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Fractal Art;
On transformations, the root-placement of butterfly-like

fractals and image approximation.

Tim Hut∗

July 1, 2022

Abstract

This thesis is concerned with fractal art obtained with the Newton algorithm.
Three crucial results are obtained. First the relation between transformations on the
roots of a polynomial and the transformation on its Newton fractal are proved. Second,
a characterisation is defined and the placement of the roots of a polynomial that
have that characterisation is determined.The characterisation defined are butterfly-
like fractals for polynomials of degree four. Third, a method for the approximation of
an image with Newton fractals using the least squares method is provided.

Keywords: Newton’s method, Newton fractals, fractal art

1 Introduction

Fractal are geometric shapes containing detailed structure at arbitrarily small scales and
can be created with mathematical algorithms. Those algorithms can be used to produce
algorithmic art, i.e. visual art in which the design is generated by an algorithm. In this the-
sis, we restrict ourselves to the fractals created by applying the so-called Newton-Raphson
method or simply Newton’s method.

This methods was first formulated by Isaac Newton in ‘De analysi per aequationes nu-
mero terminorum infinitas’, written most likely in 1669. There, the methods described
how to find roots of polynomials. Later this formulation reappears in ‘Principia Mathe-
matica’ and ‘De Methodis Serierum et Fluxionum’. In 1687, the method was extended by
Newton to find the roots of non polynomial functions in ‘Philosophiæ Naturalis Principia
Mathematica’ [9]. Independently from Newton, Joseph Raphson publishes in 1690 a similar
method for solving polynomials equation, see [5].

In 1975, the term fractal was first introduced by American-french-polish mathematician
Benoit B. Mandelbrot, in his book ‘Les objets fractals : forme, hasard et dimension’[4],
Mandelbrot pointed out that fractals could be used in applied mathematics for modeling
a variety of phenomena from physical objects to the behavior of the stock [1].

Some related works that deal with fractal art or that deal with Newton fractals are;
‘Research on garment pattern design based on fractal graphics’ by Weijie Wang, Gaopeng
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(a) Coloured basins of attraction (b) Julia set

Figure 1: Newton fractal of p4(z) = z4 + 4, which has roots at ±1± i

Zhang, Luming Yang and Wei Wang, see [7], ‘Graphical representations for the homoge-
neous bivariate Newton’s method ’ by José M. García Calcines, José M. Gutiérrez, Luis
J. Hernández Paricio and M. Teresa Rivas Rodríguez, see [3], and ‘On the iteration of a
rational function: Computer experiments with Newton’s method ’ by James H. Curry, Lucy
Garnett and Dennis Sullivan, [2].

The outline of this thesis is a follows: after introducing the Newton method in section
2, in section 3 the links between transformations on Newton fractals and transformations
on the roots of n degree polynomials are explored. In section 4, a characterisation is de-
fined and the placement of the roots are investigated such that characterisation appears in
the newton fractals of fourth degree polynomials. In the final part of this article, we will
pave the way towards an approximation algorithm capable of comparing Newton fractals
to given images.

2 The Newton method

In this section, the concepts related to Newton’s method are introduced. For n ∈ N, let
pn : C → C be a polynomial of degree n on the complex domain. The fundamental theorem
of algebra states that every polynomial of degree n has n, not necessarily distinct, zeros
or roots [6]. For k ∈ {1, 2, . . . , n} the kth root of pn is denoted as ρk. Let {zk}k∈Z≥ be a
sequence where z0 ∈ C and for k = 1, 2, . . . ; zk is obtained using Newton’s method;

zk = zk−1 −
pn(zk−1)

p′n(zk−1)
. (1)

Then in most cases this sequence will converge to a root of pn. When for z∗ ∈ C the
sequence with z0 = z∗ converges, z∗ is assigned to a colour corresponding to the root it
converges to. Doing this for all z ∈ C results in a fractal pattern as for instance in figure
1.

The colouring is denoted as X(z) ⊆ {1, 2 . . . n}, for all χ ∈ {1, 2 . . . n} if the se-
quence starting with z0 = z converges to ρχ then χ ∈ X(z). Hence z lies in the basin
of attraction of ρχ[6]. This notation allows for roots with multiplicity m ∈ N≤n, let
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χ1, χ2, . . . , χm ∈ {1, 2, . . . , n} such that χ1 < χ2 < . . . < χm, and ρχ1 = ρχ2 = . . . = ρχm ,
we denote X(z) = {χ1, χ2, . . . , χm} when z converges to ρχ1 .1 When z does not converge
this implies X(z) = ∅, however this is denoted as X(z) = {0} instead.

On the boundary of the basins of attraction lies the Julia set. Formally this is defined
as follows; the filled Julia set for a polynomial function pn(z) is the set of points that
launch bounded orbits through iteration of pn; the Julia set is the boundary of the filled
Julia set [6].

3 Transformations on Newton Fractals

3.1 Translation

First the notation of translation is introduced. Let Tα : C → C define a translation in the
complex plane with complex number α. Then for all z ∈ C, it follows Tα(z) = z + α.

A method to translate Newton fractals in the complex plane is defined. We start by
observing the relation between a polynomial pn and a polynomial p̂n which has the same
roots as pn but translated.

Lemma 3.1. Translation of roots
Let pn : C → C, be a polynomial of degree n; in factorised form pn(z) =

∏n
k=1(z − ρk),

with complex roots ρk, k = 1, 2, ..., n. Let α be a complex number.
If p̂n(z) is a polynomial of degree n, with roots ρ̂k = ρk + α (= Tα(ρk)) for k = 1, 2, ..., n.
Then p̂n(z) equals pn(z − α) and its derivative p̂′n(z) equals p′n(z − α).

Proof.

p̂n(z) =

n∏
k=1

(z − (ρk + α)) =

n∏
k=1

((z − α)− ρk) = pn(x− α)

Using chain rule it follows that its derivative p̂′n(z) equals p′n(z − α).

Let z0 ∈ C, we continue by comparing the sequences obtained from Newton’s method
on pn and p̂n with initial condition z0 and T0,α(z0) respectively.

Theorem 3.2. Translation of Newton fractals
Let pn : C → C be a polynomial of degree n, with with complex roots ρk, k = 1, 2, ..., n.
Let {zk}k∈Z≥ denote a sequence obtained from Newton’s method on pn(z) that converges to
root ρχ, χ ∈ {1, 2, ..., n} and let α be a complex number.
If p̂n(z) is a polynomial of degree n, with roots ρ̂k = ρk + α for k = 1, 2, ..., n. Then the
sequence obtained using Newton’s method on p̂n(z) with initial value ẑ0 = z0 + α, implies
{ẑk}k∈Z≥ = {zk + α}k∈Z≥ and {ẑk}k∈Z≥ converges to root ρ̂χ = ρχ + α.

Proof. proof by induction
base step; since ẑ0 = z0 + α and using lemma 3.1,

x̂1 = ẑ0 −
p̂n(ẑ0)

p̂′n(ẑ0)
=

(
z0 −

pn(z0 + α− α)

p′n(z0 + α− α)

)
+ α

= x1 + α

1In the graphical representation of the fractal, z has the colour associated with χ1
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hypothesis step; now assume ẑk−1 = zk−1 + α
induction step; using the hypothesis step and lemma 3.1.

ẑk = ẑk−1 −
p̂n(ẑk−1)

p̂′n(ẑk−1)
=

(
zk−1 −

pn(zk−1 + α− α)

p′n(zk−1 + α− α)

)
+ α

= zk + α

Hence {ẑk}k∈Z≥ = {zk + α}k∈Z≥ and limk→∞ ẑk = limk→∞(zk + α) = ρχ + α

This implies that when the mapping of the roots are translated also the mapping of
the Newton fractal is translated with the same value.

3.2 Rotation

Now the notation used for rotation is introduced. Let Rα,ϕ : C → C define a counterclock-
wise rotation in the complex plane around complex number α with angle ϕ. In this section
only rotation around the origin is considered. Let be z ∈ C, z is written in polar form; let
|z| be the modulus and φ the argument of z, thus z = |z|eiφ. Then after rotating with ϕ.

ẑ = |z|ei(φ+ϕ) = |z|eiφeiϕ = zeiϕ.

Therefore R0,ϕ(z) = zeiϕ.

A method to rotate Newton fractals in the complex plane is defined. Like before, we
start by observing the relation between a polynomial pn and a polynomial p̂n which now
has the same roots as pn but rotated with ϕ with respect to the origin.

Lemma 3.3. Rotation of roots around the origin
Let pn : C → C, be a polynomial of degree n; in factorised form pn(z) =

∏n
k=1(z − ρk),

with complex roots ρk, k = 1, 2, ..., n. Let ϕ be an angle between −π and π.
If p̂n(z) is a polynomial of degree n, with roots ρ̂k = ρke

iϕ (= R0,ϕ(ρk)) for k = 1, 2, ..., n.
Then p̂n(z) equals (eiϕ)(n−1)p′n(ze

−iϕ) and its derivative p̂′n(z) equals (eiϕ)(n−1)p′n(ze
−iϕ).

Proof.

p̂n(z) =
n∏

k=1

(z − ρke
iϕ) =

n∏
k=1

eiϕ(ze−iϕ − ρk)

= einϕpn(ze
−iϕ)

Using the chain rule it follows that its derivative p̂′n(z) equals ei(n−1)ϕp′n(ze
−iϕ).

Let z0 ∈ C, we continue by comparing the sequences obtained from Newton’s method
on pn and p̂n with initial condition z0 and R0,ϕ(z0) respectively.

Theorem 3.4. Rotation of Newton fractals around origin
Let pn : C → C be a polynomial of degree n, with with complex roots ρk, k = 1, 2, ..., n.
Let {zk}k∈Z≥ denote a sequence obtained from Newton’s method on pn(z) that converges to
root ρχ, χ ∈ {1, 2, ..., n} and let ϕ be an angle between −π and π.
If p̂n(z) is a polynomial of degree n, with roots ρ̂k = ρke

iϕ for k = 1, 2, ..., n. Then the
sequence obtained using Newton’s method on p̂n(z) with initial value ẑ0 = z0e

iϕ, implies
{ẑk}k∈Z≥ = {zkeiϕ}k∈Z≥ and {ẑk}k∈Z≥ converges to root ρ̂χ = ρχe

iϕ.
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Proof. proof by induction
base step; since ẑ0 = z0e

iϕ and using lemma 3.3,

ẑk = ẑ0 −
p̂n(ẑ0)

p̂′n(ẑ0)
=

(
z0 −

pn(z0e
iϕ−iϕ)

p′n(z0e
iϕ−iϕ)

)
eiϕ

= zke
iϕ

hypothesis step; now assume ẑk−1 = zk−1e
iϕ

induction step; using the hypothesis step and lemma 3.3,

ẑk = ẑk−1 −
p̂n(ẑk−1)

p̂′n(ẑk−1)
=

(
zk−1 −

pn(zk−1e
iϕ−iϕ)

p′n(zk−1eiϕ−iϕ)

)
eiϕ

= zke
iϕ

Hence {ẑk}k∈Z≥ = {zkeiϕ}k∈Z≥ and limk→∞ ẑk = limk→∞ zke
iϕ = ρχe

iϕ

This implies that when the mapping of the roots are rotated around the origin also the
mapping of the Newton fractal is rotated around the origin with the same angle.

3.3 Reflection

In this last subsection, the notation for reflection is introduced. Let rl : C → C define a
reflection in the complex plane in line l. In this section only reflection in the real line is
considered. Let z ∈ Z and x, y ∈ R, then z can be written as z = x + yi, when reflected
in the real line

ẑ = x− yi = z̄.

Therefore rR−axis(z) = z̄.

A method to reflect Newton fractals in the complex plane is defined. Again, we start
by observing the relation between a polynomial pn and a polynomial p̂n which now has the
same roots as pn but reflected in the real line.

Lemma 3.5. Reflection of roots in real line
Let pn : C → C, be a polynomial of degree n; in factorised form pn(z) =

∏n
k=1(z − ρk),

with complex roots ρk, k = 1, 2, ..., n.
If p̂n(z) is a polynomial of degree n, with roots ρ̂k = ρ̄k (= rR−axis(ρk)) for k = 1, 2, ..., n.
Then p̂n(z) equals p̄n(z̄) and its derivative p̂′n(z) equals p̄′n(z̄).

Proof.

p̂n(z) =
n∏

k=1

(z − ρ̄k) =
n∏

k=1

(z̄ − ρk)

= p̄n(z̄)

Using chain rule it follows that its derivative p̂′n(z) equals p̄′n(z̄).

Let z0 ∈ C, we continue by comparing the sequences obtained from Newton’s method
on pn and p̂n with initial condition z0 and rR−axis(z0) respectively.
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Theorem 3.6. Reflection of Newton fractals in real line
Let pn : C → C be a polynomial of degree n, with with complex roots ρk, k = 1, 2, ..., n.
Let {zk}k∈Z≥ denote a sequence obtained from Newton’s method on pn(z) that converges to
root ρχ, χ ∈ {1, 2, ..., n}.
If p̂n(z) is a polynomial of degree n, with roots ρ̂k = ρ̄k for k = 1, 2, ..., n. Then the
sequence obtained using Newton’s method on p̂n(z) with initial value ẑ0 = z̄0, implies
{ẑk}k∈Z≥ = {z̄k}k∈Z≥ and {ẑk}k∈Z≥ converges to root ρ̂χ = ρ̄χ.

Proof. proof by induction
base step; since ẑ0 = z̄0 and using lemma 3.5

x̂1 = ẑ0 −
p̂n(ẑ0)

p̂′n(ẑ0)
= z̄0 −

p̄n(¯̄z0)

p̄′n(¯̄z0)
=

(
z0 −

pn(z0)

p′n(z0)

)
= z̄1

hypothesis step; now assume ẑk−1 = z̄k−1

induction step; using the hypothesis step and lemma 3.5,

ẑk = ẑk−1 −
p̂n(ẑk−1)

p̂′n(ẑk−1)
=

(
zk−1 −

pn(zk−1)

p′n(zk−1)

)
= z̄k

Hence {ẑk}k∈Z≥ = {z̄k}k∈Z≥ and limk→∞ ẑk = limk→∞ z̄k = ρ̄χ

This implies that when the mapping of roots are reflected in the real line also the
mapping of the Newton fractal is reflected in the real line.

3.4 General rotation and reflection

Using the methods of translation, rotation around zero and reflection in the real line for
Newton fractals of polynomials, more general methods of rotation an reflection can be
constructed.

Let z and α be complex and let ϕ be between −π and π. When z is rotated around α
with ϕ, it is perceived that the relative potion of z to α in the complex plane is the same
as the relative potion of ẑ = z − α with the origin when rotating around the it with ϕ.
Hence when z is first translated to have α be at the origin, then is rotated around 0 and
finally is translated to have α at its original position, this is the same as rotation around
α. Therefore

Rα,ϕ(z) = Tα ◦R0,ϕ ◦ T−α(z) = (z − α)eiϕ + α. (2)

Then directly from theorems 3.2 and 3.4, the next corollary follows.

Corollary 3.7. Rotation of Newton Fractals
Let pn : C → C be a polynomial of degree n, with with complex roots ρk, k = 1, 2, ..., n.
Let {zk}k∈Z≥ denote a sequence obtained from Newton’s method on pn(z) that converges to
root ρχ, χ ∈ {1, 2, ..., n}, let α be a complex number and let ϕ be an angle between −π and
π.
If p̂n(z) is a polynomial of degree n, with roots ρ̂k = (ρk − α)eiϕ + α for k = 1, 2, ..., n.
Then the sequence obtained using Newton’s method on p̂n(z) with initial value ẑ0 = (z0 −
α)eiϕ + α, implies {ẑk}k∈Z≥ = {(zk − α)eiϕ + α}k∈Z≥ and {ẑk}k∈Z≥ converges to root
ρ̂χ = (ρχ − α)eiϕ + α.
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Proof. Using theorem 3.2 twice and theorem 3.4, it follows

{ẑk}k∈Z≥ = {z∗k + α}k∈Z≥ = {z∗∗k eiϕ + α}k∈Z≥ = {(zk − α)eiϕ + α}k∈Z≥ ,

and limk→∞ ẑk = limk→∞((zk − α)eiϕ + α) = ρχe
iϕ.

For this reason it can be concluded that when the mapping of roots are rotated around
α in the complex plane, the fractal is also rotated around α in the complex plane.

Let z and α be the same as previously mentioned, furthermore let t ∈ R, β ∈ C and let
line l be defined as l(t) = βt+α, then in a similar manner as general rotation. It is observed
that the relative position of z to α when reflected in l is the same as the relative distance
of ẑ = (z − α)e−iArg(β) to the origin rotated with the argument of β when reflected in the
real axis. Hence when z is first translated to have α be at the origin, rotated clockwise
with the argument of β such that l equals the reals axis, then reflected in the real axis and
finally rotated and translated such that α and l are in their original position, this equals
reflection in l. therefore

rl(z) = Tα ◦R0,Arg(β) ◦ rR−axis ◦R0,−Arg(β) ◦ T−α(z) = (z − α)e−iArg(β)eiArg(β) + α

= (z̄ − ᾱ)e2iArg(β) + α

Then directly from theorems 3.2, 3.4 and 3.6 the next corollary follows.

Corollary 3.8. Reflection of Newton Fractals
Let pn : C → C be a polynomial of degree n, with with complex roots ρk, k = 1, 2, ..., n.
Let {zk}k∈Z≥ denote a sequence obtained from Newton’s method on pn(z) that converges to
root ρχ, χ ∈ {1, 2, ..., n}, let α be a complex number and let ϕ be an angle between −π and
π.
If p̂n(z) is a polynomial of degree n, with roots ρ̂k = (ρ̄k − ᾱ)e2iϕ + α for k = 1, 2, ..., n.
Then the sequence obtained using Newton’s method on p̂n(z) with initial value ẑ0 = (z̄0 −
ᾱ)e2iϕ + α, implies {ẑk}k∈Z≥ = {(z̄k − ᾱ)e2iϕ + α}k∈Z≥ and {ẑk}k∈Z≥ converges to root
ρ̂χ = (ρ̄χ − ᾱ)e2iϕ + α.

Proof. Using theorems 3.2 and 3.4 twice and theorem 3.6, it follows

{ẑk}k∈Z≥ = {z∗k + α}k∈Z≥ = {z∗∗k e2iϕ + α}k∈Z≥ = {z̄∗∗∗k e2iϕ + α}k∈Z≥

= {(z̄k − ᾱ)e2iϕ + α}k∈Z≥ ,

and limk→∞ ẑk = limk→∞((z̄k − ᾱ)e2iϕ + α) = (ρ̄χ − ᾱ)e2iϕ + α.

Thus it can be concluded that when the mapping of the roots are reflected in line l in
the complex plane, the fractal is also reflected in line l in the complex plane.

4 Characterization, symmetries and root placement

One of the main goals is determining a characterisation for some fractal and then defin-
ing the placement of the roots of a polynomial in relation to each other such that after
performing Newton’s method a fractal with that characterisation is created.
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(a) Coloured basins of attraction (b) Julia set

Figure 2: Newton fractal of p4(z) = z4 + 30
16z

2 + 289
256 , which has roots at ±1± i

4 .

4.1 Characterization and symmetries in Julia set

To find a characterization many fractals of fourth degree polynomials were created2. After
comparing the fractals, those with a butterfly-like appearance were chosen to be further
investigated. An example of such a fractal is the fractal of p4(z) = z4 + 30

16z
2 + 289

256 shown
in figure 2.

Apart from that these fractals present a recognizable figurative repetition, as opposed
by the abstract shapes present in other fractals, butterflies have appeared throughout art
history symbolizing various things. Such as the precariousness of nature and beauty and
as result also hope, but also as a warning symbol and representing the human soul [8].

Let α, β, β∗ ∈ C and let for t ∈ R, l(t) = βt+ α and l∗(t) = β∗t+ α be two lines such
that l and l∗ are orthogonal and intersect in α, the fractals with a butterfly-like appearance
can be characterized as the Julia set of such fractals is observed to have symmetry group
{Rα,0, Rα,π, rl, rl∗}. Furthermore when the fractal (with coloured basins of attractions) is
rotated with π or reflected in l or l∗, the colours are shifted according to some permutations.

4.2 Root placement

Let X(p4(z)) = {0, 1, 2, 3, 4} be the set of colours in the fractal of a fourth degree
polynomial. Arbitrary choose one root of p4 to be root 1, then let the other roots of p4
be placed such that clockwise starting at root 1 the roots are ρ1, ρ2, ρ3 and ρ4. Then let
γ1 = (0)(1 3)(2 4) be a permutation on X(p4(z)) in cycle notation, and therefore for all
z ∈ C,

X(Rα,π(z)) = γ1(X(z)) (3)

describes when the Julia set has a rotational symmetry with π, and when rotating with π
the colours are shifted.

Let for k = 1, 2, 3, 4, p̂4 denote the polynomial corresponding to the roots ρ̂k = (ρk −
α)eiπ + α. Let {zk}k∈Z≥ denote a sequence obtained from Newton’s method on p4(z)

2For those interested in the MATLAB code for creating fractals, and various fractals, I would like to
direct you to appendix A.1, A.2 and B
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that converges to root ρχ, χ ∈ {1, 2, 3, 4}. Then according to equation 3 the sequence
{Rα,π(zk)}k∈Z≥ has to converge to ργ1(χ). From corollary 3.7 follows that the sequence
{Rα,π(zk)}k∈Z≥ obtained from Newton’s method on p̂4 converges to ρ̂χ = (ρχ − α)eiπ + α.
Then the fractals of p4 and p̂4 are the same if ργ1(χ) = ρ̂χ = (ρχ−α)eiπ+α. Since eiπ = −1,
it can therefore be derived that

ρ3 = −(ρ1 − α) + α = −ρ1 + 2α and ρ4 = −ρ2 + 2α (4)

When the Julia set has a line symmetry and when reflecting in that line the colours are
shifted, this is described by the permutation γ2 = (0)(1 2)(3 4) and when for all z ∈ C,

X(rl(z)) = γ2(X(z)). (5)

Let for t ∈ R, the line l(t) be described as in section 4.1 and let for k = 1, 2, 3, 4, p∗4
denote the polynomial corresponding to the roots ρ∗k = (ρ̄k − ᾱ)e2iArgβ + α. Let {zk}k∈Z≥

denote a sequence obtained from Newton’s method on p4(z) that converges to root ρχ,
χ ∈ {1, 2, 3, 4}. Then according to equation 5 the sequence {rl(zk)}k∈Z≥ has to converge to
ργ2(χ). From corollary 3.8 follows that the sequence {rl(zk)}k∈Z≥ obtained from Newton’s
method on p̂4 converges to ρ∗χ = (ρ̄χ − ᾱ)e2iArgβ + α. Then the fractals of p4 and p̂4 are
the same if ργ2(χ) = ρ∗χ = (ρ̄χ − ᾱ)e2iArgβ + α. Therefore

ρ2 = (ρ̄1 − ᾱ)e2iArgβ + α and ρ4 = (ρ̄3 − ᾱ)e2iArgβ + α. (6)

Substituting equations 4 in equations 6 results in

ρ4 = (−ρ1 + 2α− ᾱ)e2iArgβ + α = −(ρ̄1 − ᾱ)e2iArgβ + α.

This is the same as describing the line symmetry in the Julia set in the line orthogonal to
the line described previously; let for t ∈ R, the lines l(t) and l∗ be described as in section
4.1, since l and l∗ are orthogonal, therefore |Argβ −Argβ∗| = π

2 , and this results in,

rl ◦Rα,π(z) = (((z − α)eiπ + α)− ᾱ)e2iArgβ + α

= (z̄ − ᾱ)ei(2Argβ∗±2π
2
−π) + α = rl∗(z)

Altogether, let ζ, α, β ∈ C and let ρ1 = ζ, a fractal with rotational symmetry with
permutation γ1 around α and line symmetry with permutation γ2 in l(t) = βt + α follow
when the roots are placed such that{

ρ1 = ζ
ρ2 = α+ (ζ̄ − ᾱ)e2iArgβ

ρ3 = 2α− ζ
ρ4 = α− (ζ̄ − ᾱ)e2iArgβ

(7)

Fractals according to the root placement in 7 are created, for a = 0, 0.25, 0.5, ..., 1 and
b = 0, 0.25, 0.5, ..., 1, such that ζ = a + bi. In table 1, α = 0 and β = 1 is taken and in
table 2, α = 0.25 and β = 1 + 2i is taken.

Currently when the roots are placed according to equation 7, two things are observed
from table 1 and 2. Namely when the Julia set has a rotational symmetry with π

2 or when a
root has a multiplicity bigger than 1, the fractal does not have a butterfly-like appearance,
therefore it will be useful to define what symmetries are not in the Julia set of the fractal.
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Table 1: Fractals with roots according to the equations 7 where ζ = a + bi,
rotational around 0 and line symmetric in real axis

a\b 0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

Table 2: Fractals with roots according to the equations 7 where ζ = a + bi,
rotational around 0.25 and line symmetric l(t) = 0.25 + (1 + 2i)t

a\b 0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1
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First we look when the Julia set does not have a rotational symmetry with π
2 . Let

γ3 = (0)(1 2 3 4) be a permutation on X(p4(z)), then this can be described as for some
z ∈ C,

X(Rα,π
2
(z)) ̸= γ3(X(z)) (8)

Let for k = 1, 2, 3, 4, p̂4 denote the polynomial corresponding to the roots ρ̂k = (ρk −
α)ei

π
2 + α. Let {zk}k∈Z≥ denote a sequence obtained from Newton’s method on p4(z)

that converges to root ρχ, χ ∈ {1, 2, 3, 4}. Then if X(Rα,π
2
(z)) = γ3(X(z)) would hold

the sequence {Rα,π(zk)}k∈Z≥ has to converge to ργ3(χ). From corollary 3.7 follows that
the sequence {Rα,π

2
(zk)}k∈Z≥ obtained from Newton’s method on p̂4 converges to ρ̂χ =

(ρχ − α)ei
π
2 + α. Then from equation 8, follows ργ3(χ) ̸= ρ̂χ = (ρχ − α)ei

π
2 + α. Therefore,

ρ4 ̸= (ρ1 − α)ei
π
2 + α = ρ1i+ (1− i)α, ρ1 ̸= ρ2i+ (1− i)α,

ρ2 ̸= ρ3i+ (1− i)α and ρ3 ̸= ρ4i+ (1− i)α. (9)

Furthermore any root should not have a multiplicity bigger than 1, for this reason it
follows that

ρ1 ̸= ρ2 ̸= ρ3 ̸= ρ4. (10)

Let ζ, α, β ∈ C, then combining equations 9 and 10 with the placement in 7 results in
the placement of the roots where the fractal has a butterfly-like appearance.{

ρ1 = ζ , but ρ1 ̸= α+ (ζ̄ − ᾱ)ei(2Argβ+π
2
)

ρ2 = α+ (ζ̄ − ᾱ)e2iArgβ , but ρ2 ̸= (1 + i)α− ζi

ρ3 = 2α− ζ , but ρ3 ̸= α− (ζ̄ − ᾱ)ei(2Argβ+π
2
)

ρ4 = α− (ζ̄ − ᾱ)e2iArgβ , but ρ4 ̸= (1− i)α+ ζi
ρ1 ̸= ρ2 ̸= ρ3 ̸= ρ4

(11)

5 Image approximation

In the final part of this article the approximation of an image with ‘newton fractals is
discussed. Given an image, the goal is to obtain the fractal that approximates the image
the best, the accomplish this least squares method is used.

Since an image is pixellated and each pixel is coloured using a combination of the ad-
ditive primary colours: red, green and blue. Let an m × n pixel image be described by a
n ×m × 3 matrix I. For p ∈ {0, 1, . . . ,m} and q ∈ {0, 1, . . . , n}, then for p, qth pixel of
the image; I(q, p, 1) describes the amount of red, I(q, p, 2) describes the amount of green
and I(q, p, 3) describes the amount of blue. Furthermore for all p, q and k = 1, 2, 3 holds
I(q, p, k) ∈ {0, 1, 2, . . . , 255}.

To account for the pixels. Given X a colouring corresponding to a newton fractal, let F
be a n×m matrix be the pixellation of that fractal on domain 0 ≤ Rez ≤ 1, 0 ≤ Imz ≤ n

m ,
then

F (q, p) = X(
1

m
(p− 1 + (q − 1)i)).

Note that F inverts the fractal horizontally.
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(a) image of Peacock butterfly and approximation

(b) image of Marbled white (butterfly) and approximation

Figure 3: images and their least squares approximation

The fractals that are considered are restricted to fractals with a butterfly-like ap-
pearance as discussed in previous section. These fractals are obtained according to the
placement in equation 11. The fractals are dependent on three variables; ζ, α and β.
Furthermore the actual colours associated with the colouring also influence how the fractal
looks. An fractal approximation is determined for the red, green and blue values of the
image separately. For each value χ ∈ {0, 1, 2, 3, 4} in F has to correspond to a value c in
{0, 1, . . . , 255}. To accomplish this, the values in F are multiplied by a scalar s ∈ N, such
that c = sχ. To also consider colourings in a non clockwise manner, the values of χ are
changed with different permutations γ ∈ Γ(0), the group of permutations where 0 remains 0.

Then the least squares method can be described as, for k = 1, 2, 3,

Lk = min
ζ,α,β∈C,γ∈Γ(0)

( n∑
p=1

m∑
q=1

I(q, p, k)− cγ(F (q, p))

)
Using this equation, the combination of fractals in figure 3 are determined as best

least squares approximations. To reduce computation time, α is fixed as 1
2 + n

2m , for
r = 1

10 ,
2
10 . . . 1, ϕ = 0, 1

10π,
2
10π, . . .

1
2π and φ = 0, 1

10π,
2
10π, . . .

1
2π over β = eiϕ and

ζ = (reiφ − α)e−iϕ + α is iterated.

When comparing the image to the fractal in figure 3a, the minimum errors squared
are 0.8163 · 1010, 0.7502 · 1010 and 1.8456 · 1010, or 3936.6, 3618.1 and 8900.6 per pixel,
for the value of red, green and blue respectively. It suggests that the fractals are mainly
influenced by the green of the background and the white in the flowers, as those are the
most dominant colours on the image. When comparing the image to the fractal in figure
3b, the minimum errors squared are 1.7894 · 1010, 1.7308 · 1010 and 2.0953 · 1010, or 6454,
6242.9 and 7557.5 per pixel, for the value of red, green and blue respectively. Although
less clear than in figure 3a, by the spread of green it also suggest that the most dominant
colour in the image influences the chosen fractals.
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6 Conclusion

To summarize, for polynomials it is shown that when translation, rotation and reflection
are performed on the image of the roots in the complex plane the same transformations
are performed on the Newton fractal. Secondly fractals with a butterfly-like appearance
are created when the roots of a fourth degree polynomial are placed according to equation
11. Finally the least squares approximation between these fractals and some images is
investigated.

To reflect, because this paper was restricted to the use of polynomials, the transforma-
tions were exclusively proved for polynomials. Therefore when considering other types of
functions these results have to be shown independently or the proves could be extended
to include other types of function. Furthermore the placement in equation 11 sufficiently
places the roots such that the chosen characterization appears. Although the formulation
greatly depends on the relative order of the roots, if a non clockwise ordering is sought after
simply taking a permutation on the roots suffices. Currently this characterization is only
constructed for polynomials of degree four, however it could be interesting to investigate if
ensuring the same symmetries and asymmetries in the Julia set for fractals of higher degree
polynomials or other types of functions still produces the same characterisation. Although
the approximation algorithm is not yet perfect, admittedly restricting the fractals to the
butterfly-like fractals was an artistic choice. For future research performing least squares
on various types of fractals with substantially more roots is advised.

7 Acknowledgements

Images are by kie-ker from Pixabay.

The author thanks F.H.C Bertrand for supervising the bachelors thesis.

Further the author thanks S. Buurman, D. van Leeuwen & F.I. Wienk for giving interme-
diate feedback on the accompanying poster (in appendix C), that incidentally also helped
improve the article.

References

[1] The Editors of Encyclopaedia Britannica. fractal. Encyclopedia Britannica, Sep 2017.
https://www.britannica.com/science/fractal , Accessed 1 July 2022.

[2] James H. Curry, Lucy Garnett, and Dennis Sullivan. On the iteration of a rational func-
tion: Computer experiments with newton’s method. Communications in Mathematical
Physics, 91(2):267–277, Jun 1983. doi:10.1007/BF01211162.

[3] José M. García Calcines, José M. Gutiérrez, Luis J. Hernández Paricio, and
M. Teresa Rivas Rodríguez. Graphical representations for the homogeneous bivari-
ate newton’s method. Applied Mathematics and Computation, 269:988–1006, 2015.
doi:10.1016/j.amc.2015.07.102.

[4] Benoit B. Mandelbrot. Les objets fractals. Paris : Flammarion, 1975.

13

https://pixabay.com/users/kie-ker-2367988/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1526939"
https://pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1526939
https://www.britannica.com/science/fractal
https://doi.org/10.1007/BF01211162
https://doi.org/10.1016/j.amc.2015.07.102


[5] J. Raphson. Analysis Æquationum universalis seu ad æquationes algebraicas resolvendas
methodus generalis et expedita, ex nova infinitarum serierum doctrina deducta, etc.
Prostant venales apud Abelem Swalle, ad insigne Monocerotis in cœmeterio Divi Pauli.,
1690.

[6] Edward B. Saff. Fundamentals of Complex Analysis with Applications to Engineering,
Science, and Mathematics: Pearson New International Edition. Pearson Education,
Jul 2013.

[7] Weijie Wang, Gaopeng Zhang, Luming Yang, and Wei Wang. Research on garment
pattern design based on fractal graphics. EURASIP Journal on Image and Video
Processing, 2019, 02 2019. doi:10.1186/s13640-019-0431-x.

[8] Matthew Wilson. Butterflies: The ultimate icon of our fragility. BBC Culture, Sep
2021. https://www.bbc.com/culture/article/20210915-butterflies-the-ultimate-icon-of-
our-fragility , Accessed 30 Jun 2022.

[9] Tjalling J. Ypma. Historical development of the newton-raphson method. SIAM Re-
view, 37(4):531–551, 1995. http://www.jstor.org/stable/2132904 .

8 Table of variables

Table 3: Table of Variables, in order of appearence

symbol description page notes
z complex number, z = x+ yi, with x, y ∈ R

pn(z) polynomial of degree n, with variable z 2
ρk kth root of pn(z) 2 from ’ρίζα’ = root
χ colour 2 from ’χρώμα’ =colour

X(z), X(pn(z)) colouring of z, colouring/fractal of pn(z) 2
Tα(z) translation of z with α 3
Rα,ϕ(z) rotation of z around α with ϕ 4
rl(z) reflection of z in line l 5
l(t) line in complex plane, with t ∈ R 5
γ(S) permutation on set S 8
I image in matrix form 11
F inverted pixellation of fractal in matrix form 11
L value obtained from least squares method 12
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A MATLAB code

A.1 newtonfractal4.m

1 function Z = newtonfractal4(pol_roots , xrange , yrange , pix , show_fig ,
juliaset)

2 %NEWTONFRACTAL4 Creates a fractal of polynomial of degree 4 by inserting 4
3 %complex roots.
4 % code adapted from Jeffrey Chasnov (11 Feb 2021), Coding the Newton

Fractal | Lecture 19 |
5 % Numerical Methods for Engineers [Video], https :// youtu.be/_FrpXPbP -zk
6

7 % define function , derivative and roots
8 cf = poly(pol_roots);
9 f = @(Z) Z.^4 + cf(2)*Z.^3 + cf(3)*Z.^2 + cf(4)*Z + cf(5);

10 fp = @(Z) 4*Z.^3 + 3*cf(2)*Z.^2 + 2*cf(3)*Z + cf(4);
11

12 nx = (xrange (2)-xrange (1))*pix; ny = (yrange (2)-yrange (1))*pix;
13

14 x = linspace(xrange (1), xrange (2), nx); y = linspace(yrange (1), yrange (2),
ny);

15 [X,Y] = meshgrid(x,y);
16 Z = X + 1i*Y;
17

18 % Newton method
19 nit = 40;
20 for n = 1:nit
21 Z = Z - f(Z) ./ fp(Z);
22 end
23

24 % determining to which root and accounting for multiplicity
25 eps = 0.001;
26 Z1 = abs(Z - pol_roots (1)) < eps; Z2 = abs(Z - pol_roots (2)) < eps & ~Z1;
27 Z3 = abs(Z - pol_roots (3)) < eps & ~(Z1 + Z2);
28 Z4 = abs(Z - pol_roots (4)) < eps & ~(Z1 + Z2 + Z3);
29 ZN = ~(Z1 + Z2 + Z3 +Z4);
30 Z = (Z1 + 2*Z2 + 3*Z3 + 4*Z4 + 5*ZN);
31

32 %% plot figure
33 if show_fig == true
34 figure;
35 map = [0.0196 0.5882 0.5294;
36 0.8980 0.0824 0.3882;
37 0.9529 0.4118 0.2314;
38 0.6824 0.7608 0.1843;
39 0.0235 0.3961 0.2392];
40 colormap(map);
41 image(xrange , yrange , Z);
42 set(gca ,’Ydir’,’normal ’);
43

44 hold on
45 plot(real(pol_roots), imag(pol_roots), ’wx’)
46 hold off
47

48 axis equal; axis tight; axis([xrange , yrange ])
49 set(gca , ’Xtick’, linspace(xrange (1), xrange (2), 5),’Ytick’,linspace(

yrange (1), yrange (2) ,5))
50 xlabel(’real axis’)
51 ylabel(’imaginary axis’)
52 title(’FRACTAL with roots’)
53 end
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54

55 %% Juliaset
56 if juliaset == true
57 J = zeros(ny,nx);
58 J(1,1) = (Z(1,1) ~= Z(1,2)) + (Z(1,1) ~= Z(2,1)) + 1;
59 J(ny ,nx) = (Z(ny,nx) ~= Z(ny,nx -1)) + (Z(ny,nx) ~= Z(ny -1,nx)) + 1;
60 for dx = 2:ny -1
61 J(dx ,1) = (Z(dx ,1) ~= Z(dx ,2)) + (Z(dx ,1) ~= Z(dx+1,1)) + (Z(dx ,1)

~= Z(dx -1,1)) + 1;
62 J(dx ,ny) = (Z(dx,ny) ~= Z(dx,nx -1)) + (Z(dx,nx) ~= Z(dx+1,nx)) + (Z

(dx ,nx) ~= Z(dx -1,nx)) + 1;
63 for dy = 2:nx -1
64 J(1,dy) = (Z(1,dy) ~= Z(1,dy+1)) + (Z(1,dy) ~= Z(1,dy -1)) +...
65 (Z(1,dy) ~= Z(2,dy)) + 1;
66 J(ny ,dy) = (Z(ny,dy) ~= Z(ny,dy+1)) + (Z(ny,dy) ~= Z(ny ,dy -1))

+...
67 (Z(ny ,dy) ~= Z(ny -1,dy)) + 1;
68 J(dx ,dy) = (Z(dx,dy) ~= Z(dx,dy+1)) + (Z(dx,dy) ~= Z(dx ,dy -1))

+...
69 (Z(dx ,dy) ~= Z(dx+1,dy)) + (Z(dx,dy) ~= Z(dx -1,dy)) + 1;
70 end
71 end
72 figure;
73 mapj = [0.2 0.2 0.2; 0.4 0.4 0.4; 0.6 0.6 0.6; 0.8 0.8 0.8; 1 1 1];
74 colormap(mapj);
75 image(xrange , yrange , J);
76 set(gca ,’Ydir’,’normal ’);
77

78 axis equal; axis tight; axis([xrange , yrange ])
79 set(gca , ’Xtick’, linspace(xrange (1), xrange (2), 5),’Ytick’,linspace(

yrange (1), yrange (2) ,5))
80 xlabel(’real axis’)
81 ylabel(’imaginary axis’)
82 title(’FRACTAL juliaset ’)
83 end
84 end
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A.2 CreateFractals.m

1 %% No export
2 rho1 = -1; rho2 = 1;
3 rho3 = -1/3 - 1i; rho4 = 1/3 + 1i;
4 newtonfractal4 ([rho1 , rho2 , rho3 , rho4], [-2, 2], [-2, 2],250,1,1);
5

6

7 %% 4th degree: Rotational Symmetric Roots
8 clear
9 for r = 0:0.1:1

10 for phi = 0:0.05* pi :0.5* pi
11 rho1 = -1; rho2 = r*exp(1i*(-pi + phi));
12 rho3 = 1; rho4 = r*exp(1i*(phi));
13 newtonfractal4 ([rho1 , rho2 , rho3 , rho4], [-2, 2], [-2, 2],250,1,0);
14 % EXPORT FILE
15 Folder = ’C:\ Users\Tim Hut\Desktop\Bachelor Assignement\Fractals\

Rotational ’;
16 filename = sprintf(’R(r,phi)(%0.1f,%0.2f).png’, r, phi/pi);
17 file = fullfile(Folder , filename);
18 saveas(figure (1), file);
19 close(figure (1))
20 end
21 end
22 %% 4th degree; Lines , Squares , Rectangles and Trapezoids
23 clear
24 for r = 0:0.05:1
25 for s = 0:0.1:1
26 rho1 = 1 + r*1i; rho2 = s - r*1i;
27 rho3 = -1 + r*1i; rho4 = -s - r*1i;
28 newtonfractal4 ([rho1 , rho2 , rho3 , rho4], [-2, 2], [-2, 2],250,1,0);
29 % EXPORT FILE
30 Folder = ’C:\ Users\Tim Hut\Desktop\Bachelor Assignement\Fractals\

Line -Square -Trapezoid ’;
31 filename = sprintf(’r(x,y)(1;%0.1f,%0.2f).png’, s, r);
32 file = fullfile(Folder , filename);
33 saveas(figure (1), file);
34 close(figure (1))
35 end
36 end
37 %% butterflies I
38 clear
39 alpha = 0; %0.25;
40 beta = 1; %1 + 2i;
41 for a = 0:0.25:1
42 for b = 0:0.25:1
43 zs = a + b*1i;
44 r1 = zs; r2 = alpha + (conj(zs)-conj(alpha))*exp(2i*angle(beta));
45 r3 = 2* alpha - zs; r4 = alpha - (conj(zs)-conj(alpha))*exp(2i*angle

(beta));
46 newtonfractal4 ([r1 , r2, r3, r4], [-2, 2], [-2, 2],250,1,0);
47 % EXPORT FILE
48 Folder = ’C:\ Users\Tim Hut\Desktop\Bachelor Assignement\Fractals\

Butterflies ’;
49 filename = sprintf(’butterfly(zs = %0.2f + %0.2f i)(in %0.1f + %0.1

f t).png’, a, b, alpha , beta);
50 file = fullfile(Folder , filename);
51 saveas(figure (1), file);
52 close(figure (1))
53 end
54 end
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55 %% butterflies II; julia set
56 clear
57 alpha = 0; %0.25;
58 beta = 1; %1 + 2i;
59 for a = 0:0.25:1
60 for b = 0:0.25:1
61 zs = a + b*1i;
62 r1 = zs; r2 = alpha + (conj(zs)-conj(alpha))*exp(2i*angle(beta));
63 r3 = 2* alpha - zs; r4 = alpha - (conj(zs)-conj(alpha))*exp(2i*angle

(beta));
64 newtonfractal4 ([r1 , r2, r3, r4], [-2, 2], [-2, 2],250,0,1);
65 % EXPORT FILE
66 Folder = ’C:\ Users\Tim Hut\Desktop\Bachelor Assignement\Fractals\

Butterflies ’;
67 filename = sprintf(’julia(zs = %0.2f + %0.2f i)(in %0.1f + %0.1f t)

.png’, a, b, alpha , beta);
68 file = fullfile(Folder , filename);
69 saveas(figure (1), file);
70 close(figure (1))
71 end
72 end

A.3 perm_newtonfractal4.m

1 function X = perm_newtonfractal4(Z)
2 % PERM_NEWTONFRACTAL4 based on a matrix of a fractal (created from
3 % NEWTONFRACTAL4) creates all permuations of the colors (exceps for the

color assigned to the basin of no convergence)
4

5 Z1 = (Z == ones(size(Z))); Z2 = (Z == 2*ones(size(Z)));
6 Z3 = (Z == 3*ones(size(Z))); Z4 = (Z == 4*ones(size(Z)));
7 ZN = (Z == 5*ones(size(Z)));
8

9 % mappings
10 X = zeros(size(Z));
11 X(:,:,1) = (1*Z1 + 2*Z2 + 3*Z3 + 4*Z4 + 5*ZN); %1
12 X(:,:,2) = (2*Z1 + 3*Z2 + 4*Z3 + 1*Z4 + 5*ZN);
13 X(:,:,3) = (3*Z1 + 4*Z2 + 1*Z3 + 2*Z4 + 5*ZN);
14 X(:,:,4) = (4*Z1 + 1*Z2 + 2*Z3 + 3*Z4 + 5*ZN);
15

16 X(:,:,5) = (1*Z1 + 2*Z2 + 4*Z3 + 3*Z4 + 5*ZN); %2
17 X(:,:,6) = (2*Z1 + 3*Z2 + 1*Z3 + 4*Z4 + 5*ZN);
18 X(:,:,7) = (3*Z1 + 4*Z2 + 2*Z3 + 1*Z4 + 5*ZN);
19 X(:,:,8) = (4*Z1 + 1*Z2 + 3*Z3 + 2*Z4 + 5*ZN);
20

21 X(:,:,9) = (1*Z1 + 3*Z2 + 2*Z3 + 4*Z4 + 5*ZN); %3
22 X(:,:,10) = (2*Z1 + 4*Z2 + 3*Z3 + 1*Z4 + 5*ZN);
23 X(:,:,11) = (3*Z1 + 1*Z2 + 4*Z3 + 2*Z4 + 5*ZN);
24 X(:,:,12) = (4*Z1 + 2*Z2 + 1*Z3 + 3*Z4 + 5*ZN);
25

26 X(:,:,13) = (1*Z1 + 3*Z2 + 4*Z3 + 2*Z4 + 5*ZN); %4
27 X(:,:,14) = (2*Z1 + 4*Z2 + 1*Z3 + 3*Z4 + 5*ZN);
28 X(:,:,15) = (3*Z1 + 1*Z2 + 2*Z3 + 4*Z4 + 5*ZN);
29 X(:,:,16) = (4*Z1 + 2*Z2 + 3*Z3 + 1*Z4 + 5*ZN);
30

31 X(:,:,17) = (1*Z1 + 4*Z2 + 2*Z3 + 3*Z4 + 5*ZN); %5
32 X(:,:,18) = (2*Z1 + 1*Z2 + 3*Z3 + 4*Z4 + 5*ZN);
33 X(:,:,19) = (3*Z1 + 2*Z2 + 4*Z3 + 1*Z4 + 5*ZN);
34 X(:,:,20) = (4*Z1 + 3*Z2 + 1*Z3 + 2*Z4 + 5*ZN);
35
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36 X(:,:,21) = (1*Z1 + 4*Z2 + 3*Z3 + 2*Z4 + 5*ZN); %6
37 X(:,:,22) = (2*Z1 + 1*Z2 + 4*Z3 + 3*Z4 + 5*ZN);
38 X(:,:,23) = (3*Z1 + 2*Z2 + 1*Z3 + 4*Z4 + 5*ZN);
39 X(:,:,24) = (4*Z1 + 3*Z2 + 2*Z3 + 1*Z4 + 5*ZN);
40 end

A.4 least_square.m

1 clear
2 % Image by <a href=" https :// pixabay.com/users/kie -ker -2367988/? utm_source=

link -attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;
utm_content =1526939" >kie -ker </a> from <a href=" https :// pixabay.com/?
utm_source=link -attribution&amp;utm_medium=referral&amp;utm_campaign=
image&amp;utm_content =1526939" > Pixabay </a>

3 filen = ’approx\peacock -butterfly.jpg’; %’approx\cornflower.jpg ’;%’ approx\
checkerboard.jpg ’; %

4 A = imread(filen);
5 A_double = cast(A, "double ");
6 A_size = size(A_double);
7 nx = A_size (2); ny = A_size (1);
8

9 %least square
10 l = [inf inf inf];
11 L = zeros(ny, nx , 3);
12 rts = zeros (3,4);
13 R = [inf inf inf];
14

15 epsilon = 0.001;
16 alpha = 0.5 + 0.5*ny/nx*1i;
17

18 for r = 0.1:0.1: 1
19 for argb = 0:0.1* pi :0.5* pi
20 for phi = 0:0.1* pi :0.5* pi
21 r1 = (r*exp(1i*phi)-alpha)*exp(-1i*argb)+alpha;
22 r2 = alpha + (conj(r1)-conj(alpha))*exp(2i*argb);
23 r3 = 2* alpha - r1;
24 r4 = alpha - (conj(r1) - conj(alpha))*exp(2i*argb);
25 if (r1 - r2)> epsilon
26 if (r1 - r3) > epsilon
27 if (r1 - r4) > epsilon
28 Z = newtonfractal4 ([r1 , r2, r3, r4], [0,1],[0,ny/nx

],nx , 0,0);
29 T = perm_newtonfractal4(Z);
30 for n = 1:3
31 for m = 1:1:24
32 t = sum(( A_double (:,:,n)- 60* mod(T(:,:,m)

,5)).^2,’all’);
33 if t < l(n)
34 l(n) = t;
35 L(:,:,n) = 60*mod(T(:,:,m) ,5);
36 rts(n,:) = [r1 , r2 , r3, r4];
37 R(n) = r;
38 end
39 end
40 end
41 end
42 end
43 end
44 end
45 end

19



46 end
47

48 L_uint8 = cast(L, ’uint8 ’);
49 Lr = zeros(ny , nx, 3); Lr(:,:,1) = L(:,:,1); Lr = cast(Lr , ’uint8 ’);
50 Lg = zeros(ny , nx, 3); Lg(:,:,2) = L(:,:,2); Lg = cast(Lg , ’uint8 ’);
51 Lb = zeros(ny , nx, 3); Lb(:,:,3) = L(:,:,3); Lb = cast(Lb , ’uint8 ’);
52

53

54 figure (1)
55 imshow(L_uint8)
56 %%%
57 figure (2)
58 subplot (1,3,1)
59 imshow(Lr)
60 subplot (1,3,2)
61 imshow(Lg)
62 subplot (1,3,3)
63 imshow(Lb)
64 %%%
65 figure (3)
66 subplot (1,2,1)
67 imshow(A)
68 subplot (1,2,2)
69 imshow(abs(A-L_uint8))

B Other Fractals
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C Poster
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