33.0521

3.1 0.0625 0.9444 0.82 0.5816 60.9714

3.2 0.0109 0.7683 0.1052 0.5853 52.0551

3.3 0.4604 0.0752 0.9406 0.5777 47.3408

3.4 0.427 0.0146 0.8872 0.6075 34.2227

Table 4: Calibration results of sand with GL.

5.3 Discussion

Overall, GL has demonstrated the capability to identify the ‘cluster’ in all calibration cases that the
initial ranges were correctly defined - the combinations after each iteration are sampled closer and
closer to the experimental value, as shown in attempt 2 of limestone and quartz sand. However, it has
also shown inconsistent performance: In attempt 1 of limestone, the algorithm seeks to cluster in the
range of 35◦ to 45◦.

6 Supervised models’ calibration results

In this section, the performance of the two supervised models, i.e., Neural Network and Random Forest,
is investigated for limestone and quartz sand, respectively. 625 DEM simulations with randomized
combinations of input parameters (range described in table 5) have been performed to train the NN
and RF model, which will help create a database that maps DEM microparameters to static AoR.
The other 125 simulations did not finish on the time constraint set and, as a result, were marked as
an inaccurate combination. In addition, 20% of the data will be saved to validate the model.

For the NN model, over 800,000 combinations, as described in table 5, have been processed - and over
2,000,000 for the RF model. Any combinations that produce a static AoR within the 0.1% margin of
error to the experimental data are marked as a correct combination. This combination will then be
evaluated independently by a DEM simulation to verify the ability of supervised models to correctly
describe a material’s bulk behavior based on the given contact law.

Restitution Coefficient Sliding Friction Rolling Friction Bond number

Range [0.5 1] [1e-5 1] [1e-5 1] [1e-5 1]

Number of values (NN) 30 30 30 30

Number of values (RF) 38 38 38 38

Table 5: Random evenly-spaced microparameters combinations
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6.1 Limestone

For limestone, 12 over 800,000 combinations of DEM input parameters processed by the ANN was
a ‘valid’ combination: the output of the ANN was 33 ± 0.01◦. Meanwhile, with 2,000,000 million
combinations processed by RF, 22 of them were valid combinations - however, many of them are
closely similar with a minor difference in one of the micro parameters, and only nine are distinct.
The valid combinations are described in table 6 and 7, with figure 8 illustrates the combinations and
their respective output. Overall, the NN model has correctly identified three combinations, while the
Random Forest model has 2.

Figure 8: From top to bottom, valid contact law parameters identified by Random Forest and Neural Network
model for limestone, and their respective simulation results.

Restitution coefficient Sliding friction Rolling friction Bond number Angle of repose

0.6875 0.2500 0.0417 0 32.4263

0.7500 0 0.1667 0.7083 28.6156

0.5833 0.1667 0.1250 0 32.7926

0.5517 0.1724 0.0690 0 31.9425

0.8125 0.0833 1.0000 0.0417 28.9393

0.7241 0.2759 0.0345 0 32.3962

0.8958 0.1250 0.9583 0.0417 31.4044

0.8621 0.0345 0.4138 0.3104 31.1331

0.7241 0 0.3104 0.6207 27.5978

0.8125 0 0.5000 0.7500 27.7676

0.9138 0 0.8276 0.5172 22.2677

0.9375 0 0.0417 0.3750 20.0361

Table 6: Valid contact law parameters identified by the NN model for limestone and their respective
simulation results.
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Restitution coefficient Sliding friction Rolling friction Bond number Angle of repose

0.7041 0.0612 0.2245 0.1633 32.4872

0.7245 0.1225 0.5714 0.0408 27.0585

0.7347 0.0816 0.4082 0.1225 33.0331

0.7347 0.0816 0.4694 0.1225 33.3593

0.7755 0.0816 0.0408 0.1225 21.0172

0.8980 0.0204 0.5714 0.6531 35.7342

0.9286 0.0816 0.2245 0.1020 29.9625

0.9592 0.0816 0.3061 0.0816 28.6865

0.7143 0 0.4694 0.7959 29.8154

Table 7: Valid contact law parameters identified by the RF model for limestone and their respective
simulation results.

6.2 Quartz Sand

The quartz sand model was trained with fewer simulations compared to the limestone model, with 322
DEM simulations, partially due to more simulations with quartz sand cannot be complete. However,
data from the completed simulations have shown that the uncompleted one would mainly result in a
static AoR of 50◦ or higher - therefore, it was less likely to affect the trained models’ ability to predict
the correct combinations since the experimental data is 33◦. The performance of the NN model was
strong: 4 out of 10 combinations are valid after being verified by a full DEM simulation. Meanwhile,
while the RF model predicts 20 different combinations, only three were valid - but interestingly, most
of the combinations predicted by the RF model range very close to the experimental value, from 29◦

to 31◦. The number of combinations passed to NN and RF model for quartz sand is approximately
the same as for limestone.

Figure 9: From top to bottom, valid contact law parameters identified by Random Forest and Neural Network
model for quartz sand, and their respective simulation results.
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Restitution coefficient Sliding friction Rolling friction Bond number Angle of repose

0.5612 0.0612 0.1633 0.1633 32.7325

0.5000 0.0408 0.7551 0.2245 32.1187

0.5000 0.0408 0.8571 0.2245 31.8814

0.5306 0.0408 0.3469 0.2245 32.1125

0.6429 0.0612 0 0.1837 30.3771

0.5714 0.0408 0.2449 0.2449 31.8564

0.6020 0.0408 0.3674 0.1837 30.0461

0.5408 0.0408 0.0204 0.2449 31.2764

0.5000 0.0408 0.9592 0.2245 31.5459

0.5816 0.0408 0.2449 0.2449 31.8087

0.6531 0.0612 0 0.1837 29.6271

0.7041 0.0408 0.3674 0.1837 29.3786

0.6633 0.0408 0.3265 0.2245 30.8579

0.5306 0.0408 0.0204 0.2449 31.2787

0.6735 0.0408 0.3265 0.2245 30.6531

0.7959 0.0612 0 0.1837 28.9042

0.6837 0.0408 0.4694 0.2041 30.2650

0.7245 0.0612 0.2857 0.1429 23.0546

0.8621 0.1035 0.1379 0.0345 29.6629

0.9828 0.0690 0.2759 0.0690 26.6594

Table 8: Valid contact law parameters identified by the RF model for quartz sand and their respective
simulation results

Restitution coefficient Sliding friction Rolling friction Bond number Angle of repose

0.5690 0.1379 0.4483 0 32.3822

0.7069 0.1724 0.1035 0 31.9092

0.6207 0.1724 0.0345 0 30.2535

0.6379 0.0690 0.5862 0.1379 32.4170

0.5862 0.1379 0.0690 0.0345 21.4586

0.9655 0.0690 0.1724 0.2414 32.7969

0.9828 0.0345 0.2759 0.3104 27.0953

0.5862 0.1379 0.0690 0.0345 21.4586

0.9655 0.0690 0.1724 0.2414 32.7969

0.9828 0.0345 0.2759 0.3104 27.0953

Table 9: Valid contact law parameters identified by the NN model for quartz sand and their respective
simulation results.
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6.3 Discussion

In the current approach, NN and RF models have demonstrated the ability to capture the bulk DPM
behavior and generate a database that can then be used to interpolate bulk parameters. Due to limited
training data, it is not expected that the models would have a high accuracy in the interpolation step,
so a validation step is needed. However, the current number of valid combinations does not meet
the expectations of a calibration problem. This can be seen in the quartz sand’s RF model: multiple
combinations that have been marked as valid by the model have either the same sliding friction or
bond number - and this is the case for the NN model with limestone as well. One possible solution for
this is to extend the ‘valid’ combination range from the current 33± 0.001 - however this will result in
a lot more valid combinations and thus only be possible if combined with other bulk tests to reduce
the number of verification simulations. Only the combinations that produce satisfactory value in all
bulk tests will be verified with DEM simulations.

Another limitation of the supervised approach is that each trained model only accounts for a sin-
gle contact law - in this case is the linear-spring dashpot model. If the current contact law is not
appropriate for describing the granular material, choosing another contact law would require a new
model.

7 Model comparision

One of the most vital factors in the calibration process of DPM is computational efficiency since each
DEM simulation is very costly in terms of resources (for a static AoR, the simulation time varies
from 2 to 24 hours each, and other simulations such as Dynamic AoR, shear cell test are even more
expensive).

The current calibration routine using GL for static AoR costs around 120 to 150 DEM simulations for
each attempt (therefore, approximately 300 to 400 DEM simulations, taking into account unfinished
attempts), depending on how many iterations are needed. Moreover, most of the time, GL will deliver
an adequate solution - except the first attempt with limestone, as mentioned in section 5, where GL
sampled combinations clusters in the wrong location. Meanwhile, with the current implementation
of supervised models, 400 to 500 DEM simulations would be necessary to train the models, and
about 20 more are necessary to verify the combinations that supervised models output (training and
interpolating time are not taken into account here since they are negligible compare to simulation
time). However, from the data obtained, NN and RF models can output more valid combinations
than GL. This is crucial since one combination that is valid for this bulk parameter might not work
for another bulk parameter, as mentioned in section 1.

One major strength of GL and NN is that it has been implemented and tested in several use case
(see [13, 14] for GL), while Random Forest models - a relatively known algorithm in machine learning,
has not been verified against more complex contact laws in the calibration problem to date.

8 Conclusion

This research has demonstrated three methods of using machine learning to tackle the calibration
problem of the Discrete Particle Model, namely GrainLearning, Neural Network, and Random Forest
algorithm within the scope of one bulk parameter, the static angle of repose. Overall, it has been
found that all tested algorithms can search for correct microparameters combinations to reproduce
the exact static AoR in MercuryDPM compared to the experimental value - albeit in vastly different
ways. While GL iteratively samples the new set of parameters that is getting closer to the optimal
value conditioned on previously-learned knowledge, NN and RF models require a three-step method:
training with different DEM simulations, then feeding it with multiple combinations, and selecting the
output that matches the experimental values, and verify it using a DEM simulation. It has also shown
that GrainLearning has an inconsistent performance, presumably due to the guessing range provided
to the algorithm being too large. Meanwhile, the NN and especially the RF model demonstrate the
capability to learn the mapping between the DEM input parameters and its bulk behavior for the
given linear spring-dashpot contact law.
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Future research could focus on examining the ability of GrainLearning on the static angle of repose
and expand the study on the Random Forest algorithm on different bulk parameters - and on different
contact laws.
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