
Generating IMU data from video using deep neural networks for use in
animal activity recognition
JASPER BOVENKERK, University of Twente, The Netherlands

Inertial measurement unit (IMU) data has proven to be quite successful in
the field of activity recognition, both on human and animal activities. This
IMU data can be gathered relatively easily from animals using collars with
sensors. However, for training accurate models a large amount of this data
needs to be labeled, which is a very expensive and time-consuming process.

To overcome the issue, researchers have come up with several ways to
generate IMU data from video, as labeled video data is abundantly avail-
able. Previous approaches mainly make use of pose estimation and forward
kinematics. In this paper, however, the viability of using end-to-end deep
learning for generating IMU data is evaluated.

This research consists of two parts, the first part will be to use end-to-end
deep learning to generate IMU data from video data. The second part will be
to train an animal activity recognition(AAR) model to evaluate the effects of
adding generated IMU data to the training data of the AAR model.

In this research is shown that, albeit with a fairly small dataset with a
limited amount of activities, there are indications that IMU data generated
from video using neural networks can contribute to the training of an AAR
model.

Additional Key Words and Phrases: Animal activity recognition, inertial
measurement unit, video, end-to-end learning, deep learning

1 INTRODUCTION
Animal activity can be a great indicator of many things about the
animal and its environment, including the animal’s health, environ-
mental events, and social interaction. Collars are already commonly
used to track, identify and monitor animals. However, more recent
additions to collars are accelerometers and gyroscopes. These allow
for new applications in this field, one of which is recognizing animal
behavior based on IMU data. [7]
It has already been shown that IMU data can be used to quite

accurately recognize animal behavior, like standing, running, and
trotting, or human behavior (on the football field in this example),
like passing, sprinting, jogging, and shooting [2, 7]. There are still
a few limitations though, mainly due to the lack of labeled data to
train the model on. The lack of labeled IMU data can be explained
by the fact that it is very expensive and time-consuming to label
the data.
To remedy this, researchers have looked to generate IMU data

from labeled video data, of which significant amounts exist. Com-
monly used techniques are to extract poses from the video and use
forward kinematics to generate IMU data [9, 11, 16]. In this paper
the use of end-to-end deep learning will be evaluated for the use in
training AAR models.
The question this research aims to answer can be defined as

follows:
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• How well can IMU data be generated from video using deep
learning for the use in training an animal activity recognition
model?

Answering this question will consist of 2 parts:

• How well can an end-to-end deep learning model, which was
developed using AutoKeras, perform in predicting IMU data
based on video?

• How does IMU data generated from video as training data af-
fect the performance of an animal activity recognition model?

For answering these questions, firstly a deep learning model will
be developed to generate IMU data from video, and secondly, an
AAR model will be made to evaluate to what extent the generated
IMU data can contribute to improving the accuracy score of the
AAR model.

In section 2 related research will be discussed, including the state
of the art in IMU generation and deep learning. In section 3 the
dataset and the approach will be discussed. In section 4 the results
will be presented and in section 5 conclusions will be drawn from
the results.

2 RELATED WORK
Activity recognition has been a field of interest for a long time as it
has many uses. Both in the field of human and animal activity recog-
nition. The uses can vary widely and include extracting information
on animal health, environmental events and social interaction for
animal activity recognition [7] and basing training plans on football
match data for human activity recognition [2].
Since it is a popular field of research, many different forms of

data have been used for activity recognition. These include, but are
not limited to, video [4], sound [14] and IMU data [7, 9].

Of these data types, IMU data is one of the most promising since
it can easily be gathered. IMU sensors, such as accelerometers, gy-
roscopes, and magnetometers, have become small enough to easily
fit into wearables, such as phones and watches for humans and all
sorts of collars for animals. This is in contrast to video, for example,
since it is very hard to have a camera continuously record someone.
Video data could also give issues regarding privacy. Also, IMU data
has already been successfully used many times to identify activities.
Accuracy scores of well in the 90% have been achieved [2, 7].

The classifying algorithms used on IMU data also vary greatly.
Random forests [9], naive Bayes [7, 8], decision trees [7] and deep
neural networks[11] have all been used in previous research and
have been proven capable of activity recognition based on IMU data.
There is a disadvantage to IMU data, however, which is that

there is very little labeled data available for training. The amount
of labeled data available for other fields, like computer vision and
natural language processing, is many times higher than in the field
of activity recognition via IMU data[11]. This is unfortunate since
the availability of large datasets can improve the models [13].
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There are several methods to increase the size of the datasets. First
of all, there is the option to just gather more, by manually labeling
all data. This is very expensive and time-consuming and therefore
not a preferred option. Secondly, there is transfer learning, where a
model which was trained for one task with a large amount of data is
retrained for another task with limited data. This is hard to apply in
this field, however, since it would require some form of pre-existing
activity recognition model trained on a large amount of data, but
large datasets are hard to come by in this field of research. Lastly,
there is data augmentation, which is making new data by slightly
modifying existing data or by creating synthetic data from existing
data. Both augmentation techniques have already been attempted
on IMU data in several ways.

Modifying existing data is a common approach to data in the form
of images since scaling, rotating andmany other forms of distortions
can often easily be applied without changing the meaning of the
image. For IMU data, this is significantly more difficult. Nevertheless,
this has already been done in some studies [3, 10].

The most common approach for generating synthetic IMU data is
to use labeled video data, which is quite abundant. Previous attempts
to generate synthetic IMU data from video have delivered promising
results[9, 12]. In these papers estimated 2D and 3D positions are
used to determine the movement through space and with that the
acceleration that takes place.
Previous research also looked into generating IMU data from

video for animal activity recognition. In this research, 2D pose
estimation was used as well.[16]

Another useful thing to take away from these papers is that they
showed that combining the generated IMU data with the actual
IMU data allowed them to improve the performance of the animal
classification model. Classification based solely on the generated
IMU data performed slightly worse than the real IMU data only on
the contrary.[9, 11, 16]
The papers mentioned above have shown that pose estimation

can be a good way to generate useful IMU data, however, it requires
features in the form of specific joints to be selected for use in the
IMU generator. The features used here might be suboptimal. To
avoid this feature selection end-to-end learning can be used. End-to-
end learning is a method where no feature engineering takes place
and the raw data is the input for a deep learning model.
There are many different techniques in the field of deep learn-

ing, one of interest for this research is Convolutional Neural Net-
work(CNN). CNNs have their origin in image processing problems
and were therefore designed based on structures that were observed
in the human brain.[2]
CNNs consist of convolutional layers, pooling layers, and fully

connected layers, however, the layout and types of these layers can
wildly vary. Certain configurations perform well on a specific task,
but poorly on another. Therefore it is also important that the right
structure is picked. This can be a complex task though.
A solution to this was proposed and made. A new method of

neural architecture search(NAS) was proposed and built in the form
of the open-source software Auto-Keras. This is a program that will
look for the optimal neural network for a specific dataset. [6]

Fig. 1. An example frame from one of the videos taken by the right camera

3 METHODS

3.1 Dataset
The data used in this research was collected by the University of
Utrecht and all experiments with the animals complied with Dutch
ethics law concerning working with animals. The dataset involves
5 dogs performing 2 activities on a treadmill: walking and trotting.
The dogs were of different breeds, but roughly the same size. During
these activities, they were monitored by GoPro’s from the front,
left, right, top and back. These filmed the dogs in 4K at 60/120 Hz
(differs per video). In addition, 3 IMU sensors were placed on the
dogs, one on the head, one on the withers(shoulders), and one on
the pelvis(hips), which had a sampling rate of 200 Hz. An example
of how this looks from the right camera can be found in figure 1.

For this research only the image from the right side was used, as
an image from the side contains more information about the motion,
since a larger part of the dog is clearly visible. The right one was
chosen as opposed to the left one, since there are people walking
the dogs on the treadmill and they were mostly walking on the left
of the dog, resulting in better images from the right camera.
The three different locations for the IMU sensors can have an

impact on the performance of an AAR model. The IMU data from
the head is, most likely, hardest to use, as a dog can and will make
many movements with the head that are unrelated to the labeled
activities. These movements do influence the IMU data possibly
confusing the AAR model. At the whithers this effect is significantly
less, but it can still have an impact. This effect was assumed to be
the least at the pelvis, therefore, solely the IMU data from the pelvis
was used.

The IMU sensors collected the following data:

(1) accelerometer data in x-, y-, and z-direction with a range of
± 16 g

(2) gyroscope data in x-, y-, and z-direction with a range of ±
2000 ◦/s

(3) high-g accelerometer data in x-, y-, and z-direction with a
range of ± 100 g

To synchronize the IMU data with the video data an LED is visible
on all video footage. If the LED is on, this means that the IMU sensors
are recording.
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3.2 Preprocessing
3.2.1 Synchronization. The first step in preprocessing was to syn-
chronize the IMU data with the video data. For this all videos from
the right camera were trimmed to only the frames where the LED
is on, and thus the IMU sensors are recording. This was done by
manually selecting the first frame where the LED was on and the
last frame the LED was on, and then cutting away the parts of the
video before and after these points.

Next, the IMU data was resampled to match the framerate of the
videos, using the scipy.signal.resample() method. This resulted in
an IMU sample for every frame of the video.

3.2.2 Labeling. The second step is to provide labels for the IMU
data and the video data. This dataset was created with the dogs
performing 2 activities: walking and trotting. All segments in the
videos with these activities were labeled as such. However, these
activities were not performed by the dogs constantly. There were
some segments in the video with transitions between activities and
other activities, like shaking with the head, that were not labeled.
There were also was one other activity present that occurred fre-
quently, namely, standing. Therefore standing was included as a
label and the final dataset contains 3 activities.

3.2.3 Dog detection. Before the images were placed into the neural
network, first the dog was extracted from every frame of the video.
This is to make sure that mainly the relevant information is used
for training the neural network. During this process, some images
were discarded because the dog could not be recognized (entirely)
in them.

3.3 Generating IMU data
For the first part of answering my research question, an end-to-end
deep learning model was developed to predict IMU data from video.
For this, the image regression of AutoKeras was used. The inputs for
the training were the video frames and IMU data (as ground truth).
The model was tasked to use one frame to generate one matching
IMU sample. For the IMU data, it was decided to directly generate
the magnitude of the 3D acceleration vector, which is calculated by:

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =

√︃
𝑥2 + 𝑦2 + 𝑧2

This was done, as generating the x-, y-, and z-components of the
acceleration separately would most likely accumulate a larger error
when calculating the magnitude.

The quality of prediction is determined by a loss function, which
is a number calculated from the output, of which the goal is to min-
imize or maximize it. In this research, the mean square error(MSE)
was chosen, as the goal would be to get the predicted value as close
to the real value as possible per frame. If temporal data would be
used to generate IMU data, it could be beneficial to take this into
account in the loss function, however, this is not the case in this
research.
To keep training times reasonable the images were re-scaled to

32× 32 pixels. The number of trials was limited to 10, so 10 different
models were allowed to be tested. The training was done in 2 epochs,
so the training set was passed through the model twice. After the
training, the model was reviewed by comparing the predictions

based on the given video data to the known IMU data. After that,
the model was used to generate IMU data for training the animal
activity recognition model.

3.4 Animal activity recognition
For the second part of the research, multiple classification models
were trained. For this a naive Bayes classifier was used, as this has
proven to be a reliable classifier for animal activity recognition using
IMU data [7, 8]. The models were trained using different training
sets, 3 with only real IMU data, 2 with a combination of real and
generated IMU data, and 1 with only generated IMU data.
For the training of the AAR model, a window size of 2 seconds

was used. This means that the features are determined based on
2 seconds of IMU data and that every window of 2 seconds has
a single label. In addition to the 2-second window 50% overlap
between windows was used. These characteristics were chosen as
they are commonly used and effective.[8, 11]
The features that were used for the classification were based on

accelerometer data. First, the magnitude of the acceleration was
calculated from the accelerations in the x-, y- and z-direction. Then,
the data was normalized. Finally, for the magnitude, the mean, me-
dian, standard deviation, minimum, maximum, 25th percentile, and
75th percentile were calculated. These features were chosen as they
have proven to be effective in previous research.[7]
The metrics of these models were then determined by test data

so that the accuracy scores and F1 scores can be evaluated.

4 RESULTS

4.1 IMU data generation
For the IMU generation data from 2 dogs (Colin and Scrufy) was
used. After detecting the dog in the frames and discarding invalid
frames, 12830 frames remained to train the models on. The results
of training models using AutoKeras gave a resnet50-based model,
with a mean square error(MSE) of 73.1 as the best model.

Resnet50 is a so-called residual neural network, which is a CNN
that uses residual learning to overcome the issue of degrading/exploding
gradients.[5]

One on the most important reasons that this model was selected
by AutoKeras, is most likely that it is among the first models that
are attempted to train. This would be the case since resnet50 and
similar models are some of the state-of-the-art CNN models[1].
In figure 2 a set of generated IMU data is plotted against a set

of real IMU data and in figure 3 the first 500 frames of the same
fragment can be seen. The MSE is, in this case, a measure of the
average distance between the generated and real IMU data. The
higher the MSE value, the worse the prediction is, so 73.1 would not
be a desirable result.
Though locally some small resemblances between the real and

generated IMU data can be found, it seems that the model is not
very successful in predicting the IMU data. Especially not compared
to previous results, where the generated IMU data would clearly
follow a similar trajectory as the actual IMU data [9, 11, 15].

This shows that replicating a single IMU data sample from a single
image is not doable in this configuration. It could be for several
reasons. First of all the dataset could be too small. The model might
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Fig. 2. Comparison of generated and real IMU data

Fig. 3. 500 frames of generated and real IMU data

require more frames and epochs to achieve a lower MSE. Secondly,
it could be that no truly suitable model was found yet, as only a
very limited amount of trials was used. Thirdly, the low resolution
could be a problem, there might just not be enough information left
in the images at the 32× 32 pixels resolution. Lastly, it could be that
a single image is simply not enough for current neural networks
to determine acceleration. While the first three reasons might have
some influence, I expect that the fourth one is the main reason for
the poor results in this section. This would be due to the fact that
acceleration becomes visible over time and by looking at just one
image at a time, the temporal information from the videos remains
unused.

4.2 Animal activity recognition
4.2.1 Metrics. The most common metrics to evaluate a classifier
on are precision, recall, accuracy, and the F1 score. These scores are
all calculated based on the classification divided into 4 areas:

(1) True Positive (TP), is what was correctly classified as this
class

(2) True Negative (TN), is what was correctly classified as not
being this class

(3) False Positive (FP), is what was incorrectly classified as being
this class

(4) and False Negative (FN), is what was incorrectly classified as
not being this class

The accuracy is just the amount of correct classifications com-
pared to the total amount of classifications.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Recall is a metric that indicates what percentage of positive classifi-
cations were done correctly.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision is a metric that indicates what percentage of positive
classifications were actually correct.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

For some applications, high precision or high recall is desired. In
this case, however, there is no particular need for either metric to
perform well, therefore we can use the F1 score, which takes into
account both precision and recall.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4.2.2 Classification results. To evaluate the impact of generated
IMU data, a naive Bayes classifier was trained on 6 different training
sets and evaluated using the same training set. The composition of
these datasets can be found in table 4.2.2. All training data came
from the dogs Colin and Scrufy. The generated data was based on
their images as well. As testing data, the IMU data from Sam was
used.
The first thing to note about the results in table 4.2.2 is that for

all compositions of the training data, the accuracy and F1 score are
both pretty high. Even with only 28 training windows split over 3
classes the accuracy was able to get above 90%. Compared to other
research the accuracy and F1 score were higher [9, 11]. Part of this
can most likely be attributed to the limited size of the dataset used
in this research, especially the fact that there were only 3 activities.
Looking at the metrics for the training sets that included gen-

erated IMU data in comparison to the ones only containing real
data, it seems that generated IMU data can bring some improvement
to the metrics, as all training sets containing generated IMU data
outperformed the ones that did not. The most interesting thing to
note might be that 28 windows of generated IMU data are more
suitable to train the classifier than 28 windows of actual IMU data.
The results that were achieved with generated IMU data seem

very good compared to other research, especially when looking at
the performance of generated IMU only.[9]
It seems that even though the generated IMU and the real IMU

plotted against one another do not show too much resemblance, the
information required for the classifier is extracted from the images.
The information in the generated IMU even seems better than the
actual IMU it was supposed to replicate.
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Since the AAR model does not directly use the IMU data, but
features based on the IMU data, it could be that even though the
generated IMU data does not resemble the actual IMU data, the
features remain roughly the same. This could be an explanation for a
similar performance of the AAR model. However, it is harder to find
a reason why the generated data would have a better performance.
A possible explanation could be that due to inaccuracy of the IMU
generator, certain features become more clear in the data, resulting
in features that help better distinguish the activities.

5 CONCLUSION
In this paper, the possibility of using neural networks for generating
IMU data for use in training AAR models was shown. Even though
the dataset and the number of different activities were relatively
small, there seems to be evidence that neural networks be used on
video to generate IMU data in such a way that information used
for classification can be extracted, as the naive Bayes classifiers
that were trained with generated IMU data outperformed the ones
trained or real IMU data.

6 FUTURE WORK
Based on this research there are many directions to improve or ex-
tend in. First of all, it would be interesting to see, if the performance
holds up when the size of the dataset increases, particularly when
more different activities are added.
Secondly, it would be interesting to see what models AutoKeras

can create given more training data and more time, as the use of
AutoKeras in this research was quite limited.

Lastly, it might also be interesting to see what deep learning
models like long short-term memory(LSTM), which can make use
of temporal information, can do in generating IMU data. As much
information about acceleration could come from the difference be-
tween frames as opposed to the situation in a single frame. It was
discussed in section 4.1 that lack of temporal information is one of
the most likely reasons for the high MSE.
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204 real 204 real + 28 generated 28 generated 28 real 28 real and 28 generated 56 real
Accuracy 0.951 0.975 0.975 0.906 0.970 0.936
F1 score 0.950 0.975 0.975 0.901 0.970 0.935

Table 1. Overview of achieved accuracy and F1 scores

Activity Standing Walking Trotting Total

204 Real Real 43 105 56 204
Generated 0 0 0 0

204 Real + 28 Generated Real 43 105 56 204
Generated 9 13 6 28

28 generated Real 0 0 0 0
Generated 9 13 6 28

28 real Real 6 14 8 28
Generated 0 0 0 0

28 real and 28 generated Real 6 14 8 28
Generated 9 13 6 28

56 real Real 12 29 15 56
Generated 0 0 0 0

Test Real 20 20 41 81
Table 2. Composition of training data
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