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Management Summary: 
Can a company improve the performance of their existing machine lines with some simple scheduling 

changes? Royal Kaak Group (colloquially: Kaak) is a company that designs, manufactures and 

maintains machines and complete machine lines for professional industrial bakeries. In one such line, 

the Kaak small-bread line, changing customer requirements create many challenges for Kaak to 

overcome. One of these challenges is when customers want to bake many different types of bread 

on their line in one production run: whilst the individual machines that make up the lines are built 

and calibrated to function in near-perfect unity when only considering a single bread recipe, they 

require time for change-over and cleaning when switching to and from different recipes. These 

changeover times vary per machine, and per combination of bread recipes, which causes big 

scheduling problems. Some lines can process over 30+ different recipes.  

Since customers may decide to create a production schedule for any combination of these recipes, in 

any batch size, this problem grows out of control fast. Imagine: two recipes only have two ways in 

which they can be arranged, but four recipes already have 4*3*2*1 = 24 different arrangements. A 

production plan of ten recipes in a day has ~3.6 million different arrangements. Now add variables 

like batch sizes and machine variants into the mix, and you have a problem that is essentially infinite 

in size. Without a proper tool, reliably finding the best sequence for production plans is impossible. 

We call this: the Industrial Bakery Scheduling Problem. 

In addition to the problem of formulating the best production plans, Kaak has an additional problem 

in finding out which machine upgrades would most efficiently cut down on change-over times. New 

or improved variants of many machines in the line generally provide the same level of continuous 

production, but cut down on change-over times and other types of unproductive waiting time. 

However, to see which machines provide the best outcomes for both Kaak and its customers, and 

which are thus worthy of either the investment in initial R&D or purchase, a tool is needed to 

compare the time savings of all machines depending on the target production plan. 

Finding an optimal production schedule becomes a major challenge for Kaak and its’ customers in 

these cases. Inefficient scheduling can lead to hours of lost production time per day, costing bakeries 

extra wages, energy costs, and generally making their business less competitive. This should be more 

than enough reason to tackle the problem. In this thesis we attempt to solve both the scheduling- 

and machine-variant problems in a two-part solution. 

First, we built a custom flow-shop model of the small-bread line. 

- The model is capable of near-instantly calculating the makespan of any combination and 

sequence of bread recipes, in any combination of batch sizes. 

- The model takes into account recipe-specific production times, sequence-dependent change-

over times and any combination of batch sizes.  

- The model is capable of doing the above on any of 16 distinct versions of the machine line, 

representing four machines that have a significant alternate variant. 

- The model calculates waiting times and suggests a precise “postponement” time for each recipe 

to avoid said waiting times, and ensure continuous production after a batch enters the line. 

- The model includes all machines from the dough-dispenser to the (optional) freezer. 

- We combine several of the smaller, less time-consuming production steps into a single cohesive 

step to help save on calculation time without affecting model outcomes. 

- In theory the same model could be applied to other continuous machine lines 
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Secondly, we used the outputs of this model to optimize the makespan of different production plans 

and machine arrangements. 

- By switching or inserting recipes, the sequence of recipes in a production plan is altered. 

- We use both construction and improvement heuristics to help explore the huge solution space 

within a reasonable timeframe, and find better results. 

- This leads to quick, (near-)optimal solutions to the industrial bakery scheduling problem, and 

helps us find the best setup of machines to handle different types of production plans.  

For validation, we solved an example case concerning the best production sequence for a line where 

extra recipes were added. We also ran two sets of experiments on 16 different machine line variants, 

with production plans of both few and many recipes, as well as small and large batches. From this 

case and these experiments we can deduce the following results: 

- We found clear solutions to the scheduling problem in the example case, answering all questions. 

- We found direct- and interaction effects of the novel machine variants on the average makespan 

for a wide variety of production plans of different lengths and size, which gives Kaak new insights 

into their own lines that were hard to quantify before. 

o In all cases, adding a freezer module will lead to increases in average makespan. 

o For production plans with multiple small batches, installing a double cooling spiral can 

significantly cut down on makespan (-20%) especially if a freezer module is enabled.  

o In almost any production plan, significant time savings can be achieved with the multi-

tower rising chamber model, compared to the normal variant (-10%). 

- Regardless of machine variants, the average savings of the best found production plan can 

represent hours of real-life time in a running factory per day. 

- In an average production plan with change-over times, the effect of advanced machine variants is 

a decrease in change-over times and an increase in average productivity per time unit. 

This tool will help Kaak provide instant value to its existing customers, by significantly reducing lost 

productivity in existing lines, or allowing for more flexibility in baking different recipes on the same 

production day. It can also help Kaak to make more informed decisions about potential future 

investments in new machine types, as well as help them convince customers of the added value of 

these machines. Calculating a set of (near-)optimal solutions for a single production plan only takes a 

few minutes and could be integrated into existing work-flows for engineers and salespeople. Since 

this work did not happen before in any efficient, centralized manner, it represents an enormous 

improvement that should save many hours of misplaced engineering time. 

The model provides a solid basis on which to recommend production plans, or to help engineers to 

better design new lines. We recommend further data gathering regarding processing- and change-

over times of different bread types, to make the model more precise and to enable Kaak to simulate 

more production steps such as the mixing- and pre-rise times. The model could also be applied to 

other machine lines, such as the Kaak pizza-pie line and loaf-bread lines, or other continuous 

production lines in general if they are similar in nature.  

In our model we did not take stochasticity into account due to lack of data. Using the outcomes of 

the model as a basis for further research into Discrete Event Simulation (DES) is encouraged: with a 

good estimation of efficient production plans, DES could help to further optimize machine lines and 

to spot inefficiencies or design errors in the line at a high logistical level, before the lines are further 

designed, built and installed at customers. For the set of discrete problems that are hard to simulate 

in flow-shop models, we recommend the use of DES in addition to the outcomes of our flow-shop 

model.  
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Chapter 1:  Introduction and Research plan 
1.1) Company information 
Royal Kaak Group is a producer of stand-alone machines and complete production lines for a wide 

range of mass produced bread products. They are located in the eastern Netherlands, with various 

branches, subdivisions, sales points and customers across the globe. They employ around 800 

people, ranging from engineers to factory employees and sales personnel. They pride themselves on 

their motto: From Silo to Truck, pointing to the all-encompassing nature of their service and 

production lines. Royal Kaak aims to provide their customers in the food industry, such as producers 

of bread and pre-fab pizza pies, with the technical solutions they need to allow them to make the 

industrial bread products they desire. For brevity, we will refer to the entire company as “Kaak” from 

now on. 

1.2) Research motivation 
Kaak produces, sells and offers support for a wide variety of stand-alone machines and machines that 

are a part of a complete production line. The production process of any type of bread can be near-

continuous, but there are still many differences between bread types, from artisanal-style baguettes 

to mass-produced pizza pies. In their most advanced machine lines all the machines are linked 

together with conveyor belts to eliminate human intervention in the process. In order to help their 

customers make the difficult choice of picking the correct machine for their desired outcome, Kaak 

makes use of simulation. Using conventional, flow-based estimations they are usually able to gauge 

the effectiveness of different setups. However this does not hold true for all machines and all 

situations.  

One problem Kaak regularly encounters has to do with their small-bread line, a near-continuous 

machine line that can be used to produce a wide variety of small bread types1, which we will refer to 

as “recipes”. This line is physically quite large and includes all steps in bread making, from the mixing 

of the dough to the eventual packaging of finished products. Whilst the small-bread line is designed 

and equipped to handle continuous production of any the small-bread recipes, many bakeries 

employ the line to bake multiple batches of bread per day. Since these recipes are all individually 

unique, this places extra demands on the line compared to continuous single-type production. Each 

change in recipe can mean a new setting for each individual machine, and causes change-over time: 

for example because the temperature of the oven needs to be changed, or due to cleaning to ensure 

cross-contamination between two recipes stays minimal. However, these change-over times are 

independent per machine, and multiple recipes can be on the line at the same time. 

1.3) Problem statement 
Customers may come to Kaak with a question about, for example:  

- How to get the maximum amount of production out of their existing machine line?  

- Which sequence of recipes to pick for a particular production order? 

- Which machines to upgrade or add to their line to reach a new production target? 

These are questions which the engineers at Kaak then have to answer within a reasonable time 

frame, with great accuracy and at the lowest possible cost to their clients. Since there are many 

possible combinations of machines of different capacity, since each recipe has different production 

 
1 As opposed to big loaves of bread. Think of ciabattas, baguettes, pumpkin-seed buns, etc. 
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times per machine and since machines experience a varying amount of change-over time between 

each recipe, this is not an easy problem to solve. A production sequence that may be optimal for a 

certain machine may result in huge waiting times for a machine later down the line. There are more 

than 30 types of bread that can be baked on the same line. Since customers may come up with any 

combination of recipes they want to bake on a certain day, this presents a clear central managerial 

problem: what is the best sequence to bake any random set of bread recipes on the small-bread line?  

However, this is not enough for some of the engineers at Kaak, who are also struggling to find a 

correct answer to questions about which machines to recommend to their customers. Often these 

types of problems are solved by using an “overkill” method, by building or recommending machines 

that offer more functionality than is actually required for the job. Sometimes the customer has to 

alter their bread recipes, to ensure the bread fits the line instead of the other way around. The 

baking industry is very competitive and therefor Kaak wants to change this practice. Selling 

equipment to their customers that is too powerful or unfitting for the job makes them less 

competitive. A central directive must be: sell the customer the lightest machines that are capable of 

doing the specified job and ensure the customers have the information they need to pick the most 

optimal production schedule for their desired production targets.  

The engineers at Kaak are currently ill-equipped to answer these types of problems. Not only is the 

problem multi-faceted, it is also combinatorically huge: the composition of the production line can 

vary from factory to factory (possibly with machines from Kaak’s competitors mixed into the line), 

and different compositions will perform better with certain bread types. Then also, for each bread 

type, the machines will each have their own production and change-over times, depending on the 

sequence of bread types and their production quantity. Finally, there is a near-infinite amount of 

different sequences for the production plans. It is clear that Kaak needs a new way to simulate the 

small-bread line, to enable their staff to provide quick answers to their customers’ inquiries.  

Kaak already experienced problems with configuring the complete automated machine line. 

Currently their tools are focussed on providing optimal movement and performance for the 

individual machine models, but no comprehensive tool is in use to compare the functioning of all 

machine models in a line. Kaak wants to own a tool they can use to quickly plug in potential machine 

arrangements to simulate the throughput metrics. This tool should eventually enable them to build a 

complete machine line from a library of machines and conveyor belts at the touch of a button. They 

initially reached out to the University of Twente to help them set up a preliminary Discrete Event 

Simulation (DES) tool of the small-bread production line, to see if it would be a good fit for this 

purpose, as well as for research into personnel movements and PLC programming issues. However 

DES is not an efficient solution method for huge combinatorial problems like the one above: whilst by 

no means slow, it still takes a while to run. DES is better suited to testing known inputs and finding 

the system specific performance metrics. Optimization of these inputs is better done separately and 

it seems this is the bigger problem at play here. Solving this “Industrial Bakery Scheduling problem” 

will be a first step to improving the other challenges that Kaak faces. 

1.4) Research goal 
The goal of this thesis is to create an efficient method to solve multiple problems at once: both to 

provide a good estimate of the performance of a production plan on the small-bread line, but also to 

find the most efficient sequence of recipes. When a preferable combination of machines and 

production schedules has been found, these settings can then eventually be imported into a more 
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advanced simulation tool like DES to properly predict the actual throughput and bottleneck statistics, 

which can be relayed back to the customer. Alternatively these settings could be directly relayed to 

the Kaak engineering or sales team, to help them with their ongoing work. 

The deliverables of the study will be two-fold: firstly, a deterministic flow-shop model that will 

provide a quick and efficient way to find the makespan of any given production plan on multiple 

machine arrangements. Secondly, a set of optimization methods to help provide optimal or near-

optimal solutions to the type of combinatorial problems experienced by Kaak. This should result in a 

robust set of solutions, performance metrics and answers to many of the questions that customers 

can ask of the engineering department. That will form the basis of answering the problems faced by 

Kaak, improving their customer service and overall competitiveness. 

1.5) Problem approach 
We will construct a deterministic optimization model in the form of a custom flow-shop model that 

can be used to vastly narrow the search area for good solutions, depending on the input given by the 

user. This model will be structured around the use of a goal function, which will calculate the 

makespan value of a given set of machine settings and production plans. Then, through the use of a 

constructive heuristic and meta-heuristics, a selection of the best and/or most cost-efficient 

solutions can be gathered. Flow-shop modelling is a common practice in Operations Research and it 

should offer a good solution for this problem, although we will have to expand upon basic versions to 

make the problem fit. 

Data about the functions, variations and performance of the existing machines in the line will have to 

be gathered, be it through measurements, interviews with engineers, looking at raw designs, or 

readily available performance data gathered from existing customers. Working on an example 

customer support case will help us to validate our model further, seeing if the model conforms to 

reality, and if new bread types can quickly be introduced and optimized. We can then test the 

performance in different situations, with different recipes. Finally, this should help us answer the 

optimization questions posed by Kaak. 
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1.6) Research questions 
We shall investigate the following main questions, and related sub questions in the order as depicted 

below, with each number representing a chapter: 

Chapter 2. Analysis of current situation 

The first step of the study will be to research and understand the complete small-bread machine 

line. Also, an overview needs to be made of the current simulation techniques being employed 

by Kaak, to see if and where they fall short. The following sub-questions will be addressed: 

1. What processes occur in the small-bread line? 

I. What machines are present, in what sequence, what are their metrics? 

II. What variations of the machines in the line exist? 

III. What bread recipes are made on the line, what are their characteristics? 

IV. What is the state of simulation and optimization software/processes within Kaak? 

2. What kind of information does Kaak require to be able to optimize their systems? 

Chapter 3. Literature review 

In order to establish a good understanding of the simulation methods we are going to employ, 

we will perform a literature review on the flow-shop problem based on the following questions. 

1. What solution methods are usually employed to solve flow-shop scheduling problems?  

I. How do these solution methods apply to the Kaak case?  

II. What alterations need to be made to a standard problem to make it fit? 

Chapter 4. Developing the flow shop model 

1. How will we compute the makespan of a solution? 

I. How do we deal with the near-continuous, batch-driven nature of the production 

process? 

2. What parts of the full machine line must be represented in the flow-shop Model? 

I. Do all machines have an equal impact on the value of the solution?  

II. Which, if any, machines can be combined into more convenient blocks? 

III. What is the impact of advanced machine variants on our model? 

Chapter 5. Developing the optimization schemes 

1. Based on the flow-shop model that was developed, and the literature review, which 

optimization techniques do we employ and how? 

Chapter 6. Validation and Experimentation 

While validating the model and experimenting with the results, we will answer the following 

questions: 

1. What are the outcomes of our model? Do these conform to reality? 

I. Can a real customer question be answered? 

2. What is the value of this model? 

I. Does our optimization method lead to improved performance or lower costs? 

II. What conclusions can we make about the effectiveness of our algorithms? 

III. Which machines would make for good additions in which circumstances? 

Chapter 7. Conclusion and Discussion 
Finally, our conclusion and discussion of the results will revolve around the following questions: 

1. Is our model a sufficient solution to the optimization problems encountered by Kaak? 

2. What avenues of further research should be pursued?  
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Chapter 2:   Analysis of the current situation 
In this chapter we will take a broad look at the current situation at Kaak, to delineate the machines 

and processes that happen in the small-bread line, in as far as they are relevant to our research. First, 

we discuss the way we measure the performance of the line, then the various machines that make 

up the small-bread line and the way they interact, before giving an overview of the characteristics of 

the bread types we include in the model and the current state of simulation at Kaak. Finally we will 

discuss similar problems that occur elsewhere in the food industry. 

2.1)  Scope 
For the purposes of our study, baking any type of bread starts with the dispensing of chunks of 

dough, and ends with the packaging of a finished bread product. We will not include the delivery and 

storage of raw materials into a production facility, nor will we discuss the storage and delivery 

methods of the finished bread products. These factors change considerably from facility to facility, 

and are outside the influence of Kaak. It would therefore be a reasonable assumption that the only 

parts of the line affected by our planning are those that are directly built and delivered by Kaak. We 

also do not model employee behaviour during production hours. We will refrain from going into 

deep, technical details of the different machine models, but stick to overall function and the ways 

that we can control the bread-making process from a day-to-day perspective. In that regard, our 

focus is on the tactical level. 

2.2)  Batch sizes and processing times 
On the small-bread line processing times for each bread recipe are fixed, regardless of batch size. If a 

single bun has to bake in the oven for 15 minutes at 200 °C, then a thousand buns also have to bake 

for 15 minutes at 200 °C. However, batches of bread move across the line in a continuous stream. 

Whilst the first bun in a batch may be half-way through the machine line, the last bun may still be in 

the mixing bowl. Thus for each bun in a batch the same processing time will apply across all 

machines. However, these processing times will start and end at different times. Batches do not 

behave like may be expected in normal models, where an entire batch is loaded into a machine 

before being processed. Rather, the batches enter and exit the machines as if they were on a 

continuous conveyor belt, without interference. This means that the first bun in a batch is the first to 

enter and to leave a machine. Depending on the size of the batch, the last bun may then take 

seconds or hours to enter and leave the same machine. The rest of the buns in a batch will 

necessarily fall in between the first and last. If no breakdowns occur, which we will assume for the 

sake of simplicity in the model, each batch will behave in a very predictable manner. 

Change-over time is a big factor in the small-bread line. We define it as the time it takes to change 

the settings or tooling, and perform any required cleaning or inspection on a machine, to ensure it is 

ready to handle the next recipe in a production plan. Waiting time could occur when one recipe has 

not exited a machine where another is due to enter, when there is insufficient space between two 

recipes to allow for the required change-over time. Waiting time could imply shutting down the 

entire line up to the point where the waiting is required, since batches of bread move along the line 

continuously. This could have consequences for unbaked bread that is still rising, bread that is stuck 

in a hot oven, bread that gets continuously covered in an ever-increasing pile of sprinkles, etc. To 

ensure the quality of bread that comes out of the factory, no scheduled waiting time is allowed on 

the line. Waiting time is therefore not allowed, or at least highly discouraged, in real-life factories. It 

might still be unavoidable due to breakdowns, but we will not consider it as a standard. Instead Kaak 

plans a so-called “postponement time”, which is essentially waiting time at the start of the 

production process, to eliminate on-line waiting times and ensure each recipe can keep moving 
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continuously after it enters the production line. Even though it is necessary, this postponement time 

is currently not optimized. 

We measure the performance of the line in terms of total makespan. We define makespan as the 

time between first entry of the first recipe in a production plan onto the first machine in the line, and 

the time the final bun of the last recipe exits the last machine on the line. Since the processing times 

are known and change-over times depend on the sequence of recipes in a production plan, finding a 

production plan that will produce all recipes at the appropriate batch size within the shortest amount 

of time is a realistic, often-stated goal by production managers. 

For at least a part of each machine-line, the buns are carried across the line on product carriers. On 

the small-bread line so-called “peel boards” (PLBs) are most common. They are essentially flat trays 

that help keep the buns in shape and in position. See Figure 1 for an example of PLBs carrying 

unbaked buns on the production line. We will purely focus on the case of PLBs in the small-bread 

line, although different types of product carriers do exist, and impact the naming of several 

machines.  

One peel board may hold anywhere from 12 to 100+ individual buns of bread, depending on the size 

and shape of the bun. Since customers may come up with any combination of bread recipes and 

batch sizes, theoretically from 1 to 1000+ PLBs per batch, our model will have to be very flexible in 

allowing these combinations and handling them. Each recipe has an associated tact time, generally 

around 8 seconds, which is the rate at which PLBs move around the system. So after some start-up 

time, the average rate of production of any recipe is around 1 PLB/8s. Since it is computationally 

much more convenient to discuss the processing time of a peel board in this system, we will take the 

peel board as our unit of bread measurement. Note that the PLBs are separated from the buns 

before they enter the oven, and that afterwards the calculations refer to “one peel board worth of 

buns”. The process of storing and cleaning the PLBs will be kept out of the equation as again, this is 

not experienced to be a bottleneck. Adding extra PLBs to a system is a matter of literally stacking 

them in a storage area, where an automated robot will handle the rest.  
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Figure 1: Peel boards carrying products on the production line along a conveyor belt (from Kaak website) 

2.3)  Machines and variations 
Listed in Table 1 are the different machines in the small-bread line, in order of appearance in the 

factory. It can be assumed that any machine is connected to its’ predecessors by automatic conveyor 

belts. The time indication is the time it would take a peel board worth of dough or bread to pass 

through this step. Important to realise here is that this timespan occurs for each individual bun, but 

that all buns are part of a batch that undergo the process continuously as noted in Section 2.2. As 

such, when 80 PLBs worth of buns move through the forming station, the total processing time for 

the batch, or the time it occupies at least part of machine, is not a multiple of 30 𝑠𝑒𝑐 ∗  80 𝑃𝐿𝐵𝑠, 

but rather 30 𝑠𝑒𝑐 +  (80 𝑃𝐿𝐵𝑠 ∗  ~8 𝑠𝑒𝑐 𝑡𝑎𝑐𝑡 𝑡𝑖𝑚𝑒).  

The change-over time is the maximum time that may be required between two opposing recipes: the 

minimum is always 0, although intermediate values are possible. All these machines will have to be 

represented in our model to make it accurate, although for the purposes of modelling many can be 

combined into a single step because of their short duration and relatively low and stable change-over 

times. For example, the dough dispenser and forming station will always be turned on or off together 

because they are interdependent, and as such we can combine their production- and change-over 

times. Many machines have alternate variants that do not significantly impact production times. For 

example, the sprinkler system can be altered for many different kind of toppings, whilst performing 

identically. Only four machines have a significant alternate variant that is relevant to the makespan. 

These are the rising chamber(s), oven, cooling spiral and freezing step. Their differences are briefly 

explained in the table.  
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Table 1: Machines of the small-bread Machine line 

Machine/ 
Step 

Description Production 
Time/PLB 

Max Change-
Over Time 

Dough 
dispenser 

The dough is poured out of a mixing bowl into a funnel, leading to a 
machine which will cut the dough into chunks. There are several variations 
of chunks, depending on the recipe. One variant creates the individual 
chunks that become buns, another creates a series of large chunks that 
are rolled into a slab. 

8 seconds 10 minutes 

Forming Chunks are rolled, cut or stamped into even-sized doughballs in several 
steps on a conveyor line. Each recipe has a machine pattern, although 
most use similar tooling with small variations. 

30 seconds 3 minutes 

Panning-
point 

The individual dough balls are carefully and precisely laid in a pre-
determined pattern on a peel board. One machine can handle most 
combinations. In other lines this machine puts dough-balls in their “pans”, 
a different type of product carrier, hence the name. 

8 seconds 2 minutes 

Rising 
chamber(s)
/Climas 

The peel boards enter the rising chamber, a tower where temperature 
and humidity are kept at a steady level for optimal rising conditions. The 
peel boards move slowly up and down the tower, before exiting out the 
other side. A more advanced version of this tower consists of multiple 
towers, that can be partially or completely skipped. This machine, or set of 
machines, is often referred to as “Climas”, for “Climate Chamber”. 

60-120 
minutes 

1 minute 

Turning Depending on their orientation, the peel boards are turned 90° 8 seconds 1 minute 

Sprinkler Depending on the recipe, the bread is decorated with a sprinkle of flour, 
moon seed, pumpkin seeds, etc. Some machine lines have multiple 
sprinklers with different contents, others simply swap a container 
between recipes.  

8-36 
seconds  

6 minutes 

3-Carrier 
collector 

Three peel boards are collected and placed side-by-side, to take 
advantage of the width of the oven. Can also be used for other product 
carriers without problem, for example baking loafs of bread in pans. 

24 seconds 1 minute 

Cutting 
Robots 

Knife-wielding robots place precise cuts across the top of the buns, or let 
the buns pass by uncut, depending on the recipe. 

24 seconds 5 minutes 

Scrabbler The buns are lifted off of their peel boards and placed on the oven 
conveyor belt in several steps, with space allocated in between them. The 
peel boards are separated and sent to a different line where they are 
cleaned, stored and re-used. 

24 seconds 1 minute 

Oven A long horizontal oven, with a belt that can change speed depending on 
the bread type. Some ovens have the ability to heat sections 
independently, which reduces total change-over time from bun to bun. 
The length of the oven changes from factory to factory, long ovens having 
more capacity.  

10-20 
minutes 

25 minutes 

Fakir This machine gathers batches of buns as they leave the oven, and aligns 
them with the next set of conveyor belts. The name comes from the pins 
that are sometimes used to relieve baked bread from their pans: just like 
the mythical fakirs of the orient and their bed of nails. 

24 seconds 1 minute 

Cooling 
Spiral 

A long spiralling tower where the individual buns can cool when they exit 
the oven. Cooling times can differ wildly depending on the size and 
temperature of the bun. Variants exist with multiple separate cooling 
towers for multiple batches cooling at different speeds. Often the cooling 
length of buns is altered to fit the tower, instead of the other way around. 

1-2 hours 1 minute 

Freezing 
Spiral 

Exact copy of the cooling tower, but colder. Not all bread is frozen, so an 
alternate variant of this line is the same, but without the freezer. Note 
that change-over time is 0, as it always follows the cooling tower. 

1-2 hours 0 minutes 

Packaging Different bread types take different packaging methods, but most are 
packaged in plastic bags. Machines are prone to jamming. However, often 
delivered by outside contractors, hard to get solid data. 

8 seconds 1 minute 
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In Figure 2, the different steps in the production process are laid out in minutes. This graph puts the 

vast differences in average processing time into perspective: many of the steps hardly even show up 

in the graph. However, all steps have a measure of change-over time associated with them which we 

must take into account. 

 

Figure 2: Minimum and maximum processing time per peel board per production step in minutes per peel board 

We omit one phase from our data, and that is the so-called “pre-rise” phase. This includes the time in 

which ingredients are first mixed, before the dough is dispensed. We were unable to collect enough 

accurate data on this step in the production process. There may be considerable differences to be 

found in some factories concerning the pre-rise phase. Some omit it altogether and dispense the 

dough immediately after mixing. Others let their doughs rest for up to 6 hours before dispensing, to 

help gluten development.  

In some bakeries it is common to start the bulk fermenting process for a “slow” batch with a long 

resting time first, before starting the mixing of a different “fast” type of bread. This fast batch can 

then enter the production line before the first. That is the only known instance of recipes switching 

production sequences. Apart from that, recipes cannot switch production sequence: on the part of 

the line connected by conveyor belts a batch of bread needs to complete a step before the next 

batch is allowed to enter. A visual overview of the machines in the line can be seen in Figure 3. 

It should be noted that the carrier handling system is also not a part of our flow-shop or optimization 

procedure. The carriers are all the same in this version of the model, and their handling does not 

appear to be a bottleneck.  

0
,1 0
,4

0
,1

6
0

0
,2

0
,2

0
,2

0
,2

0
,2 1

0

0
,1

6
0

6
0

0
,10
,2 1 0
,1

1
2

0

0
,2

0
,2

0
,2

0
,2

0
,2

2
0

0
,2

1
2

0

1
2

0

0
,1

PROCESSING TIME

Proc_min Proc_max



14 | P a g e  
 

 

Figure 3: Small-bread line Flow Chart, includes all steps. Note that the “Loose batches of dough” and “Product Carriers” 
sections are outside of scope. 

2.4)  Recipes 
Listed in Table 2 below are the characteristics and production data that should be gathered for each 

bread type. This includes the processing time for each of the machines listed in Table 1. It also 

includes the product-specific characteristics like the baking temperature and required decoration 

pattern, and the average production rate or Tact Time of this bread type (in seconds per PLB).  

Table 2: Bread Characteristics 

Name Value Notes 

Recipe Number r : Integer  

Recipe Name String  

Processing time P(m,r) In minutes, per Machine m, per Recipe r 

Tact Time Seconds Per peel board 

Dough type White/Brown Could be extended for rye, etc. 

Turner True/False Does the Peel Board need to be turned 90°? 

Decoration True/False Every ‘true’ decoration needs change-over in sprinkle station 

Cuts True/False Every ‘true’ cut needs different settings of cutting robots.  

Baking Temperature °C  Change-over depends on heating/cooling potential of the oven. 



15 | P a g e  
 

At one bakery where a small-bread line is used, at least 21 different recipes can be produced on the 

same line. This bakery will rarely produce more than ~12 recipes in a day, but their line has the ability 

to produce all of them. Their list of recipes is by no means an exhaustive list of all types of bread that 

could be produced, but it is a good starting point for our data collection. It contains both large and 

small bread types, of various dough types, decoration and baking settings. If a new bread type would 

need to be introduced to the model, it could be modelled by adding it to the list with its 

characteristics, after which it would function just like the rest.  

Note that Table 2 does not list change-over times; these are not set in stone and change depending 

on the sequence of recipes in the production plan. The product-specific characteristics are what 

determines if changing time is necessary between two recipes. For example: if two ciabatta recipes 

have the same dough type and baking temperature, no change-over is needed in the forming station 

or oven. However if one then has a sprinkle decoration pattern while the other does not, that causes 

change-over time in the sprinkle step. Even though these two ciabatta recipes may be nearly the 

same otherwise, it is unwise to group them together in a larger group for that reason. As such, we 

will not group bread types together.  

2.5)  State of simulation and optimization at Kaak 
The engineers and employees at Kaak design and produce their many different machines in-house, 

and for this they utilize several different mechanic design and machine operating software packages. 

Also they use software that runs the steel-cutting robots in the machine factory, which we will leave 

out of consideration. In terms of simulation of on-going processes, a few Siemens software tools are 

in use such as Simatic-PLC and Mechatronics Concept Designer. These tools are primarily used to 

simulate the movements of individual machines, and to calibrate the Programmable Logic Controllers 

(PLC’s) that send these machines their commands. For example, these tools are used to direct the 

movements of the rising chamber, to calibrate the cuts that are made by the cutting robots in the 

small-bread line, or to direct the movements of conveyor belts. However, these moves are not 

necessarily optimized, only programmed.  

Apart from that, some engineers have dabbled in creating extensive Excel datafiles in which basic 

calculations are done concerning the total capacity constraints of a single machine. An example of 

this is a file examining the movements of the scrabbler machine in detail, and another file calculating 

the proper distance between buns in the cooling spiral. However, as far as the responsible engineers 

know, no overarching optimization tool exists. In essence, the machines they produce are 

exceptional at doing their one job, and can function together mostly without problems in a complete 

machine line if only a single recipe is produced. The machines are designed to run at a certain tact-

time, and so if no errors occur, this leads to a stable process.  

This all works fine until a customer decides to produce a set of recipes on the same day, which is a 

common occurrence in several bakeries. Then, as we know, there is no advanced way for Kaak to 

optimize the process of sequencing jobs. For example, finding a solution to the scheduling of recipes 

on a single machine, the rising chamber, is a process that’s already been on-going for 10 years 

according to some engineers, and still without definitive answers.  Currently all optimization of 

production schedules is done manually by production managers on-site, using simple heuristics or 

rules of thumb that may or may not be optimal. Often, they focus on optimizing the throughput of 

one machine in the line that they see as a bottleneck, such as the rising chamber, without paying 

attention to the effect this has on the rest of the line, which may lead to sub-optimal results. The 

phrase “we’ve always done it this way” is likely to be used a lot on these factory floors. A big 

knowledge-gap in production optimization strategies, such as flow-shop-modelling, is present.  
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A continuous production line is by no means special in food manufacturing, and using rules-of thumb 

when only producing a single item is very common. However, a hybrid production line with multiple 

products, sequence- & machine-dependent change-over times, product-specific production times, 

no-wait criteria and big continuous batches presents a very complicated problem. It should be no 

surprise that more expertise is needed.  

2.6)  Collected data 
Through discussions with engineers at Kaak, by poring over footage of machine lines in action, by 

analyzing ERP data from live factories and by examining existing datasets and factory layouts, a 

dataset on relevant bread types, machine running times and change-over times has been collected in 

an Excel file. Due to confidentiality issues, this dataset will only be made available to the examinators 

of this thesis and the employees at Kaak itself.  

Some parts of the data are still subject to debate. For example, the tact time for each recipe is based 

on an estimation of the maximum possible number of peel boards of buns that can pass through the 

machines. However, this rate is limited by bottlenecks in the line, that may disappear if the 

bottleneck machine receives an upgrade or is physically replaced. Since machines are designed to 

handle a specific production rate, all that may be necessary to raise the production rate of the entire 

line is to give a specific machine a software update. This type of critical-path analysis may prove to be 

a worth-while subject of future investigation. It proves to be nigh-impossible to capture in secure 

data though, so for now we will work with what we have and assume that the different production 

times are set and reliable per machine. We are still missing reliable data on the pre-rise and 

packaging steps. We thus exclude these from our scope entirely. The packaging step is very short 

compared to the cooling/freezing step immediately preceding it, and it does not seem to have 

significant impacts on the model either way. The pre-rise phase is almost certain to be more 

impactful than that. 

2.7)  Conclusion 
Kaak’s small-bread line is a complex set of machines that work in near-perfect unison when only a 

single bread type has to be produced. However, when multiple bread types have to be baked on the 

same day, this exposes a big knowledge-gap in the company. Due to the complexity and variations of 

the machine line and the large amounts of variability that exists in between recipes, finding good 

production schedules is a big challenge. This challenge has not been solved consistently within Kaak: 

often customers are left to solve these scheduling problems themselves, by altering recipes or 

planning bigger gaps in between batches. Recently some customers repeatedly asked for better 

scheduling solutions, for example to reduce the average time their ovens are on due to the current 

high gas prices, and Kaak stands empty-handed.  

We call this the Industrial Bakery Scheduling problem. Finding better solutions to these problems 

could provide instant value to both the engineering team, sales team, and Kaak’s customers. We 

believe the problems faced by Kaak in finding optimal production schedules or machine 

arrangements can be solved using flow-shop modelling techniques. Specifically, we have to model a 

way of accurately finding the total makespan of a production plan for different machine 

arrangements, and then a way of optimizing the sequence of recipes in that production plan. 

Although some stochastic effects in the machine line are present, the average process length is very 

reliable. The scheduling problem is too big to solve with a DES model. We opt for a flexible flow-shop 

model which can give us a ranked list of multiple solutions, which we could later insert in a DES 

model to vastly reduce the solution space and required calculation time if we so wish. Alternatively 

we could use this ranked list of possible solutions directly. In the next chapter, we will do a literature 

review regarding flow-shop modelling and production sequencing.   
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Chapter 3:   Literature review 
In this chapter we do a literature review regarding flow-shop modelling and product sequencing to 

see which techniques we can combine in order to both create an accurate representation of the 

small-bread line, as well as provide fast solution methods. We will start with a review of literature 

regarding the model itself, and continue with an overview of construction- and meta- improvement 

heuristics we will employ. We will also include some notes about the benefits of flexibility in 

manufacturing. 

3.1)  Review of flow-shop models 
One of the most prominent articles that was written on the topic of product sequencing in 

production facilities is Graham (1979), whose three-field 𝛼|𝛽|𝛾 problem notation is the standard for 

operations research to this day. Here 𝛼 represents the type of machine environment, 𝛽 represents 

the job characteristics, and 𝛾 represents the optimization criteria. Machine environments can vary 

from job shops, where various machines are independently present in a factory with products taking 

whatever sequence they want to be produced, to a flow-shop, where all goods follow the same 

procedure in the same general sequence of machines.  

The case of the small-bread production line is clearly a flow-shop, since all recipes follow the same 

route along the same machines, even if they don’t interact with the machines. Therefor we use the 

letter F, for flow-shop, and m for number of machines in our model. Cmax stands for the Maximum 

Completion time, or the time that the last product finishes the last production step. This Cmax value 

is commonly referred to as makespan, and should be minimized. That will be our optimization 

criterium. However, describing our model as 𝐹𝑚|. |𝐶𝑚𝑎𝑥 is too simplistic. 

Reisman et al. (1997) provide a meta-analysis of the field of flow-shop modelling. Flow-shop models 

have been intensively studied since the 1950’s, with at first a focus on constructive heuristics. With 

the improvement in computers and greater accessibility of computing power, focus has shifted to 

improvement algorithms and meta-heuristics. Reisman et al. point out that much of the research 

being done in this sector had little immediate impact on company policy. According to their research, 

many of the more complicated algorithms that are developed are barely adopted by real 

manufacturers and are at most influential in academic research. Almost 25 years later, this is not 

hard to imagine if we look at the situation at Kaak, where specialist knowledge about flow-shop 

solving methods is severely lacking. A take-away from this is that we should ensure our application is 

accessible to non-specialists, namely the users at Kaak that will likely end up making decisions based 

on the outcomes of the model. 

According to the framework of Ruiz et al. (2008), our model shares a lot of familiar aspects with the 

“Hybrid Flexible Flow-shop Problem”. This is a flow shop problem where at least one stage has more 

than one machine (hybrid) and where batches can overtake each other (Flexible). Both factors could 

apply to our model, although we choose to exclude any possibility of batches overtaking one 

another: we stick to solving a Hybrid Flow-shop Problem, HFP. Ruiz et al. use a variant of the Newaz-

Enscore-Ham heuristic as a prominent construction heuristic in their experiments, where they model 

the simulation as a Mixed Integer Programme. It should be noted that in the work of AllahVerdi et al. 

(2006) this terminology is not used in the same way: they seem to use the terms Flexible and Hybrid 

interchangeably. 

Lee and Vairaktarakis (1994) as well as Gupta (1988) prove that HFPs are NP-complete, even in cases 

where there are only two stages and one of the stages only has one machine. Since our problem has 

more than 2 stages and at least one stage with two possible machines, it follows that the Bakery HFP 
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is also NP-complete. As such, complete enumeration to find a single optimal solution is only viable in 

cases where the number of recipes is low. 

A.  Allahverdi and Aldowaisan (2001) use a setup-time in their no-wait, 2-stage flow-shop model with 

sequence dependent-setup time. “No-wait” refers to the continuity of jobs for a single product: once 

the process is started, no waiting time is allowed in between machines. Sequence-dependent setup-

times also apply to the small-bread line, since the sequence of recipes has direct influence on the 

occurrence and duration of change-over times. Interestingly they model the change-over time in 

their problems as consisting of a setup time, before a job enters a machine, and set-down time 

afterwards. Our own situation only calls for a setup-time, no set-down time. 

Ali Allahverdi et al. (2006) provide a study of 300 different research papers on a wide variety of job-

shop and flow-shop scheduling problems, mostly including setup or removal times. Using their 

notation, which was itself adapted from Graham (1979), our own problem can be described as a 

hybrid flowshop problem (HFP) with multiple stages (m)  that has anticipatory (ant), sequence 

dependent Batch setup time (STsd,b) no waiting in between batches (noWait) and with a total 

makespan-minimization goal (CMax). “Anticipatory sequence-dependent batch setup times” mean 

that we can start the setup-times before a product enters a production stage, in opposition to for 

example some assembly jobs where setup-times can only begin once a product has been locked in 

place in the production area. In the three-field notation our problem can now be described as: 

𝐻𝐹𝑃𝑚|𝑎𝑛𝑡; 𝑆𝑇𝑠𝑑,𝑏; 𝑛𝑜𝑊𝑎𝑖𝑡|𝐶𝑚𝑎𝑥 

Some of the papers they cite have a lot in common with our own problem. Specifically the paper by 

Hall et al. (2003) shares some core characteristics such as the grouping of identical products in big 

batches to avoid change-over times. However, their solution method concerns “lot streaming”: 

cutting up a big batch of identical products into several smaller lots to make more efficient use of 

available machine capacity. Crucially, that only applies when machines must process (part of) an 

entire batch of products at the same time, for example when an oven is filled with buns, closed, and 

bakes for a set amount of time before being opened. That is not the nature of the Kaak small-bread 

production line, which in this case allows for a continuous stream of products that are baked 

independently from one another. 

There are examples of continuous flow-shop production systems, for example from the steel 

industry, such in the research of as Pan (2015) where the subject of cast-scheduling for batches of 

steel was discussed. However here each individual cast has a processing time per production stage, 

and the casts are added together in batches called “charges” (functionally: tubs of molten steel to be 

distributed). No change-over times are discussed, and waiting time is allowed. The biggest size of 

problems that were discussed concerns a total of 30 casts that were to be scheduled, consisting of 

different batches. Although the individual casts are functionally independent, it seems the total 

batch needs to progress to the next machine stage before the previous machine can be declared 

“free”, in each case. That means this problem is not compatible to the Industrial Bakery Scheduling 

Problem for multiple reasons: the size of the batches, change-over time and waiting requirements. 

The Kaak case, in which big batches of different products follow each other on what is in essence a 

big production belt that runs through different machines with independent change-over times, is a 

problem that is not commonly described in the literature we have found. As such, we will have to 

develop a novel calculation model. This could be an interesting addition to the body of existing 

research in flow-shop modelling. Since it has immediate real-world applications, perhaps it may even 

have a persistent impact in industry. 
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3.2)  On the efficacy of improvement algorithms 
The influential NEH-heuristic by Nawaz et al. (1982) remains a standard in flow-shop construction 

heuristics. It works by firstly sorting the jobs by individual makespan, and inserting the highest 

scoring jobs in a production plan in the most favourable position until all jobs are assigned. It is fast, 

simple to implement, and reliably outperforms other construction heuristics if the number of jobs 

outnumbers the number of machines. Although in the original paper the heuristic was applied to a 

simple flow-shop sequencing problem without setup times and only one machine per stage, 

𝐹𝑚|𝑝𝑟𝑒𝑐|𝐶𝑚𝑎𝑥, the basic principle can easily be applied to any flow-shop problem. The NEH 

insertion heuristic performs best out of the techniques Allahverdi & Aldowaisan (2001) used in their 

set of experiments. 

Taillard (1990) compares the NEH and Tabu-search techniques applied to flow-shop modelling 

questions and finds that Taboo-search outperforms NEH, if it is given enough time to run. Taboo 

search is a meta-heuristic technique that compiles a list of the solutions it has already checked, and 

makes them “tabu”, meaning they are not checked again. This simple concept helps to avoid the 

loops and local optima that simple search heuristics often get stuck in, although it is a much more 

computationally intensive operation that scales exponentially with the number of products that have 

to re-ordered. Others, such as Ben-Daya and Al-Fawzan (1998) improve upon Taillard’s 

implementation of Tabu search by adding a variable tabu-list and diversification/ intensification 

schemes and find it out-performs the Simulated Annealing (SA) algorithm in many cases, at the cost 

of considerable computation time.  

The SA algorithm is another improvement meta-heuristic, first proposed as a solution method to the 

travelling Salesman problem by Kirkpatrick et al. (1983).The method is an analogy to the process of 

annealing in metallurgy, say, the mix of two molten metals that form stronger connections if the 

temperature of the melting pot drops slowly. As a heuristic it searches a random solution from the 

current solution neighborhood, and accepts or denies the solution based on its performance 

compared to the current solution. If the solution is better it is always accepted, and if the solution is 

worse it is more likely to be accepted if the “temperature”, or acceptance-value of the heuristic is 

higher. This “temperature” drops along with the number of iterations, excluding more and more bad 

solutions, hopefully leaving the best ones as an answer to the original problem. 

Ruiz and Maroto (2004) perform a study on a variety of constructive, improvement- and meta-

heuristics for the permutation flowshop problem. They find NEH to perform the best out of all 

constructive heuristics, and Tabu-search and Simulated Annealing to out-perform the other meta-

heuristics. According to them, other meta-heuristics are too dependent in their performance on the 

initial solution. We will thus use these solution methods as a basis for solving our Industrial Bakery 

Scheduling problem. 

3.3: Flexibility in manufacturing 
Part of this thesis will discuss the benefits of adding more flexible, advanced machine models to the 

small-bread line. Jordan and Graves (1995) define process flexibility as the ability “to build different 

types of products (…) on the same production line”. This clearly applies to the small-bread line, where 

many different products get produced on the same line. In their research they focus on adding 

flexibility by allowing more products to be produced on the same line, also called “chaining” or 

“pairing”. In our model, all products can already be produced on the same line, and flexibility is 

added by installing machines that reduce change-over times in between products. Still, a parallel can 

be drawn between their research and our own problem: it is often hard to quantify the added 

benefit of flexibility, as opposed to simply adding production capacity. They conclude that adding 
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limited flexibility to manufacturing systems can result in more efficient use of available capacity, and 

reduce the effects of uncertainty.  

3.4:  Conclusion 
In order to solve our Industrial Bakery scheduling problem, we will need to build our own Flow-shop 

model, which needs to accurately represent the continuous nature of the production line. Due to the 

novelty of the model itself, we will stick to tried and tested construction and optimalization 

heuristics: the NEH heuristic for initial construction of solutions, and Tabu-Search & SA  for further 

optimization. We can easily combine these methods as well, by feeding Tabu & SA the outcome of 

the NEH heuristic as an initial input.  
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Chapter 4:   Developing the goal function 
In this chapter we will begin transcribing the complexities of the small-bread line into a deterministic 

optimization model. We start by discussing our goal function and experimental factors, then the 

machines that are included in the model, and explain the calculation steps. We build the goal 

function and discuss the various inputs, and how different machine arrangements can be modelled. 

In the next chapter we will utilize the goal function to build various construction- and optimization 

algorithms. In Chapter 6 we will test which one of our optimization methods provides the best 

solutions.  

4.1)  Goal function and experimental factors 
Our goal is to find a sequence of recipes that results in the smallest possible makespan for any given 

input. It is unlikely that a production manager would plan more than 12 recipes in the same day. 

Realistically, the input will be around 5-10 recipes per day, with batch sizes anywhere from 25 to 

multiple 100’s of peel boards. However, if a customer wants to find the optimal sequence of recipes 

for a multi-day production run, this tool should be able to help them do that. As such we choose not 

to place an upper limit on the size of the production plans. Apart from the input-production plans, 

experimental factors also include the different versions and settings for the machines. These 

different versions and settings will result in different production times, setup times, or machine 

behaviour. We assume that no matter the settings of the line, any production plan is feasible, but 

that sub-optimal ones will result in a long makespan.  

Let us define our production plan 𝑃 as follows: a set of any positive number of recipes 𝑟 ∈ 𝑅, coupled 

with individual batch sizes (in PLBs) 𝑁(𝑟) > 0, that have to be produced in a single continuous 

production run. The batches are modelled as single indivisible entities with a beginning and an end. 

Whilst it is practically unheard of for a production plan to take more than a single work day, we see 

no reason to put a cap on the maximum duration. The settings of the machines (or factory settings) 𝑆 

are captured in the dataset, of which the main properties will be more carefully explained in Section 

4.5.  

The idea behind our model is that a central goal function, 𝐹(𝑃, 𝑆), can be called upon to calculate the 

makespan of any production plan 𝑃 in any factory setting 𝑆. Depending on the machines in the 

model, the sequence of recipes and the amount of PLBs being produced of each recipe, it will 

calculate the total running time of the production plan from first entry into the system to the last exit 

from the packaging machine. This makespan is the value we try to minimize, with lower values 

meaning better scores. The algorithm makes these calculations in an additive way, similarly to the 

model described by A.  Allahverdi and Aldowaisan (2001). This means we work from the start to the 

end, calculating the entry and exit times of recipe 1 on each machine before moving on to recipe 2: 

the entry/exit times of recipe 2 depend on those of recipe 1, not the other way around.  

The result of this Goal function can be fed into several construction or optimization algorithms, which 

can work until they have found a (locally) optimal solution. We will discuss the construction and 

optimization strategies in Chapter 5. We build our model in Python 3.8 due to the ease of 

implementation, visualisation, and low cost of further use by the parent company, although 

admittedly it may not provide the most optimal running times. A programming language such as C++ 

may generally be better suited to large combinatorial problems, because it has more efficient data 

management capabilities, but it would take the author of this thesis much longer to implement any 

efficient code in it. Regardless, the average problem Kaak faces will likely only require a few 

simulation runs of perhaps five minutes: this is an acceptable time cost and quick implementation is 

more important in our case, due to general time constraints.  
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4.2)  Included machines and combined steps 

All machines listed in Table 1 and/or Figure 2 will be included in our model, with the exception of the 

packaging machines. In the case of the packaging machines, we were not able to collect enough data 

to make a reliable analysis: these machines are often provided by Kaak’s competitors and as such 

data is hard to get. Luckily this step is not commonly experienced to be a bottleneck. If significant 

data for the pre-rise step is ever found, it can easily be added on to the result of any production plan 

later, based on the starting time of a batch: if we know the time at which a batch should enter the 

dough dispenser, we can deduce the earlier time at which it should be mixed.  

From our analysis in Chapter 2, it appears there are four major components of the small-bread line 

that take by far the longest time and thus form the biggest obstacles. These are (1) the rising 

chamber, (2) the oven and (3 & 4) the cooling & freezing spirals. These are the steps where the buns 

spend a long time doing little else than being exposed to the conditions in the machines, slowly 

moving along a conveyor belt or even standing still. The other machines in the small-bread line, by 

comparison, hardly have an impact in terms of makespan. They continually perform an operation on 

the dough or bread on a conveyor, whilst passing it on to the next step in the process. This operation 

has been incorporated into the normal speed at which the product moves along the conveyor belt. 

Whereas in many flow-shop models the processing time of a step changes if it is skipped, this is not 

the case for these intermediate steps in the small-bread line. 

For example at the cutting station, three peel boards of buns move along the line approximately 

every 24 seconds. This time has been carefully allocated to ensure that each bun on the peel board 

receives the cuts within that timeframe. However, with buns that do not receive a cut, the timing is 

still at three peel boards every 24 seconds: for Kaak it is not worth the effort in engineering to 

change this behaviour. Since the running time hardly changes, an argument can be made that the 

cutting station is not an important factor of the optimization procedure, since it has little effect on 

the production rate. Similarly the sprinkler, dough forming line, scrabbler and fakir hardly change 

their production time due to changes in recipe. Note that all these steps still require a measure of 

change-over time between different bread recipes though, and skipping them completely would not 

serve us well. However they can and will be combined into less complicated blocks for the purposes 

of the optimization procedure. 

The freezing step is interesting, since it uses the exact same system and conveyor belt as the cooling 

step: the freezer step is not much more than an extension of the cooling step, but colder. When a 

double cooling line is present, a double freezer line is also present. As such, they can easily be 

combined into a solid step with different settings depending on the machine line. Thus, the 

(combined) building blocks of the Goal Function will be as shown in Table 3:  

Table 3: Combined Machines in the model 

Machines Step Name 

DoughDispenser + Bread Former + Panning Point DoughDis 

Rising Chamber (a.k.a. Climate Chambers) Climas 

Turning + Sprinkling + 3-Carrier-Collector + Cutting + Scrabbler toOven 

Oven + Fakir Oven 

Cooling+Freezing CoolFreeze 

 

Since the objective of our algorithm is to minimize the makespan, combining blocks of machines that 

have little influence on the makespan will increase the speed of calculations, allowing us to do faster 

experiments without influencing the quality of solutions. 
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4.3)  Simulation of buns in the goal function 
In real life, the bread buns travel along the machines either on PLBs, or in rows after they have been 

removed from their peel boards. For the purposes of our optimization algorithm though, simulating 

them as either individual buns or as individual peel boards is not a good idea: each batch can contain 

hundreds of PLBs, each of which can hold over a hundred buns. Creating an optimization algorithm 

with the ability to change the placement of 1000+ individual PLBs will needlessly complicate the 

calculations, since any optimal sequence will aim to reduce change-over times and thus never place 

the PLBs outside of their natural sequence. Instead, we model each batch as an indivisible entity with 

a beginning, an end and a tact-time. Thus the sequence of recipes in the production plan will be the 

sequence in which all their respective PLBs pass through the machine line.  

We submit production plans to the goal function in the form of sets of two integers. The first integer 

represents the number of the recipe, and the second integer represents the number of peel boards 

that are to be produced of this recipe. As such, a valid production plan would be: [(1, 1)], a single set 

representing a single peel board of recipe number 1, “Baguette de Tradition”. An equally valid 

production plan would be [(3,400),(20,60),(19,90),(12,40),(5,240)], with five sets representing 400, 

60, 90, 40 and 240 peel boards of recipes “3: Baguette Sensation – Pointed”, “20: Pumpkin Bun”, “19: 

Panetier-Brown”, “12: Catalan Ciabatta”, and “5: Spelt-Baguette”, respectively. This would also be 

the sequence in which they enter the simulated production line. To change the sequence of recipes, 

we could for example exchange the sets (20,60) and (12,40), which would lead to a different 

sequence in the model, and thus most likely a different makespan. The amount of peel boards in 

each recipe will be referred to as 𝑁(𝑟) from this moment on. It should go without saying that  

𝑁(𝑟) > 0 for any recipe in a production plan. 

4.4)  Calculation of the goal function 
In this section we will define our calculation structure clearly. As mentioned in Section 2.2 we are 

only interested in the entry & exit times of the first and last peel boards in a batch, as well as the 

change-over and tact-times. Since the batches are indivisible, all other peel boards in a batch are 

necessarily based between the first and last one, and move in a predictable manner with at a rate 

equal to the tact-time of the batch. This causes a set amount of time to pass between the start and 

end of any batch, based on the tact time and 𝑁(𝑟). Based on these values we will formulate a Mixed 

Integer Programme to clarify the general structure of calculations in Table 4. 

Table 4: Mixed Integer Programme 

goal min 𝐶𝑚𝑎𝑥 =  𝑚𝑖𝑛 𝐿𝑎𝑠𝑡𝑒𝑥𝑖𝑡(𝑚𝑚𝑎𝑥, 𝑟𝑚𝑎𝑥) 

 Subject to: 

(1) 𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) = 0, 𝑟 = 1, 𝑚 =  1 

(2) 𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(1, 𝑟) =  𝐹𝑟𝑒𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒(1, 𝑟 − 1, 𝑟) +  𝑃𝑜𝑠𝑡𝑃𝑜𝑛𝑒𝑇𝑖𝑚𝑒(𝑟), 𝑟 ∈ 2, … , 𝑅 

(3) 𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) ≥ 𝐹𝑟𝑒𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑚, 𝑟 − 1, 𝑟), 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅,    and not r = m = 1 

(4) 𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) ≥  𝐹𝑖𝑟𝑠𝑡𝐸𝑥𝑖𝑡(𝑚 − 1, 𝑟), 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅,    and not r = m = 1 

(5) 𝐹𝑖𝑟𝑠𝑡𝐸𝑥𝑖𝑡(𝑚, 𝑟) =  𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) +  𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒(𝑚, 𝑟),   𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅 

(6) 𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) =  𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) +  𝑇𝑎𝑐𝑡𝑇𝑖𝑚𝑒(𝑟) ∗ 𝑁(𝑟), 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅 

(7) 𝐿𝑎𝑠𝑡𝐸𝑥𝑖𝑡(𝑚, 𝑟) =  𝐹𝑖𝑟𝑠𝑡𝐸𝑥𝑖𝑡(𝑚, 𝑟) + 𝑇𝑎𝑐𝑡𝑇𝑖𝑚𝑒(𝑟) ∗ 𝑁(𝑟), 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅 

(8) 𝐹𝑟𝑒𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑚, 𝑟, 𝑟 + 1) = 
           𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟)                                                               if no change­over 
           𝐿𝑎𝑠𝑡𝐸𝑥𝑖𝑡(𝑚, 𝑟) +  𝐶ℎ𝑎𝑛𝑔𝑒𝑂𝑣𝑒𝑟(𝑚, 𝑟, 𝑟 + 1)          if change­over. 

(9) 𝑃𝑜𝑠𝑡𝑃𝑜𝑛𝑒𝑇𝑖𝑚𝑒(𝑟) ≥ 0         𝑟 ∈ 𝑅 
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Goal: Minimization of total makespan. Equal to the last exit of the last peel board from the last 

machine. 

1. First batch starts at time 0. Note that this does not include pre-rise times. 

2. Ensures that each subsequent batch will start production once the previous batch has been 

cleared, and when the planned postponement-time has passed 

3. Ensures that each batch can only enter a second machine after this machine is ready for the 

next batch 

4. No waiting times allowed in between machines, batches keep moving continuously from 

start to finish. 

5. The first exit out of any machine occurs one processing time after the first entry. 

6. The last peel board entry into a machine occurs after the entire batch entered this step 

7. The last exit out of any machine occurs one processing time after the last entry 

8. The time a machine becomes free after processing a batch 

9. All postponement times must be positive 

The postponement time in constraint (2) is the exact amount of time between the finalization of 

change-over time on the dough-dispenser and the entry of the next batch of bread onto the line. This 

time is required to avoid waiting times on the rest of the line, which cannot stand still as per 

constraint (4). However to get accurate, minimal postponement times, first we have to figure out 

what waiting times would occur on the line without them. We will further discuss this in Section 4.6. 

Note that this calculation structure results in a single outcome per production plan, per list of 

machine settings. As such, this is a deterministic formula that can be calculated quickly, but which 

has a large amount of possible inputs and an equal number of possible outputs. Whilst the number of 

machines in the model is known, the number of recipes can be any number 𝑅 > 0.  

Let us discuss an extreme example, to see how this calculation structure performs in practice. In both 

Figure 4 and Figure 5 a production plan with a single recipe is produced. The production plans are: 

[(1,10)] and [(1,1000)]. Recipe 1, “Baguette de Tradition”, is the same but in Figure 4 the batch size is 

only 10 peel boards. In Figure 5, the batch size is 1000 peel boards. In both cases the makespan starts 

at T = 0, and ends after the last peel board rolls off the last production belt. The bars represent the 

total time a batch is processed per relevant machine group: the first processing time starting 

immediately after first entry, and the last processing time starting directly after last entry. The 

brightly colored parts of the bar in the top-left and bottom-right corners of each bar represent the 

timespan in which PLBs of this batch enter and exit this machine respectively, whilst the dark parts 

represent the processing time of the first and last PLB. This means that for Figure 4 the first of ten 

peel boards is finished at time 184.1 after the start of production, whilst the last is finished a little 

more than a minute later at 185.6 minutes. For Figure 5 we can see that the first of 1000 peel boards 

is also finished at 184.1 minutes, whilst the last rolls off the production line over two full hours later 

at 334.1 minutes.  

As such, it is clear that the size of a batch has no influence over the time it takes the first peel board 

in a batch to complete the production run, whilst it has immense impact on the timing of the last 

peel board. However, as should be clear from Figure 4, small batches can still take up space in a 

machine for a long time regardless of their length, because they can have considerable processing 

time and may not be combined with a succeeding batch. It is also clear from this example that, 

because the tact-time and batch-size are constant throughout the calculations of each recipe, the 

entry-time and exit time are of the same length, and match up with the previous step: as soon as the 

first peel board exits one machine, it will start entering the next machine. This overlap is very clear to 

see in Figure 5. 
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From these graphs it should also be clear why we chose to combine multiple intermediate machines 

into a single “DoughDis” and “toOven” group: even combined, the steps have little impact on total 

makespan. If we did not apply this combination, Figure 4 and Figure 5 would have been roughly 3x as 

long whilst conveying the exact same information. 

 

Figure 4: Gantt Chart of 10 peel boards, combined graph of transitions & processing time 

 

Figure 5: Gantt Chart of 1000 peel boards, combined graph of transitions & processing time 
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4.5)  Change-over times 
The machines in the model can either be free, processing a batch, or changing over between batches. 

Two or more batches can be processed at the same time, if no change-over time is present between 

them: for example, two batches of bread that are to be baked at the same temperature for the same 

amount of time can follow each other “head to tail” on the oven conveyor belt.  Since we know the 

tact time 𝑇𝑇(𝑟), the Processing time 𝑃(𝑟, 𝑚) per machine and the number of PLBs per batch 𝑁(𝑟), 

all that remains is the Change-Over time 𝐶𝑂(𝑚, 𝑟, 𝑟 + 1). This change-over time is dependent on the 

machine in question and the combination of recipes. For example in the Kaak case, if a brown bread 

recipe is processed before a white bread recipe in the dough dispenser, the machine needs to be 

cleaned afterwards to ensure no contamination takes place, which increases change-over time. 

When the white bun comes before the brown bun, no extra cleaning is needed. Therefore, 

𝐶𝑂(𝑚 , 𝑟 , 𝑟 + 1) ≠  𝐶𝑂(𝑚 , 𝑟 + 1, 𝑟). This sequence-dependent setup time will result in a matrix of 

𝑅 ∗ 𝑅 values per machine group in the line, which is saved in the dataset.  

Let’s assume a dough has finished the pre-rise step, and is the first to enter the system. The first PLBs 

of a batch will then enter at time 𝑇 =  0 =  𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟), and exit at time  𝐹𝑖𝑟𝑠𝑡𝐸𝑥𝑖𝑡(𝑚, 𝑟)  =

 𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) +  𝑃(𝑚, 𝑟), the processing time of a peel board. The last peel board of this batch 

will enter the machine at 𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) =  𝐹𝑖𝑟𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) +  𝑇𝑇(𝑟) ∗ 𝑁(𝑟), as 𝑁(𝑟) PLBs 

need to be produced before this last one can. This last peel board will exit the machine one 

processing time later, 𝐿𝑎𝑠𝑡𝐸𝑥𝑖𝑡(𝑚, 𝑟) =  𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) +  𝑃(𝑚, 𝑟), at which point the machine 

enters the change-over phase of length 𝐶𝑂(𝑚, 𝑟, 𝑟 + 1) after which the machine becomes free, 

𝐹𝑅(𝑚, 𝑟).  

Note that if 𝐶𝑂(𝑚, 𝑟, 𝑟 + 1) = 0, the next batch can immediately start entering a machine after 

𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟), directly following the previous batch. So then 𝐹𝑅(𝑚, 𝑟)  =  𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟). This 

is essentially what happens whenever two peel boards of the same batch follow each other through 

the machines: the model is very efficient in dealing with large identical batches, because it condenses 

all intermediate products into a quick and simple calculation. A visual representation of the 

calculation structure without postponement times is shown in Figure 6. We will deal with the 

implementation of postponement times in Section 4.6. 
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Figure 6: Gantt Chart of two recipes on two machines, with (forbidden) waiting times. Each “recipe” bar represents the time 
that any of the peel boards that make up this recipe are present on this machine. 

This same general structure of calculations is repeated for every step in the production process, but 

some exceptions exist. The running time of the Goal function depends on the number of recipes and 

the number of included machines. Because there are 5 values that have to be calculated for every 

recipe for every machine, the calculation time of the Goal function increases linearly along with the 

increase in recipes. We denote this running time of the Goal function as roughly: 𝑇(𝑣) = ~𝑚 ∗ 𝑟 ∗ 5. 

Roughly, because depending on the settings of the model some steps can take slightly longer to 

calculate than others.  

4.6)  Waiting on the line and postponement times 
Any time a machine is done with a production step and has passed the change-over time, it is opened 

up for the next batch of products. In working this way, we push a new batch of bread onto the line as 

soon as the first machine, the dough dispenser, is free. This can incur waiting times for recipes on the 

processes in between the first and last machine, if those have longer waiting times than the dough 

dispenser. Dough that cannot move through the line continuously would be negatively impacted in 

terms of rising/cooling times. This is the function of the 𝑛𝑜𝑊𝑎𝑖𝑡 clause of our optimization problem: 

we cannot allow our bread to wait on the line. An efficient solution to this would be to calculate an 

extra waiting time for all batches before they start their production process, which can easily be 

factored into the starting time of a batch. This way, we essentially shift the entire batch forward in 

time to eliminate waiting times during the production process. We call this preventative waiting time 

the postponement time. Of course, we want this postponement time to be minimal, but in order to 

find out what the minimal allowable postponement time is, we will first need to calculate the waiting 

times that would otherwise occur on the line. 

To solve this problem, our goal function goes through two phases per recipe when calculating the 

makespan of a production plan. Firstly, it calculates only the first-entry and first-exit times per stage. 

From these, the required waiting time for the next machine is deducted. We add this time to  
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𝑃𝑜𝑠𝑡𝑃𝑜𝑛𝑒𝑇𝑖𝑚𝑒(𝑟), incorporate the waiting time 

into the starting time for the next stage, and repeat 

this for all stages. This results in a single 

postponement time for the recipe. That concludes 

phase one. In phase two, the true timings are 

calculated for this recipe. We incorporate the 

postponement time into the starting time at the 

dough dispenser and set accurate entry and exit 

times for the recipe in each stage. This ensures no 

internal waiting times for this batch are present. We 

then move on to the next batch, and start again in 

stage 1. We can now make use of the accurate 

timings of the first recipe to make our first-entry and 

first-exit calculations for the second.  

The result is a makespan and a set of postponement-

times, to be added to the waiting time at the start of 

production of each batch. This function takes roughly 

1.15 times as long as calculating the Goal function 

normally without incorporating the noWait clause. 

This small delay is deemed acceptable, and we will 

continue using the function in the rest of this thesis. 

A simplified visual representation of this process is shown in Figure 7, accompanied by a Gantt chart 

of a simple two-stage problem in Figure 8. When compared to Figure 6, this second Gantt Chart 

clearly shows the impact that extra postponement time can have on the elimination of waiting times 

from the model.  

 
Figure 8: Gantt Chart of two recipes on two machines including postponement time 

 

 
Figure 7: Postponement time calculation 
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4.7)  Settings and machine versions  
Settings for the multitude of machines and recipes can be entered and saved in an Excel data-file 

which can be easily accessed and changed by Kaak. These include, for example, the heating and 

cooling potential of the oven, or the cleaning time required for the dough dispenser. To save 

processing time during the optimalization run, the effect of the interaction effects between different 

recipes will be pre-calculated. If a recipe ever needs to be added, the list can simply be extended. 

Also if the temperature at which a bun is baked is changed, or if the heating potential of the oven is 

increased in the model settings, this will instantly affect the change-over time for the oven step. The 

goal here is to ensure that the tool remains usable after the thesis is finished, whilst also saving time 

calculating these otherwise unchanging values.  

As an example, say we have two recipes that follow each other into the oven. For recipe A, the 

required baking temperature is 180°C, whilst recipe B calls for 210°C. If the heating and cooling 

potential of the oven is 5°C and 2°C per minute respectively, then the time required to change the 

temperature would be 6 minutes if B followed A, or 15 minutes if A followed B. This is a simple linear 

example but if Kaak wished to go more in depth with complex warming formulas, we could easily 

change the formula in the dataset. The same goes for any of the other change-over values. 

Whilst the general calculation structure, as outlined in the goal function, holds true in the basic 

version of the machine line, some machines have variants that cause exceptions. These machines are 

the rising chamber, oven, and cooling & freezer spirals. The basic variant of the machines is most 

commonly found in the small-bread lines, but in the interest of justifying investment into the more 

advanced variants, the performance impact of non-standard machines is very important to both Kaak 

and its customers. As such, we integrate them as optional into the goal function. They can be altered 

in the settings in the excel program, or as part of a run of experiments. Essentially, we can turn these 

settings ON or OFF, with a simple True or False statement. 

Overall, the advanced machine models provide the same level of continuous production, but help 

save time by eliminating or alleviating waiting time caused by change-overs or occupied machines. 

They add flexibility to the model, which should correspond to a better use of available production 

capacity in accordance with Jordan and Graves (1995).  

Rising Chamber 

The rising chamber has a variant where instead of one big chamber, multiple smaller chambers stand 

side by side. That allows for some more flexibility in the usage of this machine. Two consecutive 

recipes with different rising times could never follow on the regular variant, since the regular 

machine can only run at one speed throughout the machine and thus the rising time of at least one 

of the recipes could not be achieved. Therefore in the regular variant, a recipe needs to exit the rising 

chamber completely before the speed of the tower can be changed. The variant with multiple towers 

allows a recipe to bypass a number of towers to cut down on a portion of the total rising time, 

without a change in speed. This saves especially much time if the difference between resting times is 

small: in a case where the first recipe has a resting time of 2 hours, and another 1.5 hours, this would 

cause two hours of waiting time in a normal rising chamber, which would translate to a maximum of 

2 hours extra postponement time. In a resting chamber with four towers only half an hour of waiting 

occurs, after which the second recipe could skip the first tower and fall in line directly behind the first 

recipe: no change in speed is necessary in the other 3 towers to make the total processing time 1.5 

hours. In the advanced version, the formula used in calculations of the rising chamber changes to: 

𝐹𝑟𝑒𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑚, 𝑟, 𝑟 + 1) = 𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) +   

𝑀𝑎𝑥(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒(𝑚, 𝑟) − 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒(𝑚, 𝑟 + 1), 0), 𝑚 = 𝐶𝑙𝑖𝑚𝑎𝑠 
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In Figure 9 and Figure 10 the effect is displayed graphically, although not to scale, with a regular 

rising chamber and a rising chamber with multiple towers. Note that more than two towers are 

possible, and that the towers do not necessarily have the same size: the most common variant of this 

more advanced machine is a variant where one tower runs at 30 minutes, whilst the next runs at 60 

minutes. This allows much more flexibility than a single tower that runs for 90 minutes. Functionally 

this does not impact the formula compared to a model with, for example, three towers of 30 

minutes, and as such we can safely speak of two versions for the rising chamber. 

 

Figure 9: Single Rising Chamber, low flexibility 

 

 

Figure 10: Double Rising chamber, with bypass for recipes with low rising time. High flexibility. 

Oven Line 

The oven line is essentially a long, heat-proof conveyor belt that passes through a straight oven. 

Change-over times consist of two parts: the time needed to cool down or warm up the oven in 

between two recipes with different baking temperatures, and the speed of the belt. Two recipes with 

the same baking time and temperature can follow each other directly. Two recipes with different 
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baking times need more space, since one batch needs to exit the oven completely before the speed 

of the oven-belt can be changed. This change is nearly instantaneous. In case of a temperature 

difference, all bread needs to finish baking and exit the oven before the temperature can be 

changed. This temperature change is not instantaneous. The oven-variant with separate heating 

zones, also called Oven Partition, will allow the zones of the oven to start changing temperature as 

soon as the first batch has left that zone, meaning the change-over process can be started whilst 

bread is still in the oven.  

This is a major time saver in some cases: it can mean 75% of the baking time is subtracted from the 

change-over time if there are four oven-zones. However, oven partition has no impact on change 

over caused by bread types with different baking times, since it does nothing to affect the speed of 

the belt. Oven partition is not a standard part of the ovens that Kaak offers as of yet, but Kaak is very 

interested in testing the efficacy of such modules and as such we will add it to the model. A version 

with four different oven zones is seen as a likely candidate by Kaak engineers, so that is the example 

we will pick for our model. Theoretically, the oven could be divide into hundreds of segments. See 

Figure 11 for a comparison of the normal oven and an oven divided in 4 heating zones.  

 

Figure 11: Gantt Charts of two recipes in a normal oven, and an oven divided in 4 partitions 
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In the model, the formula changes as follows: 

Cooling Spiral 

The cooling spiral has two different versions: essentially, a version with one and two independent 

belts that can move at different speeds. The speed of the belt is dependent on the length of the 

cooling belt, and the required cooling time per recipe. As such it is always known in advance. The 

cooling process can take an hour or more, and two recipes with different cooling times cannot follow 

each other head-to-tail on a single belt. This is because if the speed of the belt changes, then so does 

the area of the belt that becomes available per peel board of buns. The buns must lay in a pre-

determined pattern and this pattern cannot be achieved if less space is available. Therefore it is often 

the case that a batch must wait for the entire previous batch to leave the cooling belt before being 

allowed to enter, even though the belt is empty at the front. This causes huge waiting times and 

delays, which translates to an increase in postponement times at the start of a batch.  

The double-belted version of the cooling line solves this problem by sending the second batch of 

bread onto the different belt, which has an independent processing speed. We model this by 

allowing two recipes with the same cooling time to follow each other head to tail, whilst sending 

other recipes to the second belt. If a third batch with (again) a different cooling time follows whilst 

both belts are occupied, it then has to wait until either of the belts free up. Note that this double 

cooling spiral is the feature that makes our flow shop model “Hybrid”, as described in Section 3.1. 

The rest of the model consists only of single machines. We can set a certain tolerance for acceptable 

cooling time in the dataset, since often in real-life cases bakers will ignore or otherwise alter their 

production guidelines to allow non-ideal batches to follow closely on the cooling belt. Note that with 

the simple rules we set in the usage of this double cooling belt, the outcome of the model is still 

deterministic. Although total makespan is influenced by the choice that is made, these rules will lead 

to minimal makespan per sequence in the plan.  

Freezing Spiral 

Finally the freezing module is also closely linked to the cooling spiral. It is essentially the same 

machine but ramping downwards, even sharing the same belt. If the freezer is enabled, we model 

this by doubling the required cooling time for any recipe. When a double cooler is installed, a double 

freezer is also present and it does not add any further complications to the model. 

As such there are four machines which cause considerable variation in the duration of the makespan, 

all four with two variants. The rising chamber, with either one or multiple towers, the oven with or 

without partition (we will assume partition into four equal parts), the cooling belt either with or 

without a twin, and a freezer line which either is or is not present. These four machines with two 

options each result in a total of 24  =  16 possible versions of this machine line, easily enabled or 

disabled by changing the settings in the Excel file. Luckily this set of machine variants is small enough 

that we can still perform a complete test on all of them within a reasonable time frame. 

 

𝐹𝑟𝑒𝑒𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑚, 𝑟, 𝑟 + 1)         

= 𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) +
𝑃(𝑚, 𝑟)

4
+ 𝐶ℎ𝑎𝑛𝑔𝑒𝑂𝑣𝑒𝑟(𝑚, 𝑟, 𝑟 + 1) 

 

 
𝑖𝑓 𝑃(𝑚, 𝑟) = 𝑃(𝑚, 𝑟 + 1) 
𝑓𝑜𝑟 𝑚 = 𝑜𝑣𝑒𝑛 
 

                                = 𝑀𝑎𝑥(𝐿𝑎𝑠𝑡𝐸𝑛𝑡𝑟𝑦(𝑚, 𝑟) +
𝑃(𝑚, 𝑟)

4
+ 𝐶ℎ𝑎𝑛𝑔𝑒𝑂𝑣𝑒𝑟(𝑚, 𝑟, 𝑟 + 1),    

𝐿𝑎𝑠𝑡𝐸𝑥𝑖𝑡(𝑚, 𝑟)) 

 
𝑖𝑓 𝑃(𝑚, 𝑟) ! = 𝑃(𝑚, 𝑟 + 1) 

𝑓𝑜𝑟 𝑚 = 𝑜𝑣𝑒𝑛 
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4.8:  Conclusion 
In this chapter we created a novel calculation method for the continuous multi-stage hybrid flowshop 

problem with anticipatory, sequence dependent batch setup time, no waiting in between batches 

and with a total makespan-minimization goal. Our calculation method immediately assigns minimal 

postponement-times per batch, to ensure no waiting times will occur on the line. It is specifically 

modelled to correspond with the Industrial Bakery Scheduling problem that Kaak faces, although it 

can easily be modified to correspond to other continuous flow-shop systems. We now have a 

functional way of calculating the makespan value of any production plan on any of 16 machine 

arrangements without waiting times in between steps. The model generally calculates the makespan 

value of any set of recipes at an average of 0.000333 seconds per recipe, or 3000 recipes per second. 

So, if a production plan of 10 recipes would need to be optimized, our Goal function could give the 

valuation of roughly 300 variants of this production plan per second. With this, we can now start to 

solve the scheduling problem. 
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Chapter 5:   Optimization of the Goal Function 
Now that we have a functional way of calculating the makespan of any input of production plan and 

machine settings, we can begin the process of optimizing these inputs. In this chapter we will discuss 

our implementation of the Nawaz-Enscore-Ham heuristic and two well-known meta-heuristics: Tabu-

Search and Simulated Annealing. These techniques have been tried and tested in numerous studies 

relating to flow-shop modelling, as seen in Section 3.2, and we feel they should be a good fit for our 

problems as well. 

5.1)  NEH Heuristic 
The Nawaz-Enscore-Ham (NEH) heuristic is a constructive heuristic for Flow-Shop models, as seen in 

Chapter 3. Our model is a little more complicated than the model described by Nawaz et al. (1982), 

since they do not take change-over times into account, accept waiting times, and consider each job 

to be a single entity (they have no problem with hundreds of peel boards closely following each 

other). Luckily, implementing a variant of this cheapest-insertion heuristic is quite simple when using 

the Goal function. We create three empty lists: two of which will contain a production plan and an 

associated makespan value, and one of which holds the final production plan. First, we enter each 

individual recipe and associated batch size in the production plan into the Goal function separately, 

and save the output together with the input in one of the lists. Essentially, this is the value of this 

single recipe as an individual production plan 𝐹𝑚|𝑛 = 1. This single-recipe production plan does not 

have any waiting- or postponement times, and so it is the minimal amount of time that any recipe 

will take to be baked. We sort this list from high to low makespans, leading to a sorted list of the 

value of the individual batches. See Figure 12 for a visual representation of the value calculation of 

these singular recipes. Note that this will result in the same sorted list of values for any initial 

production plan containing the same recipes and associated batch sizes. 

 

Figure 12: NEH Heuristic, first stage - single recipe makespan value calculation, and sorting 
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We place the first batch of this list, the individual batch with the highest makespan, in the final 

production plan. Now, we take the second recipe on the sorted list, and temporarily place it in all 

possible locations in the final list, checking the value after each placement. For the second recipe, 

this leads to two production plans that are saved to the second sorted list, as it can be placed either 

before or after the first recipe. We pick the production plan with the lowest timespan, empty the 

second sorted list, and repeat this procedure for the rest of the recipes in the first sorted list. So 

recipe three is placed at three different places in the final production plan, the best is picked, etc. 

Finally, this leads to a full production plan in which all recipes have been placed. See Figure 13 for a 

visual representation of this second part of the heuristic. This simple construction method 

significantly improves the value of a random initial solution and is very likely to find the optimal 

production plan when the number of recipes is small. It finishes in 𝑅 +  𝑅 ∗ (𝑅 + 1)/2 moves, often 

within one second for problems with 20 recipes.  

 

Figure 13: NEH Heuristic, second stage – production plan construction 

5.2)  Tabu Search 
Tabu-search, as explained in Section 3.2, is an improvement meta-heuristic that is commonly used to 

solve combinatorial problems, such as the Flow-Shop optimization problem. For our Tabu function, 

we experimented with the use of two separate local-search heuristics: a delete-insert heuristic, and a 

2-swap heuristic. Both local search functions create a list of at maximum 𝑅 ∗ (𝑅 − 1)/2 solutions, 

excluding the solutions that are already present on the tabu-list. The tabu-function then picks the 

best solution from this list that is not on the tabu-list. If it is better than a known solution, it is 

inserted in the list of known best solutions. That list of best solutions is then trimmed if it is too long. 

Either way, the chosen solution is placed on the Tabu-list, which also gets trimmed if it becomes 

longer than the allowed tabu-list size.  

We use a dynamic tabu-list size in this algorithm: if a new better solution has been found, the tabu-

list decreases in size by 1, to a minimum of 5. On the other hand, if no better solution gets found, the 

tabu-list increases by 1 to a maximum of (2.5 ∗ 𝑅). The function terminates after a set number of 

iterations, or after it encounters a solution that is already on the list of best solutions combined with 

the same length of tabu-list. That is a clear sign that the function has started looping around the 

same set of solutions, which would make it pointless to continue. In some small-scale experiments 

the delete-insert search outperforms the 2-swap search by a significant margin, of around 3% of the 
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makespan value in a series of 20 experiments, where in all but one cases tabu found a better solution 

with the delete-insert heuristic than the 2-swap heuristic. This aligns with the findings in the research 

of Taillard (1990) and other papers. Therefor we conduct the rest of our experiments with the delete-

insert option for Tabu-search. 

5.3)  Simulated Annealing 
Simulated Annealing, as was briefly introduced in Section 3.3, is an improvement meta-heuristic that 

is often used for a wide variety of optimization problems. It is originally based on the cooling 

mechanics of annealing metals. Our version works with both a 2-swap and delete-insert local search 

function, which show similar results. We also added a useful 2-swap local search function with the 

ability to lock recipes in place, which could prove useful if a manager needs to finish a recipe first or 

last and still needs to find an optimal sequence. This “lock” function essentially takes one or more 

recipes out of the pool of recipes that are to be swapped, and places them back in position 

afterwards.  

Our algorithm follows the common stratagem for SA, with a starting temperature and Markov-chain 

length of certain size, and an alpha-value [0 <  𝛼 < 1] which slowly decreases the temperature. In 

order to prevent confusion inside Kaak, a company that famously works with many different oven 

models operating at numerous heat levels, we will refer to this “temperature” as “Acceptance 

Factor” (AF). 

In Simulated Annealing an initial production plan is used as input of the local search function, which 

randomly selects a new solution in the neighbourhood of the input. The value of this production plan 

is then checked in the goal function. If the value is better (lower) than the current solution, it is 

accepted as a new production plan outright. If the value is better than that of any known solution so 

far, it is inserted in the list of best solutions. That list is then trimmed if necessary. So far it works just 

like a random exploitative function. 

If the value of the newly found production plan (NV) is not better than the old value (OV), we check 

the difference in value, divided by the current AF. This value is used as the exponential of e, always 

resulting in a value between 0 and 1, and the resulting number is then checked against a random 

number uniformly drawn between [0 , 1]. If the value of the calculated number exceeds the random 

draw, we accept the new solution and make it our new starting point. This results in a higher average 

acceptance rate of bad solutions if the AF is high, and if the difference between the two values is 

small.  

𝐴𝑐𝑐𝑒𝑝𝑡 𝑖𝑓: 𝑟𝑎𝑛𝑑(0,1) < 𝑒
𝑂𝑉−𝑁𝑉

𝐴𝐹  

An iteration consists of a set number of solution draws, leading either to acceptance or rejection. 

After a number of draws dictated by the Markov-Chain, the acceptance factor is then altered with: 

𝐴𝐹 =  𝛼 ∗  𝐴𝐹 

This then leads to a higher amount of exploration early in the algorithm, and higher amount of 

exploitation later in the algorithm. The algorithm ends if the AF drops to a pre-set level, if it runs out 

of iterations, or if it has added a new solution to the list of best solutions in a number of iterations. 

We start the algorithm with an AF of 25, a Markov-chain value of 50, and an alpha value of 𝑎 =

0.985. The maximum number of iterations is 250, the number of iterations between an improved 

solution is set at 2x the number of recipes. The minimum pre-set level of the AF is set at 0.04. Note 

that with the current alpha value, the algorithm never reaches this AF: at maximum it will drop to 

25 ∗ 0.985^250 =  0.0446. This would still be a relevant stopping criterium if the Alpha value is 
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changed though. This seems to provide a good balance between running time and exploration of the 

solution space.   

 
Figure 14: Scatter plot of solutions explored by Simulated Annealing algorithm in experiment with 15 recipes  

In Figure 14, a clear difference can be seen in the amount of exploration vs. exploitation at the start 

and end of the iterations. Note that each individual iteration consists of a set of draws, which is why 

the dots form vertical lines in the plot. Red dots appear when a newly accepted makespan was higher 

than the previous, blue appear when the new makespan is lower than the previous. White answers 

are more neutral. In this experiment, the algorithm concluded way before the maximum number of 

250 iterations was reached. This is because the algorithm failed to add a better solution to the 

solution list for 30 iterations, which is two times the number of recipes included in this test.   

5.4)  Conclusion 
In this chapter we developed three distinct optimization methods for our value function. One for 

initial construction of a valid solution, and two for further optimization. We can now begin with 

experiments to validate the model and test the methods. 
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Chapter 6:   Validation and Experimentation 
In this chapter we will firstly validate the model we created by solving a representative customer 

support case, to see if the model is a good representation of a real-world system and if it gives 

satisfactory answers to the questions customers are likely to ask. Secondly, we will run a series of 

randomized experiments with varying amounts of recipes in the production plans, to test the 

performance of our different solution methods. This will allow us to optimize the tool for further use, 

by utilizing the best solution methods for certain types of problems and eliminating unnecessary 

trials. Finally, we will run a second set of experiments with production plans of the same amount of 

recipes, but with different batch sizes. This last set of experiments will allow us to see the effects that 

varying machine models have on average makespan, both individually and in combination with other 

machines. 

6.1)  Model Validation 
An example case of a set of production plans and corresponding customer questions were shared 

with us by a Kaak employee, which we translated and transcribed below. The production plan 

concerns a weekly production target, which is to be averaged out over the different days. It is 

reasonable to assume that this bread factory will take an average of one day per week off to do 

proper maintenance and cleaning of machines, and as such our daily production target can be safely 

regarded as the weekly production target divided by six. The case revolves around a factory with a 

standard dough dispenser, an advanced rising chamber, a normal oven, a single cooling tower and no 

freezer. We can model this by enabling the advanced rising chamber in our standard model. The 

questions regard a change of production plans for the weeks around Easter, when extra types of 

bread are in demand. The normal plan consisted of five recipes, but around Easter two extra recipes 

are added to the plan. First, let us look at the (translated) production plan, as seen in Table 5. Here 

the two extra recipes, specifically for Easter, are added in row 6 and 7.  

Table 5: Recipes and quantities for example case, 1-5 for normal plan, 6-7 for Easter. 

Recipe nr. Recipe Name Amount Amount/plb plb/week plb/day 

1. Baguette tradition 100,000 20 5000 834 

2. Demi Baguette 150,000 44 3410 569 

3. Ciabatta 90g 125,000 88 1421 237 

4. Ciabatta 300g 70,000 27 2593 433 

5. Pumpkin Seed Bun 50,000 63 794 133 

6. Easter Bread 25,000 11 2273 379 

7. Brioche Bun 45,000 40 1125 188 

The production times for these recipes are as follows: 

Table 6: Production times for recipes in example case 

 Line capacity 
[plb/hour] 

Turner Rising 
Time [min]  

Baking 
Time [min] 

Baking Temp 
[°C] 

Cooling 
Time [min] 

1. 400 No 90 18 240 70 

2. 400 No 90 14 240 70 

3. 400 Yes 90 12 220 70 

4. 400 No 90 15 220 70 

5. 400 Yes 90 13 230 70 

6. 400 No 60 30 220 70 

7. 400 No 60 12 235 70 
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The customer had the following questions regarding the initial and secondary situation respectively: 

Initial situation: 

- What is the optimal sequence for this production plan? 

- What would the total makespan for this sequence be? 

- Which machines have the biggest influence on this plan? 

- What is the ratio between productive and unproductive time? 

Secondary situation: 

- What would be the best place to add the two recipes? 

- If we want to compensate the extra time in the second scenario, how many demi-baguettes 

should we cut from the plan? (Note that the choice for demi-baguettes appears to be 

random, but this is representative of real-life questions) 

- What is the ratio between productive and unproductive time? How does this compare to 

scenario 1? 

- If we want to finish the Easter Bread (Paasbrood) first, how much time would this cost 

compared to the optimal sequence? Which other viable sequence would push it forward as 

much as possible? 

Additionally, we will investigate which, if any, machine upgrades we should recommend in the 

second case.  

Initial Situation 

For the primary situation, the best solution was found by both the tabu-search and simulated 

annealing methods; the five recipes should be placed in sequence (1, 2, 5, 3, 4), with a makespan 

value of 562.15 minutes. Figure 15 displays the Gantt-Chart of this production plan.  

 

Figure 15: Gantt Chart of optimal initial sequence, combined chart of processing time and entry/exit times 
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The ratio of productive and unproductive time has to be properly defined: if we define “productive 

time” as the time where any of the machines in the line are actively processing products, then in this 

production plan there would be 100% productive time, since there is no overlap of unproductive 

times across all machines. However in this production system that would always be the case, since 

each recipe is always active in at least one machine due to the continuous nature of the system. As 

such, this is a bad definition. 

If we measure productivity per machine, this will give us more accurate data on the time a machine 

spends actively processing buns. However “activity” itself is not a good indicator of productivity 

either: if two batches of 1 peel board with different cooling times follow each other in the cooling 

tower, the change-over time may be negligible after batch 1 has left the belt, and the machine may 

be processing a single peel board 100% of the time, but this is clearly not an efficient use of available 

machine capacity. We therefor decide to measure productive time by comparing the active time in 

the dough dispensing step to the total time the dough dispenser is used. Any delays in this step point 

to inefficiencies further down the line that have to be solved with extra postponement times. The 

dough dispensing step has low processing times, and small batches cannot keep it occupied for long 

stretches of time: by measuring the performance of this step, we will actually measure the rate at 

which new peel boards enter the system. Combining this metric with the makespan of a production 

plan will be a much better indicator of overall planning efficiency. 

In the first experiment with five recipes, the total time the dough dispenser was active was 325.74 

minutes, and the last bun exited this step 385.15 minutes after the start of production. This leads to 

a productive time of 84.6% in the dough dispenser. This means that 15.4% of the activity around the 

dough dispenser was used for either change-over operations or postponement time. 

The machine with the biggest impact on this production plan is the oven. In the dataset that was 

provided, the rising and cooling time are equal for the first five recipes. The baking time and 

temperature were different for each recipe. This can be clearly seen in Figure 15 where the climas 

and cool-freeze steps show significant overlap between subsequent recipes, while the oven has no 

overlap, and minor change-over times.  

Secondary Situation 

We added the two easter recipes to the production plan. The best solution was found by the SA 

algorithm with a makespan value of 687.85 minutes, which is 125.7 minutes longer than the previous 

production plan. The best sequence would be (7,6,1,2,5,3,4), adding recipes 7 and 6 to the start of 

the plan, although this solution is tied with several others. The ratio of productive and unproductive 

time is 80.4% in the dough dispenser. If we would want to cut a number of demi-baguettes to 

compensate for the extra two hours of production time, we would need to cut them all from the plan 

to reach a minimum makespan value of 587.5 minutes. This means that cutting the demi-baguettes 

alone is not enough to compensate the extra production time of the easter recipes. 
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Figure 16: Gantt Chart of optimal secondary sequence, combined chart of processing time and entry/exit times 

To answer the question about putting recipe 6, “Easter Bread”, first, we make use of the 2-swap lock 

function for Simulated Annealing. We place recipe 6 first in the production plan manually, lock it in 

place, and let the algorithm find alternative solutions. It found three equal solution candidates, with 

product sequences (6,1,2,5,3,4,7), (6,1,2,5,4,3,7) and (6,2,1,5,4,3,7) respectively. The makespan for 

these three solutions is 696.7 minutes, which is 9.85 minutes longer than the real optimum in which 

the Easter bread is placed second. Interestingly, recipe 7 gets shifted to the end of the sequence, 

whereas it would have been first in the optimal sequence. This is likely due to its short rising time, 

which would have been difficult to fit in between other batches.  

Finally, seeing as the main obstacle to achieving a lower makespan appears to be the oven module, 

we will test out the oven partition variant with four separate heating zones. In this setup the new 

best found sequence is (6,1,2,4,3,5,7) or (6,2,1,4,3,5,7), both with a makespan of 678.7 minutes. This 

is a difference of only 9.15 minutes with the original optimum, although it does place recipe 6 first in 

the queue as the customer requested. It is interesting that by upgrading a machine, the most 

efficient sequence of recipes changes to another: this underlines why it was hard for Kaak to predict 

the effect that different machine models had on their production plans. Even if a customer was 

previously working with an optimal production plan, a change in machines can lead to a different 

sequence being optimal, meaning that the true benefit of upgrading the machine was unlikely to be 

discovered. A final Gantt chart of one of these sequences is shown in Figure 17. Note the overlap in 

the production time in the oven for recipes 3, 5 and 7, which have the same baking time but different 

baking temperatures (see Table 6): this is the change enabled by oven partition. Oven partition has a 

positive effect on this production plan, but perhaps not enough to warrant an upgrade of the entire 

oven module. We will leave that to the judgment of the customer. 
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Figure 17: Gantt Chart of optimal secondary sequence with oven partition, combined chart of processing time and entry/exit 
times 

We believe this small test accurately portrays the ease of use of the tool, and the assurance it will 

give a user of the accuracy of the provided solutions. After the dataset was updated, the running 

time of the simulations was only slightly over 5 seconds. This type of flow-shop model, let alone the 

accompanying optimization procedures, were non-existent within Kaak before. As such it represents 

a significant improvement over the rules-of-thumb that would normally be used to answer such 

customer questions.  

6.2)  Randomized Experiments 
The randomized experiments will take the following form, loosely inspired on the set of experiments 

by Ruiz and Maroto (2004). We create a list of randomized production plans, and test each plan on all 

16 different versions of the machine line, for all different solution methods. The best answers will be 

gathered, as well as the time taken to reach each solution. The output of the following solution 

methods will be gathered: 

- Primary Input 

- NEH 

- Tabu Search 

- Simulated Annealing 

- NEH + Tabu Search 

- NEH + Simulated Annealing 

The primary input is the outcome of the input production plan, without alterations to the initial 

random sequence. This will set a clear benchmark for the other experiment factors. With the NEH, 

Tabu and SA solutions, we take the initial input and feed that into the aforementioned algorithms. 

The NEH + Tabu/SA solutions are solutions where we take the initial production plan and construct a 

better solution with the NEH heuristic, before feeding that into the aforementioned meta-heuristics.  
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We will test these solution methods on a set of production plans that will be randomly generated, 

within the boundaries set in Table 7. We insert smaller average batch sizes for production plans with 

many recipes, because production managers will try to fill up a working day, and no more than a 

working day, if they can. A production plan with many recipes would therefor generally only have 

small batch sizes, and vice versa. This is an attempt to ensure the production plans come as close as 

possible to realistic scenarios. Again, note that the initial sequence of recipes in these samples is 

random. That means that statistically, at least 1/6th of the recipes in the set of production plans with 

three recipes are already optimal. 

Table 7: Experiment 1, setup and repetitions  

#of recipes in Production Plan #of Peel boards per Recipe #Repetitions 

3 [300 - 600] 100 
7 [150 - 450] 80 
10 [120 - 300]  50 
15 [90 - 240] 25 
20 [60-180] 10 
Total Samples:  265 

 

This list of production plans will be unaltered, but be applied onto the different machine lines. Thus, 

we will perform 265*16 = 4,240 individual experiments in the first experiment run. From these 

experiments we will save the following data: 

For each machine-setup, for each production plan: 

- For each solution method, the best solution value  

- For each solution method, running time of the algorithm 

This will then allow us to determine the best-performing solution method per amount of recipes. We 

define the best solution as the solution with the lowest makespan. In cases where two methods find 

the same best solution, the one with the fastest time gets precedence.  

In addition to this first experiment with different amounts of recipes and batch sizes, we also run a 

second experiment for production plans that all have 10 recipes, but big differences in batch size. 

This will allow us to clearly see the effectiveness of the different machine models when dealing with 

different batch sizes. In this second experiment run we will use the optimization methods that have 

proven most efficient according to the first experiment. See Table 8 for an overview of the second set 

of experiments. As with experiment 1, we will save the best answers per solution method. 

Table 8: Experiment 2, setup and repetitions 

#of recipes in Production Plan #of Peel boards per Recipe #Repetitions Name 

10 [60 - 180]  50 10S 
10 [120 - 300] 50 10M 
10 [300 - 600] 50 10L 

 

6.3)  Performance of solution methods 
After the first run of experiments we can take a look at some interesting performance data. First, let 

us focus on the effectiveness of the different solution methods, before turning to machine 

performance. 
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A clear division exists in the solution method that comes up with the best solution depending on the 

amount of recipes. (see Table 9 for an overview). In production plans with three recipes, only six 

possible solutions exist. One or more of those six can be optimal, and since the initial solution is 

randomized we see almost 1/5th of the initial solutions are already optimal. Excluding those cases, 

the most prevalent solution method was the NEH heuristic, followed closely by the tabu methods. 

Tabu will always find the fastest solution in these small solution spaces if NEH fails to do so, and is 

much faster than SA in these cases because it excludes previously visited solutions. After a maximum 

of six iterations, tabu search is done, whilst simulated annealing processes these solutions for 

multiple iterations before realizing it has already checked them multiple times.   

Table 9: Experimental Results – Amount of times the best (or best & fastest) answer was provided by this method 

#recipes Init NEH Tabu SA NEH+Tabu NEH+SA Total 

3 308 1106 103 0 83 0 1600 

7 0 487 177 173 275 168 1280 

10 0 162 101 169 182 186 800 

15 0 36 64 58 100 62 320 

20 0 7 38 23 60 32 160 

Total 308 1,798 483 423 700 448 4160 

 

If we extend the production plans to 7 or more recipes, the balance begins to shift. Whilst it still 

comes up with the best solution in 488/1,280 times, the NEH heuristic gives way to a relatively even 

mix of Tabu, SA, NEH+Tabu and NEH+SA solutions. A notable outlier is the NEH+Tabu heuristic, which 

seems to excel past the performance of normal Tabu-solutions in every experiment.  

It is important to also see the average time spent per solution in this context. See Table 10 for an 

overview of the average calculation cost per result. Tabu search in particular seems to spend a lot of 

time calculating when more recipes come into play. This is logical: our Tabu-search function creates a 

list of all neighbors and picks the best one, and also keeps a tabu-list that is linearly influenced by the 

amount of recipes in the production plan. In other words, its calculation costs increase exponentially 

as more recipes need to be placed in a correct sequence. Simulated annealing on the other hand 

takes far less long in the final experiments, because it has a set number of iterations, and each 

iteration is no more computationally intensive than it would be in small solution sets: it always picks 

a single random neighbor instead of initializing the entire neighborhood. We could fiddle around with 

the settings of the simulated annealing algorithm to make it run a little longer, and hopefully find the 

best answer more often. 

Table 10: Experimental results: Average running time of this method per number of recipes in seconds, rounded to 3 
decimals 

#Time Init NEH Tabu SA NEH+Tabu NEH+SA Total 

3 0.001 0.005 0.014 0.306 0.014 0.365 0.705 

7 0.002 0.041 1.738 2.012 3.197 2.062 9.054 

10 0.003 0.111 11.062 5.088 13.057 4.714 34.035 

15 0.004 0.364 60.896 14.493 63.996 12.071 151.824 

20 0.006 0.845 184.310 34.840 181.993 23.452 425.446 

Total 0.016 1.365 258.020 56.739 262.258 42.665 621.064 
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Is the calculation cost of the Tabu function for big batches excessive? If calculating a single solution 

of 20 recipes costs 0,006 seconds, calculating for an average of 180 seconds would mean that roughly 

30,000 solutions were checked within that time. For a solution size of (20!), that is by no means 

excessive or unexpected. If we assume that for each iteration, n*(n-1)/2 checks of the goal function 

are performed in order to pick the best, that comes down to roughly 158 iterations. Whilst testing a 

great set of experiments like in this thesis may take days, an experiment time of several minutes 

should not pose a problem for Kaak if they ever use this program to solve a singular customer 

question. Especially since cases with 20 recipes are not likely to show up often. 

To really see the difference in performance of the respective function, it may be more prudent to 

look at the degree of separation between the best-found solution and others. If one method found 

the best makespan, and another method found a slightly higher makespan in only 10% of the time, 

that might be of influence on the method we end up adopting for big simulation runs, like 

experiment 2. In Table 11 this value is displayed as an average of the results from all solutions that 

were found. For example, that means that on average, the NEH+SA method found an answer that 

was only 0.5% higher than the actual best makespan in all experiments with 10 recipes. This includes 

the experiments where it actually found the best makespan, or where it was tied with others.  

Table 11: Average deviation from best-found answer 

#Recipes Init NEH Tabu SA NEH+Tabu NEH+SA 

3 6.3% 0.4% 0.0% 0.0% 0.0% 0.0% 

7 21.8% 2.6% 1.5% 0.3% 0.7% 0.1% 

10 31.4% 4.3% 2.5% 0.9% 1.4% 0.5% 

15 39.7% 5.1% 3.1% 2.0% 1.4% 0.9% 

20 47.8% 5.3% 4.0% 2.6% 2.3% 1.6% 

 

In fact if we look at this metric, the NEH+SA method has a more reliable average performance than 

all the other options we studied, whilst taking the least time out of all the meta-heuristics. For this 

reason we use SA and NEH+SA as the solution method for our second experiment run. However for 

solving normal customer questions, like in 6.1, we see no reason to exclude the Tabu-search 

heuristics from our tool box, since in those cases it will only add minutes to total solution time, and 

may come up with better results. Since every set of experiments was performed on the same 

grouping of production plans, the results are not independent. Whilst there is often a difference 

between the optimal sequence because of the changing machine line, production times and often 

change-over times do stay the same between different experiments.  

6.4)  Machine arrangements and interaction effects 
We performed 16 runs of experiments with the different machine setups. With this set of 

experiments we perform a simple ANOVA test concerning the overall impact that different machine 

arrangements have on the average makespan, as well as the possible interaction effects between 

machines. First we will address the average outcomes per number of recipes, then the effects of the 

individual machines, then the interaction effects. We will also show some of the same data collected 

from the second experiment run, for context.  

Firstly, let us look at Table 12 where the results of experiment 1 are displayed. We took the average 

of the best solutions that were found for each individual production run, regardless of the solution 

method. Again, note that each machine arrangement was tested on the same set of production plans 

and so these results should be representative of the performance of the entire line. How to read this 
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table: Run 1 was the run with no advanced variant for the climate closet, no oven partition, no 

double cooling spiral, and no freezer. The average result of the production runs with three batches 

on this line was a makespan of 481.93 minutes. In run 2, we added a freezer to the line, which 

lengthens the cooling step and in this case resulted in an average optimal makespan of 641.24 

minutes for the same set of production plans with three recipes. The average makespan of all 

production plans with three recipes on al 16 line varieties is 503.09 minutes. 

Table 12: Average makespan in minutes of experiment according to number of recipes and machine variants, experiment 1 

 Run Climas Oven_P D_Cooler Freezer 3 7 10 15 20 

1 FALSE FALSE FALSE FALSE 481.93 674.81 731.66 876.35 916.22 

2 FALSE FALSE FALSE TRUE 641.24 871.81 907.98 1029.04 1058.02 

3 FALSE FALSE TRUE FALSE 435.78 620.71 669.02 807.22 871.38 

4 FALSE FALSE TRUE TRUE 510.42 700.14 760.27 903.14 957.03 

5 FALSE TRUE FALSE FALSE 480.17 668.34 717.18 854.73 888.22 

6 FALSE TRUE FALSE TRUE 640.16 868.72 901.33 1014.61 1029.79 

7 FALSE TRUE TRUE FALSE 430.54 604.41 642.33 760.70 795.80 

8 FALSE TRUE TRUE TRUE 505.73 687.78 740.64 852.68 888.14 

9 TRUE FALSE FALSE FALSE 466.05 631.62 644.53 748.28 806.69 

10 TRUE FALSE FALSE TRUE 635.31 854.01 858.07 890.26 881.64 

11 TRUE FALSE TRUE FALSE 391.81 552.63 595.40 733.48 796.86 

12 TRUE FALSE TRUE TRUE 474.12 626.40 666.25 805.22 867.93 

13 TRUE TRUE FALSE FALSE 465.17 629.98 637.26 721.83 744.11 

14 TRUE TRUE FALSE TRUE 634.34 852.86 858.08 890.26 851.14 

15 TRUE TRUE TRUE FALSE 386.82 535.37 566.49 683.08 717.76 

16 TRUE TRUE TRUE TRUE 469.86 611.95 640.39 755.17 787.45     
Average: 503.09 686.97 721.06 832.88 866.14 

 

Consistently, the best performing machine line without a freezer (FALSE) is 15, and the best 

performing machine line with a freezer (TRUE) is 16, across all production plan sizes. It should come 

as no surprise that these lines are the most advanced in the experiment, and have all the other 

advanced machine variants enabled.   

With the use of this data we can calculate the effect 𝑒 of enabling the different machines, using 

simple ANOVA 1-factorial experiments. This is done by comparing the solution with the machine, 

𝑆𝑇𝑟𝑢𝑒,𝑖  to the solution with the same system settings but without the machine, 𝑆𝐹𝑎𝑙𝑠𝑒,𝑖. Since there 

are 16 solutions, and thus 8 pairs of True and False solutions for every machine, we use the formula: 

𝑒1 =
1

8
∗ ∑(𝑆𝑇𝑟𝑢𝑒,𝑖 − 𝑆𝐹𝑎𝑙𝑠𝑒,𝑖)

8

𝑖=1

 

to find the average added value. The added value of an average line with one of the advanced 

machine variants enabled vs. not enabled is shown in Table 13 for experiment run 1, and Table 14 for 

experiment run 2. This represents the extremes of the curve: if it were possible to turn on half a 

machine, this would result in obtaining the average result. Note that the these numbers are negative 

for all machines, except for the freezer. This is because the freezer adds much extra time to the 

cooling step, whilst the other machines make the process a lot more flexible and thus help to save 

time. Since our objective is to minimize the makespan, negative numbers represent good results in 
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these tables. Based on this table, if a hypothetical bakery had a production plan with 15 recipes, and 

only enough money to upgrade one of these machines, we would recommend they pick the 

advanced Climate Closet, since that will save them an average of 108.9 minutes in makespan.  

Table 13: Impact of machines on makespan in minutes (left) and as a percentage of total makespan (right), based on 
experiment 1. 

#Recipes Climas Oven_P D_cooler Freezer Climas Oven_P D_cooler Freezer 

3 -25.3 -3.0 -104.9 121.6 -5.0% -0.6% -20.9% 24.2% 

7 -50.2 -9.1 -139.1 144.5 -7.3% -1.3% -20.2% 21.0% 

10 -75.5 -16.2 -121.9 141.1 -10.5% -2.2% -16.9% 19.6% 

15 -108.9 -32.5 -90.6 119.3 -13.1% -3.9% -10.9% 14.3% 

20 -118.9 -56.7 -61.7 98.0 -13.7% -6.5% -7.1% 11.3% 

 

Table 14: Impact of machines on makespan in minutes (left) and as a percentage of total makespan (right) based on 
experiment 2 

#Recipes Climas Oven_P D_Cooler Freezer Climas Oven_P D_Cooler Freezer 

10 S -78.5 -14.8 -116.1 147.6 -12.9% -2.4% -19.1% 24.3% 

10 M -71.2 -14.7 -125.8 143.9 -9.8% -2.0% -17.4% 19.9% 

10 L -114.1 -61.6 -89.3 181.9 -10.9% -5.9% -8.5% 17.3% 

 

From these results we can deduce some basic conclusions about the effects of the machines on 

average makespan. The oven partition step only has limited use in instances of small to medium 

batch sizes, probably because potential waiting time before the oven is outweighed by waiting time 

in other, more influential steps like the cooler. The double cooler becomes less effective in large 

batches, or if many recipes are in a production plan. It is clear that the freezer adds significantly to 

the overall processing time, although the impact of this effect decreases when the number of 

batches increases. Overall, it should come as no surprise that lower average makespan is achieved in 

each case if the machines use the advanced variant, and that adding a freezer to the line increases 

the makespan. 

However, we should not forget about the interaction effect between different machines. The added 

effects of two machines can help offset the added time cost of, for example, a freezer step. We alter 

the formula to compare two factors at the same time, with four pairs with and without both factors:  

𝑒1,2 =
1

8
∗ (∑(𝑆𝑇𝑟𝑢𝑒,𝑇𝑟𝑢𝑒,𝑖 − 𝑆𝐹𝑎𝑙𝑠𝑒,𝑇𝑟𝑢𝑒,𝑖)

4

𝑖=1

− ∑(𝑆𝑇𝑟𝑢𝑒,𝐹𝑎𝑙𝑠𝑒,𝑗 − 𝑆𝐹𝑎𝑙𝑠𝑒,𝐹𝑎𝑙𝑠𝑒,𝑗)

4

𝑗=1

) 

Leading to the following tables with results, with Table 15 displaying the interaction effects per 

possible second-degree interaction. In Table 16 the same values are displayed as a fraction of the 

average makespan for this step for clarity. The interaction effects for experiment 2 are shown in 

Table 17.  
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Table 15: Average Interaction Effects between machine variants in minutes, experiment 1 

Interaction Effect 3 7 10 15 20 

Climas + Oven_P 0.21 0.46 0.68 0.77 -6.49 

Climas + D_cooler -14.65 -21.44 -10.44 22.17 33.29 

Climas + Freezer 4.33 4.43 3.64 -5.78 -17.33 

Oven_P + D_cooler -1.81 -6.00 -9.09 -16.87 -19.34 

Oven_P + Freezer 0.23 1.33 3.15 3.76 4.65 

D_cooler + Freezer -42.82 -66.19 -57.57 -36.40 -18.32 

 

Table 16: Average Interaction Effects between machine variants as a percentage of average makespan, experiment 1 

Interaction effect Total 3 7 10 15 20 

Climas + Oven_P -0.1% 0.0% 0.1% 0.1% 0.1% -0.7% 

Climas + D_cooler -0.2% -2.9% -3.1% -1.4% 2.7% 3.8% 

Climas + Freezer -0.1% 0.9% 0.6% 0.5% -0.7% -2.0% 

Oven_P + D_cooler -1.4% -0.4% -0.9% -1.3% -2.0% -2.2% 

Oven_P + Freezer 0.3% 0.0% 0.2% 0.4% 0.5% 0.5% 

D_cooler + Freezer -6.5% -8.5% -9.6% -8.0% -4.4% -2.1% 

 

Table 17: Interaction Effects between machine variants, in absolute minutes and relative percentages, experiment 2 

Interaction effect 10S 10M 10L 10S 10M 10L 

Climas + Oven_P -0.51 0.96 -40.29 -0.1% 0.1% -3.8% 

Climas + D_cooler -15.44 -10.58 40.88 -2.5% -1.5% 3.9% 

Climas + Freezer -0.44 3.05 49.81 -0.1% 0.4% 4.8% 

Oven_P + D_cooler -7.52 -8.27 32.90 -1.2% -1.1% 3.1% 

Oven_P + Freezer 1.68 2.36 46.00 0.3% 0.3% 4.4% 

D_cooler + Freezer -55.73 -63.40 -109.83 -9.2% -8.8% -10.5% 

 

From these two experiments it is clear that the most impactful combination of machines, if they are 

both enabled, is the combination of a double cooler and freezer. This makes sense: adding a freezer 

to the line vastly limits the flexibility of the cooling spiral whilst also lengthening the makespan of any 

product on the line. Adding a double cooling spiral will decrease the negative effects this has, 

especially if the batches are larger on average and less opportunities exist to match recipes of the 

same speed. As such, adding a double cooler to a line where freezing the buns is a necessary part of 

the production step should be realistically considered. Another interesting combination would be the 

advanced variant of the rising chamber (Climas) with the double cooler. That would be especially 

helpful if the number of recipes in a production plan is smaller than ten, or with small batch sizes, in 

this example. If batch sizes are large, combining the climate chamber with oven-partition has a large 

impact. 
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6.5)  Conclusion 
Using our model, we provided clear answers to a number of customer questions regarding 

scheduling dilemmas that Kaak engineers currently would have spent weeks debating. We also 

tested our solution methods, resulting in a belief that for big experiment runs, using Simulated 

Annealing methods is faster than Tabu search. However, for singular customer questions, there is no 

reason not to also utilize the Tabu-search functions, since the method only takes moderately longer 

than Simulated Annealing on big production plans, and may come up with better answers. We found 

a good overview of the singular- and interaction-effects of the different machine models, which will 

provide Kaak with a lot of insight into the added value of potential new machine arrangements, and 

the added benefit of flexibility on the line. Adding flexibility generally seems to improve the use of 

available production capacity. The results in this chapter are interesting, but come with a small 

caveat: they are only tested on a single dataset of bread recipes from a single customer. Whilst the 

diversity in this dataset is quite big, results may vary from customer to customer.  
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Chapter 7:   Conclusions & Recommendations 
7.1)  Conclusions 
In this thesis we researched the Industrial Bakery Scheduling problem, and came up with a novel 

calculation model to handle the continuous, batch-driven nature of the system. The model seems to 

perform well and serves as a good proof of concept for the problem Kaak is facing. The calculation 

model holds up to scrutiny and can be extended to handle many more machines and recipes if 

necessary. It is efficient at calculating the required minimal postponement times. We believe the 

model could also be applied to other scheduling problems facing the agri-food and/or manufacturing 

industry, where different batches of thousands of identical products are produced on the same 

continuous production line, with sequence-dependent change-over times in between batches. Think 

for example of a beer bottling plant, or a pasta factory.  

Our optimization methods were based on tried and tested techniques, which performed as well as 

we could have expected. We did not find any unexpected results from utilizing the optimization 

techniques we did in our model. For the size of the problem, the current optimization techniques 

perform well enough, but further methods could be the subject of future research. Also, our “Hybrid” 

flow-shop model only had a single stage at which multiple machines could be chosen. In a model 

with multiple stages with multiple machines, the solutions provided by our model may become less 

deterministic and harder to solve. If such a case were to occur, increasing the range of possible 

optimization methods may be necessary. That is not very likely to happen for the small-bread line, 

but a problem Kaak could encounter is when two near-identical lines are placed in the same factory, 

and a choice has to be made which recipes to produce on which line. This would also be a situation in 

which the research by Jordan & Graves (1995) would be more applicable. 

In initial experiments on an example customer support case, we used the model and the optimization 

methods to provide good answers to the questions that were posed. We found product sequences 

that were optimal, alternative production plans that lock a certain recipe in a sequence, and clear 

answers to how to balance production plans to accommodate new recipes. This same method of 

working can be extended to further customer cases without much issue. Furthermore we 

experimented with the effects of production plan- and batch-size on makespan, in combination with 

16 different versions of the machine line, leading to new data regarding the performance of certain 

machine lines and machine combinations. This serves as a good showcase of the flexibility of the 

model to encompass different machine models, and the relative ease with which new machines can 

be added by altering the formulas for that specific machine.  

7.2) Recommendations 
The use of the tool that was built will help Kaak and its customers to make better use of time on new 

and existing machine lines, by optimizing the usage of change-over time between different batches. 

A simple check before recommending a production plan could save a great deal of time, in essence 

adding production capacity, and thus value, to production facilities. The tool will allow Kaak to 

properly advise its customers about the upgrading or integration of newer, more flexible machine 

models into the production process. It can also serve as a guide to the added value of (further) 

developing those more flexible machine models. We would advise to continue development of this 

tool, for example by extending the range of machine variants in the model. It should be possible to 

apply the same model to the loaf-bread line without much trouble, since it shares many similarities 

with the small-bread line. Building a proper user interface may help to increase the value to staff in 

the sales and engineering departments.  
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In terms of further research relating to the Flow Shop model, we would advise Kaak to perform an 

extensive survey to check the types of bread that its’ many customers produce, and to create a 

complete dataset per customer with the production-times of recipes concerning different production 

steps. Especially the pre-rise step deserves more attention in our opinion, since we had to skip that 

step in our Flow-Shop model due to lack of data. The scheduling of recipes in the pre-rise step could 

prove to be of great influence on the outcomes of our model. Looking into change-over times 

regarding different types of product carriers would be another factor that has to be considered in an 

extended version of the model: whilst we assumed that all small-bread lines use a unified model of 

peel boards, some exceptions exist that may necessitate a more impactful change-over between 

different bread types. Also, differences in tact-time may have a great impact on the types of change-

over that are allowed, which was a factor that is lacking in this thesis. 

Kaak has struggled with simulating their complete machine lines for a few years by this point, and 

they initially reached out to the University of Twente for help to develop a Discrete Event Simulation 

(DES) model of their small-bread line. We stopped development of that model due to the scheduling 

problem that is the subject of this thesis and a lack of verifiable data on the stochastic aspects of the 

production process. Now that the Industrial Bakery Scheduling problem has been solved, we advise 

they look into building that model again. Especially machines that are prone to jamming, such as the 

packaging lines, as well as machines that require lots of physical intervention, such as the loading of 

dough into the dough dispenser, or the part of the line between the rising chamber and oven, would 

be well-served by building a DES model to help test the robustness of the different production plans 

that will be recommended by our flow-shop solution. Specifically, the movement of personnel to 

make physical alterations to the machines as a part of either change-over processes or due to 

breakdowns cannot be simulated in our flow-shop model, since these problems are discrete in nature 

and happen with a lot of uncertainty. A more robust DES solution is needed here. 

Another, much more technical, problem Kaak regularly encounters is the simulation of their 

Programmable Logic Controllers (PLC’s), the electrical components that send complex movement 

orders to the machines they build. Simulating a single machine is relatively easy, but since machines 

always work together in a complex line this presents a huge problem. These problems are too large 

and intensive to solve in their regular tools, such as NX-MCD. That goes for the manpower that is 

needed to program the problems, as well as the computational limits of their PCs. For this, looking 

into a DES-PLC programming solution may be key, since it should be possible to leave out many of 

the mechatronic aspects of the PLC simulation. This is truly out of scope for this project, however. 
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List of common phrases and abbreviations 
Phrase Description 

DES Discrete Event Simulation 
(Product) 
Carrier 

Depending on the factory, dough balls will be dispensed onto or into a product 
carrier in a set pattern, to protect their shape and prevent stretching. In the 
small-bread line, so called “peel boards” are the most common. Other product 
carriers include baking pans, in which loafs of bread are baked with a lid on top, 
or wave-carriers which are sometimes used as heat-resistant open baking pans 
for baguettes. We calculate production throughput in terms of Product Carriers, 
even though they are removed halfway through the process. 

Climas/ Rising 
Chambers 

Climate Chambers, place where dough rests and rises during production run. The 
temperatures and humidity are kept at a constant level. Commonly called Rising 
Chambers. 

Flow-Shop Production environment where all products follow the same predictable route 
along different machines. 

HFP Hybrid Flow-shop Problem, a deterministic problem where products follow a set 
of steps through different processing stations, and where at least one step has at 
least two independent stations. 

Makespan Total production time, from first entry onto the line to final exit from final 
machine, of individual batch of products or entire production plan, depending on 
context. 

NEH Abbreviation of “Newaz-Enscore-Ham”, the authors of the paper in which they 
first described their efficient cheapest-insertion construction heuristic applied to 
flow-shop models 

PLBs Peel Boards. See “(Product) Carrier”. 
PLC Programmable Logic Controllers: the computers that send machines their 

commands, to direct movements or responses to sensor- or user-input. 
Postponement 
Time 

The time that is added as waiting time *before* a recipe is first dispensed onto 
the production line, to avoid waiting times during the continuous production run. 

Production 
Plan 

A set one or more of recipes and the amount in which they will be baked on a 
given production day, in a specific sequence. 

Recipe A specific type of bread and the processing times, tact-time, baking temperature 
and other factors associated with producing it. 

SA Abbreviation of Simulated Annealing, an improvement heuristic in which random 
neighboring solutions are chosen, and sometimes accepted based on a certain 
acceptance-factor 

Sequence The sequence of different recipes in the production plan, the order in which they 
will be produced. 

Tabu (search) An improvement heuristic in which a “tabu”-list of previously-visited solutions is 
kept. The solutions on this list are forbidden to re-visit, leading to a 
diversification of the algorithm. 

Waiting Time Any time a product has to wait to enter a machine, either due to it being 
occupied or changing over to new settings. In our model, waiting time is not 
allowed and instead leads directly to Postponement time. 
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