
MASTER THESIS

Exploring the effect of merging

techniques on the performance

of merged sparse neural networks

in a highly distributed setting

MASTER THESIS

Emiel Steerneman

Enschede
July 2022

Faculty of Electrical Engineering,
Mathematics and Computer Science

EXAMINATION COMMITTEE
dr.ir. D.C. Mocanu
dr.ing. G. Englebienne
dr. M. Poel

Contents

Glossary 3

Abstract 4

1 Introduction 5

2 Background and Related Work 9
2.1 History of Artificial Neural Networks . 9
2.2 Sparse Neural Networks . 10
2.3 Parallelization . 14
2.4 NNSTD . 17

3 Expected NNSTD between two SNNs 18

4 Proposed Merging Methodology 20
4.1 Merging Methods . 20
4.2 Merging method similarity . 21
4.3 Possible merging issues . 21

5 Data and network architecture 24
5.1 Data . 24
5.2 Network architecture . 25

6 Phase 1 26
6.1 Methodology . 26
6.2 Data . 26
6.3 Network architecture . 26
6.4 Hyperparameters . 26
6.5 Training performance . 27
6.6 Performance after merging . 28
6.7 Summary . 29

7 Phase 2 30
7.1 Phase 1 to phase 2 . 30
7.2 Methodology . 30
7.3 Data . 31
7.4 Network architecture . 31
7.5 Hyperparameters . 31
7.6 Training Results . 32
7.7 Merging Results . 37
7.8 Performance and NNSTD-original . 41

8 Phase 2 - Extended research 51
8.1 Methodology . 52
8.2 Training results . 52
8.3 Merging results with two networks . 55
8.4 Merging results with five networks . 55
8.5 Conclusions extended research . 59

1

9 Discussion and thoughts 61
9.1 Importance of bias merging method . 61
9.2 Overall best merging method . 61
9.3 Sparsity level 0.99 . 61
9.4 Parallelizing an optimized version of Dropout 61

10 Future Work 62
10.1 Phase 1 : Classification preference and data distribution 62
10.2 Training a merged SNN . 63
10.3 Impact of bias sparsification on network performance 63
10.4 Performance of different merging techniques 63
10.5 Apply topology transformation before merging 64
10.6 Phase 2 : Improve resparsification by including Sparse Connectivity Pattern 64
10.7 Phase 2 extended research : Exploiting overfitting 64

11 Appendix 66
11.1 Reproducibility considerations and code bugs 66
11.2 Phase 1 . 66

2

Glossary

ANN Artifical Neural Network. This encompasses both DNN and SNN

DNN Dense Neural Network. An ANN with all weights present

NNSTD Neural Network Sparse Topology Distance (see page 17)

SNN Sparse Neural Network. An ANN with weights missing

Sparsity The fraction of weights missing from an SNN

3

Abstract

With the number of parameters of modern neural networks ranging in the billions, train-
ing is only feasible in a highly parallel environment. On the other hand, sparse neural
networks can significantly reduce the number of parameters of dense neural networks,
thereby memory usage and computational costs. To keep the memory usage and compu-
tational costs of sparse neural networks low, these should be sparse throughout the train-
ing process. This can be accomplished by algorithms such as SET, which train sparse
neural networks from scratch. SET achieves state-of-the-art performance by evolving
sparse neural network structures throughout training. This evolution prevents the use of
conventional parallelization training techniques in decentralized settings. This research
evaluates techniques that may enable the training of sparse neural networks in a parallel
decentralized setting. Related work suggests that merging sparse neural networks should
boost performance due to the bias-variance tradeoff. Evaluation of these techniques shows
that merging sparse neural networks based on the magnitude of their parameters gives
the best results. Resparsification of resulting neural networks ensure that memory usage
and computational costs stay constant. Under the circumstances of this research, sparse
neural networks have been successfully merged both with and without incurring loss in
performance. These results, combined with the SET algorithm, strengthen the idea that
parameter magnitude is an essential factor in sparse neural networks. Using these tech-
niques, conventional parallelization techniques can once again be applied. This research
provides a basis for merging sparse neural networks with different structures. Combining
sparse neural networks that evolve with parallel training in a decentralized setting allows
many low-performance edge devices to train a single network.

4

1 Introduction

Artificial Neural Network (ANN) [6] is a term that most have heard at least once at some
point in the past few years. ANNs can be found in phones in our pockets, in cars on
the road, and behind the ads seen on websites. Pharmaceutical companies use ANNs to
create the latest medicines. Business use ANNs to gain advantages in the stock market.
Meteorologists apply ANNs to create weather forecasts. While not everyone may realize
it, they are everywhere around us. Although ANN usage growth has predominantly
occurred in the last decade, the concept has existed for over half a century.

The concept of an Artificial Neural Network was first brought up in 1943, in the paper
of Mcculloch and Pitts [24]. Since then, research has been accumulated, leading to the
current state of ANNs. A few significant events come into view whenever one looks at the
history of ANNs. OpenAI has broken down the force driving the advance of AI into three
distinct factors; Algorithmic innovation, data, and the power of hardware [9]. Section 2.1
will provide a short historic overview of these factors.

Where we are now Machine learning has seen exponential growth in network com-
plexity, data volume, and hardware performance over the last few decades. The computa-
tional power needed to train state-of-the-art networks is increasing ever so fast. Between
2012 and 2018, OpenAI reported a 300,000-fold increase in computation needed to train
state-of-the-art networks [9]. In June 2020, OpenAI released the GPT-3 network, which
uses deep learning to produce human-like text. The description given by OpenAI boggles
the mind with numbers that are too large to comprehend;

”With GPT-3, the number of parameters has swelled to 175 billion, making GPT-3 the
biggest neural network the world has ever seen ... The total compute cycles required
[to train] is the equivalent of running one thousand trillion floating-point operations per
second per day for 3,640 days ... estimated that it would take a single GPU 355 years
to run that much compute, which, at a standard cloud GPU instance price, would cost
$4.6 million ... GPT-3’s 175 billion parameters require 700GB, 10 times more than the
memory on a single GPU.” [41]

I take this opportunity to point the reader to a website1 that hosts a GPT-3 instance
capable of generating interactive text-based adventures.

Where can we go The training of this enormous ANN has been made possible by
massive parallelization. Still, budget and time constraints can be limiting factors for
ANNs. If reducing the parameter count of an ANN without significantly reducing its
performance would be possible, then that would certainly push the boundaries of these
ANNs. Fortunately, it is, through Sparse Neural Networks (SNN). How an SNN works
will be explained in the following paragraph. First, the possible benefits will be listed.
The reduced strain placed on the hardware by SNNs brings freedom to follow one or more
of the following directions.

Increased complexity SNNs can be grown to require maximum performance from current
hardware once again. The increased complexity allows for better results and tackling
more complex problems.

1https://play.aidungeon.io

5

Increased inference speed Keeping SNNs on the same hardware allows for faster inference
speed. This will benefit especially applications that have a (soft) real-time component.
Examples of this are self-driving cars and translation software. I would like to point
the reader to an exciting application from NVidia 2. In this application, faces from a
video call are compressed on the sender side and reconstructed on the receiver side using
ANNs. This technique reduces data transfer up to a factor of 10 compared to the popular
encoding standard h264. SNNs could allow this technique to run faster and consume less
battery on mobile devices.

Reduced hardware requirements The reduced strain on hardware allows for cheaper hard-
ware that is more accessible to the everyday consumer. Typically, data is sent from
consumer hardware to specialized inference servers, where data is put through an ANN,
and the results are sent back to the consumer [8]. Examples are Apple’s assistant Siri and
Google’s translation application Lens. Being able to run ANNs on cheap devices would
allow users to apply these without an active internet connection. This could be used in,
for example, medical wearables and areas without (stable) internet connections, such as
developing countries.

Sparse neural networks A Sparse Neural Network (SNN) is an Artificial Neural Net-
work (ANN) in which not all weights are present. This is in contrast to a Dense Neural
Network (DNN), in which all weights are present. The fraction of missing weights is
called sparsity. The first SNN was introduced by Mozer and Smolensky in 1989 [30].
Their purpose was to measure the impact of a single weight on the performance of a
network, by measuring this performance both before and after the weight was removed.
Mozer and Smolensky also recognized the performance benefits an SNN brings to the
table. SNNs can be obtained by pruning a DNN, called dense-to-sparse training. An-
other approach is to train a network that is sparse from the start, called sparse-to-sparse
training. Sparse-to-sparse training has gained traction in the past few years. The Lottery
Ticket hypothesis [13] showed that there exist sparse topologies which can successfully be
trained. Since then, approaches have been developed in an attempt to find these topolo-
gies. A noteworthy contribution is the SET algorithm [25], a sparse-to-sparse training
method that optimizes the topology throughout training. Still, the performance benefits
that an SNN can bring are inherently limited to the speed of the hardware it runs on.
As the problems we want to solve become more complex, more computational power will
be needed to train an SNN. Parallelization can offer an answer to this obstacle.

Parallelization Parallelization can be applied to both the training and inference of an
ANN. In training, multiple computers can train an ANN on different parts of a dataset.
The resulting gradients of all computers can be merged at a single location, where the
weights of the ANN can be updated. In inference, an ANN can be split up into multiple
parts. Multiple computers can run different parts of the network, resulting in a reduction
in memory usage or a speedup in inference time, depending on how the network is split
up. Parallel training and inference are techniques widely used by large companies such
as Amazon [3], Google [40], and Microsoft [10].

Motivation All the existing parallel training techniques come with a downside, how-
ever. The topology of the ANN that is trained can not be modified while multiple

2https://nvlabs.github.io/face-vid2vid/

6

computers are training it. Gradients or weights of networks with different architectures
can currently not be merged together. If modifications are being made to the network
topology, which can be the case with e.g. the SET algorithm, this will have to be done
on a central location. When modifications to the network happen often, this can incur
significant overhead since each computer has to communicate with this central location.
On top of that, unless networks are neatly sent to the central location and merged one
by one, gradients of multiple machines must be kept in memory at the central location.
These are not a problem if bandwidth and memory are not a limiting factors. However,
since SNNs aim to address these, we can reasonably assume that they are a limiting factor
for a user training an SNN.

The different topologies generated will have to be merged back together to form a single
SNN. Unfortunately, there is little to no research on merging networks with different
topologies. Solving this problem could lead to better scalability, more extensive networks,
faster training, and thus the ability to solve more complex problems.

Goal of the research The goal of the research is to further the usage and development
of SNNs, both in practical terms and research areas, by further developing the techniques
by which SNNs can be trained.

Research Questions

• How can two SNNs with different topologies be merged together?

• How do merging methods impact the performance of a merged SNN compared to
its parents?

• How well does a merged SNN retain performance from two SNNs trained on different
datasets?

Methodology The research questions have been divided into two phases, which are, in
essence, two smaller instances of research. Both come with their own datasets, hyperpa-
rameters, methodology, results, and conclusions. Since phase 2 is a continuation of phase
1, there is a large overlap between the datasets, hyperparameters, and methodology. This
will be elaborated further in section ‘Data and network architecture’ on page 24 and in
the phases’ respective sections.

Methodology Phase 1 To explore the capability of merged SNNs to capture the most
important weights, the ’essence’, of its parents, networks have been trained on non-
overlapping Fashion-MNIST data subsets and merged. The performance of the merged
network is then evaluated on both parents’ datasets and their combined dataset. This
experiment is done with multiple merging methods and at two sparsity levels. Phase 1
can be found on page 26.

Methodology Phase 2 To explore the capability of merged SNNs to retain the parents’
performance, a large amount of SNNs have been trained, evaluated, and merged in pairs.
Subsets of the Fashion-MNIST dataset have been used for training and evaluation. 12
sparsity levels have been selected, ranging from 0.00 (all weights present) to 0.99 (missing
99% of all weights). For each sparsity level, networks have been trained and paired. Each
pair has been merged using one of the 5x5 proposed merging methods (page 20). The

7

performances of the merged SNNs are evaluated on the evaluation subset of Fashion-
MNIST. Next to these metrics, the distances between the merged SNNs and their original
SNN pairs have been measured using the NNSTD metric (page 17). These results are
then used to analyse the effectiveness of each proposed merging method. Phase 2 can be
found on page 30.

Contributions Results from phase 1 show that merging two SNNs trained on two
different datasets can lead to a merged SNN that can predict from the aggregate of
both datasets. However, performance is lacking compared to an SNN trained directly
on the aggregate dataset. Results from phase 2 show that merging two SNNs trained
on the same dataset can also lead to a merged SNN that can predict on that dataset
with decent performance. In some cases, accuracy loss is almost negligible. Both results
indicate that the merging techniques can capture the discriminative essence of both SNNs
and place these into a single SNN. Performance of the merged SNN is, however, strongly
dependent on the merging technique used, indicating that some techniques better capture
the essence of both SNNs than others. Results from phase 2 extended research show that
normalization helps models stabilize at lower sparsity levels, as well as an improvement in
performance. While related work suggests that merging multiple neural networks should
result in a performance boost, empirical results have not yet fortified this claim.

Thesis overview The structure of this thesis will now be summarized. It will start with
a concise history of ANNs. After that, background information will be provided about
SNNs and parallelization. This background information should be sufficient to grasp both
subjects’ core concept and understand the methodology and conclusions of phases 1 & 2.
References will be provided in case the reader wants to acquire more knowledge before
proceeding. After the introduction to SNNs and parallelization, the work related to this
thesis will be provided and discussed. There is little work concerning the direct merging
of multiple ANNs, so this section might be shorter than what is normally expected. The
thesis will then state the proposed methods by which to merge SNNs, as well as the
datasets and networks used by phases 1 & 2. Note that phases 1 & 2 do slightly differ
in how they use the datasets. Everything up until here has been preparation for phases
1 & 2, which follow right after. Between the sections of phases 1 and 2, there will be
an explanation of how phase 1 influenced phase 2. Phase 2 is extended with additional
research into the impact of normalization on networks and their merging, as well as the
merging of more than two models. After phase 2, results and conclusions from both
phases will be analyzed together to reach the final conclusion. This will be discussed,
and finally, possible future work will be described.

8

2 Background and Related Work

2.1 History of Artificial Neural Networks

The beginning. In 1958, Frank Rosenblatt published a paper describing the perceptron
[32], the building block for ANNs. He used the idea of the perceptron, first brought up
in 1943 by Mcculloch and Pitts [24], to create a machine capable of recognizing simple
geometric shapes in 20x20 images. The machine was able to learn by changing the weights
of connections. In the machine, these weights were actualized by rotary potentiometers.
Rosenblatt demonstrated that the perceptron brought intelligent machines into the realm
of possibility. He received strong criticism, however, from Minsky. Minsky, together with
his colleague Papert, argued that the perceptron was too simple to model complex real-
world phenomena. This was because backpropagation was not discovered yet, networks
could not yet model non-linearity, and the largest networks at the time had no more
than two layers. Even if the ideas to build networks with more layers were there, the
hardware of the time was insufficient. These limitations led to an influential book named
Perceptrons: an introduction to computational geometry [33] by Minsky and Papert. The
book contributed to the onset of the AI Winter, the period between 1970-1980 when
research on the topic of ANNs was almost non-existent.

The uprising. The AI winter lasted until around 1980. At that time, the improvement
of hardware and the large amount of data provided by the rise of the internet sparked a
surge that led to many discoveries.

1986 The interest into ANNs was revived with the rediscovery of backpropagation and the
paper Learning representations by back-propagating errors [33]. In 1989, the development
of Q-learning greatly improved the feasibility of Reinforcement Learning.

1997 LSTMs were discovered, paving the way for tackling temporal problems such as
speech recognition.

1998 One of the earliest convolution ANNs was developed, LeNet-5. It consisted of 2
convolutional layers, 3 fully connected layers, and a total of roughly 60,000 parameters
[2]. The network was capable of recognizing handwritten digits.

1999 NVidia released the GeForce 256, which they dubbed the ”First Graphics Card”.
Graphics cards would not find widespread use in machine learning until 2012.

2000-now Open source datasets are being created, such as MNIST, COCO, and ImageNet.

2006 Deep Belief Networks are invented by Geoffrey Hinton and colleagues [15]. In
contrast to the discriminative ANNs, Deep Belief Networks are generative models.

2009 ImageNet reaches 3 million images.

2010 ImageNet reaches 10 million images.

The era of GPUs. 2012 ImageNet reaches 14 million images. AlexNet made a break-
through in image recognition, improving state-of-the-art accuracy by more than 10%.
This improvement was made possible by creating a relatively deep network. It consisted
of 5 convolutional layers, 3 fully connected layers, and a total of roughly 60 million param-
eters [2]. The network was computationally expensive, but training was made possible

9

with the use of GPUs. Before 2012, using GPUs for machine learning was uncommon [9].
Since 2012, NVidia’s stock price has increased roughly 18-fold.

2014 Facebook made a breakthrough in facial recognition with DeepFace, improving
state-of-the-art accuracy by more than 27%. GANs are invented.

2015 Deepmind releases AlphaGo. It defeated the world champion of the board game
Go, which is considered to be one of the most complex abstract strategy games.

2.2 Sparse Neural Networks

Figure 1: Dense (DNN) Figure 2: Sparse (SNN)

The introduction1 provided a historical overview of Artificial Neural Networks (ANN) and
a concise introduction into Sparse Neural Networks (SNN). All of the ANNs described,
and most of the ANNs used today, are dense. Within a dense neural network (DNN), all
neurons in a given layer l−1 are connected to all neurons in layer l through weights, as
illustrated in Figure 1. For more background information on DNNs, I’d like to point the
reader to the book Pattern Recognition and Machine Learning by Christopher Bishop.
With an SNN, not all of these weights are present, as illustrated in Figure 2. The fraction
of weights not present in an SNN is called the sparsity. An SNN with a sparsity of 0.99
will only have 1

100
of the weights of its dense counterpart.

Having an ANN where not all weights are present was first proposed by Mozer and
Smolensky [30]. Researchers at the time were trying to understand why ANNs worked the
way they do, as cited by Mozer and Smolensky. Techniques such as Principal Component
Analysis [12] and weight decaying were used to determine which parts of an ANN had
the most influence on performance. Mozer and Smolensky opted for another approach in
which weights were completely removed from an ANN. The performance loss of the ANN
was directly correlated to the importance of the removed weight. Thus, the first SNN
was created out of a desire to better understand ANNs, not out of a need to increase
performance and scalability.

2.2.1 Advantages of SNN over DNN

SNNs bring advantages over DNNs. They require fewer calculations, less memory, and
are less prone to overfitting [23]. This is explained in the paragraphs below.

10

Calculation reduction. The calculations within a neural network consist primarily
of the multiplication of weights and values. For example, the popular image recognition
network AlexNet consists of around 650,000 neurons and 600 million weights [1]. The
fully connected part of AlexNet consists of 9192 neurons (Nn) and around 60 million
weights (Nw). Each weight adds a calculation, namely the multiplication of a value and
that weight. Each neuron adds a few calculations through the summation of its inputs,
and its activation function. A rough estimate of the number of calculations in the fully
connected part of AlexNet then becomes 2Nw (one multiplication, one summation) +
Nn (one activation function) for a total of roughly 120 million calculations. Within
AlexNet, the weights are responsible for 2Nw

2Nw+Nn
≈ 99.9% of the calculations. It follows

that reducing the number of weights roughly scales linearly with reducing the number of
calculations. In theory, an SNN with a sparsity of 0.99 would be 100x as fast as its dense
version. Reality doesn’t exactly match the theory in this case. For one, extra calculations
such as bias and possible batch normalization have been omitted from the example. More
importantly, the current technology heavily favours dense matrices, especially hardware.
GPUs are made for dense matrix calculations, and libraries are optimized for it.

Memory reduction. Just as removing connections reduces the number of calculations
needed, it also reduces the memory footprint. A connection within a network is repre-
sented by its location within the network and its weight. Within a DNN, the location
is implicit, relying on its location in memory. In an SNN, these locations have to be
stored explicitly. Next to that, an SNN also needs to explicitly store the neurons that are
connected. In dense networks, this is once again implicit, since a neuron is connected to
all neurons in the next layer. Therefore, SNNs bring some overhead that is not present in
DNNs. This means that memory usage is only reduced when the sparsity level is below
a certain threshold.

Multiple formats have been developed to store sparse matrices, each with their own
benefits and drawbacks, and it is converted between different formats for different tasks.
For example, when creating a sparse matrix, one could use the LIL-format [35]. This
format has the advantage that changes to the matrix sparsity structure are efficient.
After creating the sparse matrix, one could convert it to the CSR-format [34]. This
format does not efficiently support changes to the structure, but it does support efficient
arithmetic operations such as multiplication. More information on formats for sparse
matrices can be found in section 3.1 of [19].

Note that not all implementations of SNNs will apply these formats. Often, researchers
will use a dense connection matrix and apply to it a binary mask. The mask sets all in-
active connections to zero, effectively disabling them. This approach does obviously not
reduce memory usage, but applying it to existing DNN implementations is straightfor-
ward. The reason for not using a true SNN is that the hardware, software, and algorithmic
support is insufficient. Yu et al. [43] showed that a 89% sparse AlexNet is 25% slower
on a CPU compared to its fully dense counterpart on a GPU. Popular libraries such as
BLAS, MKL, and cuSPARSE originate from the field of linear algebra and are optimized
for a sparsity level of more than 99%, much sparser than most SNNs (50%-99%). Training
pure SNNs brings extra challenges since popular formats for storing SNNs, such as CSC
or COO, are not suited for back-propagation [16].

11

2.2.2 Training of SNNs

The following section describes the different approaches of obtaining a trained sparse
neural network. Figure 3 from Mocanu et al 2021 paper [28] gives a clear overview of
these approaches. These approaches can be differentiated through multiple factors, listed
below.

Figure 3: Schematic representation of various method types used to obtain sparse neural
networks and a rough estimation of their scalability; a. Pruning, b. Simultaneously
training and pruning, c. One-shot pruning, d. Sparse training (static), e. Sparse training
(dynamic - gradient), f. Sparse training (dynamic - random) [28]

Difference between approaches

Initial topology. The initial topology can either be dense or sparse. If the topology is
sparse, the connections can either be random, or predetermined as is the case with e.g.
the Lottery Ticket Hypothesis.

Initial weights. The weights of the connections can either be random, or predetermined
as is also the case with the Lottery Ticket Hypothesis.

Topology throughout training. The topology can either be fixed during training, or evolv-
ing. Topologies are evolving when connections are removed, which is the case when
pruning dense networks, and when connections are removed and added, which is the case
with certain approaches such as NEAT [39] and SET[25].

Approaches

The three factors given above can be combined in different approaches of obtaining a
trained sparse neural network. Not all of the approaches are feasible. Different combi-
nations are listed in Table 1. Extra information is given for Dense-to-Sparse training,
Ordinary SNN training, and Dynamic Sparse-to-Sparse training.

Ordinary SNN training Ordinary SNN training consists of creating an SNN with random
weights and connections, and not modifying the topology during training. Results in
section ‘Training performance’ on page 27 will show that this method, at high sparsity

12

Initial topology Initial weights Topology Approaches
Dense random fixed Ordinary DNN training
Dense random evolving Dense-to-Sparse training, Lottery

Ticket Hypothesis [13]
Dense predetermined fixed Transfer learning
Dense predetermined evolving -
Sparse random fixed Ordinary SNN training
Sparse random evolving Dynamic Sparse-to-Sparse training (e.g.

SET [25], DSR [29])
Sparse predetermined fixed Lottery Ticket Hypothesis [13]
Sparse predetermined evolving -

Table 1: Different approaches of obtaining a trained SNN

levels, is inferior to methods that modify the topology during training. The same results
have been found by Mocanu et al. with their SET algorithm [25]. Their results show
that at high sparsity levels, SNNs with fixed topology have inferior performance. Exactly
this performance issue, combined with network rewiring inspiration originating in biol-
ogy, motivated Mocanu et al. to design a training procedure that modifies the network
topology during training. The Lottery Ticket Hypothesis implies that for a given SNN
topology, there is a possibility that specific initial weights exist to properly train the SNN.
However, the probability that random initial weights are good enough to properly train
an SNN from scratch is nil.

Dense-to-Sparse training A common approach to creating an SNN is to train and prune
a DNN. The pruning can be done once, immediately reducing the DNN to the desired
sparsity level. Looking at Figure 3, the algorithms SNIP [18] and l0-regularization [21]
take this approach. Another approach is to prune a DNN in steps. First, the DNN is
trained, either fully or partially, and then slightly pruned. This is repeated until the
desired sparsity level is reached, and is referred to as the train-prune-retrain cycle. This
approach starts with a dense topology, and weights are randomly initialized. Looking at
Figure 3. Many of these algorithms exist and date way back to 1989, when Mozer and
Smolensky first applied this technique. Dense-to-Sparse training is also applied in the
Lottery Ticket Hypothesis paper to create the SNN that will be retrained.

Dynamic Sparse-to-Sparse training In the Sparse-to-sparse training approach, the net-
work starts and remains sparse during the entire training. As mentioned before, training
an SNN from scratch with a random topology and random weights does most probably
not produce good results. However, the Lottery Ticket Hypothesis paper has shown that
combinations of topologies and weights exist that do manage to produce good results
when trained. Their hypothesis is that a DNN contains many SNNs within it and that
training a DNN optimizes one of these SNNs. Basically, training a DNN is akin to at-
tempting to train numerous amounts of SNNs. Whereas training a DNN trains all these
SNNs within itself simultaneously, Dynamic Sparse-to-Sparse training tries out multiple
topologies over time, one after another. Throughout the training, the topology of the
SNN is modified by deactivating some weights and activating others. The first algorithm
that dynamically changes the network during training is SET [25]. Since SET, multi-
ple Dynamic Sparse-to-Sparse training algorithms have been developed, such as DeepR,
DSR, and RigL. There are multiple metrics to choose which connections to deactivate

13

Figure 4: Data parallelism, model parallelism, and layer parallelism. [4]

and activate, as can be seen in Figure 3. SET deactivates connections based on their
magnitude and deactivates a number of connections that have their weights closest to
zero. DSR extends this by having multiple different thresholds that are trainable. RigL
[11] activates connections based on their gradient. Note that this requires tracking the
gradients of all connections, including the deactivated ones. Therefore, a truly sparse
implementation is not possible for this algorithm.

2.3 Parallelization

Parallelization for the training and inference phases is a well-researched topic. A single
machine can only provide so much computational power, and has a limited amount of
memory available. Parallelization relieves these constraints, allowing for basically lim-
itless computation power and memory. The extra available resources can be used to
improve training and inference speed, increase the size of models, increase data through-
put, and more. However, as with almost anything, overhead by i.e. communication
between machines is responsible for diminishing returns.

2.3.1 Inference parallelism

The following section describes different approaches to how multiple machines can ac-
commodate ANN inference. Each approach makes a different tradeoff between inference
speed, memory requirements, and communication overhead. The approaches are illus-
trated in Figure 4.

Data parallelism Data parallelism is the most straightforward approach. Multiple
machines have an instance of the ANN, and data is distributed over the machines. Each
machine can run its ANN independent of the other machines. Communication consists
only of transmitting data and inference results. This approach, however, requires a
machine to load the entire ANN, which can strain the memory. Also, inference speed
is always limited by the speed of the machine since there is no possibility for multiple
machines to work together on a single data sample.

Model parallelism With this approach, the data is split over a single dimension,
i.e. red, green, and blue of a colour image, and different machines use this to calculate
different parts of the network. This approach reduces memory requirements since only a
part of the ANN has to be stored at each machine. It also reduces inference time since
multiple machines can work together, each calculating its own part. However, layers have
interdependencies, and results have to be communicated between machines, adding extra
overhead.

14

Layer parallelism With this approach, each machine is responsible for calculating
a single layer of the ANN. It receives data from one other machine, puts it through its
layer, and passes the results on to a single other machine. The communication overhead is
equal to or less than the model parallelism approach, because interdependence is limited
between machines. The memory footprint is reduced since a machine only needs to load a
single layer of the ANN, instead of the entire model. However, inference speed is limited
by the speed of the machine since only a single machine can work on a data sample at a
time.

2.3.2 Training parallelism

Just as with inference, parallelism can aid the training of ANNs, allowing for faster
training and larger models. There are however some difficulties unique to parallel training.
With inference, there exists only a single version of the ANN in question, and each
instance of the ANN is the same. When training on different machines however, the
ANN instances are not guaranteed to stay the same. After some training, there exist
multiple versions of the ANN which have to be merged into a single ANN. There is a
multitude of approaches for parallel training, and the survey of Tal Ben-Nun and Torsten
Hoefler [4] has categorized these into the following three categories : Model Consistency,
Parameter Distribution and Communication, and Training Distribution.

Model Consistency Model consistency considers how weight updates of different ma-
chines are combined into a single network. Tal Ben-Nun and Torsten Hoefler listed four
different levels of model consistency. Figure 5 gives an overview of these four levels. Re-
gardless of the level, the machines never share actual weights between themselves. Only
the weight gradients are shared, since these can simply be summed into a single gradient
per weight. These gradients can then be used to update the weights. The first level is
synchronous with central server. With this level, all machines train the same network for
a single fixed duration or a fixed number of epochs on a small part of the dataset. After
training, each machine sends its gradients to a central server. The central server sums
the gradients, updates the network, and broadcasts the updated network to all machines.
This is illustrated in Figure 5(a). The second level is decentralized synchronous. The
difference between this level and the first level is that instead of machines sending gra-
dients to a central server, the gradients are summed using an all-reduce operation [14].
Each machine can then update its own network. This is illustrated in Figure 5(b). The
levels illustrated in Figure 5(c) and 5(d) relax the restrictions on synchronization. The
third level asynchronous with central server allows each machine to send gradients to a
central server whenever it is ready to do so. A good example of this is the HOGWILD
algorithm [31]. HOGWILD is a threaded SGD [37] algorithm, where multiple threads
update the same model without having any kind of thread safety. By removing the over-
head of thread safety it gains a large performance boost, with the authors claiming that
it sped up their performance by a factor of 100 [36]. Note that this speedup depends on
a number of factors such as programming language, computer hardware, and the number
of threads. With this level, gradients might have to be discarded if the model has been
updated with other gradients in the meantime. HOGWILD solves this problem by ap-
plying updates to just a small part of the model, largely preventing collisions. The fourth
level decentralized asynchronous, illustrated in 5(d), tries to find a balance between per-
formance and synchronicity. There are predetermined points in time where the model is

15

Figure 5: The four levels of model consistency [4].

globally updated, and between updates, machines can train as much as they want. This
allows for flexibility in selecting machines. It makes it easy to add and remove machines,
where not all machines have to have the same amount of performance.

Parameter Distribution and Communication Both the parameter server and the
all-reduce algorithm have their benefits and drawbacks. The all-reduce algorithm can be
implemented efficiently and spreads out the addition of gradients over multiple machines,
whereas the parameter server has to do all additions by itself. The parameter server,
in turn, allows for asynchronous training and requires less communication from each
machine.

If a parameter server consists of a single machine, it forms the risk of becoming a point
of congestion. It could be overloaded by the sheer amount of machines and significantly
slow down the training process. Therefore, there are schemes in which a parameter
server actually consists of multiple servers, or shards. Each shard can be responsible for a
subsection of the model weights, and each machine only communicates with a single shard.
This concept works well combined with model parallelism described in 2.3.1. Shards can
be arranged in a tree-like fashion to aggregate gradients, further managing the load on
the parameter server.

This structure of having multiple machines responsible for training and multiple shards
responsible for updating the model can be leveraged to increase fault tolerance. Multiple
machines can be assigned to train on the same data subset, and multiple shards can
be made responsible for communicating with the same set of machines. The loss of a
shard or machine would not have an impact on the integrity of the process. To increase
fault tolerance even more, consensus [44] can be applied to detect any errors in e.g.
communication or hardware.

A parameter server consisting of multiple shards also supports heterogeneity in the per-

16

formance of machines and the network. Performance issues in either a machine or part
of the network can result in delayed results. This is turn can make the training process
unstable, and prevent it from converging. Two algorithms have been designed to deal
with these performance issues. The first algorithm introduces different learning rates
for different machines, dealing with instability. The second algorithm only allows shards
to communicate when the gradient is large enough to be deemed significant, thereby
retaining convergence.

If the costs of communication are significant, there is the option to use an inconsistent
decentralized parameter update using a gossip algorithm [17]. A gossip algorithm uses
statistic probability to synchronize weights between all machines using as little commu-
nication as possible. Each machine sends its gradient to a specific number of random
other machines. There is a possibility that not all machines receive the same update, but
it is low enough to allow for convergence of the network regardless.

Training Distribution Previous methods all assume relatively frequent synchroniza-
tion between machines. In the case that frequent updates are not possible, there exist
techniques to merge networks after training has been completed. With ensemble learning
[7], the outputs of multiple trained networks can be merged to generate a single out-
put. The combination of multiple networks through averaging is called an ensemble. An
ensemble can drastically increase the hardware requirements, since all networks in the
ensemble have to be used. Knowledge distillation attempts to train a single network that
mimics the behaviour of the ensemble. Essentially, the ensemble is once again brought
down to the size of a single network.

2.4 NNSTD

Evolution modifies the structure of a network. One metric to quantify how different
two network structures are, is the Neural Network Sparse Topology Distance (NNSTD)
[20]. NNSTD measures the cost of transforming one sparse neural network structure into
another sparse neural network structure. NNSTD gives a score between 0 and 1, where
0 indicates that two structures are the same (only overlapping weights), and 1 indicates
that two structures are completely different (no overlapping weights). NNSTD does not
look at the magnitudes of the weight, but purely if a weight exists or not. NNSTD also
calculates this score by iterating over each pair of layers. It does not assume weights can
traverse from one layer to another in accordance with the constraint made in the SET
algorithm.

17

3 Expected NNSTD between two SNNs

The expected NNSTD distance between two arbitrary networks with the same sparsity
can be calculated. NNSTD calculates distance based on the number of weights that
do and don’t overlap, and ignores weights that are deactivated in both networks. The
probability that a weight is active in both networks Poverlap equals the probability that a
weight is active in one network P1 multiplied by the probability that a weight is active in
the other network P2. This holds under the assumption that P1 and P2 are independent.
The probability that a weight is active is inversely proportional to the sparsity S, given
a uniform probability distribution for weight activation.

Poverlap = P1 · P2 = (1 − S) · (1 − S) = (1 − S)2

Given a neuron with N weights, the number of weights that are active for that neuron in
both networks Noverlap equals

Noverlap = N · Poverlap = N · (1 − S)2

The number of active weights that are active in either one or the other network Nunique,
but not in both networks, equals twice the total number of active weights Nactive minus
the number of overlapping weights Noverlap.

Nunique = 2(N(1 − S) −Noverlap)

The expected NNSTD D for two arbitrary networks with the same sparsity is then given
by the following equation.

D =
Nunique

Nunique +Noverlap

=
2(N(1 − S) −Noverlap)

2(N(1 − S) −Noverlap) +Noverlap

=
2(N(1 − S) −Noverlap)

2N(1 − S) −Noverlap

=
2(N(1 − S) −N(1 − S)2)

2N(1 − S) −N(1 − S)2

=
2N(1 − S)S

2N(1 − S) −N(1 − S)2

=
2N(1 − S)S

N(1 − S)(1 + S)

18

=
2(1 − S)S

(1 − S)(1 + S)

=
2S

(1 + S)

NNSTD distribution The NNSTD distribution follows the Central Limit Theorem.
Given enough random trials, the NNSTD histogram closely follows a Gaussian distribu-
tion. The standard deviation (width) of the Gaussian is related to the size of the arrays
used in the randomized trials. Larger arrays give a smaller, higher Gaussian. The values
in Table 2 have been confirmed empirically. The value for sparsity level 0.00 has been
omitted because NNSTD is always 0.

Sparsity level 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
expected NNSTD 0.18 0.33 0.46 0.57 0.67 0.75 0.82 0.89 0.95 0.97 0.99

Table 2: Expected NNSTD values for two arbitrary networks with the same sparsity

19

4 Proposed Merging Methodology

The techniques described in the previous section ‘Parallelization’ on page 14 rely on
calculating gradients from a subset of the data, and merging these gradients either at
a parameter server or locally at each machine through the all-reduce algorithm. This
implies that all topologies stay the same during the training. These techniques can
therefore not directly be applied to non-identical topologies. Training approaches which
modify the structure of the ANN can choose to either apply the existing parallelization
techniques and modify the topology on a central server, or find a way to merge different
topologies together, thereby trying to retain the best of all networks.

The following section will discuss the proposed methods to merge multiple networks
together. The merging of multiple SNNs with different topologies can be split up into
two steps.

Step 1. merging weights In the case that multiple networks have a weight at a
certain location i, j, these weights will have to be merged. Biases are dense, and will
always have to be merged.

Step 2. pruning the newly created network Given a high enough sparsity, it is
possible that two (or more) networks will have no overlapping weights. Therefore, when
e.g. 3 networks are merged, a new network is created with 3 times the amount of weights.
Pruning is necessary if retaining sparsity is a requirement.

4.1 Merging Methods

For step 1, five different weight merging approaches are suggested below. In each ap-
proach, three networks A,B,C with different topologies will be merged into a new net-
work N . A position in the network i, j is given, where i indicates the layer and j indicates
the weight of that layer. Given that there are 5 merging methods for both the weights
and the biases, this results in 25 different ways of merging networks together. If a network
does not have a weight at position i, j, the value 0 will be used.

Magnitude merging When multiple networks have a weight in the same position,
the weight with the strongest magnitude will be preserved. This closely follows the SET
principle, where weights with the lowest magnitude are dropped in favour of the strongest
weights.

Ni,j = max magnitude(Ai,j, Bi,j, Ci,j)

Average merging With average merging, at each position in the network, the weights
at that position are summed, and then divided by the number of networks.

Ni,j = (Ai,j +Bi,j + Ci,j)/3

20

Addition merging With addition merging, at each position in the network, the weights
at that position are summed. This merging method is the same as average merging, but
without the division.

Ni,j = (Ai,j +Bi,j + Ci,j)

Random merging This method picks a random weight from all the weights at position
i, j. The networks that do not have a weight at i, j will be excluded however. This is done
to prevent the value 0 from being chosen, which would further sparsity the network, and
possibly disable it all together. The formula below assumes that all 3 networks A,B,C
have a weight at position i, j

Ni,j = random(Ai,j, Bi,j, Ci,j)

No merging This method simply discards all weights, and returns the value 0.

Ni,j = 0

Bias merging In contrast to the weights, the biases are not sparse. Therefore, when
merging networks, biases will overlap at every position i, j. The merging methods men-
tioned in 4.1 work just as well for merging biases.

4.2 Merging method similarity

It is important to note that at high sparsity levels, the merging methods magnitude,
addition, and random have a high probability of giving the same merging result. For
example, take three networks A,B,C, and merge weights at the position i, j. If only
network A has a weight w at position i, j, then all three merging methods mentioned
above will select this weight w.

Magnitude
Ni,j = max(Ai,j, Bi,j, Ci,j) = max(w, 0, 0) = w

Addition
Ni,j = Ai,j +Bi,j + Ci,j = w + 0 + 0 = w

Random
Ni,j = random(Ai,j) = random(w) = w

4.3 Possible merging issues

Hardware Merging techniques that require sorting weights (such as with magnitude)
might take a toll on hardware. It should not be too difficult for a few small networks.
However, sorting many weights might become a problem when the number of networks
increases.

21

Average magnitude differences For reasons relating to, e.g. different sets of training
data, one network might have much stronger weights than the other. If a magnitude-based
weight selection is used, this will strongly favour that one network. A possible solution
could be to normalize the weights of both networks before merging them. However, these
will have to be converted back to their non-normalized afterwards since nonlinear acti-
vation functions do not scale linearly with the normalized weights. Normalizing weights
would affect the performance because of these nonlinear activation functions.

Equal representation of multiple networks in a memory-constrained, distributed
environment Sparse Neural Networks can provide a solution to environments where
memory is in short supply. As stated before, a reduction in weights almost proportionally
reduces memory usage. However, when merging multiple networks, these networks will
all need to be loaded in memory. This might be impossible if there is not enough memory
available. Three options are then available, depending on the merging method used.

1. Merge SNNs sequentially. Given that at least two networks fit into memory, two
networks can be merged into one repeatedly until all networks are merged. Indicating
the merging method with the symbol ⊕, this can be expressed as the following formula

(A⊕B) ⊕ C

This does give issues with the merging methods average and random. Networks A and
B will first be merged into AB, where both have 50% representation. Next, AB and
C will be merged into ABC, resulting in a network where C will have an unfair 50%
representation compared to A and B, which are both 25% represented. This goes for
both average and random, since these do not have the commutative property. Magnitude
and addition do have this property, and can be merged sequentially.

2. Merge SNNs in parallel. Merging SNNs in parallel will solve the commutative problem
stated above. This can be expressed as the following formula

A⊕B ⊕ C

Merging multiple networks in this manner will work for all merging methods. However,
this might not be possible if not all networks fit into memory. One possibility might be
to load in and merge all networks weight by weight, thus reducing memory requirements.
Memory is not the only possible caveat with merging SNNs in parallel. In an extremely
decentralized setting, there is only ad hoc communication between nodes, where one can
never be sure when and how many networks will be submitted for merging. Parallel
merging requires all networks to be present. Networks coming in at a later time can only
be merged in sequentially.

3. Merge SNNs sequentially with equal representation. The formula in step 1 can be
modified to allow for sequential merging using average and random, while still ensuring
equal representation. This is achieved by tracking the number of networks already merged
and modifying the representation fraction of the next network. Given a merged network
X, consisting of k merged networks, and a new network A, the formula becomes

22

(1 − 1

k
)X ⊕ 1

k
A

Where the multiplication is applied before ⊕. For average, 1
k

indicates an actual number to
multiply the weights with. For random, 1

k
indicates the probability of selecting a weight

from network A. Note that when resparsification is applied using either magnitude or
random as the selection criteria, networks might still not have equal representation in the
merged network.

23

5 Data and network architecture

there are two phases which basically both use the same dataset and network structure,
but they do differ slightly. The similarities are explained here.

5.1 Data

Both phases make use of a (sub)set of the Fashion-MNIST dataset [42]. The Fashion-
MNIST dataset consists of 70.000 grayscale images of 28x28 pixels. There are 10 classes,
each class consisting of 6000 images for training and 1000 images for testing. Figure 6
displays nine samples from the dataset. The following items are present in the dataset :
T-shirt/top, Trousers, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot.

The Fashion-MNIST has been created in response to the improved performance on the
popular MNIST dataset. The Fashion-MNIST authors state that ”MNIST is too easy.
Convolutional nets can achieve 99.7% on MNIST. Classic machine learning algorithms
can also achieve 97% easily.”. A benchmark [5] on the Fashion-MNIST dataset has been
done using a good deal of popular classifiers, such as Support Vector Machines, K-Means
clustering, and Multi-Layered Perceptrons. Results show that most techniques achieve
accuracies between 75% and 87%.

5.1.1 Justification

The Fashion-MNIST dataset has been chosen because of the performance achieved in the
above-mentioned benchmark, as well as its widespread use. A quick search for ”Fashion
MNIST” on Google Scholar returns approximately 7000 results. It’s good to have a large
source of literature with which the results of the experiments can be compared, if needed.

Regarding the benchmark results; The networks that are to be trained should not reach
an accuracy close to 100%. This could’ve been the case with the MNIST dataset. Such a
high accuracy implies that the network used is too complex for the dataset, and that it has
redundant parts. The most interesting merging cases are where there is no redundancy
in these networks. This is because a merging method is forced to merge or choose critical
parts from these networks, which must influence the performance. On the other hand, if it
is tasked with merging highly redundant networks, it might happen that merging results
in a network that is built out of only redundant parts, which should be useless. It might
still be the case that there are large redundant parts in a network trained on Fashion-
MNIST, and that there is an upper bound on the accuracy of this dataset. However, the
fraction of redundancy of a network should be lower when trained on Fashion-MNIST
than when trained on MNIST.

On the other hand, the dataset should not be too complex for the small networks used
in the experiments. If the networks do not reach reasonable performance, the results of
a merged network might be difficult to interpret. A drop in performance of the merged
network might not be meaningful if the parents’ performance is already low. Performance
drops resulting from two well-performing networks will give more meaningful results and
conclusions.

Fashion-MNIST fits the requirements for this experiment. It is widely used, allows net-
works to be trained to reasonable performance, and has the added benefit that it does
not require a large amount of disk space. It might be interesting to compare the results

24

Figure 6: A sample from the Fashion-
MNIST dataset.

Figure 7: Network architecture used in
the experiments. C indicates the number
of classes, which differs per experiment.

of the experiments between Fashion-MNIST and another more complex dataset such as
CIFAR-10. However, that is outside the scope of this work.

5.1.2 Dataset usage

Both phases do not use the entire dataset but use different subsets instead. Specifics will
be given in the phases’ respective Data subsections.

5.2 Network architecture

A network consists of three layers. The first layer has 784 neurons since an image of the
Fashion-MNIST dataset has 28 · 28 = 784 pixels. The second layer has half the number
of neurons of the first layer, 392. The third layer has half the number of neurons of
the second layer, 196. The fourth and last layer has neurons equal to the number of
classes. This will be specified in the respective phases. All layers are connected through
the Sigmoid activation function. The network architecture is visualized in Figure 7.

25

6 Phase 1

Preliminary experiments have been done to show that the idea of merging sparse net-
works has substantiation. It also demonstrates the improvements that SET brings to
the training of Sparse Neural Networks. This section will first describe the data and
hyperparameters for this phase. Then, it will describe the performance of trained SNNs,
as well as the performances of merged SNNs. The results will show if merging methods
are able to capture the ’essences’ of two SNNs and merge these into one.

6.1 Methodology

12 SNNs have been trained with different techniques, hyperparameters, and three different
datasets. Datasets 1 and 2 will be mutually exclusive, and dataset 3 will be the aggregate
of 1 and 2. Specific trained SNN pairs will be merged together, with one network being
trained on dataset 1, and the other on dataset 2. The resulting merged network will be
evaluated on all three datasets, and the results will be used to analyze the capability of
the merging methods. The results should show how well the important parts of both
parents have been captured and if the merged network has a strong preference for a
dataset of either parent.

Important The merging method nothing has not been used in phase 1, since that
method was conceived in phase 2. This results in a total of 16 merging methods instead
of 25.

6.2 Data

Multiple subsets of the Fashion-MNIST data have been used. The first set contains
classes 0 to 4. The second set contains classes 5 to 9. The third set contains all classes,
0 to 9. All subsets contain per class 5000 training samples and 1000 test samples.

6.3 Network architecture

The 12 trained networks have a density parameter epsilon of either ε = 0.1 or ε = 0.5.
The number of weights in layer l is equal to ε · (lwidth + lheight). For example, the weight
matrix of the first layer has a width of 784 and a height of 392. This, given ε = 0.1,
gives 0.1 · (784 + 392) = 118 active weights. With a total of 784 · 392 = 307328 possible
weights, this gives a sparsity of 1 − 118

307328
= 0.9991. The second layer has a sparsity of

0.9992. The third layer has a sparsity of 0.9895. Sparsity has not been implemented for
biases. These are all dense.

6.4 Hyperparameters

The first 6 networks have been trained with ε = 0.1, the other 6 with ε = 0.5. For half the
networks, the SET evolution step has been disabled. This has been done to give another
good indication of the potential of the SET algorithm. Each subset of data has 4 networks
trained on it, 2 with SET enabled. Each network has been trained for 1500 epochs if
ε = 0.1, and 150 epochs if ε = 0.5, all with an exponentially decaying learning rate
starting at 30 and ending at 1. For the networks with SET enabled, evolution happened

26

id ε epochs dataset topology
1 0.1 1500 1 SET
2 0.1 1500 1 static
3 0.1 1500 2 SET
4 0.1 1500 2 static
5 0.1 1500 3 SET
6 0.1 1500 3 static
7 0.5 150 1 SET
8 0.5 150 1 static
9 0.5 150 2 SET
10 0.5 150 2 static
11 0.5 150 3 SET
12 0.5 150 3 static

Table 3: Enumeration of all networks trained

every 25 learning steps, with an exponentially decaying evolution rate starting at 50%
and ending at 10%. For clarification, all trained networks are listed and numbered in
Table 3.

6.5 Training performance

For all 12 networks, both the accuracy and loss have been plotted against the training
epochs. The figures and tables can be found in the Appendix on page 66.

6.5.1 Performance with ε = 0.1

The graphs in Figures 31, 32, and 33 clearly show that the networks that have SET
disabled are barely or not able to increase in accuracy, even though their losses decrease.
The 3 networks with SET enabled are all able to increase their accuracies. The loss plots
have clear bumps in them, indicating where evolution occurred. The networks with SET
enabled and trained on 5 classes reach 74% and 43% accuracy. The network trained on all
10 classes reaches 42% accuracy. Surprisingly, the network trained on 10 classes performs
just as well as the network trained on classes 5-9. One would expect that training on
double the number of classes will give worse performance. Final performances of all
networks on all datasets is listed in Table 7.

6.5.2 Performance with ε = 0.5

The graphs in Figure 34 to 39 show that all the networks are probably train on the
datasets, with and without SET. The networks with SET enabled, however, do reach
slightly higher accuracies. networks trained on 5 classes reach accuracies above 70%.
Interestingly, the network trained on classes 5-9 performs around as well as the network
trained on classes 0-4. This was not the case with ε = 0.1. This might just be bad luck,
given that SET is a random process. Final performances of all networks on all datasets
are listed in Table 8.

27

6.6 Performance after merging

An interesting case is to merge two networks trained on different classes and see how the
resulting merged network performs on all relevant classes. How does the merged network
perform compared to the two original networks? To test this case, two merged networks
have been created. The first merged network originates from networks 1 and 3, which
have ε = 0.1. The second merged network originates from networks 7 and 9, which have
ε = 0.5. In both cases, two networks that were trained on separate classes (datasets 1 &
2) are merged, and the resulting network is tested on all classes (dataset 3). Both the
accuracies and losses of all relevant networks are compared. Results of merged networks
are listed in Table 9 for ε = 0.1 and Table 10 for ε = 0.5. It is important to note that
the merged networks have not been pruned after merging, thus having around twice the
density of the original networks. Pruning has been omitted on purpose since its effects
on a merged network is unknown. It is important to first establish if merging networks
holds any merit before taking further steps.

The 4 merging methods (merging method nothing is not used) listed in 4.1 have been
applied to both the weights and the biases of networks. A total of 16 combinations have
been tested. Discussed below are the results for both values of ε.

6.6.1 Performance after merging with ε = 0.1

Performance of different merging methods The performances of the merged network
on dataset 3 is displayed in Table 9. The best accuracies and losses are obtained by
averaging the biases. This method performs significantly better than the other bias
merging methods. Averaging the biases gives around 20% better accuracies over random
merging, and around 10% better accuracies over magnitude and addition merging. The
weight merging method does not seem to have a large influence. The accuracies and losses
of magnitude, addition, and random merging is basically the same given a bias merging
method. This was foreseen in the section ‘Merging method similarity’ on page 21. The
average weight merging method seems to perform the worst, with an exception when the
biases are chosen randomly. Interestingly, the combination with the lowest loss (average
- average) does not have the highest accuracy.

Performance compared to original networks The best accuracy obtained on dataset
3 by the merged network with ε = 0.1 is approximately 30% with a loss around 2.52. This
is not bad compared to the results of the original networks 1 and 3, with respectively 37%
and 22% accuracy. The merged network seems to have the average performance of these
two networks. It is however not as good as network 5 with an accuracy of 43%, which was
trained directly on dataset 3. Ideally, it would combine the classification performance of
both networks 1 and 3, resulting in an average accuracy of (0.74 + 0.43)/2 = 59%, but
unfortunately, this is not the case. Looking at the loss of around 2.52, it is much lower
than networks 1 and 3, with a respective loss of 6.84 and 6.34. Again, network 5 performs
better with a loss of 1.48.

6.6.2 Performance after merging with ε = 0.5

Performance of different merging methods The performances of the merged network
on dataset 3 is displayed in Table 10. The best accuracies and losses are obtained by
averaging or adding the biases. These two methods give around 10% higher accuracies

28

than the two other bias merging methods. Just as with ε = 0.1, the weight merging
method does not seem to have a large influence. In this case, the combination with the
lowest loss (average - average) also has the highest accuracy.

Performance compared to original networks The best accuracy obtained on dataset
3 by the merged network with ε = 0.5 is approximately 35% with a loss around 1.92. This
is worse than the two original networks 7 and 9, with a respective accuracy of 40% and
45%. It is also much worse than network 11, which was trained directly on dataset 3, with
an accuracy of around 78%. Looking at the loss of 1.92, the merged network performs
significantly better on dataset 3 compared to networks 7 and 9, with a respective loss of
6.15 and 6.26. The merged network has more than three times the loss of network 11
with a loss of 0.60.

6.7 Summary

The results show that merging two SNNs trained on two different datasets can lead to a
merged SNN that is able to predict from the aggregate of both datasets. This means that
the used merging techniques are able to capture the discriminative essence of both SNNs
and place these into a single SNN. Performance of the merged SNN is however strongly
dependent on the merging technique used, indicating that some techniques better capture
the essence of both SNNs than others. Results also show that the technique chosen to
merge biases has a more substantial impact on performance than the technique chosen
to merge weights. This can be explained by the fact that three out of the four merging
techniques are identical in their function if both SNNs do not have weights at the same
places, which is highly likely at high sparsities. Comparing the merged SNN to the
SNN trained directly on dataset 1 and dataset 2, the merged SNN performs considerably
worse. This leads to the conclusion that even though the merging techniques do manage
to capture some of the essences of both SNNs, they are still lacking.

29

7 Phase 2

7.1 Phase 1 to phase 2

Results from phase 1 have shown that it is possible to merge two SNNs in such a way
that the essence responsible for their performance is preserved in the merged SNN. The
question remains what this essence entrails. What makes a neural network perform well?
This question sparked the development of SNNs in the first place, in 1989. By process
of elimination, researchers tried to figure out what made an SNN work. Research such
as the Lottery Ticket Hypothesis and SET indicates that it is a combination of topology
and weights that play well together. I expect that research into the merging of SNNs
will correspond closely with this question about the essence of neural networks, about
what makes neural networks work. If we want to merge SNNs successfully, we must first
understand this essence before manipulating it.

To get closer to the answer of this question, it might be a good idea to see how well
the merging methods perform while trying to take out as many other factors as possible.
This includes the three different datasets that were used in phase 1. Merging results from
phase 1 showed that the merging method magnitude gives a relatively good performance.
However, does this mean that stronger weights are important in a neural network? Or is
this because of some unforeseen side-effect from merging two SNNs trained on different
datasets? It might be possible that one dataset leads to much stronger weights in a
network, thus influencing the outcome of the merging method magnitude.

Before asking ourselves if merging two SNNs into one can perform well on two datasets
(as tested in phase 1), we should ask ourselves a more rudimentary question. Can two
SNNs, that differ only in topology, be merged together, without losing performance?
Merging two SNNs that differ only in topology is the most basic scenario. It takes all
other influences out of the experiment. This thought process led to the setup of phase
2. Phase 2 attempts to merge pairs of SNNs that differ only in their topology. All other
factors such as dataset and hyperparameters are always equal between two SNNs about
to be merged. A total of 63.000 merged neural networks are analyzed to get a better
picture of the performance of the merging methods.

Changes between phase 1 and phase 2 Some changes were made to the method-
ology before phase 2 was started. First, the merging method nothing was added as a
baseline. This increases the total number of merging method combinations from 16 to
25. Second, the NNSTD metric was added. This metric will be used to better analyze
the results from phase 2. Unfortunately, NNSTD could not be retroactively added to
phase 1.

7.2 Methodology

To explore the capability of merged SNNs to retain the parents’ performance, numerous
SNNs have been trained, evaluated, and merged in pairs. Subsets of the Fashion-MNIST
dataset have been used for training and evaluation. Sparsity level is the only variable
hyperparameter in this experiment. 12 sparsity levels have been selected, ranging from
0.00 (all weights present) to 0.99 (missing 99% of all weights). 20 networks have been
trained for each sparsity level 0.00, 0.10, 0.20. 0.30, 0.40, 0.50, 0.60, 0.70, 0.80. 0.90,

30

0.95, 0.99, resulting in a total of 240 trained networks. Note that sparsity is applied
per network layer. If the sparsity is applied on the entire network, it can happen that
one layer is stripped of all weights, thus crippling the network. For each sparsity level,
these 20 networks have been paired (including with itself), resulting in 210 network pairs
per sparsity level. Each pair has been merged using one of the 5x5 proposed merging
methods (page 20), giving 5250 merged SNNs per sparsity level, resulting in a total of
63000 merged SNNs.

12 sparsity levels x 210 network pairs x 25 merging methods = 63000 merged SNNs

The performance (accuracy and loss) of the merged SNNs are evaluated on the evalu-
ation subset of Fashion-MNIST. Next to these metrics, the distance between the merged
SNNs and their original SNN pairs has been measured using the NNSTD metric (page
17). These results are then used to analyse the effectiveness of each proposed merging
method.

7.3 Data

Five classes were selected from the Fashion-MNIST dataset : T-shirt/top, Trouser,
Pullover, Dress, and Coat. For each class, 1000 train samples and 100 test samples
were taken. In contrast to phase 1, phase 2 trains all networks on the same dataset.

7.4 Network architecture

Trained networks are exactly as described in section ‘Network architecture’ on page 25,
with 5 output neurons corresponding to the 5 selected Fashion-MNIST classes.

7.5 Hyperparameters

All networks have been trained on the same dataset and with the same hyperparameters
(except for sparsity level).

Training epochs Each network has been trained for at most 1500 epochs. Suppose at
any point during training, a network passes the threshold of 85% accuracy on the test
set. In that case, the training will terminate after 200 extra epochs or if it reaches 1500
epochs, whichever arrives first. This has reduced training time by around 60%.

Learning rate and evolution rate The learning rate is 1 at epoch 0, exponentially
decaying to 0 at epoch 1500. The evolution rate, which indicates the fraction of the
weights to replace during network evolution, is 0.5 at epoch 0, and exponentially decays
to 0 at epoch 1500. Both rates can be seen in Figure 8.

Evolution Evolution of the network happens every 50 epochs, according to the SET
algorithm by Decebal et al [26]. At evolution, a certain amount of weights are deacti-
vated, starting with the weights that have the lowest magnitude. After this step, the
exact same amount of inactive weights are randomly chosen and activated. Note that
a weight that is being activated might very well be a weight that was just deactivated.
Evolution happens on a per-layer basis, meaning that weights can not move from one

31

Figure 8: Learning rate and evolution rate
per epoch.

layer to another. A layer will always have the exact same amount of active weights before
and after evolution. Given a sparsity level s, evolution rate e, and the number of weights
in a layer n, the exact number of weights affected during evolution equals n(1−s)e. This
means that denser networks will have more weights affected during evolution. Weights
are not reset on deactivation but keep their current value. This leads to evolution having
no effect on completely dense networks, as will be further explained in 7.6.3. Note that
this is not possible in a truly sparse setting, since deactivated weights will have to be
removed from memory. Biases are fully dense, and not subjected to evolution.

7.6 Training Results

7.6.1 Early stopping

As can be seen in Figure 11(c), all sparsity levels except for 0.99 reach an average accuracy
of 85% before 250 epochs, and settle around 87% accuracy. Networks might have reached
a slightly better accuracy if trained for the full 1500 epoch. However, since reaching
the best performance on trained networks is not part of this experiment, slightly better
accuracy is irrelevant for this research.

7.6.2 Accuracy and loss over time

Figure 12 shows the final accuracy for all trained networks. Figure 10 contains four
plots showing the accuracy (left) and loss (right) of all trained networks over all epochs.
Figure 11 contains six plots which show the average accuracy and learning rate, as well
as a moving average of the standard deviation, with a window size of 10. The standard
deviation has been plotted around a moving average of the loss and accuracy, also with
a window size of 10. This has been done to make the standard deviation plot smoother
and give a clearer picture.

Epoch cutoff on Figure 11. The plots in Figure 11 are plotted up to the lowest
final training epoch per sparsity level. For example, if 1 network at sparsity level 0.70
required 250 epochs to finish training, and all other 19 networks at sparsity level 0.70

32

required 350 epochs, then the average will still be plotted to only 250 epochs, thereby
discarding the last 100 epochs of all the other networks. This has been done not to give
a wrong depiction of the average accuracy and loss in the later epochs. As can be seen
in Figure 10(c), networks tend to become unstable and fluctuate strongly in their loss
and accuracy. When the number of networks that are being averaged start dropping,
this instability starts showing itself in the average. This average then suggests that all
networks experience the same peaks and drops simultaneously, which is not the case.

Final accuracy Figure 11(c) shows that all but the sparsest networks reach the 85%
accuracy threshold somewhere between 50 and 250 epochs on average. This is quick
compared to the 1500 epochs training limit. Only the networks with sparsity level 0.99
take quite some time to reach this accuracy, somewhere between 600 and 1500 epochs.
Figure 12 shows that even though networks with a higher sparsity level take longer to
reach a certain accuracy, all networks stabilize around 87%, with just 3 outliers out of
240 total networks. This indicates that 87% accuracy is the limitation of the network on
this dataset, given all the hyperparameters. With even networks with sparsity level 0.99
reaching this accuracy limit, it’s certainly possible that there are even higher sparsity
levels that would be able to reach the accuracy limit.

Accuracy vs loss While basically all networks can reach an accuracy of 87%, they
do not all reach the same amount of loss. Figure 11(b) shows that on average, denser
networks are able reach a lower loss faster before terminating training. Comparing the
accuracy of Figure 11(c) against the loss of Figure 11(d) shows that after around epoch
100, the accuracy for most sparsity levels start plateauing, even though the loss is still
decreasing. This implies overfitting of the networks, and again suggests that sparser
networks should be able to train on this dataset as well. Figures 11(a) and 11(b) show
that only for the lowest sparsity level .99, the accuracy and loss start plateauing around
the same time, suggesting that this level of sparsity might be close the the maximum
sparsity the network can handle before not being able to reach the suggested limit of 87%
accuracy.

7.6.3 Influence of evolution on loss and accuracy

As stated in above in the Hyperparameters section 7.5, evolution of the network occurs
every 50 epochs. Since trained, activated weights possibly get swapped out for untrained,
deactivated weights, one would expect a jump in loss and a drop in accuracy around
every 50 epochs. Figure 11(e) and 11(f) show that this is indeed the case, especially
in early epochs where the evolution rate is relatively high. Figure 11(f) shows a spike
in loss when evolution happens. This spike is stronger for more sparse networks. The
reason for this may be that the probability that an activated weight gets replaced with a
deactivated weight is higher for sparser networks, as will be explained later on. The figures
do not show a drop in accuracy, but merely the plateauing for a handful of epochs for
the networks with higher sparsity levels. A possible explanation might be that, combined
with the spike in the loss, the weights deactivated during evolution had some influence
on the class prediction but were not decisive. Deactivating these weights was not enough
to flip class predictions but enough to change the loss landscape in such a way that the
network has to train some more to get back at where it was before evolution. Once it
again reaches that point, it can continue increasing its accuracy.

33

One exception to the general trend of spikes in loss and plateauing accuracies can be seen
at sparsity level 0.99. There is a very slight bump in the loss, nowhere near as extreme as
at sparsity level 0.95. A plateauing in accuracy cannot be determined since the accuracy
was already plateaued before evolution occurred. This might explain the missing spike
in loss since no improvement in both accuracy and loss hints at a relatively flat loss
landscape, thus minimizing the effect of moving around on that landscape because of
evolution.

Weight deactivation probability The probability that an activated weight is selected
for evolution equals the evolution rate e. The fraction of all deactivated weights equals
the sparsity level s. The fraction of all weights, including deactivated weights, that are
selected for evolution equals f = (1−s)e. The probability that an active weight, selected
for evolution, is not again selected for activation equals 1− f

s+f
. The probability that an

active weight gets selected for evolution and is consequently deactivated equals

e · (1 − f

s+ f
) = e · (1 − (1 − s)e

s+ (1 − s)e

Figure 9 shows a heatmap of weight deactivation probabilities for different evolution
rates and sparsity levels. It shows that at higher evolution rates, weights in a sparser
network have a higher probability of being deactivated. Note that for the completely
dense network, the deactivation probability equals 0 regardless of the evolution rate.
This makes sense, since there are no deactivated weight available to possibly replace the
currently activated weights. Since networks with a higher sparsity level have a higher
probability of weight deactivation, it follows that evolution will have a stronger impact
on both their accuracy and loss.

Figure 9: Weight deactivation probability for different evolution rates and sparsity levels.

network instability As can be seen in Figures 10(c) and 10(d), the more dense net-
works start becoming more unstable after reaching the accuracy threshold of 87%. Both
their accuracy and loss start spiking heavily. The spikes in accuracy might be attributed
to overfitting, but this does not confirm with the spikes in loss, which should still be going
down. The spikes in loss are extreme, sometimes even higher than the original loss before

34

training. This can be clearly seen in Figure 10(b). These spikes in accuracies and losses
are also short-lived. Most spikes are gone by the next training epoch. Figures 10(c) and
11(d) clearly show the the higher standard deviation on both the loss and accuracy for
higher density networks. The reason for these spikes is still unknown. Evolution can not
be the cause, since that only happens every 50 epochs, and the spikes are spread out over
all epochs. Even though the denser networks are more unstable, Figure 12 shows that all
but three networks reach around 87% accuracy. The most likely explanation is that the
learning rate was still too high at those epochs.

(a) Accuracy over all networks and epochs (b) Loss over all networks and epochs

(c) Accuracy over all networks for epochs 0
to 500

(d) Loss over all networks for epochs 0 to 500

Figure 10: Per sparsity, accuracy (left column) and loss (right column) per epoch.

35

(a) Average accuracy over all epochs (b) Average loss over all epochs

(c) Average accuracy over epochs 0 to 500 (d) Average loss over epochs 0 to 500

(e) Average accuracy over epochs 30 to 120 (f) Average loss over epochs 30 to 120

Figure 11: Per sparsity, average accuracy (left column) and loss (right column) per epoch.
The shaded areas indicate a moving average, size 10, of 1 standard deviation. Per sparsity,
the number of displayed epochs is limited to the network with the lowest number of
training epochs.

36

Figure 12: Final accuracy and NNSTD-
Original distance for every network.

7.7 Merging Results

To keep the following sections readable, the following nomenclature is used.

magnitude average : References all merged SNNs where the magnitude merging method
was applied to the weights, and the average merging method was applied to the biases.

addition * : References all merged SNNs where the addition merging method was applied
to the weights.

* nothing : References all merged SNNs where the nothing merging method was applied
to the biases.

* * : References all merged SNNs.

7.7.1 Best overall performance

Figure 13 shows two heat maps of both the accuracy and loss for all 25 merging methods.
For each merging method, the average accuracy and loss is calculated over 12 sparsity
levels x 210 merged networks = 2520 values.

Best layer merging method Looking at the accuracy heat map in Figure 13, on
average, the best layer merging method is magnitude, closely followed by addition. All
magnitude * SNNs performs equal or just 1% better compared to addition *. The third
best is random *, which shows an accuracy around 10% lower over all bias merging meth-
ods, compared to magnitude * and addition *. After this follows average *, which shows
an accuracy around between 5% and 10% lower over all bias merging methods compared
to random *. The same order of performance goes for loss as well; magnitude *, addi-
tion *, random *, average *. Interestingly, although the accuracy between magnitude *
and addition * is the same, the loss for magnitude * is in all cases around 10% lower
compared to addition *.

Best bias merging method The accuracy difference between the bias merging meth-
ods * magnitude, * average, and * addition, is almost negligible, except at average *.
There is also almost no difference in accuracy between * random and * nothing. Figure

37

Weights Biases
Accuracy Loss Accuracy Loss

Magnitude Magnitude Average Average
Addition Addition Magnitude Magnitude
Random Random Addition Addition
Average Average Random Nothing
Nothing Nothing Nothing Random

Table 4: Ranking of all merging methods according to Figure 13. The methods are sorted
in descending order, with the best performing method at the top.

13 shows that over all layer merging methods, * average gives the best accuracy, followed
by * magnitude which only underperforms at average * by 5%. The third best bias merg-
ing method is * addition which, again, underperforms at average *, by 6%. The fourth
bias merging method is * random, which performs around 3% worse than * addition. At
the bottom is the bias merging method * nothing, which performs around 1% worse than
* random.

Looking at the loss in Figure 13, the trend is almost the same. The only difference is
that * nothing now slightly outperforms * random. Looking at * addition and * average,
their accuracies are almost equal but the loss from * addition is higher. Ignoring the
layer merging method nothing *, the heat map shows no other interesting observations
on the bias merging method regarding the loss.

Best merging method The previous two paragraphs, together with Figure 13, deter-
mined the merging method ranking in Table 4. The best methods are at the top and the
worst methods are at the bottom. The overall best merging method, looking at accuracy,
is either magnitude average or magnitude magnitude. The best overall merging method,
looking at loss, is magnitude average. Thus, it can be concluded that overall, the best
merging method is magnitude average.

Layer : nothing The results show very poor performance for any nothing * SNN. For
all of these, the accuracy is 0.20. With only 5 classes that are equally represented, this
means that the merged networks are dead set on always choosing a single specific class,
regardless of the input given. These merged networks are completely useless. nothing *
SNNs always giving the same output is simply explained by the fact that these networks
have no weights, meaning that the input is completely disregarded. The output is then
dependent on only the biases in the last layer of a network. Since biases are constant,
the output will also be constant.

The corresponding loss is also very high compared to other merging methods. Interest-
ingly, even though the accuracy is the same across all five bias merging methods, the
losses are not. Using nothing addition, the loss is highest with 5.40. Nothing nothing
gives the lowest loss at 2.30. The worst layer merging method is nothing *, and given
that, the best bias merging method is then * nothing. Figure 14(b) gives a more nuanced
illustration about the loss for nothing *. It shows that networks with a sparsity between
.60 and .80 have the highest loss. Networks with the lowest sparsity levels also have the
lowest losses.

38

Bias : nothing * nothing SNNs are not as heavily affected as nothing * (except for the
merging method nothing nothing). Whereas using nothing * completely renders networks
useless, using * nothing merely slightly affects network performance. For each layer
merging method in the accuracy heat plot of Figure 13, the * nothing SNNs have the
lowest accuracy out of the five bias merging methods. The loss does not show the same
trend. The same networks do not necessarily have the highest loss out of the five bias
merging methods. It shows that the bias is not critical in these networks, but only
gives a relatively small accuracy increase. Of course, this does not imply that bias will
always play a small role in every merged network. Figure 14(b) does not give interesting
observations on this matter.

7.7.2 Impact of layer merging method and bias merging method

Figure 14(a) gives an indication of the impact that the layer-, and bias merging methods
have, on average. The maximum impact and average spread of all methods on accuracy
have been listed in table 5. The table shows that switching bias merging methods will
have more impact on the accuracy than switching layer merging methods. Except for
average, all methods have larger maximum differences and spread when switching the
bias merging method, than when switching the layer merging method. Figure 14(a)
shows that the bias has more impact at higher sparsity levels. This makes sense since the
bias has more representation. Still, the non-bias weights have the majority, and it would
be reasonable to suggest that these should make the larger impact.

At low sparsity levels, the bias only makes up a tiny part of all the weights, and the layer
merging methods do not act the same, as they do at higher sparsity levels. Therefore, at
lower sparsity levels, switching the layer merging method should have the most impact. At
high sparsity levels, the bias makes up a larger part of all the weights and the layer merging
methods start acting the same (4.2). Therefore, at higher sparsity levels, switching the
bias merging method should have the most impact. This is supported by Figure 15
supports this. At low sparsity levels (0.00, 0.10), changing the bias merging method barely
makes an impact. Changing the layer merging method from magnitude * to random *
results in a 20% performance drop. At high sparsity levels (0.95, 0.99), changing the
layer merging method barely makes an impact. Changing the bias merging method from
* addition to * random results in a 15% performance drop.

In summary, at lower sparsity levels, the layer merging method has the most impact. At
higher sparsity levels, the bias merging method has the most impact. It is unclear where
exactly the border lies between these two.

7.7.3 Support for SET

Table 4 shows that, looking at accuracy, average * performs worse than random *, and
that magnitude * performs better than random *. average * will sometimes result in
stronger weights than random *, sometimes weaker. magnitude * will always result in
weights stronger or just as strong as random *. It follows that stronger weights leads to
better performance. This conclusion is also what powers the SET algorithm. The results
found in the SET-paper [26] and these experiments seem to agree with each others.

39

layer merging method addition * average * magnitude * random *
maximum difference 0.05 0.13 0.05 0.07

spread (1 std) 0.02 0.05 0.02 0.03

bias merging method * addition * average * magnitude * random * nothing
maximum difference 0.18 0.09 0.14 0.17 0.17

spread (1 std) 0.07 0.04 0.06 0.07 0.07

Table 5: Impact of different merging methods on the accuracy, according to Figure 13.
Maximum difference gives the difference between the highest and lowest accuracy for that
method. Spread gives the spread (1 std) over all values for that method. Nothing * has
not been included since it is meaningless (see 7.7.1 layer:nothing) and skews the results
for the bias merging methods. This table shows that switch the bias merging method
will have a larger effect on performance than switching the layer merging method.

7.7.4 Merging methods at sparsity levels

Support for SET As stated in section 4.2, at higher sparsity levels, the merging meth-
ods magnitude, addition, and random start giving the same merging results. This is not
immediately reflected by the accuracy heat map in Figure 13, which shows that on aver-
age, random * underperforms to magnitude * and addition *. However, looking at the
more nuanced parallel coordinate plot of the accuracy in Figure 14(a), this statement
is indeed correct. At higher sparsity levels, the accuracy for these three layer merging
methods are nearly identical. Only at lower sparsity levels does the performance of ran-
dom * drop drastically, down to around 55% for the fully dense networks. The difference
between accuracy at the highest sparsity level and lowest sparsity level for random * is
over 25%. For magnitude * and addition * this is 15%, at most. The specific data for
this observation has been extracted from Figure 14(a) and highlighted in Figure 15. It
clearly shows the performance drop at the random layer merging method at lower sparsity
levels.

Why does random * work worse at denser merged SNNs? The lottery hypothesis states
that a fully dense network can be seen as containing a large number of sparse networks.
Whereas addition * and average * modify the weights, magnitude * and random * only
pick weights. At higher sparsity levels, random acts more like magnitude, as explained in
4.2. At lower sparsity levels, random * has to more often choose from multiple weights
instead of picking the single available weight. This could be seen as selecting one of
the sparse subnetworks that are present in a more dense network. The data would then
suggest that magnitude * is better than random * at selecting these sparse subnetworks,
and that therefore, selecting weights based on magnitude is the best method. This once
again supports the results found in the SET paper.

Impact of bias between sparsity levels Figure 14(a) shows that some methods work
better at higher sparsity levels, while others work better at lower sparsity levels. This can
be clearly seen when comparing average addition and average average. average addition
works better for low sparsity levels, while average average works better for high sparsity
levels. On average these two methods differ by 11%, as seen in Figure 13. Figure 14(a)
however shows that the difference between these two methods is over 15% at the highest

40

Figure 13: Each square represents a single merging method. For each merging method,
the average accuracy (left) or loss (right) over 12 x 210 = 2520 networks is given. ”layer”
indicates the layer merging method used, and ”bias” indicates the bias merging method
used.

sparsity level, and around just 1% at the lowest sparsity level. It makes sense that the
bias merging method has more effect on the performance of sparser networks, since the
bias will have more representation. It is not yet clear why different bias merging methods
give different performance results depending on the sparsity.

Why does average magnitude perform worse at higher sparsity levels? Since the bias has
more impact at higher sparsity levels, and average magnitude selects the strongest biases,
this might indicate that selecting the strongest biases is not a good idea. However, the
opposite can be seen at addition magnitude and magnitude magnitude, so maybe it is a
good idea.

7.7.5 Inconsistent result at average addition

Average addition shows an interesting result. At addition addition, magnitude addition,
and random addition the performance increases as sparsity levels rise. Average addition
shows the exact opposite. As sparsity levels rise, performance drops. The only difference
between average * and the other three methods is that at high sparsities, average *
weakens the strongest weights, while the other three methods all act like magnitude *
and pick the strongest weights. The conclusion is then that the bias merging method
* addition only works well when the strongest weights are selected. Why this happens is
not clear to me.

7.8 Performance and NNSTD-original

The relation between merged network performance and its NNSTD-original to its parents
can be measured. Merged networks come with two NNSTD-original values, indicating

41

(a)

(b)

Figure 14: For all sparsity levels and merging methods, average accuracy (top) and loss
(bottom) over 210 merged networks

42

Figure 15

Figure 16: Sparsity levels 0.00, 0.10, 0.95, and 0.99. Layer merging methods magnitude,
addition, and random. Average accuracy over 210 merged networks. This parallel coordi-
nate plot shows how at higher sparsity levels these three layer merging methods perform
the same, and how at lower sparsity levels random drops in performance significantly.
Section 4.2 gives a possible explanation for this phenomenon.

the structure similarity to both of its parents. If high performance is correlated with low
NNSTD-original to one or both parents, it might give an estimate of how merging might
impact performance. If a merged network has a small NNSTD-original to one parent and
a large NNSTD-original to another parent, it can show how merging methods favor one
network over another.

Excluded results Two sets of merged networks have been taken out of the results
in this section. The first set consists of the dense networks. These networks have an
NNSTD-orginal of 0 to both parents, and therefore, looking at this is pointless. The
second set consists of all networks applying the layer merging method nothing. These
networks have an NNSTD-original of 1 to both parents. Looking at these numbers is also
useless.

A note before the Figures 19(a) and 19(b) are evaluated. It’s important to notice that
the circles tend to overshoot, and that the top of a circle does not indicate the highest
accuracy.

7.8.1 Accuracy and NNSTD-original

Relationship between NNSTD-original variance and sparsity levels As the
sparsity levels increase, the spread of NNSTD-original increases as well. Looking at

43

Figure 19(a), the horizontal diameters of ellipses increase as sparsity level rises. The
horizontal diameters change most drastically between the sparsity levels .95 and .99.
This can also be seen in Table 6, which gives the average horizontal diameter per sparsity
level. The average horizontal diameter slowly increases, even stabilizes halfway, and then
sharply increases at the end.

Inconsistency between actual NNSTD and expected NNSTD The reason that
the NNSTD-original values go up when sparsity levels go up is simply that the probability
that two highly sparse networks have overlaying weights is lower. For two networks
below a sparsity level of 0.50, it isn’t even possible to not have overlapping weights.
NNSTD increasing when sparsity increases has also been shown with the formula in
section ‘Expected NNSTD values for two arbitrary networks with the same sparsity’ on
page 19. There is however one inconsistency. While both the formula and the results show
an increase in NNSTD, they don’t show the same increase. For example, at a sparsity
level 0.95, the formula expects an NNSTD of approximately 0.97. The results in Figure
20 show an NNSTD of approximately 0.67. Similarly, Figure 19(a) show lower NNSTD
values for all sparsity levels than what would be expected, looking at Table 2.

The data implies that in basically all cases, the weights of the two parent networks are
not completely random and thus not independent. This would explain the difference
between the results and the formula since the formula assumes that two networks are
independent. The two networks are not independent because they train on the same
dataset. An explanation can be found in their Sparse Connectivity Pattern. Mocanu et
al. have shown [27] that when an SNN is trained using SET, the first layer connects the
most weights to the most important features. SET implicitly develops a feature selector
when training SNNs. Figure 17 by Mocanu et al. shows an example of this phenomenon.
The two figures on the left show the Sparse Connectivity Pattern at SNN initialization.
The brightness indicates the number of connected weights to that specific pixel. The
middle two pictures show this pattern after 150 epochs, and the two rightmost pictures
show the pattern after 5000 epochs. At the rightmost pictures, the pixels at the border
barely have any weights connected to them. All weights seem to be focused in the middle.
This makes sense, since this is where the numbers are drawn. The pixels at the border
barely contain any information.

This Sparse Connectivity Pattern can explain the dependence between two SNNs trained
on the same dataset using SET. Both networks will focus on the same important pixels
in the middle, while both also ignoring the pixels at the border. This in turn leads to
more overlap when merging, leading to lower NNSTD results. This assumption can be
confirmed by plotting the Sparse Connectivity Pattern for all trained networks, but this
can unfortunately not be done due to time constraints. Instead, the Sparse Connectivity
Pattern has been plotted for three networks, at three different moment, trained with
different sparsity levels. The results can be see in Figure 18. The figure confirms that the
networks prefer to connect to the pixels in the centre of the images. The pixels on the left
and right side of the images are largely ignored. Looking at a few of the Fashion-MNIST
samples in Figure 6, it can indeed be seen that there is often no information on these
sides.

44

Figure 17: Sparse Connectivity Pattern for the first layer of an SNN, trained on the
MNIST Dataset. Mocanu et al. have shown [27] that SNNs act as feature selectors, by
connecting weights to the most important features.

Sparsity .10 .20 .30 .40 .50 .60 .70 .80 .90 .95 .99
Diameter .006 .011 .017 .018 .018 .015 .017 .027 .035 .057 .132

Table 6: For each sparsity, average diameter over all ellipses drawn in Figure 19(a). At
sparsity level .99, strong jump can be seen from .057 to .132

7.8.2 Grouping ellipses by layer merging method

Figure 19(b) shows the same data as in Figure 19(a). However, it is now grouped by both
sparsity level and layer merging method. The four different layer merging methods have
all received different colors. This means that the corresponding sparsity level in Figure
19(b) can now not be seen anymore, but should be induced from Figure 19(a). More
importantly than sparsity levels, the layer merging methods show a clear pattern over all
sparsity levels.

Difference in accuracy consistency Looking at Figure 19(b), a quick observation
can be made for each layer merging method regarding accuracy between sparsity levels.

Magnitude * shows consistent accuracy up to sparsity level 0.70. The green circles range
from around 0.7 to around 0.85. After that, the accuracies start significantly spreading
out.

Addition * shows consistent accuracy up to sparsity level 0.70. The red circles range

45

Figure 18: Sparse Connectivity Pattern for the first layer of three networks, trained on
the Fashion-MNIST Dataset. The networks have been trained on sparsity levels 0.50,
0.90, 0.99. Snapshots have been made at epoch 0 (initialization), epoch 300, and epoch
1500 (end of training).

from around 0.7 to around 0.85. After that, the accuracies start significantly spreading
out.

Average * shows almost consistent, slightly upwards accuracy up to sparsity level 0.70.
The performance of Average * increases slightly as the sparsity level rises, which can be
seen when looking at the blue circles. These blue circles move slightly upwards.

Random * shows an upward accuracy when the sparsity level increases. This continues up
to around a sparsity level of 0.70. After that, the accuracies start significantly spreading
out.

NNSTD-original At every sparsity level, the layer merging method magnitude can be
seen in the top-left, with addition and average at a slightly higher NNSTD-original value.
Right next to that, at again a slightly higher NNSTD-original level, random can be seen.

46

Accuracy Magnitude and addition have the highest accuracies and lowest spread in
accuracy. Average has the largest spread in accuracy, and data points both at the top
and bottom of accuracy values. Random has a slightly less accuracy spread compared to
average, and its accuracy values are more centred around the mean.

At the higher sparsity levels, the ellipses start overlapping and the results are difficult
to see visualize. Therefore, the results for sparsity level 0.90, 0.95, and 0.99 are plotted
more clearly in Figure 20. At sparsity levels 0.90 and 0.95, the pattern that can be seen
at lower sparsity levels starts to disappear. The ellipses for magnitude, addition, and
random almost overlap. For sparsity level 0.99, these three ellipses overlap completely.
This is in line with the explanation in section 4.2. Sparsity level 0.99 has results spread
out over the same range as sparsity levels 0.90 and 0.95 combined, both over accuracy
and NNSTD-original. As stated before, the overlap is explained in ‘Merging method
similarity’ on page 21.

NNSTD overlap between sparsity levels 0.90 and 0.99 Figure 20 zooms in on
the accuracies and NNSTD values at the highest sparsity levels. The figure shows that
for both sparsity levels 0.90 and 0.99 the NNSTD ranges between 0.60 and 0.70. Sparsity
level 0.99 has a larger spread than 0.90. This contradicts the expected NNSTD values
predicted in section ‘Expected NNSTD between two SNNs’ on page 18. NNSTD val-
ues not conforming to expectation have already been discussed before, but overlapping
NNSTD values have not. How can it be that for some networks at sparsity level 0.99,
they have a lower NNSTD value than some networks at sparsity level 0.90.

One explanation for this can be found again in the feature selection phenomenon as
discussed above, in combination with the number of training epochs. Figure 10(a) shows
that the networks at sparsity level 0.99 train at least twice as long as the network at
sparsity level 0.95. This means that these networks also go through twice the evolution
steps. This in turn means that these networks have more opportunities to connect weights
to the most important features, and thus lower their NNSTD.

47

(a) Relationship between accuracy and NNSTD-original. One ellipse represents 1 sparsity level,
1 merging method, and 190 network combinations. An ellipse covers a confidence interval of 2
standard deviations. It’s important to notice that the circles tend to overshoot, and that the
top of a circle does not indicate the highest accuracy.

(b) Relationship between accuracy and NNSTD-original. One ellipse represents 1 sparsity level,
4 merging methods with the same layer merging method, and 760 network combinations. An
ellipse covers a confidence interval of 2 standard deviations. It’s important to notice that the
circles tend to overshoot, and that the top of a circle does not indicate the highest accuracy.

Figure 19

48

Figure 20: Relationship between accuracy and NNSTD-original. One ellipse represents 1
sparsity level, 4 merging methods with the same layer merging method, and 760 network
combinations. An ellipse covers a confidence interval of 2 standard deviations.

49

(a) For all sparsity levels and merging methods, average accuracy over 210 networks

(b) For all sparsity levels and merging methods, average accuracy over 210 networks

50

8 Phase 2 - Extended research

Phase 2 has shown that the best layer merging method is magnitude *. There is a
possibility that the merged network resembles one parent much more than the other. The
high resemblance to one of the parents, which has a good performance, could explain the
good performance of the merged network. A reason for the merged network having a high
resemblance to one of the parents could be that one parent has weights with a relatively
strong magnitude compared to the other parent. If the magnitude merging technique
is chosen, the weights from that one parent would then be preferred over the weights
of that other parent. To combat this, one could apply normalization to the weights
of all networks before merging. The normalization of weights might give a more fairly
distribution of selected weights over both parents.

Bias-variance tradeoff When training a neural network, it is important that a good
balance between underfitting (bias) and overfitting (variance) is achieved. Underfitting
results in networks that do not adequately capture the relation between input and output.
Overfitting results in networks that model the given data, but not the underlying patterns.
It remembers the mapping from input to output instead of learning the relationships
between input and output.

Bias variance decomposition shows that the loss of a network can be decomposed into
three components: bias, variance, and noise. For the mathematics behind this, I would
like to point the reader to the book Pattern Recognition and Machine Learning 2006,
section 3.2 The Bias-Variance Decomposition, formula 3.41 [6]. Loss from noise is inherent
to the dataset, and can not be eliminated. That leaves the loss from bias and variance. A
tradeoff, or good balance, has to be made, which is called the bias-variance tradeoff. Since
neural networks are prone to overfitting, one will often work with regularization methods.
These can be applied to control overfitting in models. Examples are the L1 norm and
L2 norm that apply penalties to the loss function based on the value of the weights,
and stopping training when the loss on the test set increases. Two other regularization
methods, that both touch the same subject as merging neural networks, are Ensemble
and Dropout.

Ensemble and Dropout Ensemble [22] is a regularization method that reduces over-
fitting. Multiple networks are trained, after which all networks are used for inference.
The output of all networks is then averaged to get the final output. This specific form of
Ensemble is also called Bagging. This method only works if the outputs are not highly cor-
related. This can be accomplished by either picking different subsets of data for training,
or by training networks with different topologies. Either the training data, the network
topology, or both, need to differ between networks. The averaging leads to less variance
and thus to better generalization. Even if all networks would be able to perfectly model
the (specific subset of) data (extreme overfitting), the averaging of these models would
still converge towards the underlying patterns in the data.

Dropout [38] is a regularization method that works by randomly disabling a subset of
weights during training with probability p. In essence, every time a different subset of
weights is disabled, a network with a different topology is trained. During inference,
all weights in the network are enabled and scaled to simulate the averaging of all these
networks with different topologies. The averaging closely resembles the Ensemble method

51

explained above. The Ensemble method averages the output of many networks, whereas
Dropout averages the networks themselves. The original paper shows a performance
increase with Dropout, and the method is well-known and widely used.

This extended research is meant to look into how normalization affects the merging of
networks, and if merging more than two networks gives observations similar to those
found in Dropout.

8.1 Methodology

As explained in the previous paragraph, Dropout is able to increase performance by
averaging multiple models into one. This is comparable to phase 2, where two models
are merged into one. An important difference is that with Dropout, all networks are
represented equally. This is not guaranteed with the merging methods from phase 2. As
explained, all merging methods except for average * can result in unequal representation.
For both magnitude * and addition *, this is caused by the weights of one network being
much stronger than the other network. To combat this, new networks have been trained
while continuously being normalized.

Normalization Since various definitions of normalization exist, the exact formula will
be given:

norm(x) =
x√∑

(x21, ..., x
2
n)

where x represents a vector of n weights. In words, the euclidean distance of the vector
x is set to 1. A hidden layer is a matrix of weights, and the normalization can be applied
either column-wise or row-wise. This also depends on the way the weights are stored in
memory, and is therefore application-specific. In this experiment, weight vectors have
been normalized such that all incoming weights of a neuron have euclidean distance 1.
The other option would have been to normalize all outgoing weights of a neuron. There
was no reason to choose one method over the other. To prevent underfitting, the biases
have not been normalized.

The same sparsity levels as in phase 1 and 2 have been used. For each sparsity level,
5 networks have been trained. The data, network architecture, and hyperparameters
are the same as in phase 2 (see ‘Methodology’ on page 30). The only difference is that
early stopping has been disabled and that after each training iteration, the model was
normalized. After merging, the resulting network is pruned back to the target sparsity,
but not again normalized.

Initially, the plan was to reuse the networks trained in phase 2 by normalizing these.
However, normalization had a strong impact of the performance of these models, which
lead to the decision to train new models. The impact of normalization can be seen in
Figure 22.

8.2 Training results

Figure 23 shows the training results for the 12x5 networks over all 1500 epochs.

52

Figure 22: Accuracy of the 12x20 networks of phase 2 before and after applying normal-
ization. The graph shows an average drop in accuracy of at least 30%, with some of the
sparser networks showing performance no better than guessing (20%).

Comparison between non-normalized and normalized networks The first ob-
servation is that at lower sparsities, the normalized networks do not suffer from the
instability that the non-normalized networks suffer from. A reason for this might be that
the normalization prevents the weights from exploding. Interestingly, both the normal-
ized and non-normalized networks at lower sparsity seem to reach 85% accuracy around
epoch 50. It seems that under these circumstances, the normalization does not inter-
fere with the capability of the networks to learn, and prevents overfitting as soon as the
networks reach the assumed accuracy limit.

The second observation is that the normalized networks at low sparsities can reach
a higher final accuracy compared to the non-normalized networks. Whereas the non-
normalized networks have a hard time going over 85% accuracy, the normalized networks
can reach 90% accuracy. The possibility that the non-normalized networks might have
reached 90% accuracy as well can not be excluded, were it not for stopping the training
early.

The third observation is that the loss between the normalized and non-normalized net-
works is comparable. Evolution seems to have a stronger effect on the normalized models,
which clear peaks being observed in Figure 23(d).

Performance loss at the end of training Starting somewhere between epochs 700
and 900, the losses of networks at the higher sparsity levels start increasing again. This
can be seen in Figure 23(d). An explanation for this can be that normalization has a
detrimental effect on the accuracy, as was already demonstrated in Figure 22. At the be-
ginning of training, the learning rate is high enough to compensate for the normalization.
The learning rate drops during training (see Figure 8), and at some point, the normal-
ization overwhelms the capability of the learning rate to compensate. It is noteworthy
that when looking at sparsity levels 0.90 and 0.95, the losses increase after around epoch
800, but the accuracies keep improving, at an increasing rate even. This can be seen by
comparing Figure 23(c) and Figure 23(d).

53

(a) Accuracy over all networks and epochs (b) Loss over all networks and epochs

(c) Average accuracy over all epochs (d) Average loss over all epochs

(e) Average accuracy over all epochs (f) Average loss over all epochs

Figure 23: Per sparsity, accuracy (left column) and loss (right column) per epoch.

54

8.3 Merging results with two networks

8.3.1 Impact of layer merging method and bias merging method

Compared to the heatmap in phase 2 (Figure 13), the heatmap from this extended re-
search in Figure 24 does not provide much insight. Accuracies for average *, magnitude *,
and random * are 75%, with 77% for addition *. Looking at the loss, addition * per-
forms best, but only slightly. Addition * seems to be the best merging method, but
barely. Figure 26(a) gives more detailed results of the merging results. An important
observation compared to phase 2 is that the bias merging method and layer merging
method has basically no impact on either the accuracies or losses. At higher sparsities,
the layer merging method has slightly more effect. Interestingly, looking at Figure 26(a),
the merging method average * shows slightly superior performance at denser networks,
but inferior performance at sparser networks.

8.3.2 Performance and NNSTD-Original

Again, we can compare the results of merging the normalized networks with the results
of phase 2.

Accuracy spread at lower sparsity levels Looking at the NNSTD graphs in Figures
19(b) and 25(b), the first observation is that the spread of accuracies is much lower at the
normalized networks for the more dense networks. This seems to apply for the methods
average * and random *. One explanation might be that when averaging two vectors
with the same norm, or picking random weights from two vectors with the same norm,
will result in a new vector that also has roughly the same norm. This was not the case
when non-normalized vectors were merged in phase 2. Less difference between the norm
of the parents and the child might help keep merged networks stable.

Merging methods converging In phase 2, the merging methods addition *, aver-
age *, and magnitude * would converge to the same results as sparsity levels increased.
The same effect can be observed in the results of this extended research for the NNSTD
values. At the highest sparsity level, the ellipses seem once again to overlap.

Addition * outperforming Magnitude * An interesting observation is again how
well the addition * merging method performs. In phase 2, Figure 19(b), magnitude *
and addition * were competing for the best performance. At all sparsity levels, their
ellipses covered the same accuracy interval. These results in Figure 25(b) however, show
that addition * outperforms magnitude * up to around sparsity level 0.80, even though
it also shows a higher NNSTD. The networks merged with addition * have a topology
that is further away from its parents compared to networks merged with magnitude *,
and still these networks outperform.

8.4 Merging results with five networks

All experimentation has been focused on merging two neural networks to keep the analysis
as simple as possible. To get better insight into possible future work, and to test the
ensemble method that dropout employs, more than two networks have been merged. For
each sparsity level, all five networks have been merged together using all 5x5 merging

55

Figure 24: Each square represents a single merging method. For each merging method,
the average accuracy (left) or loss (right) over 12 x 15 = 180 networks is given. ”layer”
indicates the layer merging method used, and ”bias” indicates the bias merging method
used.

methods, resulting in 25 merged networks per sparsity level, for a total of 300 merged
networks. After this, there are two choices to be made. The resulting merged networks
can again be normalized and again be pruned to the target sparsity. All four distinct
combinations have been applied to the 300 networks, resulting in a total of 1200 merged
networks. The results are shown in the four parallel coordinate plots in Figure 27.

Difference between merging two networks and five networks To compare the
merging of two networks and five networks, we have to look at the plot where the merged
models are pruned and not normalized, Figures 26(a) and 27(b). The results are quite
clear. There is no instance where merging five networks outperforms merging two net-
works. Especially with the merging method average *, that performed the best when
merging two networks, the performance has dropped significantly. At the merging method
random *, the bias merging method seems to suddenly have a large impact again, with
sometimes even a 20% difference in accuracy between bias merging methods. Addition *
seems to be the least affected. Interestingly, at sparsity level 0.95 and merging method ad-
dition *, the network drops to around 15% accuracy, meaning that it performs worse than
guessing. Unfortunately, the observations made in the methods Ensemble and Dropout,
that combining networks could improve performance, can not be seen in these results.
However, these methods improve performance by reducing overfitting. If no significant
amount of overfitting occurs, then it follows that there will be no significant performance
boost.

Differences between (not) applying normalization and pruning In Figure 27,
the top two plots show the non-normalized networks, and the bottom two plots show the

56

(a) Relationship between accuracy and NNSTD-original. One ellipse represents 1 sparsity level,
1 merging method, and 10 network combinations. An ellipse covers a confidence interval of 2
standard deviations. It’s important to notice that the circles tend to overshoot, and that the
top of a circle does not indicate the highest accuracy.

(b) Relationship between accuracy and NNSTD-original. One ellipse represents 1 sparsity level,
4 merging methods with the same layer merging method, and 50 network combinations. An
ellipse covers a confidence interval of 2 standard deviations. It’s important to notice that the
circles tend to overshoot, and that the top of a circle does not indicate the highest accuracy.

Figure 25

57

(a)

(b)

Figure 26: For all sparsity levels and merging methods, average accuracy (top) and loss
(bottom) over 15 merged networks

58

normalized networks. With addition *, there is no significant difference between the two.
With average *, normalization shows a clear advantage over the non-normalized models.
With magnitude * and random *, there is no clear pattern.

Looking at the difference between pruning and not pruning, applying pruning seems to
lead to slight to strong performance losses. Especially the sparser models see a strong dip
in performance. The strongest performance dips can be seen at magnitude *. Addition *
is quite indifferent to pruning, incurring only slight performance losses.

8.5 Conclusions extended research

Training The extended research has shown, as a first, that continuously applying nor-
malization when training sparse neural networks can result in better performance. It
is important that the learning rate is high enough to compensate for the performance
hit taken by normalization. Normalization also helps denser models stay stable during
training.

Merging Compared to the initial research of phase 2, magnitude * is not the best
merging method anymore. When merging normalized networks, looking at merging both
two and five networks, addition * is the overall best choice, regardless of resparsification
and renormalization. Given that normalization produces such good results, one might
expect that addition * might result in weight vectors with new norms that are just too
strong, but this does not seem to be the case.

Bias-variance tradeoff Ensemble and Dropout have shown to be able to give a per-
formance boost. Looking at all the merging results in this research, merged networks
have not once given a performance boost over their parent networks. A reason for this
might be that these methods specifically reduce overfitting. The reason that this per-
formance boost has not been seen when merging networks, is that none of the networks
ever suffered from overfitting. This can be confirmed by looking at the plots illustrating
the loss on the test set during training. The only time loss ever goes up is when the
highly sparse networks in the extended research suffer from performance loss due to nor-
malization. This is exacerbated by the fact that sparse neural networks are already less
prone to overfitting. An interesting research question can follow from this, which will be
detailed in ‘Future Work’ on page 62.

Note that these conclusions do not automatically transfer to any other environment,
where different models, hyperparameters, and datasets can be in play.

59

(a) Not normalized, not pruned

(b) Not normalized, pruned

(c) Normalized, not pruned

(d) Normalized, pruned

Figure 27: The four parallel coordinate plots that show the results of merging five sparse
neural networks together. Each plot represents one of the four distinct combinations
between applying normalization and pruning The color represents the sparsity level. A
darker colour indicates a denser model.

60

9 Discussion and thoughts

9.1 Importance of bias merging method

Phase 1 showed (6.7) that the bias merging method had a larger impact on the perfor-
mance than the layer merging method. Phase 2 showed that this is true at higher sparsity
levels (7.7.2). However, phase 2 also showed that at lower sparsity levels, the choice of
layer merging has a larger impact. The extended research of phase 2 where networks were
normalized, showed that the bias merging method barely made impact, if any.

9.2 Overall best merging method

Both phases 1 and 2 showed that overall there is no better merging method than mag-
nitude. Does the layer merging method magnitude only work best because SET uses the
weights’ magnitude as selection criteria? Since SET uses this criterion, it follows that the
weights with the largest magnitude are the most important. If the layer merging method
magnitude is then used, it once again selects the weights that have already been deemed
most important.

The phase 2 extended research showed that when normalizing beforehand, addition * is
the best merging method. It gives, on average, the best merging results, and is robust to
both possible resparsification and renormalization.

What if, instead of selecting the weights with the largest magnitudes, SET selected
weights with the smallest magnitude. It might be that a merging method works best
if it then also selects the weights with the smallest magnitude, instead of the largest.

9.3 Sparsity level 0.99

Phase 2 has shown that with the current dataset and network structure, networks were
able to reach the evident accuracy limit of 87%. This implies that networks could possibly
be sparsified even further. Merged SNNs have shown the same performance. If a respar-
sified merged SNN, with parents trained on two different datasets, has no performance
loss, then that must mean that the parents can be sparsified further. The resparsified
merged SNN only has parts of those parents, and still works just as well. The resparsified
merged SNN could theoretically be separated back into the two parent SNNs. These
parent SNNs will now also be more sparse, without performance loss.

9.4 Parallelizing an optimized version of Dropout

Working on the extended research of phase 2 has helped me realize that training and
merging sparse neural networks can be seen as a parallel version of Dropout. When
Dropout disables weights and goes through a training iteration, a single sparse topology
is trained. Merging sparse neural networks allows for the training of many different sparse
neural topologies in parallel, which can then be merged back into one.

The Lottery Ticket Hypothesis (LTH) has shown that a dense network can be seen as
a conglomeration of many sparse networks. LTH also tells us that when these sparse
networks are taken out of the dense network, not all of these sparse networks are able to
be trained to a good performance. Simply not all sparse networks are viable, and it has

61

been shown by LTH that good performance is a combination of topology and random
weight initialization that need to ’match’.

The SET algorithm overcomes this limitation by modifying the topology during training,
thus searching through the topology space and slowly matching up the topology and
weights. Dropout, however, does not modify its topology. Its training iterations might
be spent on a topology that is not viable. It is not clear to me if these iterations can be
seen as a waste, due to the intense weight sharing within Dropout. Regardless, Dropout
will average, or ’merge’, all possible sparse neural networks that are present within a
dense neural network, many of which might not be viable or have not been trained at
all. Merging multiple networks trained with SET, however, ensures that all networks are
viable and trained.

One can assume that merging networks trained with SET can be seen as parallelizing
an optimized version of Dropout, where inviable and untrained networks are discarded.
Unfortunately, the results of this research have not yet laid the foundation for this claim.

10 Future Work

The results provided in phases 1 and 2 spark interesting questions which could be a
starting point for further research. Research questions are listed below, with each question
being elaborated on in its own subsection. Research questions relating to a specific phase
will be prepended with that phase.

1. Phase 1 : Classification preference and data distribution How do merging techniques
lead to better performance of a merged SNN on one dataset over the other?

2. Training a merged SNN Can a merged SNN be trained effectively to increase per-
formance?

3. Impact of bias on network performance What is the influence of bias merging tech-
niques on the performance of the merged SNN?

4. Performance of different merging techniques How can current research into training
SNNs be applied to the merging of two SNNs?

5. Apply topology transformation before merging Can two or more SNNs be modified
to look more alike before merging, to improve merging performance?

6. Phase 2 : Improve resparsification by including Sparse Connectivity Pattern Can
resparsification be enhanced by combining information from the Sparse Connectiv-
ity Pattern with current selection criteria?

7. Phase 2 extended research : Exploiting overfitting Can sparse neural networks be
trained differently, by combating overfitting with merging?

10.1 Phase 1 : Classification preference and data distribution

The merged networks have been tested on dataset 3, which contained the classes of both
the original networks. What has not been tested is the performance on datasets 1 and
2. It could be possible that the merged network performs well on dataset 1 and poorly
on dataset 2. This would result in an average performance on dataset 3. It would be

62

interesting to see why the merged network prefers one dataset over the other. It could
be that one dataset had much simpler classes, fewer classes, and more training samples.
Research into this question could give more insight into how to divide datasets over
different networks and if two datasets are good candidates for merging.

10.2 Training a merged SNN

The performances of the merged SNNs were assessed immediately after merging. Another
option is to first train the merged SNN on the collection of all classes on which the original
networks were trained. There is a possibility that the merged SNN converges quickly.
The SET algorithm has shown that the topology of an SNN plays a major role in its
performance. The merging of two SNNs could result in a topology suited to training.

10.3 Impact of bias sparsification on network performance

Much discussion has revolved around the selection and merging of the non-bias weights.
The merging of biases of two networks however, might have an even larger impact on
the performance a merged network. As mentioned in 4.2, three out of the four merging
techniques are equal when there is no overlap in the weights, which is expected in sparse
neural networks. Biases however are not sparse, and there is a 100% overlap between the
biases of two networks. The results of phase 2 (7.7.2) have shown that, at high sparsity
levels, the way biases are merged can result in a significant performance difference of
at least 20% accuracy. The extended research showed however, that the bias merging
method barely makes an impact on performance, if any. Research into this question
could give insight into the effect of biases on network merging. While bias sparsification
might not significantly improve hardware requirements, it might balance out the impact
of the layer merging method and bias merging method. Research into sparsifying bias
could lead to better performing SNNs at high sparsity.

10.4 Performance of different merging techniques

The networks merged in the preliminary results are the results of combining two networks
that are trained on different classes. What has not been tested is the merging of two
networks which have been trained on the same network. It would be interesting to see
the results of merging such networks. Another way to see this is to remove as many
variables from the merging equation as possible. Merge two networks with the same
hyperparameters, trained on the same dataset; the only variable left is the different
merging techniques. Trying to optimize the performance of this merged network would
mean optimizing the merging techniques. This, in turn, leads to an even deeper question:
Which weights are most important for classification. This question loops around to
research into pruning, where attempts are made to preserve only the most important
weights. SET has shown that magnitude is a strong candidate when selecting weights.
However, the preliminary results did not necessarily reflect this. Other papers, such as
[18], suggest a more complex selection candidate. Saliency, for example, is a combination
of the magnitude and gradient of a weight. Research into this question could provide
insight into which weights are important for merging into a network. Since there is
already a significant amount of research in this direction, one could look at current
existing techniques and try to apply these to merging.

63

10.5 Apply topology transformation before merging

The topology of two SNNs might seem different at first sight but could be identical,
otherwise known as isomorphic. Isomorphism does not care about values of vertices
(weights in the case of an SNN). It only matters if a weight is present or not in a certain
position. Suppose two graphs have a different topology but are isomorphic. In that case,
both graphs can be modified to end up with the same topology without changing any of
the graphs defining characteristics. In terms of an SNN, this would mean that weights
and neurons can be swapped around without impacting the network’s performance.

In this research, the SNN pairs have not been checked for isomorphism before merging.
If this had been done, performance loss could possibly have been prevented. Even in
the case where two SNNs are not exactly the same, they could be modified to resemble
one another as much as possible. The first step would be to modify the network so that
there is as much weight overlap as possible. This would reduce the effect described in 4.2,
where merging methods start to give the same results. The second step would be to line
up weights that approximately have the same value. Merging weights with, for example,
opposite values v and −v would either cancel out one or both. Aligning weights with the
same value should result in a better performance.

10.6 Phase 2 : Improve resparsification by including Sparse
Connectivity Pattern

Previous research has shown that SNNs in combination with SET act as a feature selector
[27]. The most important inputs will end up with the largest number of weights connected
to them. When two SNNs are merged, the resulting SNN has an equal or lower sparsity
level. To retain sparsity, the merged SNN will have to be resparsified again. In this
research, sparsification was done by dropping the weights with the lowest magnitude, in
accordance with the SET assumption that the weights with the largest magnitude are
the most important.

The sparse connectivity pattern of both parents could be combined with the magnitude
of the weights to improve sparsification. Given an SNN that needs to be sparsified, it
might have a weight that has a large magnitude, but is connected to an input that is
deemed unimportant by the sparse connectivity pattern. The sparsification algorithm
might then opt to instead keep a weight with a slightly smaller magnitude but larger
importance. Selecting weights like this could improve performance.

10.7 Phase 2 extended research : Exploiting overfitting

Phase 2 extended research touched on applying the principles from the Ensemble and
Dropout methods to merging neural networks. It has shown that merging networks
does not necessarily lead to a drop in performance, but never leads to an improvement.
According to the bias-variance tradeoff as well as looking around at existing work with
Ensemble and Dropout, a performance boost is expected. Both these methods increase
performance by reducing overfitting. This suggests that overfitting is not present in
the models trained for this research. Thus no performance boost is to be gained. Are
there situations where we can gain something by allowing overfitting, which can then be
combated by merging?

64

To purposefully devise overfitting, one could decrease the training data size. The expec-
tation is that a certain degree of overfitting can be compensated by merging the trained
networks. The decrease in data can lead to even lower hardware requirements and faster
training times.

65

11 Appendix

11.1 Reproducibility considerations and code bugs

200 epochs timeout In phase 2, training of networks was stopped 200 epochs after
a certain accuracy threshold was reached. This significantly improved training time
without (significantly) impacting performance. However, the denser networks were still
quite unstable, and dipped below this threshold multiple times within these 200 epochs.
At such a point, the 200 epoch interval should be reset, once again waiting 200 epochs.
This was not done however. Once the threshold was passed, the network would stop
training after 200 epochs regardless of the accuracy. This could have negative impact
on performances. It should not impact the results of this research, since networks were
trained to their limit. Regardless, it should be taken into account if the code is used for
other research.

Proper weight deactivation In a sparse setting, weights that are deactivated and
removed from memory. In this research, sparsity was simulated by keeping all weights
in memory (including deactivated ones), and applying a binary mask to the weights
after training. However, if at evolution time a weight is deactivated and immediately
randomly activated again, the mask is not applied to that weight, and the weight keeps
its magnitude. To properly simulate sparsity, the weight should have been reset to 0
or a random value depending on the weight initialization procedure. By not properly
resetting weights in such cases, networks might receive an unfair performance advantage,
because they receive a ’new’ weight that has already been trained. Again, it should not
impact the results of this research, since networks were trained to their limit. Regardless,
it should be taken into account if the code is used for other research.

11.2 Phase 1

Table 7: Performance of original networks with ε = 0.1

dataset dataset 1 dataset 2 dataset 3
network accuracy loss accuracy loss accuracy loss
1 0.74 0.70 0.00 12.98 0.37 6.84
3 0.00 11.52 0.43 1.16 0.22 6.34
5 0.28 1.71 0.58 1.25 0.43 1.48

Table 8: Performance of original networks with ε = 0.5

dataset dataset 1 dataset 2 dataset 3
network accuracy loss accuracy loss accuracy loss
7 0.81 0.51 0.00 11.78 0.40 6.15
9 0.00 12.21 0.89 0.31 0.45 6.26
11 0.77 0.67 0.80 0.54 0.78 0.60

66

Table 9: Merging performance for ε = 0.1 and SET on dataset 3

bias magnitude average addition random
weights accuracy loss accuracy loss accuracy loss accuracy loss
magnitude 0.21 7.91 0.30 2.52 0.18 3.53 0.24 6.78
average 0.10 8.52 0.20 2.39 0.14 3.32 0.10 11.01
addition 0.21 7.97 0.28 2.52 0.18 3.59 0.10 17.14
random 0.21 7.91 0.30 2.52 0.18 3.73 0.10 13.33

Table 10: Merging performance for ε = 0.5 and SET on dataset 3

bias magnitude average addition random
weights accuracy loss accuracy loss accuracy loss accuracy loss
magnitude 0.26 3.79 0.31 2.18 0.35 2.59 0.27 4.25
average 0.19 6.03 0.35 1.92 0.16 4.61 0.18 3.73
addition 0.25 3.74 0.31 2.28 0.35 2.58 0.12 5.09
random 0.26 3.77 0.33 2.14 0.34 2.70 0.25 4.46

67

Figure 28: Network 1 Figure 29: Network 3 Figure 30: Network 5

Figure 31: Network 2 Figure 32: Network 4 Figure 33: Network 6

Figure 34: Network 7 Figure 35: Network 9 Figure 36: Network 11

Figure 37: Network 8 Figure 38: Network 10 Figure 39: Network 12

68

References

[1] A Closer Look at AlexNet. https://www.cs.toronto.edu/~rgrosse/courses/
csc321_2018/tutorials/tut6_slides.pdf. (Accessed on 11/13/2020).

[2] AISmartz. CNN Architectures Timeline (1998-2019). https://www.aismartz.

com/blog/cnn-architectures/. Oct. 2019.
[3] Amazon SageMaker – Managed Distributed Training for Machine Learning – Ama-

zon Web Services. https://aws.amazon.com/sagemaker/distributed-training/.
[4] Tal Ben-Nun and Torsten Hoefler. “Demystifying Parallel and Distributed Deep

Learning: An In-Depth Concurrency Analysis”. In: CoRR abs/1802.09941 (2018).
arXiv: 1802.09941. url: http://arxiv.org/abs/1802.09941.

[5] Benchmark dashboard.
[6] CHRISTOPHER M. BISHOP. PATTERN RECOGNITION AND MACHINE LEARN-

ING. SPRINGER-VERLAG NEW YORK, 2016.
[7] Jason Brownlee. Ensemble Learning Methods for Deep Learning Neural Networks.

https://machinelearningmastery.com/ensemble-methods-for-deep-learning-

neural-networks/. Dec. 2018.
[8] Laura Castañón. deep-neural-networks-are-coming-to-your-phone-heres-how-that-could-

change-your-life. https://news.northeastern.edu/2020/01/28/deep-neural-
networks-are-coming-to-your-phone-heres-how-that-could-change-your-

life/. Jan. 2020.
[9] Danny Hernandez Dario Amodei. AI and Compute. https://openai.com/blog/

ai-and-compute/.
[10] Distributed training of deep learning models on Azure - Azure Architecture Center

— Microsoft Docs. https://docs.microsoft.com/en-us/azure/architecture/
reference-architectures/ai/training-deep-learning.

[11] Utku Evci et al. “Rigging the Lottery: Making All Tickets Winners”. In: (2020).
arXiv: 1911.11134 [cs.LG].

[12] Karl Pearson F.R.S. “LIII. On lines and planes of closest fit to systems of points in
space”. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science 2.11 (1901), pp. 559–572. doi: 10.1080/14786440109462720. eprint:
https://doi.org/10.1080/14786440109462720. url: https://doi.org/10.
1080/14786440109462720.

[13] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Training
Pruned Neural Networks”. In: CoRR abs/1803.03635 (2018). arXiv: 1803.03635.
url: http://arxiv.org/abs/1803.03635.

[14] Keisuke Fukuda. Technologies behind Distributed Deep Learning: AllReduce — Pre-
ferred Networks Research & Development. https://tech.preferred.jp/en/

blog/technologies-behind-distributed-deep-learning-allreduce/. (Ac-
cessed on 04/03/2021). July 2018.

[15] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning Algorithm
for Deep Belief Nets”. In: Neural computation 18 (Aug. 2006), pp. 1527–54. doi:
10.1162/neco.2006.18.7.1527.

[16] Torsten Hoefler et al. Sparsity in Deep Learning: Pruning and growth for efficient
inference and training in neural networks. 2021. arXiv: 2102.00554 [cs.LG].

[17] Kondalalith1. The Gossip Protocol in Cloud Computing - GeeksforGeeks. https:
//www.geeksforgeeks.org/the-gossip-protocol-in-cloud-computing/. May
2020.

69

https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/tutorials/tut6_slides.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/tutorials/tut6_slides.pdf
https://www.aismartz.com/blog/cnn-architectures/
https://www.aismartz.com/blog/cnn-architectures/
https://aws.amazon.com/sagemaker/distributed-training/
https://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941
https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/
https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/
https://news.northeastern.edu/2020/01/28/deep-neural-networks-are-coming-to-your-phone-heres-how-that-could-change-your-life/
https://news.northeastern.edu/2020/01/28/deep-neural-networks-are-coming-to-your-phone-heres-how-that-could-change-your-life/
https://news.northeastern.edu/2020/01/28/deep-neural-networks-are-coming-to-your-phone-heres-how-that-could-change-your-life/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/training-deep-learning
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/training-deep-learning
https://arxiv.org/abs/1911.11134
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/
https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/
https://doi.org/10.1162/neco.2006.18.7.1527
https://arxiv.org/abs/2102.00554
https://www.geeksforgeeks.org/the-gossip-protocol-in-cloud-computing/
https://www.geeksforgeeks.org/the-gossip-protocol-in-cloud-computing/

[18] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. “SNIP: Single-
shot Network Pruning based on Connection Sensitivity”. In: CoRR abs/1810.02340
(2018). arXiv: 1810.02340. url: http://arxiv.org/abs/1810.02340.

[19] Shiwei Liu et al. Sparse evolutionary Deep Learning with over one million artificial
neurons on commodity hardware. 2021. arXiv: 1901.09181 [cs.NE].

[20] Shiwei Liu et al. “Topological Insights in Sparse Neural Networks”. In: CoRR
abs/2006.14085 (2020). arXiv: 2006.14085. url: https://arxiv.org/abs/2006.
14085.

[21] Christos Louizos, Max Welling, and Diederik P. Kingma. “Learning Sparse Neural
Networks through L 0 Regularization”. In: (2018). url: https://openreview.
net/forum?id=H1Y8hhg0b.

[22] Evan Lutins. Ensemble Methods in Machine Learning: What are They and Why Use
Them? — by Evan Lutins — Towards Data Science. https://towardsdatascience.
com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-

them-68ec3f9fef5f. Aug. 2017.
[23] Anas Al-Masri. What Are Overfitting and Underfitting in Machine Learning? —

by Anas Al-Masri — Towards Data Science. https : / / towardsdatascience .

com / what - are - overfitting - and - underfitting - in - machine - learning -

a96b30864690. June 2019.
[24] WARREN S. MCCULLOCH and WALTER PITTS. “A LOGICAL CALCULUS

OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY”. In: (1943). url: https:
//link.springer.com/content/pdf/10.1007/BF02478259.pdf.

[25] Decebal Constantin Mocanu et al. “Evolutionary Training of Sparse Artificial Neu-
ral Networks: A Network Science Perspective”. In: CoRR abs/1707.04780 (2017).
arXiv: 1707.04780. url: http://arxiv.org/abs/1707.04780.

[26] Decebal Constantin Mocanu et al. “Evolutionary Training of Sparse Artificial Neu-
ral Networks: A Network Science Perspective”. In: CoRR abs/1707.04780 (2017).
arXiv: 1707.04780. url: http://arxiv.org/abs/1707.04780.

[27] Decebal Constantin Mocanu et al. “Evolutionary Training of Sparse Artificial Neu-
ral Networks: A Network Science Perspective”. In: CoRR abs/1707.04780 (2017).
arXiv: 1707.04780. url: http://arxiv.org/abs/1707.04780.

[28] Decebal Constantin Mocanu et al. “Sparse Training Theory for Scalable and Effi-
cient Agents”. In: (2021). arXiv: 2103.01636 [cs.AI].

[29] Hesham Mostafa and Xin Wang. “Parameter Efficient Training of Deep Convolu-
tional Neural Networks by Dynamic Sparse Reparameterization”. In: (2019). arXiv:
1902.05967 [cs.LG].

[30] Michael C. Mozer and Paul Smolensky. “MozerSmolensky1989.pdf”. In: (1989).
[31] Feng Niu et al. “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic

Gradient Descent”. In: (2011). arXiv: 1106.5730 [math.OC].
[32] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and

Organization in The Brain”. In: Psychological Review (1958), pp. 65–386.
[33] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning repre-

sentations by back-propagating errors”. In: Nature 323.6088 (Oct. 1986), pp. 533–
536. issn: 1476-4687. doi: 10.1038/323533a0. url: https://doi.org/10.1038/
323533a0.

[34] scipy.sparse.csr matrix — SciPy v1.5.4 Reference Guide. https://docs.scipy.
org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html.

70

https://arxiv.org/abs/1810.02340
http://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1901.09181
https://arxiv.org/abs/2006.14085
https://arxiv.org/abs/2006.14085
https://arxiv.org/abs/2006.14085
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f
https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f
https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://link.springer.com/content/pdf/10.1007/BF02478259.pdf
https://link.springer.com/content/pdf/10.1007/BF02478259.pdf
https://arxiv.org/abs/1707.04780
http://arxiv.org/abs/1707.04780
https://arxiv.org/abs/1707.04780
http://arxiv.org/abs/1707.04780
https://arxiv.org/abs/1707.04780
http://arxiv.org/abs/1707.04780
https://arxiv.org/abs/2103.01636
https://arxiv.org/abs/1902.05967
https://arxiv.org/abs/1106.5730
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

[35] scipy.sparse.lil matrix — SciPy v1.5.4 Reference Guide. https://docs.scipy.
org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html.

[36] Srikrishna Sridhar. Parallel Machine Learning with Hogwild! — by Srikrishna Srid-
har — Medium. https : / / medium . com / @krishna _ srd / parallel - machine -

learning-with-hogwild-f945ad7e48a4. May 2015.
[37] Aishwarya V Srinivasan. Stochastic Gradient Descent — Clearly Explained !! — by

Aishwarya V Srinivasan — Towards Data Science. https://towardsdatascience.
com/stochastic-gradient-descent-clearly-explained-53d239905d31. Sept.
2019.

[38] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15 (June 2014), pp. 1929–
1958.

[39] Kenneth Stanley and Risto Miikkulainen. “Evolving Neural Networks through Aug-
menting Topologies”. In: Evolutionary computation 10 (Feb. 2002), pp. 99–127. doi:
10.1162/106365602320169811.

[40] Using distributed training — AI Platform (Unified) — Google Cloud. https://
cloud . google . com / ai - platform - unified / docs / training / distributed -

training.
[41] What is GPT-3? Everything your business needs to know about OpenAI’s break-

through AI language program — ZDNet. https://www.zdnet.com/article/

what- is- gpt- 3- everything- business- needs- to- know- about- openais-

breakthrough-ai-language-program/. (Accessed on 11/12/2020).
[42] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image

Dataset for Benchmarking Machine Learning Algorithms. Aug. 28, 2017. arXiv:
cs.LG/1708.07747 [cs.LG].

[43] J. Yu et al. “Scalpel: Customizing DNN pruning to the underlying hardware paral-
lelism”. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). 2017, pp. 548–560. doi: 10.1145/3079856.3080215.

[44] Ziliang. Paxos consensus for beginners. https : / / medium . com / distributed -

knowledge/paxos-consensus-for-beginners-1b8519d3360f. May 2020.

71

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://medium.com/@krishna_srd/parallel-machine-learning-with-hogwild-f945ad7e48a4
https://medium.com/@krishna_srd/parallel-machine-learning-with-hogwild-f945ad7e48a4
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://doi.org/10.1162/106365602320169811
https://cloud.google.com/ai-platform-unified/docs/training/distributed-training
https://cloud.google.com/ai-platform-unified/docs/training/distributed-training
https://cloud.google.com/ai-platform-unified/docs/training/distributed-training
https://www.zdnet.com/article/what-is-gpt-3-everything-business-needs-to-know-about-openais-breakthrough-ai-language-program/
https://www.zdnet.com/article/what-is-gpt-3-everything-business-needs-to-know-about-openais-breakthrough-ai-language-program/
https://www.zdnet.com/article/what-is-gpt-3-everything-business-needs-to-know-about-openais-breakthrough-ai-language-program/
https://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1145/3079856.3080215
https://medium.com/distributed-knowledge/paxos-consensus-for-beginners-1b8519d3360f
https://medium.com/distributed-knowledge/paxos-consensus-for-beginners-1b8519d3360f

	Glossary
	Abstract
	Introduction
	Background and Related Work
	History of Artificial Neural Networks
	Sparse Neural Networks
	Parallelization
	NNSTD

	Expected NNSTD between two SNNs
	Proposed Merging Methodology
	Merging Methods
	Merging method similarity
	Possible merging issues

	Data and network architecture
	Data
	Network architecture

	Phase 1
	Methodology
	Data
	Network architecture
	Hyperparameters
	Training performance
	Performance after merging
	Summary

	Phase 2
	Phase 1 to phase 2
	Methodology
	Data
	Network architecture
	Hyperparameters
	Training Results
	Merging Results
	Performance and NNSTD-original

	Phase 2 - Extended research
	Methodology
	Training results
	Merging results with two networks
	Merging results with five networks
	Conclusions extended research

	Discussion and thoughts
	Importance of bias merging method
	Overall best merging method
	Sparsity level 0.99
	Parallelizing an optimized version of Dropout

	Future Work
	Phase 1 : Classification preference and data distribution
	Training a merged SNN
	Impact of bias sparsification on network performance
	Performance of different merging techniques
	Apply topology transformation before merging
	Phase 2 : Improve resparsification by including Sparse Connectivity Pattern
	Phase 2 extended research : Exploiting overfitting

	Appendix
	Reproducibility considerations and code bugs
	Phase 1

