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Buildings and vegetation height estimation using remotely sensed images

are challenging to achieve. However, effective solutions to this challenge

can serve in tackling more complex problems in the remote sensing field

that require 3D information about objects in aerial images, which might

be costly or inaccessible. Because shadows are a standard metric among

many architectural building designs worldwide, shadows can help infer

3D structures as an auxiliary input in Deep Learning (DL) models. This

paper proposes a method to combine RGB aerial imagery and height maps

extracted from Light Detection And Ranging (LiDAR) sensors to develop an

effective algorithm to realistically exaggerate shadow areas in RGB aerial

imagery to enhance the learning process of the DLmodel. The results suggest

that the proposed method is an effective solution for the problem, given the

evaluation metrics specified in the paper.

Additional Key Words and Phrases: object shadow; remote sensing; deep

learning; object height estimation; shadow detection; shadow analysis.

1 INTRODUCTION
Aerial photographs are frequently utilized in geographic informa-

tion systems (GIS) for a variety of purposes, such as planning for

catastrophe prevention and recovery [10, 13], scene change detec-

tion, and reconstruction [4, 11], Aside from city-specific 3D model

generation [12]. These aerial images are often a poor source for

extracting three-dimensional information because of being two-

dimensional (2D). However, in such instances, a Digital Surface

Model (DSM), which represents the elevation of the tallest surfaces

at that point, is the most common type of supplemental 3D informa-

tion. It is often created using airborne Light Detection And Ranging

(LiDAR), or a Structure Of Motion (SFM) methodology [8, 9]. Height

estimation is used in 3D modeling to extract low-cost 3D models.

However, calculating the height of objects is a challenging problem

that may be solved using techniques, including LiDAR sensors and

task-focused deep learning (DL) model [6].

1.1 Related work
LiDAR sensor height maps are used to estimate objects’ heights

accurately. The LiDAR sensor sends laser light through its trans-

mitter, and the time the light takes to be reflected from the objects’

surfaces is used to develop a height map of the objects in the scene,

as shown in Figure 2 (right). Despite having some technical incon-

sistencies when it encounters complex reflective, refractive bodies,

and noise, LiDARs remain widely used for DSM acquisition. The

expensive flight operation is one of the non-technical limitations of

using LiDARs to obtain DSMs.

Another approach was to develop and train a DL model to predict

the DSM based on the architectural features of the buildings [6].

However, these features vary from one location to another; as a
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Fig. 1. The shadow map is fed beside the RGB color channel information.

result, it does not perform as well outside of the area data set it was

trained for.

In addition to using the design characteristics, the model is further

enhanced to include shadow information at the model’s input [7]. A

shadowmap is fed beside the RGB channels as auxiliary information,

as shown in Figure 1, to improve the model prediction results.

Moreover, various researches have been conducted to detect

shadow areas in satellite effectively aerial imagery [1], in addition to

research on how to calculate buildings’ heights using their shadow’s

length [14].

A literature review of the previous related work is conducted

to analyse the problem and extract the valuable resources for this

research to help understand how shadows in RGB images can be

detected and exaggerated realistically. The ideas and methods ex-

tracted are further implemented, and their corresponding results

are evaluated according to specified metrics.

1.2 Problem statement
In this project, a research will be carried to understand how to detect

and exaggerate shadow areas in RGB aerial imagery, in which will

provide an auxiliary enhanced shadow map as an input for the

model.

1.2.1 Research Questions. How can shadows present in images be

realistically exaggerated to facilitate the prediction of height maps

when using aerial RGB images and LiDAR map technologies?

RQ1: How can we create synthetic data suitable for training

DL models to better learn from shadows in RGB images to

predict objects’ heights more accurately?

RQ2: How to create a model/algorithm to realistically draw

artificial shadows in RGB images?

2 TOOLS AND TECHNICAL ASPECTS

2.1 Data set
The data set used consisted of 100 different aerial RGB images and

their corresponding LiDAR height maps in NumPy formatted files.

The LiDar height maps in the data set are represented as 64 x 64

NumPy arrays, while the RGB images in the data set are represented

as 640 x 640 NumPy arrays.

An example of both RGB image and LiDAR map is shown in

Figure 2.
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2.2 Libraries and tools
NumPy scientific computing library and OpenCV image processing

library were the main two libraries used in this project.

Since the LiDAR height maps resolution is ten times less than

the resolution of the RGB images, OpenCV interpolation functions

were used to upscale the LiDAR maps. This was done because on

many occasions information has to be retrieved from the exact

pixel location in both the LiDAR map and the RGB image. This has

provided a convenient one-to-one mapping between the RGB image

and the LiDAR map.

2.3 Assumptions
Two assumptions have been made and considered throughout this

project:

(1) All the images in the data set are taken at approximately the

same time; therefore, they have the same shadow direction

(Top-left).

(2) The airborne camera carrying the sensor is perpendicular

to the image scene; therefore, the camera observes the total

shadow projected by the objects.

2.4 Shadow detection
For the shadow areas in the RGB images to be exaggerated, they

should be detected first. In earlier project stages, a method was

used to detect a shadow pixel by checking if the blue component

in the RGB was the highest among the other components and by

comparing the mean value of the RGB color components to a certain

threshold. This method was changed later during the progress as it

has shown low efficiency in avoiding the detection of false-positive

shadows presented in low saturated areas. As a result, the method

has changed, and shadow areas were detected by extracting a sepa-

rate shadow map from the image. This method is explained in detail,

besides some examples later in the paper.

2.5 Object detection
In this project, we will depend on LiDAR height maps to detect

objects. Objects need to be detected for the following reasons:

(1) To know which objects are casting a shadow

(2) To avoid exaggerating shadows on higher structures.

The objects’ pixels will be detected by comparing their height in

the height map to a certain threshold. A value threshold of 1 meter

is chosen to include cars and vegetation beside the buildings in the

exaggeration process.

3 METHODOLOGY AND APPROACH

3.1 Trigonometrical exaggeration
The authors in this paper [14] have explained three methods to

estimate building heights based on their projected shadow. The

methods differ according to the position of the LiDAR sensor with

respect to the sunlight direction. The positions mentioned were

used to calculate the sun and the sensor azimuth (The angle of

elevation of the sun and the sensor) and to calculate the building

height accordingly. Since we already know the objects’ height from

the LiDAR map, a method from the ones proposed can be chosen

Fig. 2. The original RGB image (left) and its corresponding LiDAR height
map (right)

to calculate the shadow length from the object’s height. The three

conditions of the LiDAR sensor and sun positions are listed below:

(1) The sensor and the sun azimuth angles are the same (sensor

only observes a part of the shadow projected by the building)

(2) The azimuth angle between the sensor and the sun is greater

than 180
◦
(sensor observes all of the shadow projected by

the building)

(3) The azimuth angle between the sun and the sensor is within

0
◦
and –180

◦
.(sensor azimuth influences the shadow detection

method

Fig. 3. The azimuth angle between the sun and the sensor is greater than
180◦ [14]

The second method was chosen based on assumption 2 in the

previous section and for the lack of information about the sensor’s

azimuth.

3.1.1 Calculating the sun azimuth. An equation was derived from

Figure 3 to calculate the sun azimuth using the shadow length ob-

served in the RGB image. See the equation below:

(𝛼) = tan
−1 (𝐴𝐵/𝐵𝐷)

Where (𝛼) is the sun azimuth, AB is the building height acquired

from the LiDAR height map and BD is the observed shadow length

calculated by giving the coordinates of an object and its correspond-

ing shadow manually to the algorithm.

3.1.2 Shadow length calculation. The shadow length calculation

has taken place using the following equation which has been de-

rived from Figure 3 as well:

𝐵𝐷 = 𝐴𝐵/𝑡𝑎𝑛(𝛼)
The next step is to use the calculated sun azimuth to calculate the

length of the artificial shadow to be drawn for each object. As a
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result, each pixel in the object will have a corresponding shadow

length calculated and an artificial shadow drawn accordingly.

3.2 Progressive exaggeration
This method will be explained by a number of the logical steps taken

below:

(1) The LiDAR map is first resized to match the size of the RGB

image

(2) For each detected pixel above the height threshold, an artifi-

cial shadow layer is added to its shadow edge (if and only if

there is a shadow projected by the object

To briefly explain, the algorithm adds an artificial shadow layer

progressively at the edges of the object shadow. The logic here was

to have a part of the object’s shadow exaggerated and re-use the

artificially drawn shadow to expand it further using the object’s

remaining pixels. An example of a building roof progressive exag-

geration is shown in Figure 4.

Furthermore, a factor map was extracted from the algorithm’s

output. The factor map calculates a number between 0-1 for any

pixel whose shadow is exaggerated. The factor is calculated by

dividing the artificial shadow length by the natural shadow length.

This has allowed extracting an auxiliary input for the DL model, so

it knows which pixels are exaggerated by which factor, as shown in

Figure 5.

Fig. 4. (From the left) 1) RGB original image, 2) image after 5 iterations, 3)
image after 20 iterations, 4) output of the RGB image

Fig. 5. An example of an RGB image (left), RGB exaggerated image (middle)
and its corresponding exaggeration factor map (right)

3.3 Shadow map dilation
This approach is dependent on the morphological operations of

erosion and dilation in image processing[2, 3, 5]. Image erosion

removes pixels from the object’s boundaries to eliminate irrelevant

details, while image dilation adds pixels to the boundaries of the

objects. In other words, erosion shrinks the object while dilation

expands it. Both operations require a kernel and an anchor point to

be specified. A kernel matrix is the size of the structuring element; it

determines the change of the value of any given pixel by combining

it with different amounts of the neighboring pixels.While the anchor

point is the position inside the structure element.

The LiDAR map is first resized in this method to match the RGB

image dimensions using cubic interpolation. Then the RGB image

is converted to gray-scale by getting the dot product of the RGB

image matrix and RGB weights matrix with the following values

for RGB, respectively [0.2989, 0.5870, 0.1140]. Then the pixels of the

gray-scale image with a value less than a value threshold have their

RGB values copied to a new image; otherwise, a black RGB value

is copied. The threshold used in this method is 60. This has been

chosen by experimenting with different values that work for the

whole data set. Only a few images have lighter shadows than the

others, but as we increase the threshold, the number of false shadow

pixels detected increases.

To avoid exaggerating shadows on higher structures, the pixels

with a height above the threshold (1m) in the corresponding LiDAR

map are also filtered and assigned the color black in the new RGB

image. This advantage has been given by having the LiDAR maps

corresponding to each RGB image to avoid the false positive building

shadow detection problem rising in [1]. The RGB values of the

shadow parts in the new image are made slightly darker using a

dimming factor. Until this step, we have a clean shadow map, as

shown in Figure 6. In some cases, various scattered shadow pixels

(false positives) appear in the low saturation RGB images’ shadow

maps due to detecting dark pixels in roads and vegetation. To deal

with this problem, an erosion is performed to blend the scattered

pixels with the surroundings, leading to a less noise shadow map, as

shown in Figure 7. Sometimes the erosion causes some shadows to

disappear, especially at the edge of the trees where the shadow is not

solid, but this has not caused significant problems and is still efficient

in solving the false shadow scattering issue. This method uses a

kernel matrix of size 5 x 5 for the dilation and erosion operations. An

anchor point [0,0] is used for the dilation operation in the top-left

direction, while the anchor point for the erosion operation is set to

default. However, this can be further changed after the inspection

conducted in the evaluation section.

Fig. 6. Original RGB image (left) and Its extracted shadow map (right)

Fig. 7. Shadow map before erosion (left) and shadow map after ero-
sion(middle), shadow map after dilation (right)

The output of the eroded shadow map is dilated for some iter-

ations, one of them to expand the large shadow areas after being
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eroded with the more undersized areas which now have disappeared,

and the remaining iterations to exaggerate them further, as shown in

Figure 7. The increased darkness in the exaggerated shadowed areas

allowed a clear recognition between the exaggerated and natural

shadow areas. An example of the final output of the shadow map is

shown in Figure 8.

Fig. 8. Original RGB image (left) and its corresponding exaggerated RGB
image(right)

4 FLOWCHARTS
Each of the methodologies discussed in the previous section is illus-

trated using flowcharts.

Fig. 9. Flow chart corresponding to the trigonometrical methodology

Fig. 10. Flow chart corresponding to the progressive exaggeration method-
ology

Fig. 11. Flow chart corresponding to the shadow map dilation methodology
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Fig. 12. problem 1 corresponding to the trigonometry methodology
(Red),problem 1 corresponding to the trigonometry methodology (Yellow),
problem 1 corresponding to the trigonometry methodology (Green)

5 EXPERIMENTAL RESULTS
The overall results of each method will be described separately in

this section. An analysis will be made on each of them to accept or

reject the result’s corresponding methodology.

5.1 Trigonometrical methodology
The results of the trigonometry-based method have shown various

flaws and inconsistencies as specified below:

(1) Artificial shadows were drawn for objects which do not cast

a shadow.

(2) Validating the correctness of calculating the sun azimuth

was challenging as various images do not adhere to the two

assumptions mentioned earlier in the document. However,

based on the results’ inspection,many objects had their shadow

over-exaggerated, meaning that the exaggerated shadow is

much longer than the object’s height. Therefore, the method’s

correctness has failed to be validated.

(3) Some images in the data set have different shadow directions.

As a result, a set of coordinates had to be given manually to

the algorithm to calculate the sun azimuth for each image

which is inconvenient and time-consuming.

The reason for problems 1 and 2 was algorithmic; the algorithm

failed to avoid problem 1 and failed to validate the correctness of

the sun azimuth calculation as in problem 2. In contrast, problem

3 was caused by the data set inconsistency; the data set contained

many images with different shadow directions. The method was

used before to estimate buildings’ heights using its observed shadow,

having a lot more information about the sun’s and sensor’s azimuth

[14]. Since this information was lacking in this project, the method

has not performed as expected and, therefore, has been refused from

the early stages. Some examples of the inconsistencies are shown

in Figure 12.

5.2 Progressive exaggeration
Due to the problems in the trigonometrical approach stated in the

previous subsection, this method has been developed and considered

these flaws. From the results’ inspection, the method has solved

problems 1 and 2. Problem 1 was solved by exaggerating objects if

and only if they are casting a shadow. In contrast, problem 2 was

solved by eliminating the sun azimuth calculation and exaggerating

the object according to its shape.

This method has shown exciting results in images with low

noise in their corresponding LiDAR height maps and with the same

shadow direction given to the algorithm, as shown in Figure 13.

Fig. 13. An example images of how the progressive exaggeration algorithm
has performed well in few cases

However, the method has shown unsatisfying results in the cases

stated below:

(1) Self shadows are detected in many images, and as a result,

some false shadows were shown on the top of the buildings

and some vegetation areas.

(2) Some objects in the RGB images not placed in the same po-

sition in their corresponding LiDAR maps (such as moving

cars) have their shadow non-exaggerated, as shown in Figure

17.

(3) Images with a different shadow direction have their shadow

non-exaggerated due to failing to detect a shadow in the

specified direction.

(4) Some objects have contained gaps in their projected shadow,

resulting in the detection of fake shadow edges, and as a

result, the real edge of the shadow remains non-exaggerated

To solve problem 1 an approach was made to restore the RGB values

of the artificially-shadowed pixels with a height more than zero

in the LiDAR map. Theoretically, this approach would work if the

LiDARmaps correspond accurately to the RGB images. Nevertheless,

besides removing the exaggerated shadows from the top of the

objects, some true-shadowed pixels are removed due to false height

reporting in some areas (specifically buildings edges) according to

the LiDAR map as shown in Figure 15.

An approach was made to solve problem 2 by adding the option

to exaggerate the shadow in more than one direction. However, this

approach has solved the problem based on the results inspection.

Since the same algorithm runs over the whole data set, a set of

directions has to be specified beforehand to be used. Since each

direction covers 45
◦
, the images which have their shadow projected

between two directions have their shadow over-exaggerated.

To conclude, the algorithm has failed to avoid the problems stated

above. Implementation flaws were the reason for problem 4; it has

failed to detect the entire length of the object’s shadow if it contains

gaps. In addition, the shadow detection method used for this algo-

rithm detected many false-positive shadow pixels, causing problem

1. In contrast, the inconsistent shadow direction and the LiDAR

height map inaccuracy in a some images in the data set were the

reasons for problems 2 and 3.

Finally, the overall results of this method contained many visually

unaccepted results resulting in refusing this methodology as well.

Examples of some fail cases are shown in Figure 14.

5.3 Shadow map dilation
This method has been implemented with respect to the problems

faced during the progressive exaggeration method. Problem 1 has

been solved by filtering the pixels which have a height above the
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Fig. 14. (Problem 1 corresponding to the progressive exaggeration method
(Red), problem 3 corresponding to the progressive exaggeration method
(Yellow), problem 4 corresponding to the progressive exaggeration method
(Green)

Fig. 15. Successful shadow removal (Red), wrong shadow removal (Yellow)

Fig. 16. Top direction included in the algorithm (left), left direction in-
cluded (middle), image with a correct shadow direction has over exagger-
ated shadow areas (right)

Fig. 17. The car is positioned in different locations in the RGB image (left)
and the LiDAR map (right)

threshold from the extracted shadow map. Problem 2 was solved by

detecting shadow areas regardless of their direction. Finally, problem

3 has been solved by dilating the extracted shadow map forcing the

shadow gaps to disappear.

This method has shown more promising and consistent results,

with few fail cases which are closely similar and have not caused a

severe problem in terms of output consistency.

The inconsistencies caused by the LiDAR map are unavoidable;

as shown in Figure 18, the LiDAR map does not report a height at

the edges of the roof, causing this part of the roof to be dilated as it

is not filtered from the shadow map before the dilation process.

The inconsistencies caused by detecting false shadows over vege-

tation areas are fewer throughout the whole data set due to shadow

area erosion. An example of the case is shown in Figure 19.

Fig. 18. Output image using shadow dilation method(left), corresponding
LiDAR height map(right)

Fig. 19. Original RGB image(left), Output image without using ero-
sion(middle), Output image with using erosion(right)

5.4 Result comparison
The results of the trigonometrical and progressive exaggeration

methods were quite inconsistent and unsatisfying. However, the

shadow map dilation method results have shown more consistency

and realism throughout the data set.

The results examples discussed in Figures 12 to 18 have shown

that the output inconsistency increases as the dependence on the

LiDAR height maps in the algorithmic process increases.

The trigonometrical method was based on the height values

retrieved from the LiDAR maps to calculate the objects’ shadow

lengths. However, the method has shown unacceptable results due

to the one-to-one mapping problem between the RGB image and

the LiDAR maps. The progressive exaggeration method had less

dependence on the LiDAR map. It considered the height only to

detect objects to be exaggerated, and it has shown fail cases when an

object in the LiDAR map is in a different position in the RGB images

as shown in Figure 17, but it has shown significantly better results

than the trigonometrical method. The shadow map dilation method

depended entirely on the shadow map extracted from the gray-scale

image; it only depended on the LiDAR map when filtering the RGB

pixels with a significant height. As a result, it has shown clearly

more consistent and dependable results.

6 EVALUATION
The results evaluation procedure is carried out by distributing 20

surveys to 20 different students. Each survey includes five original

images, their corresponding LiDAR and shadow maps, and the ex-

aggerated output image with five questions to ask. A total of 15

surveys were collected successfully from the students and have been

used for further algorithmic inspection.

The students were asked to give a rating on a scale from 1 to 5 to

each of the images given a specific question. The questions aim to

measure the essential metrics directly affecting the research ques-

tions. The metrics were chosen based on the shadow characteristics
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such as direction, length, shape, and detected volume. The survey

results can be analysed qualitatively to draw an overall evaluation

of the algorithm results and a satisfaction index of each metric, in

addition to knowing where to improve it. The five questions of the

survey were structured as follows (on a scale from 1 to 5):

(1) Direction: How similar is the direction of the exaggerated

shadows in the output image and the real shadows in the

original image?

(2) Shape: How realistic are the exaggerated shadows with re-

spect to the original shadow shape?

(3) Volume: How much of the real shadow is exaggerated?

(4) Length: Is the extra shadow length reasonable compared to

the real shadow length?

(5) Overall evaluation: How easy was it to differentiate between

the original image and the exaggerated image?

The evaluation results in Table 1 below has shown a promising

feedback on the shadow dilation method. A detailed analysis of the

results is found in the following subsection.

Table 1. Evaluation results.

Questions Mean score Standard deviation (𝜎)
1 4.5 0.74

2 3.75 1.20

3 3.5 1.36

4 4.0 1.0

5 3.5 1.42

6.1 Feedback analysis and further improvements
After a detailed analysis of the evaluation results some minor prob-

lems were raised from the feedback:

(1) There seemed to be a sizeable amount of non-uniformity in

the generated shadows with respect to the original shadows.

In some examples, the exaggerated shadows encompass a

significant portion - or all - of the regions covered by the

original shadows, whereas in others, only portions of the

shadows are exaggerated to a noticeable degree

(2) Some images contained exaggerated shadows on higher struc-

tures.

(3) Some shadow areas are not detected in a few images

Problem 1 has been caused by the color distinction between the real

shadow and the exaggerated shadow, as described in the shadow

dilationmethodology section. However, this behaviourwas intended

to distinguish between both types of shadows, but it has affected the

realism of the exaggerated image. As a result, this has been solved

by using the same shadow color/brightness of the shadow areas for

exaggeration, as shown in Figure 20.

The reason for problem 2 was that even after filtering the objects’

pixels from the image, some dilated shadow areas expand on higher

structures. This happens when multiple objects are placed at a small

distance from each other. This has been solved by swapping the

object filtering and the shadow map dilation steps. This has forced

the exaggerated shadow parts on the higher structures to be filtered

after the shadow map dilation step, as shown in Figure 21.

Fig. 20. Darker exaggerated shadow area (left), shadow area exaggerated
with the same real shadow color(right)

Fig. 21. Shadow is exaggerated on cars(left) Exaggerated shadow is removed
from the top of the cars (right)

Fig. 22. Thin and scattered shadow area is not exaggerated(left), same
shadow area is exaggerated(right)

Finally, problem 3 was caused because of two reasons. First, some

images have their shadow areas on higher structures and are there-

fore filtered; this behaviour was intentional, so the RGB values of the

buildings remain unchanged. Second, some shadow areas contained

gaps and scatter. As a result, it has been filtered during the erosion

step and therefore not exaggerated. It has been improved by smooth-

ing the gray-scale image before extracting the shadow areas from

it [1] in addition to increasing the kernel matrix convolved with

the image to 9 x 9 and using one iteration for the dilation process.

Smoothing the gray-scale image has allowed more shadow areas to

be detected, and the larger matrix allowed it to be exaggerated with

more intensity as shown in Figure 22.

In general, the mean scores of each question are above average,

which is satisfactory. However, questions 2, 3, and 5 have signifi-

cantly higher standard deviations compared to their mean scores.

This means that some answers for these questions deviate more

from their mean score than questions 1 and 4. This confirms that

the algorithm is marginally more consistent in executing the correct

shadow direction and length than the other metrics.

Problem 3 discussed earlier in this section, was one of the reasons

for the lower mean and the higher standard deviation scores for

questions 2 and 3, besides that some images has contained lighter

shadow areas which were not detected. This issue has caused a

reasonable portion of the shadow area to remain non-dilated and
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therefore not exaggerated. The non-dilated lighter shadow areas

in the output image have the same shadow shape, volume, and

length as the original RGB image, resulting in declining scores of

their related questions. To solve this problem, the threshold for

detecting the shadow areas from the RGB image had to be increased

without detecting more false-positive shadow pixels. However, after

smoothing the gray-scale image, the threshold can slightly increase

to detect brighter shadow areas and fewer false shadowed pixels.

This approach was very challenging to apply as both variables

directly correlate.

The last evaluation question was slightly tricky, as the answers

correlate directly to the amount of shadow exaggerated in the output

image. Since the data set contains diversified images from various

locations and different amounts of shadow areas to be exaggerated,

some images have no significant shadow areas to be exaggerated

and therefore are harder to differentiate between the original im-

age and the output image. In contrast, some images contain large

shadow areas to be exaggerated and, therefore, easier to differentiate

between the original image and the outcome. This explains why

the standard deviation value corresponding to this question is the

highest among the other questions’ values.

Finally, the improvements performed in this section can help in

decreasing the standard deviation values of the other questions as

the corrected scores resulting from the algorithm fixing are expected

to be less deviated and closer to the mean score.

7 CONCLUSIONS
Throughout this research, three methodologies were carried out to

tackle the problem. However, the trigonometrical and progressive

exaggeration methods have proven inconsistent and unacceptable

due to implementation and data set inconsistencies as, from the

results inspection, they have not satisfied the metrics used for eval-

uation. In contrast, the shadow map dilation method’s results were

more satisfactory considering all the metrics used to evaluate the

problem results. Despite this adequate method, it can be improved

by analysing the different outcomes using different parameter val-

ues, such as changing the number of dilation/erosion iterations and

the kernel size. Besides, different techniques can further eliminate

the noise caused by detecting false positive shadows. Nevertheless,

the method has shown promising results in answering the research

questions.

Finally, the progressive exaggeration and shadow map dilation

methodologies can be combined in future work. A way to do this is

by eroding the shadowmap extracted from the gray-scale image and

replacing the dilation process with the progressive shadow exagger-

ation. This will allow the shadow to be exaggerated progressively

in the low noise shadow map. The process then will be carried out

the same way described in the dilation methodology resulting in an

exaggerated version of the image.

8 PSEUDO-CODE/S
The pseudo-code corresponding to each of the methods used is

shown in this section:

Algorithm 1 Trigonometrical method pseudo-code

1: proceduremain(𝑟𝑔𝑏,𝑚𝑎𝑝,ℎ𝑒𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
2: 𝑚𝑎𝑝 ← 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝑚𝑎𝑝)
3: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔← 𝑐𝑜𝑝𝑦 (𝑟𝑔𝑏)
4: 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦𝐶𝑜𝑙𝑜𝑟

5: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) (Determines the coordinates

change given a specific direction)

6: for 𝑝𝑖𝑥𝑒𝑙 in 𝑟𝑔𝑏 do
7: 𝑥 ← 𝑝𝑖𝑥𝑒𝑙𝑥𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

8: 𝑦 ← 𝑝𝑖𝑥𝑒𝑙𝑦𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

9: 𝑜𝑏 𝑗𝑒𝑐𝑡𝐻𝑒𝑖𝑔ℎ𝑡 ←𝑚𝑎𝑝 (𝑥,𝑦)
10: if 𝑜𝑏 𝑗𝑒𝑐𝑡𝐻𝑒𝑖𝑔ℎ𝑡 ≥ ℎ𝑒𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
11: 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑆ℎ𝑎𝑑𝑜𝑤𝐿𝑒𝑛𝑔𝑡ℎ ←

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)
12: 𝑠𝑢𝑛𝐴𝑧𝑖𝑚𝑢𝑡ℎ ←

𝑎𝑟𝑐𝑡𝑎𝑛(𝑜𝑏 𝑗𝑒𝑐𝑡𝐻𝑒𝑖𝑔ℎ𝑡/𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑆ℎ𝑎𝑑𝑜𝑤𝐿𝑒𝑛𝑔𝑡ℎ)
13: 𝑎𝑟𝑡𝑖 𝑓 𝑖𝑐𝑖𝑎𝑙𝑆ℎ𝑎𝑑𝑜𝑤𝐿𝑒𝑛𝑔𝑡ℎ ←

𝑜𝑏 𝑗𝑒𝑐𝑡𝐻𝑒𝑖𝑔ℎ𝑡/𝑡𝑎𝑛(𝑠𝑢𝑛𝐴𝑧𝑖𝑚𝑢𝑡ℎ)
14: for 𝑖 = 0; 𝑖 < 𝑎𝑟𝑡𝑖 𝑓 𝑖𝑐𝑖𝑎𝑙𝑆ℎ𝑎𝑑𝑜𝑤𝐿𝑒𝑛𝑔𝑡ℎ; 𝑖 + + do
15: if 𝑜𝑏 𝑗𝑒𝑐𝑡𝐻𝑒𝑖𝑔ℎ𝑡 ⪈ 𝑚𝑎𝑝 (𝑥,𝑦, 𝑜 𝑓 𝑓 𝑠𝑒𝑡) then
16: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔(𝑥,𝑦, 𝑜 𝑓 𝑓 𝑠𝑒𝑡) ← 𝑐𝑜𝑙𝑜𝑟

17: end if
18: end for
19: end if
20: end for
21: return 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔
22: end procedure

Algorithm 2 Progressive exaggeration method pseudo-code

1: procedure main(𝑟𝑔𝑏,𝑚𝑎𝑝,ℎ𝑒𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
2: 𝑚𝑎𝑝 ← 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝑚𝑎𝑝)
3: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔← 𝑐𝑜𝑝𝑦 (𝑟𝑔𝑏)
4: 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦𝐶𝑜𝑙𝑜𝑟

5: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) (Determines the coordinates

change given a specific direction)

6: for 𝑝𝑖𝑥𝑒𝑙 in 𝑟𝑔𝑏 do
7: 𝑥 ← 𝑝𝑖𝑥𝑒𝑙𝑥𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

8: 𝑦 ← 𝑝𝑖𝑥𝑒𝑙𝑦𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

9: if 𝑚𝑎𝑝 (𝑥,𝑦) ≥ ℎ𝑒𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
10: for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 in 𝑟𝑔𝑏 (𝑥,𝑦, 𝑜 𝑓 𝑓 𝑠𝑒𝑡) do
11: 𝑥𝑠 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑥𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

12: 𝑦𝑠 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑦𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

13: if not 𝑖𝑠𝑆ℎ𝑎𝑑𝑜𝑤 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ) then
14: 𝑏𝑟𝑒𝑎𝑘

15: end if
16: end for
17: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔(𝑥𝑠,𝑦𝑠) ← 𝑐𝑜𝑙𝑜𝑟

18: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔(𝑥𝑠,𝑦𝑠)) ← 𝑐𝑜𝑙𝑜𝑟

19: end if
20: end for
21: return 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔
22: end procedure
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Algorithm 3 Shadow map dilation method pseudo-code

1: procedure main(𝑟𝑔𝑏,𝑚𝑎𝑝,ℎ𝑒𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝐾𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒, 𝑒𝑟𝑜𝑠𝑖𝑜𝑛𝐾𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒)

2: 𝑚𝑎𝑝 ← 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝑚𝑎𝑝)
3: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔← 𝑐𝑜𝑝𝑦 (𝑟𝑔𝑏)
4: 𝑟𝑔𝑏𝑊𝑒𝑖𝑔ℎ𝑡𝑠 ← [0.2989, 0.5870, 0.1140]
5: 𝑔𝑟𝑎𝑦𝑆𝑐𝑎𝑙𝑒 ← 𝑑𝑜𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑟𝑔𝑏, 𝑟𝑔𝑏𝑊𝑒𝑖𝑔ℎ𝑡𝑠)
6: for 𝑝𝑖𝑥𝑒𝑙 in 𝑔𝑟𝑎𝑦𝑆𝑐𝑎𝑙𝑒 do
7: 𝑥 ← 𝑝𝑖𝑥𝑒𝑙𝑥𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

8: 𝑦 ← 𝑝𝑖𝑥𝑒𝑙𝑦𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

9: if 𝑔𝑟𝑎𝑦𝑆𝑐𝑎𝑙𝑒 (𝑥,𝑦) ≥ 60 then
10: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔(𝑥,𝑦) ← 𝑏𝑙𝑎𝑐𝑘𝑐𝑜𝑙𝑜𝑟

11: else
12: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔(𝑥,𝑦) ← 𝑟𝑔𝑏 (𝑥,𝑦)
13: end if
14: end for
15: 𝑘𝑒𝑟𝑛𝑒𝑙𝐸𝑟𝑜𝑑𝑒 ←𝑚𝑎𝑡𝑟𝑖𝑥 (𝑒𝑟𝑜𝑠𝑖𝑜𝑛𝐾𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒)
16: 𝑘𝑒𝑟𝑛𝑒𝑙𝐷𝑖𝑙𝑎𝑡𝑒 ←𝑚𝑎𝑡𝑟𝑖𝑥 (𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝐾𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒)
17: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔 ← 𝑒𝑟𝑜𝑑𝑒 (𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔, 𝑘𝑒𝑟𝑛𝑒𝑙𝐸𝑟𝑜𝑑𝑒, 𝑎𝑛𝑐ℎ𝑜𝑟 =

𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡)
18: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔 ← 𝑑𝑖𝑙𝑎𝑡𝑒 (𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔, 𝑘𝑒𝑟𝑛𝑒𝑙𝐷𝑖𝑙𝑎𝑡𝑒, 𝑎𝑛𝑐ℎ𝑜𝑟 =

[0, 0])
19: for 𝑝𝑖𝑥𝑒𝑙 in 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔 do
20: 𝑥 ← 𝑝𝑖𝑥𝑒𝑙𝑥𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

21: 𝑦 ← 𝑝𝑖𝑥𝑒𝑙𝑦𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

22: if 𝑚𝑎𝑝 (𝑥,𝑦) ≥ ℎ𝑒𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
23: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔(𝑥,𝑦) ← 𝑏𝑙𝑎𝑐𝑘𝑐𝑜𝑙𝑜𝑟

24: end if
25: end for
26: for 𝑝𝑖𝑥𝑒𝑙 in 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔 do
27: 𝑥 ← 𝑝𝑖𝑥𝑒𝑙𝑥𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

28: 𝑦 ← 𝑝𝑖𝑥𝑒𝑙𝑦𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

29: if 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔(𝑥,𝑦) == 𝑏𝑙𝑎𝑐𝑘𝑐𝑜𝑙𝑜𝑟 then
30: 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔(𝑥,𝑦) ← 𝑟𝑔𝑏 (𝑥,𝑦)
31: end if
32: end for
33: return 𝑜𝑢𝑡𝑝𝑢𝑡𝐼𝑚𝑔
34: end procedure
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