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ABSTRACT 

Multispectral remote sensing has been extensively used for estimation and monitoring of forest structural 

attributes. However, consideration of the influence of landscape factors such as topography and species 

diversity in forest attribute estimation are comparatively limited. To date, very few studies were found that 

evaluated the accuracy improvement of forest structure estimation models by incorporating topographic 

influence in the model and even fewer studies were found that investigated the changes in prediction 

accuracy by the influence of coniferous species diversity especially with multispectral imagery. Those studies 

that included topographic variables in their models, did not conclude how the topography effect the relations 

of other explanatory variables with forest attributes and whether or not that addition improved the model 

accuracy.  

The aim of this study was to investigate: 1) how strongly the texture variables derived from VHR 

multispectral imagery correlate with forest metrics, which are mean diameter at breast height (DBH), 

standard deviation of diameter at breast height (SD DBH), and tree count per plot. 2) The changes in 

relationship between texture variables and forest metrics by the influence of slope and aspect and therefore 

any increase the models’ estimation accuracy. 3) Any further improvement in models’ estimation accuracy 

if the data is separated based on species diversity of the study area. 

This study utilized the World View-2 derived texture variables calculated with different parameter settings 

to assess the relationship with field measured forest metrics. An iterative subsampling procedure was 

followed to fit stepwise regression models for each forest metric with the significantly correlated texture 

variables to determine the most significant variables and develop the prediction model, while the 

subsampling approach minimizes the spatial autocorrelation issue. Then, different models were developed 

adding slope, aspect, and their combined influence as interaction term in the stepwise prediction model 

running the subsampling algorithm and compared in terms of R2, RMSE and AICc. Moreover, the best 

fitted models were used to predict forest metrics in different species diversity forests. 

The correlation coefficients of significant texture variables for Mean DBH ranged from -0.47 to -0.57, 0.36 

to 0.41 for SD DBH and -0.51 to -0.56 for Tree Count. Interaction effect of slope and aspect on texture 

variables significantly changed the relationship with forest metrics in most cases and slope as a moderating 

variable, improved models’ R2 by 15%, 6%, and 11%, and the RMSE was decreased by 1.03, 0.54, and 0.3 

for Mean DBH, SD DBH, and Tree Count, respectively. Aspect influenced model showed an increased R2 

by 4%, 5%, 5% and decreased RMSE by 0.29, 0.47, 0.17 for Mean DBH, SD DBH, and Tree Count, 

respectively. The best fitted models predicted Mean DBH, SD DBH and Tree count with an R2 of 0.54, 

0.45, and 0.42 and RMSE of 6.03, 3.86, and 3.73, respectively. Moreover, the splitting of model dataset 

based on species diversity showed that Mean DBH and Tree Count was predicted in single species forest 

stands with average R2 of 0.60 and 0.50 and average RMSE of 5.70 and 3.48, respectively and SD DBH was 

be predicted in multiple species forest stands with average R2 of 0.68 and average RMSE of 2.80. 

The correlation of texture variables with forest metrics was highly sensitive to GLCM parameter selection 

used to calculate the textures. The relationship of texture variables with forest measured variables changes 

significantly when texture variables have interaction effect of topographic variable. Therefore, forest 

structural attribute estimation accuracy can be improved in mountainous region by incorporating influence 

of topography and prediction can be even more improved if the model is fitted with species specific data. 

Keywords: Forest metrics, World View-2, GLCM texture, Topographic influence, Rhodope Mountain, 

Species diversity, Spatial Autocorrelation, Subsampling algorithm, Interaction regression. 
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1. INTRODUCTION 

1.1. Background 

Forests are a prominent kind of ecosystem in Europe, accounting for 42 percent of the land area (Ganault 

et al., 2021) and delivering a variety of important ecosystem services such as timber stocks, carbon 

sequestration, habitat for biodiversity, and watershed protection (Scherer-Lorenzen & Schulze, 2005). These 

services are heavily reliant on forest species richness as well as other characteristics of structural attributes 

(e.g., tree density and volume) in a forest ecosystem (Gamfeldt et al., 2013). Hence, forest structural 

attributes are critical components of ecosystem, and are connected to a variety of ecological phenomena 

(Pretzsch, 2009; Shugart et al., 2010). The monitoring and estimation of these attributes of forest are 

important for sustainable use of forest in multiple ways, such as increasing productivity, habitat, and 

biodiversity conservation  (Freitas et al., 2005).   

Forest structure can be described by several attributes, including canopy cover, basal area, tree height, leaf 

area index, stem volume, diameter at breast height (DBH), tree species mixture, biomass, and spatial 

arrangement (horizontal and vertical) of vegetation (Ozdemir & Karnieli, 2011). Among several structural 

attributes, a few attributes such as DBH, number of trees per unit area are important as they provide 

information about some critical characteristics of forest stand (Goff & Zedler, 1968). Metrics of DBH such 

as Mean DBH and standard deviation of DBH (SD DBH) are usually used as a measure of stem diameter 

distribution of forest stand and diameter variability within the forest (Zenner and Hibbs, 2000). In addition, 

tree count per unit area is an important structural attribute to understand how dense the forest stand is. For 

forest management, it is critical to have this information to better understand the management needs. For 

instance, thinning of dense forest stands may enhance diameter development (Baldwin et al., 2000; Fuhr et 

al., 2001). 

1.2.  Application of Remote Sensing to Estimate Forest Structural Metrics 

Detailed and accurate estimation of forest attributes is necessary for forest inventory and management, 

growing stock, biomass, biodiversity, and carbon modelling (R. Zhou et al., 2019). Conventional field 

surveys offer trustworthy forest attribute data which can be used to monitor and manage forests (Scrinzi et 

al., 2007), but most of the time they are labour-intensive, costly, and difficult to deploy, especially in hilly 

and remote forest locations (R. Zhou et al., 2018). The ability to accurately estimate forest structural 

attributes on a large area from tree size measurements is a focal concern in forest inventory (Hall et al., 

2011). Remote sensing appears to be a viable and low-cost approach for evaluating forest biophysical 

attributes compared to field surveys, when the area is large or difficult to reach. In DBH estimation and tree 

density mapping study, a number of remote sensors have been employed, including LiDAR (Huang et al., 

2011; Wu et al., 2015; Xie et al., 2020; Yao et al., 2012), aerial synthetic aperture radar (SAR) (Hyyppä et al., 

2000; Karjalainen et al., 2012), optical airborne data (Lévesque & King, 2003; Pasher & King, 2010; 

Tuominen & Pekkarinen, 2005), and optical satellite hyperspectral- (Cho et al., 2009) and multispectral 

imagery (Beguet et al., 2014; Ozdemir & Karnieli, 2011; Vázquez De La Cueva et al., 2008; Wunderle et al., 

2007). In particular, LiDAR remote sensing has become as a convenient tool for predicting such forest 

attributes. Naesset (2007) observed that predictions of forest attributes including tree height, DBH, tree 

density, volume, and basal area obtained from models developed utilizing LiDAR data did not significantly 

differ from field measured data, indicating its effective use in forest inventory. However, the high expense 

of large-area applications requiring frequent revisits limits its applicability (Wolter et al., 2009). Recent 

advances in SAR technology supports its application in large-area forest inventory. Though SAR images 

provide a reasonable estimation of forest structures, Hyyppä et al. (2000) concluded that radar images 

contain less information for forest inventory than optical imagery, and the estimation capability of SAR is 
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very much site-specific. They found that some spectral information from NIR and SWIR bands are more 

useful in characterizing forest attributes. Unlike Radar and LiDAR, multispectral satellite imagery has some 

advantages in estimating forest attributes, including its extensive temporal and spatial coverage and simple 

interpretation relying on traditional photographic image analysis. 

In the last few decades, optical remote sensing data has been thoroughly tested and used to identify spatial 

patterns in canopy surfaces for estimating different forest attributes (Lamonaca et al., 2008; Wolter et al., 

2009). However, predictions from moderate resolution sensors do not provide sufficient accuracy needed 

to capture structural attributes for forest management (Helmer et al., 2012; Pierce et al., 2009). Hyyppä et 

al. (2000) examined the accuracy of obtaining the following stand variables: stem volume, mean basal area, 

and tree height, using several image sources such as aerial pictures, SPOT XS, SPOT Pan and Landsat TM 

and concluded that the accuracy obtained ranked according to their spatial resolution. In this regard, 

incorporation of very high resolution (VHR) images with information from other sources (such as forest 

inventory and GIS data) was found useful for drawing fine-grained assessments of forest structural attributes 

and for strengthening the abilities of investigating the forest ecosystem (Kayitakire et al., 2006; Leboeuf et 

al., 2007; Nyamgeroh et al., 2018; M. A. Wulder et al., 2004).  

1.3. Review of Methods Used in Forest Structure Study 
Using optical imagery, radiative transfer and empirical models are two broad techniques in forest structure 

modeling. Because of radiative transfer models mainly relies on spectral information (Leblanc, 1998; Peddle 

et al., 2004), they are not capable of utilizing spatial information (Bruniquel-Pinel & Gastellu-Etchegorry, 

1998) In contrast, empirical investigations are more used in forest attribute modelling, since it can utilize 

image spectral information, but also image spatial details in forms of image texture (Nyamgeroh et al., 2018; 

Tuominen & Pekkarinen, 2005; Wood et al., 2012), spatial dependency measures like semi-variance 

(Johansen & Phinn, 2014; Treitz & Howarth, 2000), radiometric fraction at the pixel level (spectral 

unmixing), or a combination of these (Lévesque & King, 2003b) . Still, direct measurement of DBH using 

passive remote sensing data is thus tricky since trees grow mostly vertically and the top components of the 

tree, especially branches and canopy cover, often conceal the direct view of the stem (Kattenborn et al., 

2018; Kayitakire et al., 2006; Ozdemir & Karnieli, 2011). However, multispectral optical data-derived 

spectral bands, indices, and textures indirectly relate to DBH through the crown diameter (Cho et al., 2009). 

In remote sensing of forest parameters, the most often utilized texture measures are a set of the second-

order statistics of spectral value, popularly known as Grey Level Co-occurrence Matrix (GLCM) developed 

by Haralick et al. (1973). The advantage of using GLCMs are their ability to carry details about the spectral 

intensity of pixels and neighboring pixels (Tuttle et al., 2006). However, their application in forests is tricky 

because of their performance depends on various parameter settings. In addition to texture measures, 

vegetation indices (VIs) can capture the spectral response of canopy structures using their relationship with 

leaf area index (LAI) or crown cover (Ingram et al., 2005), since the canopy structure is shaped by vegetation 

parameters such as height, density, age, basal area, etc. (Peterson et al., 1987; Rock et al., 1986) . There are 

many VIs though NDVI is most used in forest parameter estimation studies (Cho et al., 2009; Ingram et al., 

2005; Kayitakire et al., 2006; Ozdemir & Karnieli, 2011), since it has been shown theoretically and 

experimentally to be related with canopy cover (Pau et al., 2012). However, NDVI is not sensitive to higher 

biomass levels which is one of the drawbacks of this index in tropical forests (Ingram et al., 2005). Townsend 

(2002) found that adding NDVI as a variable with SAR data improves the model prediction of basal area in 

the forest.  

In addition, forest structure prediction mostly depends on regression models established on empirical 

relationship between ground measured information and corresponding remote sensing data. The statistical 
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procedure of prediction can often be biased by uncertainties like multicollinearity and spatial autocorrelation 

(Rocha et al., 2019; Shiklomanov et al., 2016). In regression models, the key issue is to minimize the 

multicollinearity of the spectral and textural variables to build stable models and prevent overfitting (Beguet 

et al., 2012). Variance inflation factor (VIF), a powerful multicollinearity indicator (Alin, 2010), can be used 

to address this issue. Spatial autocorrelation also performs an essential role in selecting environmental factors 

and further affects forest attribute prediction (Liu et al., 2018). Autocorrelation within variables triggers 

multicollinearity, increasing the probability that critical variables are not identified (type II error). In contrast, 

a violation of the assumption of data independency and equally disseminated observations raise the risk of 

a type I error (Babcock et al., 2013; Dormann et al., 2013; Fortin et al., 2012). Most of the existing model 

evaluation technique focuses primarily on model fit and improving accuracy while giving very little 

consideration to the effects of spatial autocorrelation on variable choice, and its influence on predictions 

remains unambiguous (Moisen & Frescino, 2002; Rocha et al., 2019; Zhang et al., 2005) In forest structure 

research, evaluating the influence of sampling density and its induced spatial dependence in variables may 

increase the reliability of model prediction (Dupuy et al., 2012). 

1.4. Relation between image texture and forest structure 

In recent times, texture features from high-resolution imagery have shown their ability to estimate vegetation 

structures such as tree DBH with considerable accuracy, while spectral information of optical imagery or air 

photographs cannot measure them directly  (Ozdemir & Karnieli, 2011; Wood et al., 2012; J. Zhou et al., 

2017). Image texture has been employed in many studies to estimate forest biomass, DBH distribution, tree 

density, and height differences in both broadleaf and coniferous forests (Beguet et al., 2014; Ingram et al., 

2005; Kayitakire et al., 2006; Wunderle et al., 2007). Texture analysis measures the variation in tonal values 

of pixels within a specified area of an image (Wood et al., 2012), which was found useful in detecting objects 

or region of interests (Pope & Treitz, 2013).  Zhao et al. (2018) demonstrated that textural analysis of image 

is more useful than spectral information for estimating attributes that is related to vegetation canopy. 

Ozdemir & Karnieli (2011) showed that mean and standard deviation of DBH and number of trees can be 

estimated with high accuracy in a coniferous plantation forest using texture analysis of World View-2 image. 

Hence, it is obvious that the textural information obtained from high-resolution satellite images is valuable 

for measuring forest stand density and diameter distribution. 

 

Image texture is a sophisticated metric, and texture values determined with the GLCM technique are very 

sensitive to window size, orientation, displacement length, and physiographic settings (Coburn & Roberts, 

2010; Kayitakire et al., 2006; Sarker & Nichol, 2011). Kayitakire et al. (2006) showed that for prediction of 

structural attributes in a conifer forest, the most important GLCM parameters were window size, 

displacement length and orientation. However, it remains confusing of specific parameter settings for 

window size, displacement length and orientations when calculating GLCM textures (Zhou et al., 2017). For 

instance, there are different recommendations about whether to select a large or small moving window size. 

Some investigations have demonstrated that image texture measures estimated using a small window size 

from high resolution images are most significantly related with observed vegetation structure on the field 

(Wood et al., 2012; Wunderle et al., 2007). Others found that smaller window sizes contributed to the poor 

correlation of GLCM textures with forest structural attributes (Franklin et al., 2010). (Coburn & Roberts, 

2010) showed that texture features cannot be expressed precisely with a single moving window size and 

when the investigated forest surface is homogenous, a small window size can be used.  

Displacement length is another crucial factor that influences the value of GLCM textures. Low 

comparability is caused by a large pixel displacement. However, few studies have looked at how 

displacement length effects texture features. Kayitakire et al. (2006) found that displacement lengths effects 
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on GLCM texture can be more related to the characteristics of forest and image spatial resolution. They also 

found that orientation had little influence on the estimation accuracy of forest attributes. However, Clausi 

(2014) proposed that each orientation should be evaluated to obtain best result from GLCM texture. Zhou 

et al. (2017) mentioned about the average value of texture from four orientation, however, no specific 

findings reported the effect of average orientation in forest structure estimation. Therefore, the 

determination of optimal moving window size, displacement length and orientation for highest correlation 

of textures with forest attributes needs further analysis. 

1.5.  Landscape Topography as an Influencing Factor of Forest Structure 

Topographic features such as altitude, slope, and aspect are major drivers of forest structure and 

composition as it regulates the distribution of trees in a forest, hydrologic processes, soil chemistry and 

microclimate (Gallardo-Cruz et al., 2009; Yeakley & Weishampel, 2000). Altitude and aspect play a 

consequential role in determining the temperature regime and atmospheric pressure of any geographical 

area (Singh et al., 2016). For species found in higher altitudes, ridges and steep slopes, strong competition 

for essential nutrients and water is crucial to their long-term survival (Heineman et al., 2011; Paoli et al., 

2008). On the other hand, in alluvial valleys, forests tend to face intense competition for the light which 

allows them to grow taller and stratified canopies (Banin et al., 2012; Paoli et al., 2008; Werner & Homeier, 

2015) as well as enhances their productivity and turnover rate (Aiba et al., 2005; Jucker et al., 2018). 

Eilu & Obua (2005) reported that variation in altitudes and slopes in a forest can cause variation in the 

species richness and their dispersion behavior. In addition, Kharkwal et al. (2005) have underpinned altitude 

and climatic factors (i.e temperature and rainfall) as the key determinants of species richness. Moreover, 

forest landscape structure and species association are greatly impacted by topographic factors (Behera et al., 

2006). 

In forest lands, both the energy and water balance conditions are highly induced by the patterns of solar 

radiation. At mid and high latitudes, slopes facing the Equator are warmer than slopes facing the closest 

pole since the former receive more radiation. Therefore, in the northern hemisphere, the south slopes tend 

to provide the most suitable habitat for organisms with the southern distribution. While for organisms with 

northern distribution, north slopes are considered to be the ideal habitat (Stoutjesdijk & Barkman, 2014). 

Apart from affecting vegetation attributes, topographic features influence remote sensing analyses by 

changing the radiance of the images as the incidence and exitance angles change with varying slope aspects 

and altitude (Huang et al., 2008). The reflectance is controlled by sun-terrain-sensor geometry. In 

mountainous forests, the geometry can vary between pixels and eventually may result in spectral variations 

(Tan et al., 2013). The illumination effect and self-shadowing are common to hilly and coniferous forests. 

For instance, topographic deviations can intensify the difficulty of classifying stand complexity through 

mimicking canopy complexity (Kane et al., 2008). While, steep slopes generate shades that minimize the 

variation in vegetation cover during image classification (Holmgren & Thuresson, 2008). 

1.6. Sampling Design influence on Forest Structure Prediction 

Sampling design serves as an integral part of empirical modeling with spatial data (Næsset et al., 2015; 

Ozdemir & Karnieli, 2011).  Inappropriate sampling design particularly the plot design can affect the 

association between remote sensing data and forest structure parameters by forest edge effect and co-

registration errors (Ruiz et al., 2014). Often larger plot sizes are considered more advantageous for remote 

sensing-assisted estimation as they tend to capture more of the variability in the forest population (Næsset 

et al., 2015), maintain a higher degree of spatial overlap of tree canopies in a forest stand (Frazer et al., 2011). 

Ene et al. (2007) analyzed the effect of the plot size on forest inventory by considering 3 different plot sizes 

(200, 400 and 600 sq meter). Similarly, Gobakken & Næsset (2009) carried out a comparative study on the 



IMPACT OF TOPOGRAPHY AND SPECIES DIVERSITY ON THE PREDICTION OF FOREST METRICS FROM VHR MULTISPECTRAL IMAGERY 

 

10 

effect of plot areas of 200 sq meters and 300 sq meters. Further Frazer et al. (2011), analyzed the plot area 

co-registration effect for the estimation of biomass using circular plots with four different radii (10, 15, 20, 

25 m) and 25*25m square shaped plots. Mascaro et al. (2011) quantified this effect for tropical sample plots 

of different sizes. It was evident from all the above-mentioned forest structure attribute estimation studies 

that the larger plot areas provide higher accuracy and minimize plot boundary effects and co-registration 

errors. Besides, (Næsset et al., 2015) considered the effects of geometric shape of plot on forest feature 

modeling and pointed out that circular plots are more favorable than rectangular plot in terms of acquisition 

of accuracy. However, larger plot sizes incur high economic cost of field work; therefore, in order to obtain 

optimal modelling performance, combining plot boundary and density of remote sensing data can be a 

viable option (Ruiz et al., 2014).   

1.7. Spectral Reflectance Variability as a Function of Species Diversity 

Species diversity is an important attribute of forest ecosystem and is related to the biophysical structure of 

the forest (Guisasola et al., 2015). Lähde et al. (1999) mentioned that species diversity and stand structure 

of the forest both can influence each other in a forest ecosystem. The presence of many species in a forest 

stand may alter the dimensions of various tree compartments including the stem, branches, and foliage 

(Barbeito et al., 2017; Pretzsch, 2014) and such changes may result in an increase in the crown size and 

shape variability of a particular species in mixed stands. Variations in crown structure have an effect on the 

spectrum response acquired by remote sensing imaging; however, the spectral response varies depending 

on the spatial and spectral resolution of the sensor (White et al., 2010). Previous studies carried on mixed 

forests using remote sensing approach mentioned that estimation of forest attributes is difficult in mixed 

forest due to complex canopy structure compared to single species stands (Ma et al., 2017; St-Onge et al., 

2008). Heurich & Thoma (2008) found a 24% improvement in DBH estimation model accuracy when stands 

of coniferous species were modelled separately from mixed species stands with airborne lidar data. The 

studies found comparing the prediction of forest structural attributes based on species diversity, they 

employed segregation of coniferous species from the broadleaf species in mixed forest. Therefore, a 

knowledge gap exists on how forest stands with multiple coniferous species influence the accuracy of forest 

structure estimation in comparison to forest stands with a single species. 

1.8. Research problem  

A fundamental goal of forest resource assessment is to estimate the forests' growth, growing stock, and 

overall health (Hyyppä et al., 2000). To characterize the forest growth and condition, accurate prediction of 

structure attributes is essential. However, most of the recent studies intended to predict forest structural 

attributes utilizing VHR multispectral imageries have shown a varying level of accuracy (Castillo-Santiago et 

al., 2010; Kayitakire et al., 2006; Ozdemir & Karnieli, 2011). As a reason, Salvador and Pons (1998) 

mentioned that forest type and environment of study location significantly influence the functional links 

between forest attributes and information gained from imagery. They also found that the relations are even 

more varied with heterogeneous ecosystems that have scattered forest stands. 

Therefore, due to variation in several environmental considerations, such as topography, relative location, 

aspect, water availability and soil composition, precise estimation of forest structural characteristics with 

remote sensing data is difficult to determine (Sabol et al., 2002; Urquiza-Haas et al., 2007). When the study 

site landscape is topographically heterogeneous, huge variation occurs in forest structure with major 

uncertainties in the estimation of structural attributes (Houghton et al., 2001; Saatchi et al., 2007). According 

to Brosofske et al. (2014), accurate estimation of structural attributes is quite challenging in complex forests 

and the addition of ancillary information such as climate and topography might help to mitigate this issue. 

Many studies tried to understand the function of ecosystem aspects that influence spatial distribution and 

variation of forest structure (Avolio et al., 2015; Saatchi et al., 2007). Yet, the impact of large (more than 
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2000 m range) altitude fluctuation on structural attributes has not been properly understood (Leuschner et 

al., 2007; Zach et al., 2010). Moreover, several studies tried to evaluate the influence of topography on 

estimation accuracy of forest structural attributes by segmenting the forest based on altitude, slope, and 

aspects classes (Donoso et al., 2007; Leitold et al., 2014; Pasher & King, 2010). However, when corrected 

by topographic variables, the changes in remote sensing variable significance and subsequent increase in 

estimation accuracy of forest structural attributes still needs to be investigated. 

In addition to topographic variation, prediction of forest structural parameters more challenging in species 

diverse forests than in homogenous forests (Brosofske et al., 2014). Several studies mentioned about the 

differences in spectral response of forest because of species composition (Ozdemir & Karnieli, 2011; Puhr 

& Donoghue, 2010; Wolter et al., 2009). White et al. (2010) found that species diverse forest stands tend to 

have a weak spectral response, while plantations and coniferous forests of single species have shown a very 

good result in prediction of structure parameters. According to findings some researchers have suggested 

that categorizing survey plots based on species might increase the accuracy of model prediction (Olsson, 

1994; Peterson et al., 1986). 

For this study, an old growth natural forest has been chosen located in Rhodope Mountain. The terrain of 

this forest is highly heterogenous with moderate to steep slopes. Most of the forest area is dominated by 

coniferous trees with sparsely distributed broadleaf trees. This forest falls under the birds and habitat 

regulation by Natura 2000 since Bulgaria joined to European union in 2007. However, there is no study or 

project undertaken to understand the spatial distribution of compositional and structural diversity of the 

forest (Nyamgeroh et al., 2018). This study will investigate the capability of multispectral remote sensing to 

predict forest metrics in relation to landscape topography. This study will also compare the prediction 

capability in forest stands with different species diversity condition. This study may provide an 

understanding about the importance of topographic features and species diversity to be considered in forest 

structure prediction models. This information will be useful for future forest structure studies in linking 

remote sensing models with landscape factors. 

1.9. Research objectives  

1.9.1. General objective  

The overall objective of this study is to evaluate how topography and species diversity influence the 

estimation of forest structural metrics from VHR multispectral imagery in a central European forest.   

1.9.2.  Specific objectives and questions 

1. To determine the strength of the relationship between three forest structural metrics (Mean DBH, SD 

DBH and Tree Count) and image variables (GLCM textures from spectral bands and vegetation indices). 

▪ Which image variables correlate significantly (at α = 0.05) with forest structural metrics? 

2. To assess the influence of topographic variables (slope and exposure) and species diversity classes on the 

relationship between forest structure metrics and multispectral image variables.   

▪ Do the regression coefficients of significant predictor variables change considerably by 

correcting for Slope? 

▪ Do the regression coefficients of significant predictor variables change considerably by 

correcting for Aspect? 

▪ Are the relations between image variables and forest structural metrics stronger (in terms 

of R2 and RMSE) in plots with single species than in plots that consist of multiple species? 
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1.9.3. Research Hypothesis 

▪ H1: The GLCM textures with plot level window size (15.98m diameter) having smaller 

displacement lengths (=< 3.2m) and average orientation are significant predictor (at α =0.05) of 

forest structural metrics in Rodophe Forest.   

▪ H1: At flatter slopes, relationships between forest structure metrics and image-based variables are 

stronger than at steeper slopes. 

▪ H1: At southward aspect, relationships between forest structure metrics and image-based variables 

are stronger than in northward aspect. 

▪ H1: Single species plots produce higher R2 and lower RMSE than multiple overstory tree species 

plots from the relationship between Forest stand metrics and remote sensing variables.  
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2. STUDY AREA AND DATA DESCRIPTION 

2.1. Study Area 

The study area is located in the Rhodope Mountain range, near the city of Smolyan in Bulgaria. The extent 

of the area lies between (41°38'9" N, 24°35'56" E) and (41°35'36" N, 24°39'23" E) and covers an area of 

about 2150 ha (fig. 2.1). This area of the Rhodope Mountain range is a part of Natura 2000 regulation, which 

is part of the European Union's nature protection program. The topography of the location is mountainous, 

and the altitude varies between 1180 to 2125m. 

The forest on the Rhodope range is a natural forest and tree species comprises several conifer populations. 

Common coniferous species of the forest are Picea abies (Norway spruce), Abies alba (Silver fir), Pinus sylvestris 

(Scot's pine) and broadleaf trees are Sorbus aucuparia (European mountain-ash), Fagus sylvatica (European 

beech), Corylus avellana (Common hazel). Although, Picea abies is the most dominant species in the study 

location. These species are mainly distributed in the altitudinal range between 1200m to 1850m above sea 

level in the study area (Zlatanov et al., 2017). 

 
Figure 2. 1: Map showing the location of study area and sampling points with a background of sentinel-2 natural 
color composite. 

2.2. Data Description 

2.2.1. Description and processing of field data 

The field measured data for this study was obtained by the Institute of Ecosystem and Biodiversity Research 

of the Bulgarian Academy of Sciences. The data was collected during the summer of 2020 and consists of 

320 circular sampling plots. The selection of sampling plots was random and targeted to capture the spatial 

distribution of conifer forest species. Each of the circular sampling plot were 7.98m in radius having an area 

of 200 m2. The average distance between the centers of field plots was about 45m.  

Six forest stand and individual tree variables were collected, which describes the forest stand characteristics 

of each plot. The procedure for measurements of the plot data is described by Nikolov et al. (2022). The 

collected variables were: 1) Individual tree DBH in 4cm width DBH classes. 2) Number of species per plot, 
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3) Tree count per plot, 4) Canopy cover in percent, 5) Tree Height (cm) in four height classes, 6) Volume 

of dead wood per plot. 

From the obtained data, four forest metrics were calculated which were Mean DBH, SD DBH, Tree Count 

per plot and Shannon Diversity Index. The metric of Mean and SD DBH (Eq. 1 and 2) was calculated by 

averaging individual tree data and estimating deviation of each tree DBH from the mean. Shannon's diversity 

index, developed by Shannon (1948), was calculated as an indicator of species diversity from number of 

species data (Eq. 3). Tree count was entered in the dataset as a metric of tree number per plot in the field. 

𝑀𝑒𝑎𝑛 𝐷𝐵𝐻

=  
∑ 𝑑𝑖

𝑛
𝑖=1  

𝑛
                                                                                                                                                           (1) 

 

𝑆𝐷 𝑜𝑓 𝐷𝐵𝐻

=  √∑ (𝑑𝑖 − �̅�)
2𝑛

𝑖=1

𝑛 − 1
                                                                                                                                          (2) 

 

In eq. 1 and 2,  𝑑𝑖 represents diameter of tree stems and �̅� indicates the mean of DBH from n number trees. 

𝑆𝐷𝐼 =  ∑ 𝑝𝑖 ln 𝑝𝑖                                                                                                                                                          (3) 

Where, 𝑝𝑖 is the ratio of number of individual trees of the 𝑖th species. 

While calculating the metrics, trees with DBH less than 10 cm were eliminated from the calculation, Since 

trees having smaller DBH are mostly not in the canopy and we are looking at forest metrics from 

multispectral remote sensing that is more related to the open canopy area of trees. A summary statistic of 

the metrics is given in table 2.1. 

Table 2. 1:Summary statistics of forest metrics. 

 Mean DBH (cm) SD of DBH (cm) Tree No. per plot Shannon’s Index 

Min 10.00 0.00 2 0.00 

Max 67.00 37.74 27 0.96 

Mean 33.90 11.44 9.41 0.09 

Std deviation 10.11 5.99 4.86 0.21 

 

2.2.2. Remote Sensing Data 

2.2.2.1. Very High-Resolution World View 2 Imagery 

A WorldView-2 multispectral imagery, acquired on 21 June 2021 was used in this study. The imagery was 

chosen based on the criteria of cloud cover and nadir angle. The selected WoldView-2 image has a 0.5% 

cloud cover over the area and was captured at a 11-degree nadir angle. Moreover, during the image capture 

the sun azimuth angle was 166.8 degree, and the sensor was in forward direction having an azimuth angle 

of 21.5 degree. Seed & King (2014) demonstrated considerable negative effects of viewing angle greater than 

10-degrees on forest structure modeling. This study initiated with the analysis of a Geo-Eye satellite imagery 

having a nadir angle of 25.6 degrees, which yielded a very poor correlation coefficients with field measured 
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metrics. Therefore, it was important to look for an imagery with properties appropriate for forest structure 

modelling. 

The imagery comprises eight spectral bands with a spatial resolution of 1.6m and one panchromatic band 

of 0.44m spatial resolution. The spectral range of multispectral bands are between 400-450 nm (Coastal 

Blue), 450-510nm (Blue), 510-580nm (Green), 585-625nm (Yellow), 630-690nm (Red), 705-745nm (Red 

Edge), 770-895nm (Nir-1), 860-1040nm (Nir-2) and 450-800nm for the panchromatic band. 

The imagery was obtained as an Ortho Ready Standard (OR2A) product, which was radiometrically, and 

sensor corrected (DigitalGlobe, 2010). Therefore, the pre-processing of the imagery includes orthometric 

correction and georectification. The orthometric correction was done to reduce the distortions on the 

imagery influenced by heterogenous terrain and was carried out using the WorldDEM DTM data as 

topographic reference. The georectification was carried out using the Auto Sync Workstation tool in Erdas 

Imagine. The reference image used for georectification was a UAV imagery of the study area. The AutoSync 

tool finds identical points from both images and calculates the positional error in input imagery from the 

reference image. A total of 161 and 83 identical points were chosen which has a RMSE less than 1m 

respectively for multispectral and panchromatic image for georectification. Finally, the average positional 

error found in multispectral and panchromatic image were 0.596 m and 0.682 m respectively (table 2.2)  

 
Table 2. 2: Output of georectification process showing average positional error remote sensing images. 

Bands No. of GCPs Avg. X residuals Avg. Y 

residuals 

Avg. RMS Error 

(m) 

Multispectral 161 -0.021 0.004 0.596 

Pan 83 0.025 -0.063 0.682 

 

From the corrected Nir-1 and Red spectral bands NDVI was calculated (Eq. 4) as an indicator of tree canopy 

characteristics.  

𝑁𝐷𝑉𝐼 = (𝑁𝑖𝑟1 − 𝑅𝑒𝑑) ÷ (𝑁𝑖𝑟1 + 𝑅𝑒𝑑)                                                                                                         (4) 

 

The sample panchromatic images in Fig. 2.2 demonstrates the variation in canopy structure among measured 

field plots. The field measured plots cover a 100 m2 circular area on the multispectral and panchromatic 

bands where the horizontal width of field plots is 35 pixels and 9 pixels in the panchromatic and 

multispectral band, respectively.   
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Figure 2. 2: Sample field plots drawn from panchromatic band showing the variability in structure of forest stands. 
The samples are sorted by increasing plot mean DBH from left to right. 

2.2.2.2. WorldDEM DTM Data 

To explore the influence of landscape topography on prediction of forest metrics, we obtained a Digital 

Terrain Model (DTM), captured on 2014 from the TanDEM-X mission. The obtained WorldDEM DTM 

has a spatial resolution of 12m, and relative vertical accuracy is less than 2m (slope ≤ 20%) (AIRBUS, 2020). 

The topographic variables extracted from the DTM were Elevation, Slope and Aspect. Since, the altitude of 

our sampling plots does not vary significantly, we excluded further analysis of altitude in our study. Slope 

values were calculated from the DTM in degree unit. In addition, the aspect calculated from DTM was 

standardized to a linear scale of 0 to 1 to normalize the direction from north to south, where 0 represents 

22.5° NNE and 1 represents 202.5° SSW. Eq. 5 shows calculation used to standardize the aspect. Since 

forest stands respond differently towards north and south directions, the standardization of aspects from 

north to south facilitates establishing a linear relationship with forest metrics.  

𝐴𝑠𝑝𝑒𝑐𝑡 =  
(𝐴𝐵𝑆(180 − 𝐴𝐵𝑆(202.5 − 𝐴𝑠𝑝𝑒𝑐𝑡)))

180
                                                                                    (5) 

 

Where, 𝐴𝐵𝑆 represents the absolution of values. 
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3. METHODOLOGY 

3.1. GLCM Texture Feature Selection 

GLCM is a descriptor, that is used to extract spatial variation and texture statistics through incorporating 

co-occurrence probability matrix (Haralick, 1979), where each value of the matrix represents the probability 

of nearest neighbour grey tone at a given distance and orientation (J. Zhou et al., 2017). From the 14 texture 

features described by Haralick et al. (1973), we selected 6 second order texture features (table 3.1) based on 

their frequent use in forest remote sensing (Kayitakire et al., 2006; Ouma & Tateishi, 2006), including two 

first order statistics (mean and variance). For instance, Wood et al. (2012) used mean, variance, entropy, and 

contrast for differentiating various vegetation structures, including grassland, savanna, and woodland. 

Kayitakire et al. (2006) found correlation and contrast were the most significant variables predicting forest 

features such as age, top height, stand density and basal area. Moreover, Homogeneity showed promising 

performance in forest segmentation based on forest stand age class (Franklin et al., 2010). 

Table 3. 1: Description of GLCM texture features used in this study. 

Texture 

Name 

Description Statistical formula Reference 

Contrast Measures of the deviation 

between the intensities of 

neighboring pixels. Useful for 

capturing variability in the image. 

𝐶𝑛𝑡𝑟 =  ∑ (𝑖 − 𝑗)2 𝑝(𝑖, 𝑗)
𝑁=1

𝑖,𝑗=0
 

(Kayitakire 

et al., 2006) 

Correlation Correlation texture quantifies the 

linear dependence of gray levels 

on those of adjacent pixels. High 

correlation values indicate a linear 

relationship between neighboring 

pixel pairs' gray levels. 

𝐶𝑜𝑟𝑟

=  ∑ 𝑝(𝑖, 𝑗)
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√𝜎𝑖
2𝜎𝑖

2

𝑁−1

𝑖,𝑗=0
 

(Kayitakire 

et al., 2006) 

Dissimilarity Instead of weighting the pixel 

values exponentially like contrast, 

dissimilarity increases linearly. 

𝐷𝑖𝑠𝑠 =  ∑  𝑝(𝑖, 𝑗)|𝑖 − 𝑗|
𝑁−1

𝑖,𝑗=0
 

(Kayitakire 

et al., 2014) 

Angular-

Second 

Moment 

The angular second moment 

quantifies the uniformity or 

repetitions of pixel pairs. ASM has 

an inverse relationship with 

Entropy. 

𝐴𝑆𝑀 =  ∑ {𝑝(𝑖, 𝑗)}2
𝑁−1

𝑖,𝑗=0
 

(Solberg, 

1999) 

Entropy Measures the randomness of 

sparse matrix. 
Entr =  − ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔[𝑝(𝑖, 𝑗)]

𝑁−1

𝑖,𝑗=0
 

(J. Zhou et 

al., 2017) 

Homogeneity Higher values indicate uniformity 

in the image pixels 𝐻𝑜𝑚𝑜 =  ∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0
 

(Park & 

Guldmann, 

2020) 

Where, the rows and columns of a spatial-dependence matrix (moving window) are denoted by 𝑖 and 𝑗; and 

the 𝑝(𝑖, 𝑗) represents the value of cell 𝑖, 𝑗 in the matrix. 𝑁 denotes the number of rows and columns. 𝜇 and 𝜎 

are the weighted mean and variance of pixel values. 
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3.2. Calcultation of GLCM Texture Features 

Two first-order statistics and six second order GLCM texture features (table 3.1) were calculated separately 

from six spectral bands and one vegetation index. The selected spectral bands were Blue, Green, Red, Red-

Edge, Nir-1, Panchromatic, and NDVI as vegetation indices. Coastal Blue and Nir-2 were not considered 

for texture calculation to save time since they produced similar results to the Blue and Nir-1 band, 

respectively, during forest metrics correlation analysis. The yellow band was also eliminated from further 

analysis because of its limited use in forest remote sensing. 

Table 3. 2: GLCM parameter used for texture extraction. 

Bands Window Size Displacement Length Orientation 

Multispectral 3*3 – 15*15                    

(6 Win. Sizes) 

1 – 8                               

(6 Disp. Lengths) 

0 - 135°and Avg.            

(5 Orientations) 

Panchromatic 5*5 – 35*35                     

(6 Win. Sizes) 

1 – 16                              

(7 Disp. Lengths) 

0 - 135°and Avg.             

(5 Orientations) 
 

The first-order statistics (Mean, Variance) were calculated based on the average and variance of all pixel 

values in a sampling plot. The second order GLCM texture features were calculated using the SNAP 

software considering three parameter values. These parameters were moving window size, displacement 

length, and orientation. Depending on the target object, the performance of texture features differs with 

different parameter selections. In this study, we considered GLCM parameters to capture differences from 

individual trees to Forest sampling plot level. The GLCM parameter selections are given in table 3.2. In this 

study we used a fifth orientation to calculate the textures which the value of the metric averaged over all 

orientations (Zhou et al., 2017), in addition to the four orientations employed in many of the studies 

(Bruniquel-Pinel & Gastellu-Etchegorry, 1998; Kayitakire et al., 2006; Ozdemir & Karnieli, 2011) to calculate 

GLCM textures. The sequence of steps taken from texture calculation to the prediction of forest metrics is 

given in fig. 3.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1: Sequence of steps taken to achieve the research objectives. 

A sensitivity analysis was done to find out under which GLCM parameter combination the correlation was 

highest between forest metrics and texture variables. 

A pairwise multicollinearity assessment was carried between texture variables to select variables with 

reduced collinearity. 

GLCM texture variables were calculated from World View-2 spectral bands using different combinations 

of window sizes, displacement lengths and orientations. 

Following a repetitive subsampling approach to address spatial autocorrelation issue, stepwise regression 

models were fitted with selected variables to determine the best combination of explanatory variables to 

model each forest metric.  

To determine if models could be improved further by the influence of topography (slope and aspect) and 

species diversity, topography was added to the models as an interaction term running the subsampling 

algorithm, and the influence of species diversity was observed by separating the dataset for models into 

single species and multiple species forest stands. 
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3.3. Sensitivity Analysis of GLCM Parameter Selection 

The influence of various GLCM parameter combinations was investigated to evaluate the sensitivity of 

textural features with varying window size, displacement length, and orientation to forest metrics. The 

second-order textures were calculated using different combinations of window size, displacement length, 

and orientation and these were tested against forest metrics. The performance was evaluated based on the 

correlation with forest metrics. Line charts were plotted to show how the correlation of textures with forest 

metrics changes with window sizes and displacement lengths following orientation degrees. The output of 

this sensitivity analysis is described in section 4.1. The parameter selection of highly correlated textures with 

forest metrics was used to select variables from thousands of texture features.  

3.4. Selection of Predictor Variables and Colinearity Assessment   

The texture variables selected for forest metrics using sensitivity analysis were analyzed for multicollinearity. 

The multicollinearity was assessed considering the correlation between the texture variables and the variance 

inflation factor (VIF) values. Texture variables with less than 70 percent correlation and VIF values of less 

than five were selected for prediction. In estimating the effect of collinearity, Dormann et al. (2013) 

mentioned correlation coefficient of 0.7 between variables and a VIF value of 10 as an indicator of 

collinearity, since exceeding this threshold begins to distort model estimation and subsequent prediction. 

The results of multicollinearity assessment for predictors of Mean DBH are represented and discussed in 

section 4.2.  

3.5. Assessment of Spatial Autocorrelation 

Spatial autocorrelation is a well-known problem for observational data in general and particularly for 

ecological spatial data (Rousset & Ferdy, 2014). In quantitative ecological studies, sampling design and size 

are critical since these research components affect the representativeness of data (Griffith, 2013) and 

influence the possibility of minimizing observational variances artificially (Mets et al., 2017). Sampling 

density can influence the spatial autocorrelation, which can cause the distortion of statistical distribution of 

the parameter (Cai & Wang, 2006). Therefore, it is essential to assess the magnitude and distance of spatial 

dependence in spatial ecological data. Geostatistical analyses of remotely sensed imagery typically use semi-

variograms to model spatial autocorrelation to illustrate variances within a variable as a function of distance 

(Fleishman & mac Nally, 2006; M. Wulder & Boots, 1998). 

In this study, the semi-variogram model was fitted to measure the range of spatial dependency in spectral 

bands using a total of 300 randomly distributed points. The semi-variogram plots are described in section 

4.3. Based on the range of spatial autocorrelation (fig. 4.3), the field plots were subsampled as an approach 

to minimize the bias triggered by spatial autocorrelation. The process followed for subsampling and 

subsequent model fitting with subsampled datasets are described in section 3.6. 

3.6. Subsampling of dataset and stepwise linear regression function 

This study applied a subsampling function to create subsets of data from the entire dataset followed by a 

stepwise linear regression for 100 iterations. For subsampling, the study area was divided into grid cells with 

a certain distance based on the range of spatial autocorrelation. Then, the subsampling function generates a 

data subset by randomly picking a single sampling plot from every grid cell in each iteration (fig. 3.4). This 

subsampling method assures that plots are selected at a certain distance and minimal effect of spatial 

autocorrelation in the variables. 
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Figure 3. 2:  sampling plots assigned to 500m grids. 

The data subsets created in each iteration were then fitted with stepwise linear regression. For each iteration, 

stepwise regression selected the texture variables that explain most of the variability in the forest metrics. 

From the stepwise models fitted between forest metrics and the texture variables, the significance of 

predictor variables was estimated at confidence interval of 95% and 99%. After 100 iterations, the number 

of times that each textural variable was included in the model and the number of times that it was significant 

at the 95% and 99% confidence intervals were then plotted as a bar chart. The best two texture variables 

were then selected based on the number of times those variables became significant. Best two predictors 

were used to fit the base model using bootstrap stepwise regression to predict the forest metrics. The base 

model can be shown in the following way: 

ModelBase: 𝑅𝑉 =  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2                                                                                                             (6) 

Where, 

𝑅𝑉 = response variable,  

𝑋1 and 𝑋2 are two predictor texture variables.  

 

ModelBase outputs also includes the prediction of forest metrics as well as the regression coefficients and 

significance values of variables, and summary statistics such as R2 and RMSE Values. 

3.7. Assessment of topographic variables influence on forest metrics prediction 

To incorporate the topographic influence into ModelBase, we used degree of Slope and standardized slope 

aspect (ASP) in the bootstrap stepwise regression model as an interaction term. The models developed using 

slope (ModelSlope), ASP (ModelASP) and combined influence of slope and ASP (ModelCom) are described using 

Equations 6, 7 and 8. 

ModelSlope:  𝑅𝑉 =  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1×𝑆𝑙𝑜𝑝𝑒 + 𝛽4𝑋2×𝑆𝑙𝑜𝑝𝑒                                                        (7) 

ModelASP:   𝑅𝑉 =  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1×𝐴𝑆𝑃 +  𝛽4𝑋2×𝐴𝑆𝑃                                                              (8)    

ModelCom:  𝑅𝑉 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1×𝑆𝑙𝑜𝑝𝑒 +  𝛽4𝑋2×𝑆𝑙𝑜𝑝𝑒 +  𝛽5𝑋1×𝐴𝑆𝑃 +

 𝛽6𝑋2×𝐴𝑆𝑃                                                                                                                                                               (9) 
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Where, 

𝑅𝑉 = Response variables,  

𝛽0, 𝛽1, … … . , 𝛽6 = Regression parameters to be computed from the model and 𝑋1, 𝑋2 are the 

texture variables as predictor. 

The models of topographic variable interaction (Eq. 6,7, and 8) were then compared with ModelBase using 

the corrected Akaike information criterion (AICc) values. AICc is a mathematical approach for measuring 

how well a model fits the data it was derived from, when the sample size is small, and a lower AICc value 

implies a better fit of the model (Brewer et al., 2016). Models' performances were also explained using R2 

and RMSE values. 

3.8. Assessment of Species Diversity Impact of Forest Metrics Prediction 

The best model fitted for each forest metric was then compared in terms of forest stand species diversity. 

The sampling plots were grouped into single species and multiple species plot classes to compare the impact 

of species diversity in the model prediction. The grouping was based on SDI values (table 2.1), where a 0 

value indicates plots of single-species forest stands, and an SDI value greater than 0 indicates forest stands 

with multiple species. The SDI thresholding grouped 296 sampling plots into 59 multiple species plots and 

237 single species plots. For a fair comparison of models, the single species models for forest metrics 

prediction were fitted using 59 randomly chosen plots. A two-tailed t-test was conducted to test the statistical 

significance of the difference between the forest metrics prediction obtained from single and multiple 

species plots. The model's performance was also evaluated by average R2 and RMSE values. 
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4. RESULTS  

The following sections describe the results of the variable selection process (sensitivity and multicollinearity 

analysis) and data distribution handling. Then, it presents the relationship between forest metrics and remote 

sensing variables and the influence that topography has on this relationship. Moreover, this section 

compares the prediction accuracies of forest metrics from different topographic effect models, as well as 

the prediction accuracy of forest metrics models fitted using data from different species diversity forest 

plots. 

4.1. Determining the best combination of GLCM paramters  

 
Figure 4. 1: Correlation of texture features with different parameter settings and Mean DBH. a) NDVI Homogeneity 
with varying window sizes and orientations, b) NDVI Homogeneity with varying displacement length and 
orientations, c) Pan Cntr with varying window sizes and orientations, and d) Pan Cntr with varying displacement 
length and orientations. 

The sensitivity analysis of texture features resulted in different correlation coefficient values between forest 

metrics and texture features as the GLCM parameters changed. An example of how GCLM parameters 
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influence the correlation between texture variables and forest stand metrics is depicted in Fig. 4.1. Fig. 4.1a 

and c show how the correlation between homogeneity texture from NDVI and contrast from panchromatic 

with Mean DBH changes with window sizes and orientation with a fixed displacement length of 1. Textures 

calculated from multispectral bands such as NDVI homogeneity with an average orientation showed 

consistently higher correlation coefficients with Mean DBH, where 90° was the most consistent orientation 

degree for panchromatic contrast. In addition, an increasing correlation was observed as the window size 

increased (fig. 4.1a and c). Nevertheless, the increase in correlation value plateaued around 9*9 window size 

for NDVI homogeneity and 35*35 window size for panchromatic contrast. After 2 pixels of displacement, 

the correlation coefficient for both textures tended to decline as the length increased (fig. 4.1 b and d); 

however, contrast from the panchromatic band showed highest correlation with Mean DBH at displacement 

length of 1. Therefore, we chose the NDVI homogeneity texture feature calculated with window size 9*9, 

displacement length 2, and the average of orientations, and the panchromatic contrast texture feature 

calculated with window size 35, displacement length 1, and the 90-degree orientations, out of hundreds of 

other possible combinations of GLCM parameters, to determine the Mean DBH. 

It is important to report that selected window sizes (9*9 and 35*35) roughly represent the dimension of the 

field plots, which were 15.8 m in diameter. Also, given the study area's tree canopy diameters range from 3 

to 8 m, the selected displacement for panchromatic texture indicates that panchromatic textures are sensitive 

to each pixel variation within the canopy, whereas multispectral texture's displacement length of 2 pixels 

(3.2 m at ground) indicate the sensitiveness at a comparatively larger distance that might be able to capture 

differences at canopy edge. 

Similar sensitivity analysis was carried out for other textures variables with Mean DBH and also with Tree 

Count and SD DBH. Tree count yielded identical results to Mean DBH, however SD DBH yielded different 

outcome in terms of displacement length of multispectral textures, an example of which is shown in annex 

1. Multispectral textures such as contrast from green band showed highest correlation with SD DBH at a 

displacement length of 5. Which indicate texture variables best correlate with SD DBH when the variabilities 

are captured at a larger distance. 

4.2. Collinearity among texture variables 

The multicollinearity assessment of texture variables selected in the previous step showed a very high 

correlation between them when they were taken from the same spectral band. Therefore, we selected a 

single texture feature from each of the bands. Fig. 4.2 exhibits the correlation between texture variables 

selected for Mean DBH and their VIF values. The correlation coefficient between the variables below 70 

percent and the VIF values below 5 confirmed a negligible collinearity issue in the predictor variables. The 

correlation plots of variables for Tree Count and SD DBH are given in Annex 2. 
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Figure 4. 2: Plots showing a) correlation among texture variables and b) VIF values. 

4.3. Spatial dependency of data 

Semi-variogram models were fitted for values of each spectral band to assess the range of spatial 

autocorrelation within the data. Fig. 4.3 shows the range of spatial autocorrelation in Nir-1, NDVI and 

Panchromatic bands. The range of spatial autocorrelation for multispectral bands was found around 500m 

where the range for panchromatic band is about 200m. The average distance (± 45m) between field plots 

falls shorter than the range of spatial dependence in remote sensing images, implying spatial dependency in 

predictor variables. 

 
Figure 4. 3: Semi variogram model showing the range of spatial dependence around neighbouring pixels of a) Nir-1 
b) NDVI c) Panchromatic bands. 

4.4. Correlation and Significance of Texture Variables with Forest Metrics 

The pairwise Pearson correlation assessment between the forest metrics and texture variables demonstrated 

that the individual forest metric presents differentiating results (table 4.1). The second-order textures 

(contrast and correlation) calculated from the panchromatic band showed the highest correlation with each 

of the forest metrics compared to texture variables from multispectral bands. Correlation texture computed 

from the panchromatic band had the strongest positive correlation with SD DBH (r = 0.41), but negatively 

correlated with Tree Count (r = -0.56) and contrast from panchromatic band was the highest correlated 

variable with Mean DBH (r = -0.57). Mean of grey levels calculated from Nir-1 band was the only first order 

statistical variable found significantly correlated with Mean DBH (r = -0.49). Moreover, entropy from the 
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blue band was least correlated variable with Mean DBH (r = 0.33), however strongly correlated with Tree 

count (r = -0.51). Contrast texture from Nir-1 band found to be the least correlated variable for SD DBH. 

Table 4. 1: Pearson correlation coefficients between forest metrics (Mean DBH, SD DBH, Tree Count) and selected 
texture variables. (W = window size, D = displacement length and O = orientation) 

 Texture Variables W D O Pearson Correlation (r) P-value 

M
ea

n
 D

B
H

 Pan Cntr 35 1 90° -0.57 p < 0.01 

Nir-1 Mean - - - -0.49 p < 0.01 

NDVI Homo 9 2 Avg. -0.47 p < 0.01 

R.edge Corr 9 2 Avg. -0.40 p < 0.01 

Blue Entr 9 2 Avg. 0.33 p < 0.01 

S
D

 D
B

H
 

Pan Corr 35 1 90° 0.41 p < 0.01 

Blue Diss 9 5 Avg 0.39 p < 0.01 

Green Cntr 9 5 Avg 0.36 p < 0.01 

R.edge Diss 9 5 Avg 0.34 p < 0.01 

Nir-1 Cntr 9 4 Avg 0.29 p < 0.01 

T
re

e 
C

o
u
n

t 

Pan Corr 35 1 90° -0.56 p < 0.01 

Blue Entr 9 2 Avg -0.51 p < 0.01 

R. edge Corr 9 3 Avg 0.50 p < 0.01 

Green Diss 9 2 Avg -0.48 p < 0.01 

NDVI Entr 9 2 Avg 0.47 p < 0.01 

 

Fig. 4.4 exhibits the number of times texture variables were included as significant variables after a stepwise 

regression carried out on subsamples of dataset as described in section 3.6. Panchromatic contrast was found 

the most frequently (66 times out of 100 at p < 0.05) selected explanatory variable to explain Mean DBH 

and panchromatic correlation was found the most important variable for explaining SD DBH and Tree 

Count becoming significant for 37 and 56 times, respectively, at p < 0.05.  
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Figure 4. 4: Variable significance plot showing the texture variables selected for forest metrics a) Mean DBH, b) SD 
DBH, c) Tree Count; and the number of times they became significant at α = 0.01 and 0.05. 

At p < 0.05, homogeneity from NDVI band, contrast from green band, and entropy of blue band were 

statistically significant for Mean DBH, SD DBH, and Tree Count about 32, 28, and 39 times, respectively. 

Two variables being significant most frequently for each of the forest metric were selected to develop the 

prediction model (ModelBase), given in table 4.2. Subsequently, these variables were used to explore how 

topography and species diversity affect their performance in prediction model. 

 
Table 4. 2: Texture variables selected for developing ModelBase. 

Mean DBH SD DBH Tree Count 

Panchromatic contrast Panchromatic correlation Panchromatic correlation 

NDVI homogeneity Green contrast Blue entropy 

 

4.5. Topographic Influence on Variable Relationship with Forest Metrics 

In predicting forest metrics, the interaction effects of slope, aspect, and their combined influence on texture 

variables are given in table 4.3 and fig. 4.5 represents the frequency of variable significance for Mean DBH.  
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As seen in the table, Mean DBH had a negative relation with contrast from panchromatic band (-7.76) and 

homogeneity from NDVI (-184.73) in ModelBase. In interaction with slope in ModelSlope, the negative 

coefficients of both variables (-0.18 and -7.09) suggest an even stronger relationship with Mean DBH, and 

the relationship becomes more negative as slope increases. The variable significance plot (fig. 4.5a) for 

ModelSlope shows that, panchromatic contrast and NDVI homogeneity with slope interaction effect were 

selected more frequently as significant variable (56 and 42 times, respectively, at p < 0.05) for Mean DBH 

than just the main effect of panchromatic contrast and NDVI homogeneity. In Mean DBH ModelASP, aspect 

interacted panchromatic contrast texture showed an increased relationship with Mean DBH and the 

interaction effect between panchromatic contrast and aspect was most often significant than just the main 

effect of panchromatic contrast (fig. 4.5b). On the other hand, the relation between Mean DBH and 

homogeneity of NDVI reduced at sites that had higher values for their aspect. Moreover, in the model that 

combined interactions of both slope and aspect, the most significant variables found were the interaction 

terms of slope followed by the texture variables as main effects, and not the interactions of aspect. 

 
Table 4. 3: Coefficients of regression and p-values for variables from four different models of Mean DBH, SD DBH, 
and Tree Count. Values indicate average of 100 iterations of the models following the subsampling of dataset. 

 Variables ModelBase ModelSlope ModelASP ModelCom 

  Reg. 

Coeff 

p-val Reg. 

Coeff 

p-

val 

Reg. 

Coeff 

p-

val 

Reg. 

Coeff 

p- val 

M
e
a
n

 D
B

H
 

Panchromatic Contrast -7.76 0.03 -8.42 0.02 -8.34 0.02 -9.75 0.03 

NDVI Homogeneity -184.7 0.05 -144.2 0.04 -254.1 0.04 -129.5 0.05 

Slope - - 1.51 0.03 - - 1.46 0.02 

Panchromatic Contrast: Slope - - -0.18 0.01 - - -0.12 0.02 

NDVI Homogeneity: Slope - - -7.09 0.03 - - -9.84 0.04 

Aspect - - - - 31.34 0.04 11.70 0.06 

Panchromatic Contrast: Aspect - - - - -10.05 0.05 -6.83 0.07 

NDVI Homogeneity: Aspect - - - - 96.63 0.04 174.50 0.08 

S
D

 D
B

H
 

Panchromatic Correlation 181.82 0.02 185.48 0.05 191.96 0.03 233.56 0.05 

Green Contrast 0.13 0.03 -0.11 0.05 -0.01 0.05 -0.19 0.06 

Slope - - -0.68 0.05 - - -1.186 0.05 

Panchromatic Correlation: Slope - - 0.25 0.05 - - 0.71 0.05 

Green Contrast: Slope - - 0.01 0.06 - - 0.01 0.05 

Aspect - - - - -185.4 0.05 -70.27 0.05 

Panchromatic Correlation: Aspect - - - - 161.53 0.04 50.05 0.04 

Green Contrast: Aspect - - - - 0.20 0.05 0.34 0.04 

T
re

e
 C

o
u

n
t 

Panchromatic Correlation -151.5 0.02 -240.1 0.03 -147.3 0.03 -299.7 0.04 

Blue Entropy -10.43 0.02 -15.69 0.04 -8.59 0.02 -5.52 0.05 

Slope - - -4.18 0.05 - - -6.51 0.06 

Panchromatic Correlation: Slope - - 3.24 0.04 - - 4.60 0.06 

Blue Entropy: Slope - - 0.19 0.05 - - 0.22 0.06 

Aspect - - - - 75.34 0.03 41.30 0.06 

Panchromatic Correlation: Aspect - - - - 61.96 0.03 122.65 0.06 

Blue Entropy: ASP - - - - -21.01 0.04 -27.08 0.07 

 
In SD DBH ModelSlope, the regression coefficients of slope interacted panchromatic correlation (0.25) and 

green contrast (0.01) indicate that at steep slopes the relation between SD DBH and panchromatic 

correlation become stronger while a reduced relationship was observed with green contrast. Accordingly, 

panchromatic correlation with slope interaction effect became the most frequently significant variable (36 
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times at p < 0.05) for SD DBH and slope interacted green contrast was the least frequent significant variable 

(Annex 3a). Similar result was obtained with the interaction effect of aspect on texture variables in SD DBH 

ModelASP. However, in the combined model, aspect interacted texture variables were most frequently added 

in the model as significant variable. Variables with slope interaction term showed very little difference with 

the main texture variables in terms becoming significant to explain SD DBH. 

 
Figure 4. 5: Variable significance plot for Mean DBH a) ModelSlope b) ModelASP c) ModelCom, showing the number of 
times the variables were included in the model and became significant at α = 0.01 and 0.05.  

The panchromatic correlation and blue entropy variables with interaction effect of aspect demonstrated a 

poor relationship with Tree Count, indicating that on steep slopes, the relationship between texture variables 

and tree count weakens. Therefore, the interaction of panchromatic correlation and blue entropy with aspect 

was less often significant than just the main effect of these texture variables (Annex 4a). 

4.6. Performance of models for forest metrics prediction 

Three statistical indicators (R2, RMSE, and AICc) were used to assess the goodness of fit of models 

developed for forest metrics. The R2, RMSE and AICc values of four models for each forest metric derived 

from 100 iterations are presented in figures 4.6. As can be seen from the figures, ModelBase was the least 

performing model for all three forest metrics, achieving average R2 values of 0.40, 0.30, and 0.31, and average 

RMSE values of 7.06, 4.62, and 3.91 respectively for Mean DBH, SD DBH, and Tree Count. 
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Figure 4. 6: Boxplots showing the R2, RMSE and AICc distribution for Mean DBH (a,d,g); the R2, RMSE and AICc 
distribution for SD DBH (b,e,h); and the R2, RMSE and AICc distribution for Tree Count (c,f,i). 

For Mean DBH, the combined model having the interaction effect of both slope and aspect (ModelCom) 

yielded the highest average R2 of 0.56, followed by ModelSlope (0.54) and ModelASP (0.43). However, 

ModelSlope of Mean DBH presented a better fit of the data with lowest average RMSE (6.03) and AICc value 

(189.19). For SD DBH, ModelCom outperformed other models in terms of R2, RMSE, and model fitness 

(AICc = 164.76). Similarly, ModelCom produced the highest average R2 and lowest average RMSE values for 

Tree Count; however, Tree Count ModelSlope fitted the data slightly better than ModelCom.  

From the assessment, it was evident that 1) there were minimal differences in the interquartile range of the 

statistical indicators (R2, RMSE, and AICc) among all four models for each forest metric; 2) incorporating 

topographic influences on ModelBase fit the data better because the ModelSlope, ModelASP, and ModelCom had 

lower AICc values than ModelBase;  3) ModelCom for each forest metric showed comparatively higher R2 and 

lower RMSE than other models, but this model can overfit the data in most cases; and the Slope-influenced 

models performed better than ASP model in terms of R2, RMSE, and AICc values. 

Fig. 4.7 compares field measured values, and their estimates predicted from the best-fitted models for Mean 

DBH, SD DBH and Tree Count. The scatter plot of Mean DBH (fig. 4.7a) shows a non-linear fit of the 

predicted values with observed values. As can be seen, the predicted values tend to saturate at Mean DBH 

values greater than 30 cm. The scatterplots of SD DBH (figure 4.7b) and Tree Count (figure 4.7c) illustrate 
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that prediction models for these two metrics overestimated SD DBH and Tree Count at lower values and 

underestimated them at higher values. 

 
Figure 4. 7: Field measured forest metrics vs. predicted forest metrics values from best fitted models a) Mean DBH 
ModelSlope, b) SD DBH ModelCom, c) Tree Count ModelSlope. Predicted values are the average from 100 different 
models. 

4.7. Species diversity influence on forest metrics prediction 

When comparing plots that consist of a single tree species against plots that hosted multiple tree species, 

the data distribution of Mean DBH, SD DBH, and Tree Count show that single species plots have larger 

average values for Mean DBH whereas lower average values for Tree Count and SD DBH (Fig. 4.8a, d, g). 

The contrast and correlation textures from panchromatic band exhibited a similar pattern as the forest 

metrics in different species diversity plots. In contrast, the texture variables from multispectral bands such 

as homogeneity from NDVI and entropy from blue band showed an opposite pattern to Mean DBH and 

Tree Count, respectively. However, the interquartile ranges of forest metrics and image textures imply 

smaller variability in single-species plots' data distribution compared to multiple species plots (fig. 4.8).  
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Figure 4. 8: Boxplot summaries of the forest metrics and image texture characteristics in single species and multiple 
species forest plots. 

The model fitting for Mean DBH, SD DBH, and Tree Count is compared in fig. 4.9 for single species and 

multiple species plots, and table 4.4 shows the regression model statistics as well as the t values comparing 

the models R2 and RMSE for single species plots and multiple species plots. The fitting of regression models 

shows that Mean DBH and Tree Count were better predicted in single-species plots. Models trained on data 

from single-species plots were 11% and 8% more accurate at predicting Mean DBH and Tree Count, 

respectively, than those trained on data from multiple species (table 4.4). Also, the Average RMSE values 

of Mean DBH and Tree Count values were smaller for single species plot models. However, SD DBH is 

better predicted in multiple species plots achieving an average R2 value of 0.68 and average RMSE of 2.80 

(table 4.4). 
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Figure 4. 9: Scatterplots of predicted vs. observed a) Mean DBH, b) SD DBH, c) Tree count in single species and 
multiple species plots. 

Using a two sampled t-test, the prediction accuracies (R2 and RMSE) of each forest metric model, fitted for 

single species forest plots were compared to those in multiple species forest plots. For each forest metric, 

the R2 and RMSE were significantly different for models fitted with data from single species forest plots 

versus models fitted with data from multiple species forest plots, as shown by t values in table 4.4. The t-

values comparing the R2 for Mean DBH, SD DBH and Tree Count are 5.51, -9.29, and 4.13, respectively. 

The negative t-value for SD DBH indicates that the SD DBH model fitted for multiple species forest plots 

produced a higher mean of R2 than the model fitted for single species plots. On the other hand, the positive 

t-value for SD DBH when comparing the RMSE, it indicates that the SD DBH model fitted for multiple 

species forest plots produced a lower mean of RMSE than the model fitted for single species plots. 
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Table 4. 4: Average and standard deviation of R2 and RMSE values of Mean DBH, SD DBH, and Tree Count in 
single species and multiple species plots (n = 59). The t statistics indicate the differences in the obtained R2 and 
RMSE from models fitted with data from single species plots and multiple species plots. 

  Mean DBH SD DBH Tree Count 

  
Avg. 
R2 

Avg. 
RMSE 

t-val  
R2 

t-val 
RMSE 

Avg. 
R2 

Avg. 
RMS

E 

t-val  
R2 

t-val 
RMSE 

Avg. 
R2 

Avg. 
RMS

E 

 t-val 
R2 

t-
value 

Single 
Species 

0.6 
(± 

0.15) 

5.7 
(± 

0.82) 
5.51 

(p<.01
) 

-7.84 
(p<.01) 

0.49 
(± 

0.12) 

3.72 
(± 

0.73) -9.29 
(p<.01) 

8.01 
(p<.01) 

0.5 
(± 

0.14) 

3.48 
(± 

0.44) 4.13 
(p=.01) 

-2.38 
(p<.0

1) Multiple 
Species 

0.49 
(± 

0.13) 

7.06 
(± 

1.51) 

0.68 
(± 

0.17) 

2.8 
(± 

0.88) 

0.42 
(± 

0.13) 

3.91 
(± 

0.54) 
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5. DISCUSSION 

5.1. The importance of GLCM texture feature and their parameter selection in determining the relationship 
with Forest metrics 

One of the important objectives of this study was to assess the relationship of remote sensing based texture 

variables with forest metrics. An apparent influence on the relationship was observed from the spatial 

resolution of textures and selection of textures and the parameter selection used to calculate the textures. In 

this study, the obtained relationship between forest metrics and texture variables was much stronger for 

texture features calculated from a panchromatic band with a resolution of 0.4m than for textures from a 

multispectral band with a resolution of 1.6m. One probable explanation is that the fine-grained textures 

from the panchromatic band captured the canopy surface roughness more accurately. In a Norway spruce 

forest, Stellingwerf & Hussin (1997) compared the predicted number of stems from different scale infrared 

photos to the number of trees measured on the field. When images at a 1:5000 scale were utilized, the 

correlation coefficient between them was 0.92, but it reduced to 0.72 when 1:10000 scale images were used.  

In determining the strength of forest metrics and texture relationship, we observed that the correlation is 

sensitive to the selection of all three GLCM parameters such as window size, displacement length, and 

orientation degree. Wang et al. (2015) argued that selecting the best-performed parameter is not 

straightforward and mainly depends on the canopy characteristics of the forest stand. There are several 

methods for identifying the parameters used to calculate textures. For instance, Franklin et al. (1996) 

employed a number of experimental semi-variograms to determine the optimum texture window size for 

use in remote sensing of forest inventory and forest structural features. In this study, the selection of optimal 

window size, displacement length, and orientation for texture features was guided by the maximization of 

correlation with forest metrics. Our result showed that moving window size of 35*35 for panchromatic and 

9*9 for multispectral image textures had the highest correlation with all three forest metrics. The stronger 

correlation obtained by larger window sizes can be attributed to the ability of larger window sizes to capture 

subtle textural differences and variation across larger areas within distinct forest stands (Dye et al., 2008). 

Alternatively, the poor performance of smaller window sizes might be caused by the fact that smaller 

window sizes can exaggerate the difference inside the moving window, hence increasing noise in the texture 

images (Lottering et al., 2020). In terms of displacement length, panchromatic textures displayed the highest 

association with all forest metrics with a displacement of 1 pixel. This indicates that the panchromatic 

textures captured the variabilities within the tree crown. The multispectral textures showed the highest 

correlation with forest metrics calculated with displacement lengths of 2 (3.2 m on the ground) to 5 pixels. 

The displacement of more than 2 pixels for multispectral textures compared the pixels that were not usually 

located within the same crown, either between multiple crowns or crown and shadow, given that the forest 

stands crown diameter range is 3-8m. Moreover, different performances of displacement lengths and 

window sizes were observed based on the orientations. No specific orientation, but the average orientation 

showed the highest correlations between multispectral textures and forest metrics. A similar finding was 

obtained by Kayitakire et al. (2006). They found that the orientation parameter had a marginal effect on 

estimating forest structure variables in even-aged spruce stands based on IKONOS-2 multispectral imagery. 

Beguet et al. (2014) found 45-degree orientation of panchromatic texture best correlate with DBH and stand 

density in a scots pine forest. In our study, we found vertical orientation (90 °) orientation of panchromatic 

texture best perform for all three forest metrics. The reason for obtaining 90° orientation might be the sun-

target-sensor geometry during the image capture. Because of sun's azimuthal angle of 166.8° which was 

close to 180° and the sensor was in a near-forward position (azimuthal angle = 21.5°), tree shadows were 

generally projected to the north. Hence, pixels compared in the vertical orientation (90°) were more likely 

to correspond to tree shadows and illuminated crowns, which had vastly different grey level values. 
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5.2. Topographic effects in forest metric and image texture relationship 

This study examined the changes in the relationship between forest metrics and textural variables by the 

interaction effects of topographic slope and aspect. However, most of the studies on determining the 

variability of Norway spruce canopy characteristics found altitude as the most important factor (Pacalaj et 

al., 2002; Seynave et al., 2011; Socha et al., 2008). We excluded analysing the effect of altitude in our study, 

since variation in altitude of was too small to measure an effect. Our study demonstrates that slope and 

aspect variation considerably change the relationship between forest metrics and texture characteristics. We 

found that at steep slopes the relations between texture variables and forest metrics such as Mean DBH and 

SD DBH became stronger, while the relationship with Tree count became weak. According to Kharuk et 

al. (2010), at a higher elevation (>1500m) mature forest tend to shift to steep wind protected areas. Similar 

to slope effect, at higher aspect values (south-facing), panchromatic textures showed stronger relation with 

Mean and SD DBH, and weaker relation with Tree Count.  

5.3. Comparison of model prediction 

In the practice of forest structure and growth modelling, region, site quality, topography, and forest 

management are often regarded essential factors (Justine et al., 2017; Ou et al., 2016). In this study we 

compared prediction accuracies of forest metrics using models fitted with texture variables and slope, aspect, 

and their combined interaction effect on texture variables. As indicated in fig. 4.6, incorporation of 

topographic interaction effect in the model fitted with texture variables, significantly increased the models 

R2 and the RMSE was reduced considerably. Our result coincides with the findings of (Ou et al., 2016), 

though they added slope, elevation, and aspect as independent variable in the model.   

For each forest metric, the model having interaction effects of slope and aspect on the texture variable had 

relatively higher R2 and lower RMSE compared to the other fitted models. However, AICc values (table 4.4) 

indicate that combined model was overfitted for Mean DBH and Tree Count. Our results indicate that the 

Mean DBH and Tree Count models using interaction effects of slope had better model fitting statistics, 

where SD DBH was better predicted by the effects of combined slope and aspects interaction with texture 

variables. However, the Mean DBH is better predicted at younger forest and tend to saturate for forest plots 

with DBH more than 30 cm. Huete et al. (1997) argued that the structure of the NDVI equation, which is 

a nonlinear transformation of the simple ratio, is the primary cause of nonlinearity and saturation in dense 

canopy conditions. As an experiment to overcome the problem, we fitted the model for Mean DBH with 

entropy texture from blue band with slope interaction effect (fig. 5.1) instead of homogeneity from NDVI, 

which exhibited a reduction in the non-linearity. However, this model resulted in overestimation of Mean 

DBH at smaller values and underestimation of higher DBH values and obtained lower performance in terms 

of R2, RMSE and AICc values. The comparison of predicted and observed values for SD DBH and Tree 

Count in fig. 4.7 also exhibited overestimation for smaller values and underestimation at higher values. This 

is because the even aged forest stands with smooth canopy surface produces higher values of second-order 

texture (Ozdemir & Karnieli, 2011), thus can be overestimated. On the other hand, trees having larger 

crowns produces shadow and ground reflections from the canopy gaps yields reduced texture values, thus 

underestimated the forest metrics at older forest stand. 
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Figure 5. 1: Predicted vs. observed Mean DBH values from the model fitted with panchromatic contrast and blue 
entropy texture having the interaction effect of slope. 

5.4. Prediction of forest metrics influenced by species diversity of stands 

Our study findings confirm the initial hypothesis, i.e., “Single species plots produce higher R2 and lower 

RMSE than multiple overstory tree species plots from the relationship between Forest stand metrics and 

remote sensing variables” for Mean DBH and Tree Count. As indicated in table 4.4, the average R2 was 

much higher and average RMSE was significantly lower for Mean DBH, and Tree Count models generated 

using data from plots of single species. This is to be expected because the noise in spectral signature from 

single-species forest is much lower than the multiple-species stands (Oreti et al., 2021). It is not possible to 

compare our findings as no previous study was found that compared the estimation of forest inventory data 

based on species diversity of coniferous forest using multispectral images. However, Heurich & Thoma 

(2008) using lidar data, found that the estimation error percentage for Mean DBH and Stem density was 

reduced from 17.9 to 4.9 and 25.3 to 6.3, respectively, when data for the single-species coniferous forest 

was separated from the mixed forest. We obtained an opposite finding for prediction of SD DBH. The 

RMSE of SD DBH prediction was significantly lower in multiple species plots. This may be because the 

contrast texture used to predict SD DBH captured the spectral disparities in multiple species plots more 

precisely.  
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6. CONCLUSION AND RECOMMENDATION  

6.1. Conclusions   

This study aimed to establish a relationship between field-based forest metrics and multispectral remote 

sensing variables and utilized factors such as slope, aspect and species diversity of forest stands to see if the 

prediction can further be improved. Several studies included topographic variables as an independent factor 

in forest structure prediction models but had inconclusive result of whether the topographic variables 

improved the models. This study investigated the changes in relationship between VHR imagery derived 

texture variables with forest metrics by the influence of topographic variables. We also compared the forest 

metrics prediction accuracy in single species conifer stands with multiple species conifer forest stands, which 

was not investigated before especially with multispectral imagery. On the basis of the presented evidence, 

we conclude that the answer to the posed research questions would be: 

RQ 1: Which image variables correlate significantly (at α = 0.05) with forest structural metrics? 

The most significantly correlated variable found for Mean DBH was panchromatic contrast with a 

correlation coefficient of -0.57 and for SD DBH and Tree Count the most significantly correlated variable 

was correlation from panchromatic band (r = 0.41 and -0.56, respectively). From multispectral textures 

homogeneity from NDVI, contrast from green band and entropy from blue band was found best correlated 

variable with Mean DBH, SD DBH and tree Count (r = -0.47, 0.36 and -0.51), respectively. Texture variables 

from panchromatic bands demonstrated the highest correlation when the moving window size was 35*35, 

displacement length 1, and a 90° orientation. Texture variables extracted from multispectral bands had the 

highest correlation when moving window size were 9*9, displacement 2 to 5, and average direction.  

RQ 2: Do the regression coefficients of significant predictor variables change considerably by 

correcting for slope? 

Slope interaction with texture variables significantly changes the relationship of the interacted variable with 

forest metrics. In most cases, texture variables with interaction effect of slope were the frequently added 

significant variable in the 100-iteration stepwise model.  Incorporating slope as a moderating variable, 

models’ R2 was improved by 15%, 6%, and 11%, and the RMSE was decreased by 1.03, 0.54, and 0.3 for 

Mean DBH, SD DBH, and Tree Count, respectively. In the combined models that had an interaction effect 

of slope and aspect, slope interacted texture variables were most frequently significant for Mean DBH, 

followed by SD DBH and then Tree Count. 

RQ 3: Do the regression coefficients of significant predictor variables change considerably by 

correcting for aspect? 

Aspect interacted texture variables from panchromatic band showed the most frequent significance with 

Mean DBH and SD DBH. However, textures from the blue band became strongly related with Tree count 

having an interaction effect of the aspect. Aspect influenced model showed an increased R2 by 4%, 5%, 5% 

and RMSE by 0.29, 0.47, 0.17 for Mean DBH, SD DBH, and Tree Count, respectively. Aspect interacted 

variables became the highest frequent significant variable for SD DBH, when the model variables had 

combined interaction of slope and aspect.  

Finally, Mean DBH, SD DBH and Tree count were predicted with an R2 of 0.54, 0.45, and 0.42 and RMSE 

of 6.03, 3.86, and 3.48, respectively, from the best fitted models. Slope had better influence in improvement 

of estimation accuracy than aspect. 

RQ 4: Are the relations between image variables and forest structural metrics stronger (in terms of 

R2 and RMSE) in plots with single species than in plots that consist of multiple species? 
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We observed a stronger relationship between forest metrics (Mean DBH and Tree Count) and texture 

variables in single species forest stands. However, SD DBH showed stronger relation with texture variables 

in forest stands having multiple species. Mean DBH and Tree Count is 11% and 8% better explained by 

texture variables in single species forest. However, SD DBH is 21% better explained by texture variables in 

multiple species forest stands with a reduction of RMSE from 3.72 to 2.80. Thus, it is evident that diversity 

on the ground influences image texture capability of predicting forest stand characteristics. 

6.2. Potential application and Recommendations for future research 

The methods and outcomes presented in this study are intended for forest structure modelling at local scale. 

The established models and derived relationships may have been applied over a greater area of Rhodope 

Mountain since the forest structure, composition and topography do not change much in that region. 

Nevertheless, the variables and coefficients obtained from the models are not likely to be applicable across 

great distances to other forest ecosystems. Rather, the methods can be followed with new sets of imagery, 

topographic and field data.  

Finally, the following steps are recommended for further development: 

• Field survey design: An appropriate plot and sampling design based on the forest stand and 

topographical characteristics is suggested for more accurate remote sensing-based forest structure 

estimation. Comparatively smaller plot sizes were employed in this investigation than in previous 

studies of a similar kind, which may be one of the primary reasons why correlations were lower 

than in other studies using similar sensor and forest stands. 

• As we observed that panchromatic textures with a finer spatial resolution show better correlation 

with forest metrics than textures from multispectral bands, Pan-sharpening of multispectral bands 

can be tested for higher correlation. Also, the Pan-sharpening is suggested as fine resolution 

panchromatic textures showed stronger relations with interaction effects of topography. 

• The average orientation (average value of four orientations) used in this study to calculate GLCM 

textures, should be tested in future studies to document its applicability. 

• This study was demonstrated the potential of topographic influence in improvement of prediction 

accuracy of coniferous forest structural metrics in Rhodope Mountain. However, its applicability in 

the broadleaf forest needs to be tested. Further study is required to document the interaction effect 

on texture variables in different environmental condition, including topographic change, species, 

and forest type.  

• Since altitudinal variation highly effect the forest structure, its effect on forest structure estimation 

improvement should be tested.  

• To observe the species diversity influence on forest metric prediction, we used the best fitted 

models based on topographic influence. Future research might investigate the impact of textures 

from various spectral bands on differentiating the effect of species diversity on predicting forest 

structural metrics. 
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APPENDIX 

Annex 1: Correlation of texture features with different parameter settings and SD DBH. a) Green 

Cntr with varying window sizes and displacement length in combination with orientations, b) Pan 

Corr with varying window sizes and displacement length in combination with orientations. 
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Annex 2: a) & b) displays the corrplot and VIF chart for predictor variables of Tree Count, while 

c) & d) exhibits the corrplot and VIF chart for predictor variables of SD DBH. 
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Annex 3: Variable significance plot for SD DBH a) ModelSlope b) ModelASP c) ModelCom, showing 

the number of times the variables included in the model and became significant at α = 0.01 and 

0.05. 
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Annex 4: Variable significance plot for Tree Count a) ModelSlope b) ModelASP c) ModelCom, 

showing the number of times the variables included in the model and became significant at α = 

0.01 and 0.05. 

 


