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Abstract

Efficient prediction is crucial to preventing harm caused
by kitchen fires. In this paper, we propose a kitchen fire
model using the data collected by the Twente Fire Brigade.
Specifically, we utilize the permutation techniques of random
forests and perform classic stepwise regression methods to
select the explainable environmental variables. For unstable
results, we propose stabilization methods. Moreover, we
build a Poisson generalized linear model which successfully
captures the spatial patterns seen in the data.

Keywords: fire prediction, poisson GLM, random forest,
stepwise regression, variable importance

1 Introduction

Building fires often have a big impact on the people involved. Accurate predic-
tion can help firefighters to prevent harm. The Twente Fire Brigade handles
more than 2.000 fire incidents annually [2]. To improve their service, the
Twente Fire Brigade has been interested in data-driven fire risk management
research and an collaboration with the University of Twente was started.

The Twente Fire Brigade has provided the data of fire incidents, which has
been used previously in research on chimney fire incidents [5, 6, 7]. We will
follow a similar approach to that of chimney fire prediction from Lu et al [5]
but now for the prediction of kitchen fires. Our goal is to provide an accurate
model using the least amount of variables.



(A) The map of Twente (B) Location of kitchen fire incidents

FIGURE 1: map of Twente with all towns and cities (a) and spatial
projection of the reported kitchen fire incidents in the years 2004 - 2020

(b)
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FIGURE 2: Temporal projection of the reported kitchen fire incidents
during 2004-2020

Totally, there are 694 kitchen fire incidents from the years 2004-2020. Of these
fire incidents, we have access to the time (figure 2) and the location (figure 1)
on several levels of accuracy, as precise as latitude and longitude and in cat-
egories such as area boxes and municipalities. In figure 1, a concentration in
the cities is visible, especially the bigger ones: Almelo, Hengelo and Enschede.
In figure 2, we see no apparent time dependency or seasonal effect.

In this paper, we build a predictive model based on a selection of environmen-
tal variables. In Section 2, we introduce the data collection on environmental
variables. In Section 3, we employ random forests [1| and stepwise regression
[3] methods to select explanatory variables. In Section 4, we develop a Poisson
General Linear Model and validate the model using residuals. In section 5, we
conclude and talk about future work.



2 Data

Aside from the fire incident data, we also collect areal unit data for 500 by
500 meter boxes in the Twente region, see table 1. From IFV ! we access
the building information, aggregated building year and function type. From
CBS 2, we access information about the population and density. Additionally,
after discussion with firefighters, compared to chimney fires, we obtain extra
variables from CBS, variables 23 - 27 from table 1, that appear to be closely
related to kitchen fires.

TABLE 1: Environmental variables with their abbreviation, description

and source
Variable | Abbreviation | Description Source
i House The total number of houses IFV
Va House indu The number of houses with an industrial function IFV
Vs House_hotl The number of houses with an hotel function IFV
Vi House _resi The number of houses with an residential function IFV
Vs House 20 The number of houses constructed before 1920 IFV
Vs House 2045 The number of houses constructed between 1920 and 1945 IFV
V; House 4570 The number of houses constructed between 1945 and 1970 IFV
Vs House 7080 The number of houses constructed between 1970 and 1980 IFV
Vo House 8090 The number of houses constructed between 1980 and 1990 IFV
Vio House_ 90 The number of houses constructed after 1990 IFV
Vi House frsd The number of free standing houses IFV
Via Resid The number of residents CBS
Vis Resid 14 The number of residents with an age in the range of 0 till 14 | CBS
Via Resid 1524 The number of residents with an age in the range of 15 till 24 | CBS
Vis Resid 2544 The number of residents with an age in the range of 25 till 44 | CBS
Vie Resid 4564 The number of residents with an age in the range of 45 till 64 | CBS
Viz Resid 65 The number of residents with an age of 65 or higher CBS
Vig Man The number of male residents CBS
Vig Woman The number of female residents CBS
Vao Address The density of addresses in the box CBS
Vo Urbanity The urbanity of the block CBS
Vaa Town Boolean variable indicating the presence of a town CBS
Vas Poor The percentage of poor residents (income 0-20 percent) CBS
Vay Rich The percentage of rich residents (income 80-100 percent) CBS
Vas Value house The average value of the houses in the block CBS
Vag Gas__use The average gas use in m? in the block CBS
Vaor Elec_use The average electricity use in kW h in the block CBS

Income and the value of the house can influence the state of the kitchen, since
people with disposable income could spend it to improve their kitchen and
expensive houses have better quality kitchens. Income is divided into 5 cate-
gories, each containing 20 percent of the Dutch population. People categorized
as ’Poor’ have an income in the bottom 20 percent of the income range. Peo-
ple categorized as ’Rich’ are in the top 20 percent income class. Poor and
Rich are percentages of the population in a box, that belong to either income
class.

HFV: Instituut Fysieke Veiligheid
2CBS: Centraal Bureau voor de Statistiek



The variables ’Gas _use’ and ’Elec use’ are the averages for gas and elec-
tricity use in the box. The choice between gas and electricity might also be
important for fire risk, as there could be a difference in fire occurrences, but
there is also a correlation between utility use and time at home.

Overall, we consider these newly added variables because they might be cor-
related with latent variables ’state of kitchen’ and "amount of kitchen use’.

3 Variable Selection

3.1 Methods

Of our 27 available environmental variables, we make a selection to include in
the model. Not all variables will be significantly correlated with kitchen fires
and some variables are mutually dependent. Hence it will be undesirable for
the model performance to include all environmental variables. We compare
two different methods to select explanatory variables, a currently used method
and a more classic method. First, we use permutation techniques from random
forests, as this was successful for the chimney fire prediction [5]. Second, we
use stepwise regression, as it is a more classic statistical method which we want
to compare to random forests.

3.1.1 Random Forests

The permutation importance is defined to be the decrease in a model score
when a single variable is randomly permutated. The variables with the most
decrease are deemed important with this method. Strobl et al [9] suggest using
conditional permutation importance to prevent bias towards correlated vari-
ables in the importance scores.

We implement the random forest and permutation importance techniques with
the 'party’ package from R as suggested by Strobl et al [§8]. The trees are con-
ditional inference trees [4], which are unbiased in the candidate selection for
each node, giving all variables an equal appearance in the random forest. The
chimney fire prediction [5] using this approach was successful.

The function ’‘cforest’” from the ’party’ package was used with unbiased con-
trol and 1000 trees. For different mtry (figure 7 in Appendix), the number
of variables considered at each node, we perform conditional permutation to
obtain the variable importance.



3.1.2 Stepwise regression

Next, we look at stepwise regression for a comparison. With stepwise regres-
sion, on each step a variable is either added or removed depending on the
method and the criteria. The criteria we use is the Akaike Information Crite-
ria (AIC). In forward selection, at each step a variable is added if the criteria
is satisfied, thus if the AIC decreases. In backwards elimination, the process
starts with a full model and removes variables until the criteria does not im-
prove anymore. These can also be combined into stepwise selection, where
forward selection and backwards elimination are performed simultaneously.

Generally, backwards elimination is preferred, but with more complex mod-
els with a lot of variables, forward selection is still possible [3|. The function
step() from package ’stats’ with direction ’both’, a combination of ’forward’
and ’backward’, a form of stepwise selection, was used to determine the best
model by the Akaike Information Criteria. This selects 12 variables which were
then ordered based on the p-value in table 2.

3.1.3 Preliminary results
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(A) Traditional importance score (B) Conditional importance score

FIGURE 3: Variable importance scores from Random Forest

The preliminary results of the random forest, in figure 7 in the Appendix,
contain a lot of variation between the different mtry. According to Strobl et
al [8], the variability of the conditional importance is lower than that of the
traditional importance within each level of mtry.

However, we still unfortunately need to conclude that for now the results
are unstable. In the results with different mtry, shown in the Appendix, fig-
ure 7, variables do not have a consistent position; for example, the variable
"Value house’ has the first position for mtry 24, second position for mtry 9,
but last and very negative position for mtry 18.
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TABLE 2: Variable importance from stepwise regression

Variable p value

Poor < 2e-16
Town 3.76e-14
House 1.42e-05

House resi | 3.60e-05
Resid 65 4.22e-04
Resid 0.0018
Gas__use 0.005
House 90 0.036
Resid 4564 | 0.058
House indu | 0.071
House frsd | 0.072
Resid 1524 | 0.133

The results of the stepwise regression, table 2, would more easily compare to
the traditional importance score, figure 3a, which we are not using because of
potential bias towards correlated variables. Also, the variable "Town’, scores
very high on the stepwise regression, but is not deemed important by both the
traditional and conditional importance scores.

Overall, an comparison is difficult and with the known issues of stepwise re-
gression, such as bias towards correlated variables and being less effective with
more potential explanatory variables, we continue with stabilizing the random
forest results.

3.2 Stabilization

To stabilize the importance scores, we perform two methods; iterative random
forest and averaging the importance scores.

3.2.1 Iterative random forest

In this process, seen in figure 8 in the appendix, we determine the positive
importance scores based on the random forest results and repeat the process
with only the positive variables. The process is completed when all remaining
variables have an positive importance score.

3.2.2 Averaging of importance scores

The random forest tests with different mtry (figure 7) included at each node
show unsteady results. Averaging these results lead to a more stable conclu-
sion; variables that have an high importance score at any particular or multiple



mtry, will also have an higher averaged importance score. This lessens the vari-
ation of the random forests, which makes the important variables stand out
more.
3.2.3 Results
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(A) End result for iterative random (B) Average importance scores
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FIGURE 4: Variable importance scores from Random Forest
3.3 Important variables

Looking at both the iterative random forest and the averaging of importance
scores, figures 4a and 4b, these variables are selected as tentatively important,
with hypothetical explanations for their inclusion:

Va3, Vs - Poor and Rich: Income could be correlated to the state of the
kitchen, and inclusion of both poor and rich can show an wider range in
income division.

Vi4, Vis - Young/Adult: The people who are most likely to cook, and
young people might be less experienced and more easily distracted while
cooking.

Vs - Old houses: The age of the house could be related to the age of the
kitchen, and the piping and wiring in the house could be inadequate for
modern requirements.

Va7 - Electricity use: Many fires start with an electrical appliance, and
it is possibly also correlated with how often people are at home and
potentially cooking.

V4 - Residential houses: Buildings that contain an kitchen and where
people usually cook.



e Vig - Men: Probably an correlation to the amount of people in general,
as the variable woman was eliminated late in the iterative random forest.
However, it could also be possible that men are just more likely to have
an kitchen fire.

The variable hotel also shows up, but there are very little buildings with an
hotel function, and thus also almost no fire incidents in hotels, see table 3.
Even if there would be an difference in fire risk, the influence on the final fire
prediction would be insignificant.

TABLE 3: Categories of houses of fire incidents in the data

Hotel | Other | Total
Od |0 15 15
New |4 675 679
Total | 4 690 694

In total, we have 8 variables to consider for the model. If we separately con-
sider the inclusion of all variables, we need to consider too many different
models. Thus, the variables we always include in the model are the number
of poor residents, the number of rich residents, the young people (age 15-24)
and the old houses (build between 1920 and 1945), because these are the main
important variables as indicated by the stabilization. The variables we con-
sider to further include are the adults (age 25-44), electricity use, number of
residential houses and men.

4 Model

4.1 Model formulation

We assume that the NV; are independent and Poisson distributed, and that the
expected number of kitchen fires in a box is proportional to the number of
houses in the box. The model will look like this:

N; ~ Poisson (h;\) (1)

where N is the number of fire incidents in box ¢, h; the number of houses in
box 4, and the intensity function is given by:

A = exp(01+02(Vazx Vig) +05(Vaux Vig) +0, Vs +05Via+06Var +60,Vi+05Vig) (2)

which includes the variables V53: poor residents, Vo4: rich residents, Vi: old
houses, Vi4: young residents, Vo;7: electricity use, Vj: residential houses and
Vig: men.



TABLE 4: Basic model (Va3,V24,V5,V14) and additional variables sorted

by AIC

Included variables AIC

BASIC + Vo7 + Vi + Vig 2367.373
BASIC + Vi + Vor + Vi + Vig | 2367.540
BASIC + Va7 + Vig 2367.737
BASIC + Vis + Vor + Vig 2368.232
BASIC 4+ Vis + Vor + V) 2402.890
BASIC + Vi5 + Var 2407.062
BASIC + Vo7 + V) 2414.807
BASIC + Vi 2424.157
BASIC + Vis + Vis 92446.227
BASIC + Vis + Vi + Vig 2446.749
BASIC + Vig 2448.886
BASIC + V, + Vig 2449.784
BASIC + Vi5 + V} 2504.733
BASIC + V5 2508.080
BASIC + V, 2518.402
BASIC 2526.310

These variables are included in the model, because they were indicated by the
importance scores of the random forest results. Sorting the models we consider
by their AIC score, table 4, we see that next to the basic variables, we also
include Va7: electricity use, Vj: residential houses and Vig: men.

4.2 Model fitting
After fitting the model using the data from 2004-2017,

TABLE 5: Parameters fitting of model

Parameter | Estimate
0, -4.032

0, 4.629e-04
05 -3.092e-04
0, -9.569¢-06
05 -4.188e-03
Os 3.019e-04
0, 7.138e-04
Os 4.851e-03

we plot the predicted spatial projections versus the actual kitchen fires in the
testing years to visualize the results. In 2018 and 2019 there were 36 and 40
fires respectively.



The predictions are almost the same since a year is a short time for any spatial
data to change and we did not have access to the change in the number of
houses, however, there is an slight difference in total predicted fires, 38.21 in
2018 and 38.17 in 2019.

»
(A) Prediction 2018 (B) Location of fires in  (¢) Difference between
2018 the prediction and actual

fires in 2018
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(D) Prediction 2019 (E) Location of fires in  (F) Difference between
2019 the prediction and actual

fires in 2019

FIGURE 5: Model prediction compared to the actual fire incidents

The predictions compared to the testing years look reasonable, especially for
the year 2019. The sum of the absolute difference is 70.25888 for 2018, and
73.46695 for 2019. In the difference squared, which penalizes larger errors, the
prediction for 2019 is better with 39.52603 versus 39.79313 for 2018. Due to
noise, however, the model will never be an perfect match for the actual fire
instances, and especially with the low amount of fires, on average 40 a year,
randomness always has an visible influence.
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4.3 Model validation

-05

FIGURE 6: Residuals

When we look at the residuals, we see that our model underestimates for parts
of the bigger cities, Almelo, Hengelo and Enschede. The model fits for the
entire region of Twente and it is possible the characteristics of the cities are
not adequately captured by the model. For instance, cities have an on average
poorer population. The sum of the residuals, however is with -0.03322588,
really small.

5 Conclusion

We needed 7 variables to obtain a good performing model, which is more than
initially expected. However, since the occurrence of kitchen fires is depen-
dent on human behaviour and we can not access the latent variable ’state of
kitchen’, the need for this amount of variables seems logical.

As advise to the firefighters, we have seen in all methods and results that the
variable 'poor’ is crucial in the kitchen fire prediction. Prevention strategy
should be focused on the poorer neighbourhoods. Old houses seem slightly
less likely to have an kitchen fire, but this effect is small when we look at the
parameters of the fitted model.

For future research, an expansion towards the more continuous Poisson point
process model should be considered, to obtain an more accurate and pre-
cise model. There is also potential for more research into stabilization of
the random forest results and the reasons for the instability; for instance,
which stabilization method gives better results and methods on how to quan-
tify (un)stability.
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FIGURE 7: Conditional importance results from RF with different val-
ues for mtry, the number of variables considered at each node
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