User Stories applied for end-to-end web testing

HUMAID MOLLAH, University of Twente, The Netherlands

1 ABSTRACT

It is essential to test web applications in order to verify customer re-
quirements. Since customer requirements are written as user stories
during agile software development, we have developed a user-story-
driven approach for writing and implementing end-to-end test cases.
Initially, we conduct a literature review to identify how user stories
can be transformed into end-to-end test cases. Following that, we
analyze real-world web applications to determine how these test
cases can be implemented efficiently. Subsequently, we interview
software testers to discuss the findings and acquire insights into
end-to-end testing. Finally, we present a systematic method to de-
velop and implement end-to-end test cases with the help of user
stories. The automatic generation of test cases from user stories has
also been examined briefly.

2 KEYWORDS

Agile software development, user stories, end-to-end tests, web
application, front-end, back-end

3 INTRODUCTION

The use of web applications in the sectors of commerce and commu-
nications has made them an important and fairly large part of the
software industry [12]. With the growth of companies and firms that
offer these services, efficient testing of such systems has become
a major requirement. Today, most software organizations follow
an agile development methodology which is an iterative approach
to delivering projects to customers at a rapid pace [19]. User sto-
ries play a key role in writing customer requirements [24]. A user
story describes the functionality of the web application [19], and
the success of this software is based on user story satisfaction [24].
User stories can be best tested with the help of end-to-end tests.
The reason why end-to-end tests are used in verifying user stories
over other testing practices is that most modern web applications
adopt a multi-tier architecture [18]. This means that the application
framework is divided into multiple layers, like the database server
and the application server [5]. The goal of end-to-end tests is to test
the application as a whole and detect the deviation of the software
from expected behavior [18]. Such tests can examine both the front-
end (client-side) and back-end (server-side) of a web application
simultaneously. This research will study how user stories can be
used to write and implement end-to-end tests for a web application.

Software developers and testers face a variety of challenges when
it comes to testing web applications [26]. Firstly, the usage of mul-
tiple programming languages for the implementation of different

TScIT 37, July 8, 2022, Enschede, The Netherlands

© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

components calls for different validation techniques. Secondly, a
distributed multi-tier architecture as discussed before can make it
difficult to determine the cause of failure. Finally, because the devel-
opment of some big web applications involves a large and complex
codebase, it is very hard for testers to understand the code. To meet
these challenges, the correct definition of test cases for testing indi-
vidual components of the web application altogether is necessary.
Test cases should be written in a way that they cover a large part
of the underlying application so that faults can be discovered. This
study will identify how testers can define test cases and implement
them efficiently.

There exists a big gap between writing user stories and writing
end-to-end tests in the development process of a web application.
User stories are written before the development of a feature or func-
tionality while end-to-end tests are written only when the feature
is fully developed and ready for production [19]. This research will
help fill this gap such that end-to-end test cases can be developed in
parallel with user stories so that customer requirements are verified
during the entire development process of the web application.

The primary objective of this research is to devise a user story-
driven approach to writing and implementing end-to-end test cases
for a web application. To do this, initially, a literature review has
been conducted to identify the best practices and techniques for
developing end-to-end test cases from user stories. Subsequently,
a case study has been carried out on a sample of two real-world
web applications to determine how test cases can be implemented
efficiently. Finally, testers of a software development agency were
interviewed to gain insights into the selection of user stories and
the generation of end-to-end test cases.

4 RESEARCH GOALS

This study aims to produce a user-story-driven approach for writ-
ing and implementing end-to-end test cases for a web application
in an agile development environment. This research answers the
following questions :

(1) How can user stories be used to formulate end-to-end test
cases for a web application?

(2) How can end-to-end test cases be implemented efficiently to
identify potential errors in a web application?

5 RELATED WORKS

There have been related papers in the area of test case generation
from user stories and use cases. For example, Jim Heumann (2021)
has proposed a method to identify use-case scenarios for a web ap-
plication by introducing the concept of flow of events [13]. Another
example is from Massod et al.,(2017) who used a Selenium tool to au-
tomatically generate test cases from user stories [16]. This approach
uses a tool to write user stories using a restricted set of keywords
and rules, and test cases are generated based on these parameters.
Similarly, Allala et al. (2019) have used Natural Language Processing

TScIT 37, July 8, 2022, Enschede, The Netherlands

to transform user requirements, written as use cases or user stories,
into test cases [25]. There has also been a study by Chopade and
Dhavase (2017) about how user stories can be treated positively or
negatively for testing purposes [24]. A positive user story reflects
positive or accepting actions, while a negative user story reflects
negative or forbidden actions.

However, these studies are not focused on end-to-end test case
generation and the efficient implementation of these test cases has
not been explored in detail. This paper fills the research gap by
effectively capturing how user stories can be used to write and
implement end-to-end tests for a web application.

6 LITERATURE REVIEW

End-to-end testing is a software testing technique that is used to
test the application workflow from the beginning to the end. These
tests are necessary because they help in determining various depen-
dencies of the web application as well as ensuring that the correct
information is communicated between the different components of
the application [1,2,27]. End-to-end tests are mainly used to keep
track of user workflows in the web application [9]. A workflow is a
series of processes or actions that the user performs from initiation
to completion. An example of a workflow could be searching for a
hotel followed by booking the hotel. Another example is creating an
account (signing up) followed by logging into your account and then
performing another task. The following section discusses the best
practices for writing end-to-end tests for a web application such that
the most important workflows can be tested. The generation of end-
to-end test cases from user stories will be discussed in section 6.2.
This section presents a 3 step procedure for identifying workflows,
creating use-case scenarios, and writing test cases by referring to
user stories. In section 6.3, the automatic generation of these test
cases has been visited. Finally, in section 6.4, the implementation of
these end-to-end test cases is explored.

6.1 Best practices for End-to-End Testing

Many articles discuss the best practices for writing end-to-end tests
[1,2,9,19,27]. Some of these practices can be applied in our research
and should be kept in mind when formulating test cases by the
method proposed in section 6.2. These best practices for writing
end-to-end tests are as follows:

(1) Focus on the product’s most important workflow: The most im-
portant workflows of your web application should be tested
first. For example, for Booking.com, the most important work-
flow is searching and reserving a place. Therefore, this work-
flow and all user stories related to this workflow should be
tested in the beginning.

(2) Large Workflows should be broken down: Large workflows in
the application should be broken down into smaller tests. This
is because it is hard to monitor bigger tests and find errors in
a large workflow as compared to smaller ones.

(3) Avoid Low-Level test cases: Test cases should be added as long
as they add value to the user story which is being tested [19].
For example, if payment through a bank card is being tested,
it is not necessary to write a test case to confirm whether
charges are not applied on an expired VISA card if a test for

Humaid Mollah

expired Master-Cards has already been written. Such tests
are covered by low-level Unit tests.

(4) Build test cases for all possible workflows: An optimal prod-
uct must be tested for all possible interactions and micro-
interactions that a user might have with the product. There-
fore, we must test as many workflows as possible. Section 6.2
discusses how test cases can be formulated for these work-
flows.

6.2 Generation of test cases from User Stories

In agile software development, user stories define software require-
ments[19]. They demonstrate a sequence of actions performed by
the system to provide an observable result of value to the user [16].
User stories are not written in much detail [19,25]. However, they
tell the customer what to expect, a developer what to code, and a
tester what to test [25]. Table 1 shows a template of a basic user
story along with an example.

Template
As a <type of user>
I want <some goal>
so that <reason> (optional)

Example
As a user
I want to login to the webapp
so that I can create a blog

Table 1. Template of a basic User story.

A test case is a scenario in the web application which may or may
not be associated with a set of data inputs and tells the developer
or tester what should be the expected result of this scenario. Test
cases help determine whether the software satisfies a particular
requirement [13,25]. Various papers present different techniques
and models to generate test cases from use cases and user stories
[13,16,19,25]. The application of user stories for the development
of end-to-end acceptance tests has been discussed extensively in
the book written by Mike Cohn [19]. The conversion of use case
scenarios into test cases has been studied comprehensively by Jim
Heumann [13]. Some researchers have also developed an automated
model-driven approach for the generation of test cases from use
cases [16,25]. Using the knowledge gained from these papers, a 3
step process can be defined to identify end-to-end test cases for a
web application. The procedure will be explained by referring to
the User creates a Blog example presented in Table 1. The steps are
as follows:

(1) Identify Flow
(2) Develop Use-Case Scenarios
(3) Write Test cases

6.2.1 Identify Flow. The first step to generate test cases from user
stories is to identify the flow of events in a user story. The flow of an
event consists of 2 parts: Basic Flow and Alternate Flow [13]. The
Basic Flow covers the flow of events that happen "normally".The
Alternate Flow of events refer to the "optional" or "exceptional”
behavior of that user story. Alternate flows can be considered as
an alternative route to the basic flow. There can be more than one
alternate flows for a user story. Figure 1 shows a representation of
the basic flow and alternate flows in the use case of a web application.

User Stories applied for end-to-end web testing

Start Use Case

Alternate Flow <
Alternate Flow 4 -f
—

End Use Case '

Basic Flow

Alternate Flow 1

Alternate Flow 2

End Use Case
End Use Case

Fig. 1. Basic Flow and Alternate flows of a Use-case [10]

From the example in Table 1, the following flows can be elabo-
rated:

Basic Flow:

(1) Login : User accesses the web-app, system asks for user ID
and password, user is authenticated.

(2) Create a Blog: The system displays the homepage, the user
clicks on the button "Create a Blog", and the system displays
the text field of the Blog form.

(3) Submit Blog: The user writes text in the blog form, the user
presses "Submit Blog", and the system displays the created
blog on the user’s homepage.

Alternate Flow 1: Unidentified user : Invalid user ID or password
entered for Login.

Alternate Flow 2: Empty Blog : Blog text-field is empty.
Alternate Flow 3: Server error : The server is not running.

6.2.2 Develop Use-Case Scenarios. The next step in this process
is to define use-case scenarios for a user story. Use-case scenarios
define a complete path for that user story [13,16,19,25]. The users
of the web application can follow multiple paths to perform this
user story. These can include, for example, just the basic flow, the
basic flow plus alternative flow 1, or basic flow plus alternative flow
1 and 2 [13]. In theory, many combinations of flows are possible.
However, the most important ones should be chosen following the
Best practices for End-to-End Testing in section 6.1. Table 2 shows an
example of some of the important use-case scenarios based on the
example from Table 1.

Scenario Name Starting Flow | Alternate
User successfully creates a blog Basic Flow
Unidentified user Basic Flow 1
Empty blog Basic Flow 2
Server error Basic Flow 3

Table 2. Use-Case Scenarios for User creates blog example

6.2.3 Write Test cases. The final step of this process is to formu-
late test cases based on the use-case scenarios we have developed in
the previous section. To do this, a template can be used as shown in

TSclT 37, July 8, 2022, Enschede, The Netherlands

Table 3. This template is used to represent the expected results and
data inputs for the use-case scenarios. Each scenario has a minimum
of 1 test case but there can be more. The test case template can be
built by following the 2 steps stated below.

1. Identify Expected Results: The first step in writing test cases
is to determine the expected result of each use-case scenario. The
expected results describe how the system should behave for their
respective use-case scenarios. For example, the expected result of
the use-case scenario Unidentified student (see Table 2), can be deter-
mined as a Login Error. Test cases when implemented should assert
this behavior of the web app.

2. Identify Data Inputs: The second and final step of the process
is to determine the different fields which are required to test these
use-case scenarios, and to choose the test inputs/values for these
fields. For the User creates blog example, 3 fields can be determined
from the Basic Flow: student ID, password, and the blog text field.
The following strategies can be used for choosing test inputs :

(1) Boundary Testing : Test inputs are chosen using boundary
values [22]. For example, if the passing marks for an exami-
nation are 50 percent, the boundary values to test would be
49 and 50. In this manner, both valid and invalid boundaries
are tested.

(2) Random Testing : Test inputs are chosen at random [8].

(3) Partition Testing: The set of inputs can be divided or parti-
tioned into separate domains according to a self-defined rule,
and test inputs are chosen from these subdomains [29].

(4) Usage-based Testing : Select test inputs based on usage of the
web application [3].

The table below shows the test case template for the User creates
blog example. The test inputs have been chosen by following the
Usage-based testing approach In the table, "x" refers to an unused
input, "null" refers to a field left blank, "blog text" refers to a valid
blog text input, and "invalid" here is used to represent an invalid
password input.

Scenario Name I1 12 I3 Expected
Result

User successfully s123 | abc123 | blog text | Display blog

creates a blog

Unidentified user s123 | invalid X Login Error

Unidentified user null | abc123 X Login Error

Empty Blog s123 | abc123 null Alert User

Server error s123 | abc123 X Server Error

Table 3. Test cases for User creates blog example.
[Data inputs: 11: student id, 12: password, 13: blog text field.]

6.3 Automatic Test Case Generation

Literature suggests that 2 tools have been developed which automate
the process of generating test cases from user stories [16,25]. In these
papers, the automatic generation of test cases is referred to as Model-
Based Testing. In both of these tools, a template or a meta model
has to be created for every user story by following a strict set of
rules and keywords. These models have to be provided with all

TScIT 37, July 8, 2022, Enschede, The Netherlands

information about the functionality that is being tested such as the
name of the endpoint, the input fields, the name of the button which
has to be pressed, the page that you should be redirected to, and in
some cases the HTTP status codes for the action. Following these
approaches, a tool to generate test cases from the method discussed
in the previous sections can be developed.

6.4 Implementation of End-to-End Tests

The last step in the process is to implement the test cases developed
in the previous sections. Literature suggests various techniques for
the automation of end-to-end web testing [18]. These techniques can
be broadly divided into 2 categories namely Capture Replay Web
Testing and Programmable Web Testing. Capture Replay Web
Testing refers to recording actions performed by a user on the web
app (capture) and automatically executing the same actions (replay)
which repeat the mouse movements and key-presses performed by
the user [14,18]. Programmable Web Testing on the other hand
uses test scripts to simulate the actions performed by a user with
the help of specific testing frameworks [18]. The former is not a pre-
ferred option in our case for 3 reasons. Firstly, Capture Replay Web
Testing is difficult to maintain and is not reusable [14]. Secondly, we
cannot perform Random Testing by using this technique. Lastly, this
technique cannot be used to test invisible web elements. Therefore,
we will use the latter, that is Programmable Web Testing, for the
implementation and automatic execution of end-to-end test cases.

Programmable Web Testing makes use of web elements such as
input fields, links, buttons, etc for test case execution. There are 3
methods to localize these web elements:

(1) DOM-Based : Locate web page elements using information
contained in the Document-Object-Model (DOM). A DOM is
a programming interface for documents used on the web. It
allows programs to change their structure, style, and content
[4]. By using this approach, we can locate an element by its
tag name or an attribute by its ID, etc. This technique requires
good development practices specifically good naming con-
ventions when it comes to writing code for the client-side
(front-end) so that web elements can be identified by a unique
identifier.

(2) Coordinate-Based : Locate web elements by recording coor-
dinates of a web page. This technique produces very fragile
test scripts and is therefore considered obsolete [18].

(3) Visual-Based : Locate web elements using image recognition
to control GUI components. This technique requires the tester
to make images of web elements so that parts of the web
page can be located by checking for similarity with the web
element. This can be a very lengthy process.

Literature suggests that the Programmable DOM-Based approach
is the best option for implementing end-to-end tests. There are
various reasons to support this claim [18]. Firstly, DOM-based test
suites do not require much time for development. Secondly, the
evolution of test suites can be done quickly and without much
effort. Here, the word "evolution" refers to updating test suites when
application requirements and functionality change. Thirdly, DOM-
Based locators are proven to be more robust than Visual locators.

Humaid Mollah

Lastly, DOM-based approaches using tools such as the Selenium Web
Driver and Cypress offer a comprehensive programming interface
for the implementation of test cases. In Section 7, end-to-end tests
are implemented for 3 web applications using the Selenium Web
Driver. The usage of this tool is quite straightforward and can be
found in the Documentation of the Selenium Web Driver [28].

7 CASE STUDY

This section analyzes the effectiveness of the method studied in
the previous section by developing end-to-end test cases and imple-
menting them using the Selenium Web driver. A case study has been
conducted on a sample of 2 deployed real-world web applications.
The web applications that have been chosen belong to different
application domains. For each of these projects, 1 user story has
been chosen to develop and implement end-to-end tests for the most
important workflows. Table 4 gives a short description of the web
applications chosen for this case study.

Name Description
MyDay | Scheduling application

VRM | Monitoring application

Table 4. Web applications used for Case Study

For each web application, the test cases are implemented with the
help of Python’s built-in unit testing framework. These test cases
have been implemented using web drivers for the latest browsers
such as Chrome, Firefox, and Safari. All the test cases have been
developed by following the best practices [23]. For example, while
using the Selenium web driver, the Page-Object-Model (POM) has
been used. POM is a design pattern in Selenium that stores all the
web elements in an object repository. Moreover, if IDs have been
used in HTML tags, they are used as the primary web element
locators. Only if IDs are not provided to the element, other locators
such as the CSS class name and XPath locators used. A code snippet
of the implementation of a basic Login end-to-end test can be found
in Appendix A.

7.1 Case 1: MyDay: Scheduling Web application

MyDay is an appointment scheduling application designed to con-
nect sports professionals with their clients. Users can either be
clients or professionals. The application API is built mainly using
PHP and the front-end of the application is built with Vue which
is a JavaScript framework. We choose the following user story for
this case study as it represents the main workflow of the application
(see 6.1 (1)) :

User story: As a professional, I should be able to schedule a session
with a customer.

7.1.1 Development of End-to-End Test Cases : As discussed in
the literature review, we first identify the Basic Flow and Alternate
Flows from the user story. Thereafter, based on the basic and alter-
nate flows, we work out the use-case scenarios. Finally, we develop
the test cases by identifying the expected results and test inputs for
each use-case scenario.

Basic Flow :

User Stories applied for end-to-end web testing

(1) Login: Professional accesses MyDay web app, professional
clicks "Login", the system asks for email and password, the
professional is authenticated and redirected to MyDay Pro-
fessional homepage.

(2) Create an event: Professional clicks "Create Event", the system
displays the drop-down menu, Professional clicks "Create an
event with Client", and the system displays session form.

(3) Submit event: Professional fills session form, Professional
clicks "save", the system displays the created event on the
professional’s homepage.

Alternate Flow 1 : Unidentified Professional : Invalid user email or
password entered for Login.

Alternate Flow 2 : Invalid date field : Invalid (past) date chosen for
scheduling an event..

Alternate Flow 3 : No client chosen : No clients selected for creating
an event.

Alternate Flow 4 : Invalid client email/mobile number : Invalid
email or mobile number of the client is entered to create an event.

Scenario Name Starting Flow | Alternate
Event scheduled successfully Basic Flow

Unidentified professional Basic Flow 1
Invalid date-field Basic Flow 2

No clients chosen Basic Flow 3
Invalid Client email/mobile Basic Flow 4
Invalid date-field and no clients Basic Flow 2,3
chosen

Invalid date-field and invalid client Basic Flow 2,4
email/mobile

Table 5. Use-case Scenarios for Professional creates event example

Scenario Name Test Inputs | Expected Result
Event scheduled successfully i1,i2 Display event
Unidentified professional i1,i2 Login error
Invalid date-field 11,i2,i3,14,15,i6 Alert user

No clients chosen 11,12,i3,14,15,16 Alert user
Invalid Client email/mobile 11,i2,i3,i4,i5,i6 Alert user
Invalid date-field and no | i1,i2,i3,i4,i5,i6 Alert user
clients chosen

Invalid date-field and invalid | i1,i2,i3,i4,i5,i6 Alert user

client email/mobile

Table 6. Test cases for Professional creates event example.
[Data inputs - i1: email, i2: password, i3: date, i4: client email, i5: client
mobile number, i6: client selection form]

Test inputs for this case study are chosen by applying Random testing
and Boundary testing

Random Testing: A randomly generated input for the email and
password should produce an error and a randomly generated client
email/mobile number should alert the user.

Boundary Testing: An invalid (past) date for the date field should
alert the user while a valid date should produce no errors, and an
empty client field should alert the user but a correctly entered client
field should produce no errors.

TSclT 37, July 8, 2022, Enschede, The Netherlands

7.1.2 Implementation of End-to-End Test Cases : Test cases
have been implemented for a real user (professional) of the MyDay
web application. The Basic Flow test case (Event Scheduled success-
fully) was implemented in the beginning. This test case was divided
into 2 parts namely the Login and Create/Submit an Event (see sec-
tion 6.1 part 2). Implementation of the Login end-to-end test can
be seen in Appendix A. The creation of an event workflow was also
implemented in a similar manner. In both cases, the user actions
involve clicking or filling in a few fields and submitting a form. Once
the Basic flow test case was implemented, the development of tests
entailing the Alternate flows was prompt. These test cases were
developed from the initial Basic Flow test case by changing the data
inputs and assertions.

7.1.3 Results : 4 out of 7 test cases that were defined did not
produce the expected results. These test cases were related to the
Alternate Flows : Invalid date-field and Invalid Client email/mobile.
The following bugs were discovered: 1. A professional can create an
event with an invalid client email/phone number. 2. A professional
can create an event on an invalid date.

7.2 Case 2: VRM: Remote Monitoring Web application

VRM is a remote monitoring web application that allows users to
control energy systems such as freezers, solar chargers, and water
tanks remotely. This system performs real-time data collection on
energy devices and displays this to the user. The application API is
built using PHP and the front-end of the application is built with
JavaScript, Vue, and Less. Considering the main workflow of the web
application involves monitoring devices, we choose the following
user stories to test (see 6.1(1)). These user stories can be summarized
as reading information from the device : User story: As a user, I want
to see:

(1) when my tank level was last updated

(2) temperature was last updated

(3) sum of solar power of all my installations
(4) my device’s alarms

7.2.1 Development of End-to-End Test Cases : Once again, as
discussed in section 6.2, we first identify the Basic and Alternate
flows. In this case study, the flow of events has been generalized
for reading information from the device. Therefore, in the second
step, we formulate use case scenarios such that all the above user
stories can be tested together. Finally, we write down test cases by
identifying the expected results and test inputs.

Basic Flow :

(1) Login: Login to VRM application, the system displays all the
device installations

(2) User chooses device: The user chooses a device by clicking
the device name, the system displays the device dashboard.

(3) User navigates to a page to see device related information :
User clicks on one of the buttons in the Dashboard to nav-
igate to a device page, system displays the required device
information.

Alternate Flow 1 : Unidentified User : Invalid user email or pass-
word entered for Login.

TScIT 37, July 8, 2022, Enschede, The Netherlands

Alternate Flow 2 : Server error : The server is not running.
Alternate Flow 3 : Device error : Device not connected or data
cannot be read from the device.

Scenario Name Starting Flow | Alternate
User can see device info Basic Flow
Unidentified user Basic Flow 1
Server error Basic Flow 2
Device error Basic Flow 3

Table 7. Use-case Scenarios for Device monitoring example

Scenario Name Test Inputs | Expected Result
User can see device info i1,i2 Display data
Unidentified user i1,i2 Login error
Server error i1,i2 Notify user
Device error i1,i2 Notify user

Table 8. Test cases for Device Monitoring example.
[Data inputs - i1: email, i2: password]

Test inputs for this case study were chosen by applying Boundary
Testing. This was used to assert that a valid email and password
do indeed login a user into his account, while an invalid email or
password produces a Login error.

7.2.2 Implementation of End-to-End Test Cases : The Basic
Flow test case (User can see device info) was implemented to assert
whether the device information was indeed displayed to the user.
This test case checks for a valid Login from the user and various
button presses on the application to navigate you to the correct page
so that the device information is displayed to the user (as stated in
the user story). These test cases have been implemented by checking
whether the web elements corresponding to the device information
are present on the web app (by using their ID tags) and asserting
if the data they contain is not None/null. For example, in case of
the alarm logs user story, a table which shows these logs and the
information in each column such as device name,time started at and
cleared after is confirmed. The Device error and Server error test
cases were implemented in a similar manner but the difference was
that assertions had to be made to check for notifications such as
such as Device is not online or the connection was lost.

7.2.3 Results : All test cases passed to assert that the device infor-
mation as stated in the user story is visible to the user. Notifications
on the application were also tested to inform the user about a Server
or Device error.

8 INTERVIEWS

To gain more knowledge regarding end-to-end test case genera-
tion and implementation, 3 testers from the software development
agency El Nino were interviewed. The testers were asked to provide
their feedback on the methods discussed in the literature and give
their insights on how to Determine important functionality to test,
Develop test cases scenarios from user stories and Implement end-
to-end test cases. Each tester was asked a set of questions related

Humaid Mollah

to these steps. The information acquired in these interviews has
been summarized in the following sections (8.1, 8.2, 8.3). In section
8.4, we report the key points which have been used to develop the
final method. The transcripts of these interviews can be found in
Appendix B.

8.1 Determine important functionality to test

The respondents mentioned that the important functionality of a
web app can be identified from the product backlog. This is where
the most important user stories for the current iteration of the
project are marked. For example, a priority queue in Gitlab can be
used where the most critical features and functionalities are denoted.
However, they are not always sorted so there can be multiple user
stories that can be used. In an agile working environment, the prod-
uct manager is responsible for prioritizing user stories that need to
be tested. Therefore, discussions should be made with the product
owner to identify which functionality to test. Regarding the test
cases which should be omitted, the testers agreed that low-level test
cases can be avoided while writing end-to-end test cases. One of
the testers said, "Indeed, user stories which are tested in unit tests
can be skipped." These user stories are related to small bug fixes or
features that may have a very low impact on the project.

8.2 Develop test cases scenarios from user stories

The respondents could compare the concepts of Basic and Alternate
Flows to their own techniques for identifying test cases. One of the
testers said, "I call the basic flow the happy path." Another tester
explained, "alternative flows are flows that are likely to be used
apart from the regular flow" The respondents mentioned that the
number of Alternate flows, according to the technique described,
would depend on the feature or functionality being tested. Since a
lot of the alternate flows are covered via Unit tests, the Alternate
flow test cases should be used to test broader "exceptional” scenarios
where both the front-end and back-end of the web application are
used. These would also depend on the "likelihood of breaking" as
mentioned by one of the respondents. Moreover, one tester said,
"80/20 principle usually does apply though.". This was a reference
to the Pareto principle which states that 80% of the consequences
(alternate flows) come from 20% of the causes (parts of code or a fea-
ture) [6]. Regarding the choice of data inputs, the testers mentioned
that Boundary testing was a good approach to test both positive
and negative scenarios. One of the testers said, "Usage-based Testing
could be considered as the most commonly used option as the choice
of data inputs depends on the feature being tested"

8.3 Implement end-to-end test cases

All the testers agreed that Selenium and Cypress are the best ap-
proaches for implementing end-to-end test cases. One of the testers
said, "These are the easiest options to implement end-to-end tests".
The other options, such as Visual-based locators, are not particularly
applicable for testing big web applications where many different
scenarios have to be considered.

User Stories applied for end-to-end web testing

8.4 Interview Results

The key points that were identified in the interview process are as
follows. These points have been incorporated into the final method
which is presented in the next section.

(1) The most important functionality of the web application is
subject to the current iteration in the development of the
project These can be found in the product backlog where the
most important user stories are marked with tags or are in
the priority queue.

(2) User stories are prioritized by the Product owner, who should
always be consulted if it is not clear which functionality is
most important.

(3) Low-level test cases such as bug fixes and those which have
a very low impact on the project workflow can be omitted.

(4) The number of Alternate flows depends on the feature or
functionality being tested. They should be targeted at broader
scenarios involving both the client and server sides.

(5) An 80/20 Pareto rule is applicable in determining Alternate
flows. This indicates that most or 80% of alternate flows are

caused by a small part or 20% of the code or a feature/functionality

(6].
(6) Data inputs for test cases are commonly chosen using Usage-
based testing and Boundary testing.

9 METHOD

From the literature review, case study and interviews, a user story-
driven approach to writing and implementing end-to-end test cases
has been formulated. This approach can be divided into 3 parts:

(1) Select User Story
(2) Transform User Story into Test Cases
(3) Implement Test Cases

9.1 Select User Story

The first step in the process is to select a User story. The following
points should be contemplated in the selection process :

(1) Identify important functionality : The user story which de-
fines the most important functionality of the web application
should be chosen first (see 6.1 (1)). In an agile development
environment, the Product Owner is responsible for defining
user stories and prioritizing important functionality for each
iteration. Often, these user stories contain tags such as "im-
portant” or "critical." These can help identify the important
user stories for which end-to-end test cases should be written.

(2) Omit Low-Level User Stories: User stories that define re-
quirements that are covered by Unit tests should be omitted
(see 6.1 (3)). These user stories can be related to small bug
fixes or a small feature update that does not have much impact
on the web app.

9.2 Transform User Story into Test Cases

The second step in the process is to transform the user story into
End-to-End Test Cases. This process can be broadly divided into 3
steps. Figure 2 shows a flowchart of this process.

TSclT 37, July 8, 2022, Enschede, The Netherlands

Random Testing ‘

Usage-Based Testing
Boundary Testing
Partition Testing L

Fig. 2. Transform User stories into End-to-End Test Cases

(1) Identify Flow: As discussed in section 6.2.1, In the beginning,
identify the Basic flow of the user story. This can usually be
divided into smaller workflows or user actions (see section
6.1 (2)). The case study discussed in section 7 shows how
the Basic Flow of a user story can be identified and broken
down into user actions. Next, Identify Alternate flows of this
user story by analyzing each user action defined in the Basic
workflow. There can be 0 or many alternate flows for each
user action. (see section 6.1 (4)). This depends on the feature or
functionality being tested. It is important to note that there
can be many alternate flows related to one user action as
compared to the others (see section 8.4 (5)).

(2) Develop Use-Case Scenarios: Based on the Basic and Alter-
nate workflows, the different paths that could be followed
by the user should be worked out. A table can be used as
shown in section 6.2.2 to keep track of each scenario. Use
case scenarios should be worked out for complex cases in-
volving multiple Alternate flows. To do this, Alternate flows
should be combined if possible (see section 7.1.1).

(3) Write Test cases: Identify the expected result and data in-
puts required for each use-case scenario. Data inputs should
be chosen by one of the methods discussed in section 6.2.3
(2). Based on the case study and interviews, Random Test-
ing,Boundary Testing and Usage-Based testing are the most
commonly used options.

9.3 Implement Test Cases

The test cases developed in the previous step can be implemented
using a Programmable DOM Based approach using tools such as
the Selenium Web Driver or Cypress (see section 6.4). From the

TScIT 37, July 8, 2022, Enschede, The Netherlands

—
- =
—_—
Order of execution
| S -
—_— e
S —>
—

Fig. 3. Implementation of test cases by following Basic and Alternate Flows

experiments conducted in section 7, a systematic approach to im-
plementing these test cases is defined. This process can be broadly
divided into 2 steps. Figure 3 shows a flowchart of this process.

(1) Basic Flow Test Cases : The Basic Flow test case should
be implemented in the beginning. Each small workflow or
user action in the basic flow should be implemented as an
individual test case. These test cases are executed in the same
order as the user actions. Figure 3 shows how the Basic Flow
test case is carried out. This is done by implementing test
cases 1,2 and 3 corresponding to the user actions which are
then executed in that order.

(2) Alternate Flow Test Cases : A test case containing an Al-
ternate Flow is implemented such that it asserts exceptional
behaviour only for the user-action it is connected with. These
test cases can then be executed along with one or more basic
flow test cases developed in the previous step. For example,
in Figure 4, the test for Alternate Flow 2 can be carried out by
executing the test cases in orders 1,2, and 5. This is done so
that user actions 1 and 2 can be performed normally before
exceptional behavior can be asserted in test case 5. However,
these test cases can also be executed independently. For exam-
ple, in Figure 4, it can be seen that the test for Alternate Flow
1 can be carried out by executing test case 4 independently
because is connected to user-action 1.

10 CONCLUSION

In order to effectively verify customer requirements during agile
software development, we have developed a user-story-driven ap-
proach for writing and implementing end-to-end test cases for a
web application. A three-step method has been put together which
helps identify the most important use case scenarios and implement
them as test cases. The two research questions that were posed are

Humaid Mollah

specifically addressed by this method. The first research question
is answered in the second step of this method namely Transform
User Story into Test Cases. This step describes a systematic method
by which a user story can be transformed into end-to-end test cases.
The second research question is answered together through the first
and third steps of the method, namely Select User Story and Imple-
ment Test Cases. The first step discusses how the most important
user stories can be selected for the testing process, and the third
step presents an efficient solution for implementing end-to-end test
cases.

There are a few limitations that can be identified in this research.
Firstly, due to the lack of time, a tool to automate the process of
transforming user stories into test cases could not be developed.
Therefore, only a literature review was conducted to identify how
this process can be automated. Secondly, although the described
method shows positive results in the case study, it cannot be guar-
anteed that the use of the method will produce 100% accuracy. This
is because, theoretically, it is impossible to determine all alternate
flows of a user story and bugs in software. To address the first limi-
tation, future work should be targeted at automating the second step
in the method, namely Transform User Story into Test Cases. This
will make developing end-to-end test cases very economical and
time-saving.

11 REFERENCES

[1] Apostolov, A., and B. Vandiver. 2014. End to End testing-What
should you know?. In 2014 67th Annual Conference for Protective
Relay Engineers (pp. 125-131). IEEE

[2] Bai, Xiaoying and Tsai, Wei-Tek and Paul, Ray and Shen, Techeng
and Li, Bing. 2001. Distributed end-to-end testing management. In
Proceedings Fifth IEEE International Enterprise Distributed Object
Computing Conference (pp. 140-151). IEEE.

[3] Bjorn Regnell, Per Runeson and Claes Wohlin. 2000. Towards
integration of use case modelling and usage-based testing. Journal
of Systems and Software, 50(2), 117-130.

[4] Brucker, Achim D and Herzberg, Michael. 2018. A formal model
of the Document Object Model.

[5] Diao, Yixin and Hellerstein, Joseph L and Parekh, Sujay and
Shaikh, Hidayatullah and Surendra, Maheswaran. 2006. Controlling
quality of service in multi-tier web applications. 26th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS’06)
(pp. 25-25). IEEE.

[6] Dunford, Rosie and Su, Quanrong and Tamang, Ekraj. 2014. The
pareto principle.

[7] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2011. The
Art of Software Testing. John Wiley Sons.

[8] Godefroid and Patrice. 2007. Random testing for security: black-
box vs. whitebox fuzzing. In Proceedings of the 2nd international
workshop on Random testing: co-located with the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2007) (pp. 1-1).

[9] Gundecha, Unmesh and Avasarala, Satya. 2018. Selenium web-
driver 3 practical guide: End-to-end automation testing for web and
mobile browsers with selenium webdriver. Packt Publishing Ltd.
[10] Gutierrez, Javier and Escalona, M.J. and Mejias, M. and Torres,

User Stories applied for end-to-end web testing

Jests. 2006. Generating Test Cases from Sequences of Use Cases..
473-476.

[11] Huang, George Q, and Mak, Kai-Ling. 2001. Issues in the de-
velopment and implementation of web applications for product
design and manufacture. International Journal of Computer Inte-
grated Manufacturing, 14(1), 125-135.

[12] Jeff Offutt. 2002. Quality Attributes of Web Software Applica-
tions. IEEE Softw. 19, 2 (March 2002), 25-32.

[13] Jim Heumann. 2001. Generating Test Cases From Use Cases.
Requirements Management Evangelist Rational Software.

[14] Leotta, Maurizio and Clerissi, Diego and Ricca, Filippo and
Tonella, Paolo. 2013. Capture-replay vs. programmable web testing:
An empirical assessment during test case evolution. In 2013 20th
Working Conference on Reverse Engineering (WCRE) (pp. 272-281).
IEEE.

[15] Lucassen, Garm and Dalpiaz, Fabiano and van der Werf, Jan
Martijn EM and Brinkkemper, Sjaak. 2016. The use and effective-
ness of user stories in practice. International working conference
on requirements engineering: Foundation for software quality (pp.
205-222). Springer, Cham.

[16] Massod, Mahawish and Igbal, Muhammad and Khan, M. and
Azam, Farooque. 2017. Automated-User-Story-Driven-Approach-
for-Web-Based-Functional-Testing. International Journal of Com-
puter and Information Sciences. 11.

[17] Matt Wynne and Aslak Hellesoy. 2012. The Cucumber Book:
Behaviour-Driven Development for Testers and Developers. Prag-
matic Bookshelf.

[18] Maurizio Leotta and Diego Clerissi and Filippo Ricca and Paolo
Tonella. 2016. Approaches and Tools for Automated End-to-End
Web Testing. Adv. Comput., 101, 193-237.

[19] Mike Cohn. 2004. User Stories Applied: For Agile Software
Development. Addison Wesley Longman Publishing Co., Inc., USA.
[20] Mikowski, Michael and Powell, Josh. 2013. Single page web
applications: JavaScript end-to-end. Simon and Schuster.

[21] Paul C. Jorgensen. 2018. Software Testing. CRC Press.

[22] Ramachandran and Muthu. 2003. Testing software components
using boundary value analysis. In 2003 Proceedings 29th Euromicro
Conference (pp. 94-98). IEEE.

[23] Ramya, Paruchuri and Sindhura, Vemuri and Sagar, P Vidya.
2017. Testing using selenium web driver. In 2017 Second Interna-
tional Conference on Electrical, Computer and Communication
Technologies (ICECCT) (pp. 1-7). IEEE.

[24] Rupali M. Chopade and Nikhil S. Dhavase. 2017. Agile software
development: Positive and negative user stories. 2017 2nd Interna-
tional Conference for Convergence in Technology (I2CT), 297-299.
[25] Sai Chaithra Allala and Juan P. Sotomayor and Dionny Santiago
and Tariq M. King and Peter J. Clarke. 2019. Towards Transform-
ing User Requirements to Test Cases Using MDE and NLP. 2019
IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), 2, 350-355.

[26] Sreedevi Sampath and Sara Sprenkle. 2014. Advances in Web
Application Testing. Adv. Comput., 101, 155-191.

[27] Tsai, Wei-Tek and Bai, Xiaoying and Paul, Ray and Shao, Weiguang

and Agarwal, Vishal. 2001. End-to-end integration testing design.
25th Annual International Computer Software and Applications
Conference. COMPSAC 2001 (pp. 166-171). IEEE.

TSclT 37, July 8, 2022, Enschede, The Netherlands

[28] WebDriver | Selenium. Retrieved July 2, 2022 from https://www.
selenium.dev/documentation/webdriver/

[29] Weyuker, Elaine J and Jeng, Bingchiang. 1991. Analyzing parti-
tion testing strategies. IEEE transactions on software engineering,
17(7), 703.

12 APPENDIX
12.1 APPENDIX A

The following is a code snippet of a basic login end-to-end test case
implemented using Python and the Selenium web driver.

s Login(unittest.TestCase):

def setUp(self):
self.EMAIL = "User email ID"
self.PASSWORD = "User password"
self.driver = webdriver.Chrome(ChromeDriverManager().install())

ef type_text(self,element, text):
for character in text:
element.send_keys(character)
time.sleep(0.3)

ef test_login(self):
driver = self.driver
driver.get("<URL of Webapp>")
login_button = driver.find_element_by_id('login')
login_button.click()
time.sleep(2)
email = driver.find_element_by_id('email’)
self.type_text(email,self.EMAIL)
time.sleep(1)
[ord = driver.find_element_by_id('password"')
self.type_text(email,self.EMAIL)
time.sleep(1)
driver.find_element_by_id('submit').click()
time.sleep(2)
assert "<URL of page after successful Login>" == driver.current_url

def tearDown(self):
self.driver.close()

if __name__ == "__main__":
unittest.main()

Fig. 4. Implementation of a basic Login end-to-end test using the Selenium
web driver and Python

12.2 APPENDIX B

Interview Questions:

Select User Story

(1) How do you identify the most important functionality of a
web application to test?

(2) In which cases do you not test a certain feature/functionality
of a web application?

Transform User Story into Test Cases

(1) Does the concept of Basic and alternate flows help identify
the most important use case scenarios? Is there a different
technique that you use to identify the workflow of an app?

(2) How many exceptional/abnormal scenarios do you consider
when testing a feature/functionality (referring to alternate
flows)? How do you identify them?

(3) How many complex use case scenarios (with multiple alter-
nate flows) should you test?

https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/

TScIT 37, July 8, 2022, Enschede, The Netherlands

(4) How do you choose data inputs for your test cases? Which
methods do you use?

Implement Test Cases

(1) The case study uses tools such as the Selenium Web-Driver
and Cypress to implement end-to-end tests. Would you con-
sider these as usable approaches or are there any other tools
that you use?

Interview Transcripts:

Software Tester 1:
Select User Story

(1) Read issue title, look at priority queue in GitLab (not always
sorted), discuss with PO’s.

(2) Small bug fixes, textual changes, basically determine low-risk
low impact issues and skip them.

Transform User Story into Test Cases

(1) Yes, I call the basic flow the happy path.

(2) It highly depends, bigger issues have more alternative flows
and therewith abnormal ones

(3) Again, this depends. Customer expectations, available bud-
gets, used hours on an estimate, and the likelihood of break-
ing. Also, input validation is easy to automatically test, i.e.
it also depends on what "should you test" means (manual or
automatic).

(4) I choose data inputs using all of these methods (Random,
Usage-based, Boundary, Partition)

Implement Test Cases
(1) Tuse Cypress but Selenium also works similarly

Software Tester 2:
Select User Story

(1) Check the product backlog, choose the one with high priority,
it is usually not very difficult to determine
(2) Indeed, user stories that are tested in unit tests can be skipped

Transform User Story into Test Cases

(1) Yes, my definition for alternate/abnormal flows: abnormal
flows are flows that will not likely be used by end-users,
alternative flows are flows that are likely to be used apart
from the regular flow

(2) Depends on the functionality you are testing. The 80/20 prin-
ciple usually does apply though

(3) for end-to-end tests, the broader use-case scenarios which
involve both the front-end and back-end, so that big features
or flows can be tested well

(4) Usage-based Testing could be considered the most commonly
used option as the choice of data inputs depends on the feature
being tested

Implement Test Cases

(1) Yes, These are the easiest options to implement end-to-end
tests.

Software Tester 3:
Select User Story

10

Humaid Mollah

(1) The product owner can help choose the most important one,
but on GitLab also you can find the most important user
stories for the sprint

(2) Bug fixes and maybe small changes in the front end can be
avoided

Transform User Story into Test Cases

(1) Yes, the basic workflow should be recognized and the alternate
flows.

(2) Depends on the user story you are testing, the bigger func-
tionalities will have more alternate flows

(3) This depends on the budget and what is required really

(4) All options are usable and it depends on what you are testing,
but Boundary Testing is a good technique to test both positive
and negative scenarios.

Implement Test Cases

(1) Yes, these are the ones which are most used, the other ones
as you mentioned like Visual locators cannot be always used

like for big web apps

	1 Abstract
	2 Keywords
	3 Introduction
	4 Research Goals
	5 Related works
	6 Literature Review
	6.1 Best practices for End-to-End Testing
	6.2 Generation of test cases from User Stories
	6.3 Automatic Test Case Generation
	6.4 Implementation of End-to-End Tests

	7 Case Study
	7.1 Case 1: MyDay: Scheduling Web application
	7.2 Case 2: VRM: Remote Monitoring Web application

	8 INTERVIEWS
	8.1 Determine important functionality to test
	8.2 Develop test cases scenarios from user stories
	8.3 Implement end-to-end test cases
	8.4 Interview Results

	9 Method
	9.1 Select User Story
	9.2 Transform User Story into Test Cases
	9.3 Implement Test Cases

	10 Conclusion
	11 REFERENCES
	12 APPENDIX
	12.1 APPENDIX A
	12.2 APPENDIX B

