
The impact of graph properties on the complexity of attack tree analysis
ALY AFIA, University of Twente, The Netherlands

Attack Trees are tree-like diagrams that represent the logical steps by which
a target may be attacked. They may be analysed to extract meaningful infor-
mation about attacks on the given system. As the target systems become ever
more complex, so does its Attack Tree, as more information is incorporated
into them. This paper studies which graph metrics—such as the number of
nodes, or the depth of the tree—affect the complexity of Attack Tree analyses
and how they are affected. It appears that the most effective metric that was
explored is the number of so-called foster nodes in an Attack Tree.

Additional Key Words and Phrases: Attack Trees, Graph Metrics, Binary
Decision Diagram

1 INTRODUCTION
As information systems become increasingly complex, the utility
and application of Attack Trees have comparably increased [18].
Attack Trees, Binary Decision Diagrams, and Quantitative Attack
Tree Analysis have been used extensively throughout this research.

Attack Trees have been prominent in the cybersecurity field for
many years, following from the fact that they were introduced in
the late 1990s [17]. Most importantly, Attack Tree analysis is widely
used even in recent years [13]. Recently, a new method to calculate
Attack Tree metrics based on so-called Binary Decision Diagrams
(see Sections 3.1 and 3.2) was introduced [6]. While finding the BDD
corresponding to the AT is NP-hard in the worst case, Budde &
Stoelinga argue that this calculation is quite fast in practice in most
cases.
To that end, we are interested in what factors affect the time

complexity of Attack Tree analysis, preciselywhich graphical factors
of ATs. In particular, there is a focus on so-called "foster" nodes (see
Section 3.1.1) because it was shown in [6] that analysis on tree-like
ATs is considerably faster than on DAG-structured ATs.

2 PROBLEM STATEMENT
Even though there has been research done to find efficient algo-
rithms for computing securitymetrics of the different types of Attack
Trees, there has not been any research on how the computational
speed of those algorithms is affected by the specific AT on which
they are being invoked. Thus, the primary focus of this paper is
not on the tree analysis algorithms themselves but on how their
computation times are affected by different properties of the Attack
Trees they are analysing.

2.1 ResearchQuestion
The problem statement then leads to the following main research
question: How does the computation time of Attack Tree metrics de-
pend on the structural parameters of the Attack Tree? We refine this

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

into the following sub-questions, which are defined by the different
structural parameters that will be considered:

(1) How does the size (number of nodes) of the AT affect the
computation time of its metrics?

(2) How does the median of the out-degree (number of children)
of the nodes in the AT affect the computation time of its
metrics?

(3) How does the mean in-degree (number of parents) of the
nodes in the AT affect the computation time of its metrics?

(4) How does the depth of the AT affect the computation time of
its metrics?

(5) How does the median of the distance between the root and
foster nodes in the AT affect the computation time of its
metrics?

(6) How does themedian of the distance between the foster nodes
and the leaves in the AT affect the computation time of its
metrics?

(7) How does the number of foster nodes in the AT affect the
computation time of its metrics?

3 PRELIMINARIES AND RELATED WORK

3.1 Attack Trees
Attack Trees (ATs) provide a representation of all possible attacks on
a system using a tree-like structure. They are structurally defined as
singe-rooted Directed Acyclic Graphs (DAGs). An AT is composed
of three types of nodes:

(1) Root node: The top node in the tree, which represents the
target of the attack.

(2) Basic Attack Step (BAS): The leaf nodes in the tree, which rep-
resents the initial conditions or steps that need to be fulfilled.

(3) Intermediate Event: The middle nodes, or Intermediate Attack
Steps, which have children that may be either intermedi-
ate events themselves, or BASs. Each intermediate event is
labelled with a logical gate (either AND or OR). The gate
represents how its children need to combine for it to be
achieved/activated.

In any given AT, all nodes represent the immediate consequences
for their children, while BASs represent actions that the attacker
may take. When such a step is taken, the BAS representing that step
is considered activated. When an Intermediate Event’s children are
activated in the combination dictated by its logical gate, then that
Event is considered activated. An attack is considered successful
when the root node has been activated. The leaf nodes represent
the first steps that the attacker can take.

It is possible to extend Attack Trees in order to embed more infor-
mation about the system. For example, the most notable extension
to an AT could be constricting a node’s activation condition by
imposing a certain order in which its children should be activated.
This changes a Static Attack Tree (SAT) into a dynamic one. Dy-
namic Attack Trees will not be discussed in this paper. We refer the
interested reader to [5].

1

TScIT 37, July 8, 2022, Enschede, The Netherlands Aly Afia

Fig. 1. An example Attack Tree

Finally, another extension — which will be used extensively in
this paper — is to attach parameters to each BAS. Those parameters
are chosen based on the specific security metric being calculated. For
example, consider that the security metric that should be calculated
is the quickest attack. Then, the relevant parameter that each node
could have is the time estimated for its completion.

3.1.1 Foster Nodes. As explained above, an AT is defined as a DAG.
This means that any non-root node could have more than one parent.
Since such nodes will be explored extensively in this paper, they
will be referred to as foster nodes.

One could refer to Figure 1 for an example Attack Tree, taken
from [15]. The root note represents the goal of the attacker; in this
case, to open a safe. As seen in the Event node Eavesdrop, it has
a logical gate AND. Any other nodes have OR gates. Furthermore,
one can see that each node has a cost value attached to it. While
each BAS node has a cost value attached as expected, Intermediate
Event nodes also have a value attached. According to [15], the values
propagate upwards, such that the cost value in the root node is the
cost of the cheapest attack.

Event nodes with OR gates have the value of their cheapest child,
while AND gates have the value of the sum of their children. For
example, the node Eavesdrop has a value of $60K because the sum
of its two children is $20𝐾 + $40𝐾 = $60𝐾 . On the other hand,
consider the node Get Combo From Target, which has a value of
$20K. This is because $20K is the cheapest of this node’s children;
𝑚𝑖𝑛($60𝐾, $100𝐾, $60𝐾, $20𝐾) = $20𝐾 . We may discard the dotted
line between the root node and the node Cut Open Safe.

3.2 Binary Decision Diagrams
Binary Decision Diagrams (BDDs) offer a very compact and intuitive
way to represent Boolean functions through a tree structure. Since
Attack Trees represent a particular Boolean function (the attack has
either succeeded or not), we can exploit the speed and efficiency of
the tree structure of BDDs by converting an AT into a BDD [6]. This

A

B

C TrueFalse
0

0

0

1

1

1

Fig. 2. An example Binary Decision Diagram

is especially useful when dealing with DAG-structured ATs. The
size of the BDD can vary greatly, from linear to exponential, in the
number of variables. It also depends on the order of the variables.
Unfortunately, the problem of finding the optimal variable ordering
is NP-hard (but can be improved, as discussed in [4]). However, the
BDD encodings of ATs tend to be small [6].
Consider Figure 2, which shows an example BDD representing

the Boolean formula 𝑓 = 𝐴 ∨ (¬𝐵 ∧𝐶).

3.3 Quantitative Attack Tree Analysis
An array of algorithms have been researched for analysing different
Attack Tree structures. It is essential to understand the algorithms
employed in each AT structure, as they may affect the results of this
paper. Appreciating the algorithm that would be employed given a
specific AT will help determine which structural aspects of that AT
affect the time for the algorithm to complete. Table 1 provides an
overview of the different algorithms to compute a general class of
metrics.

Table 1. Taken from [6]

4 APPROACH AND METHODOLOGY
In order to be able to answer the Research Question(s) introduced
above as conclusively as possible, this research will be data-driven
and with a correlational design. This paper’s focal point is to under-
stand the correlation between different structural properties of the
trees and the computation time of those trees’ metrics. In order to
do that, we must be able to measure and define the parameters of
each tree accurately. We must also accurately measure the compu-
tation time, which is a trivial issue. The approach to answering the

2

The impact of graph properties on the complexity of attack tree analysis TScIT 37, July 8, 2022, Enschede, The Netherlands

Research Question can be summarised into four main phases: tree
generation, conversion from AT to BDD, calculation of metrics, and
finally, the analysis of the data.

The first phase is about generating a diverse corpus of ATs, where
the graphical properties of the ATs of said corpus span a large
number of values. For example, when looking at the number of
nodes, we want to generate a corpus containing different ATs with
an increasing number of nodes (e.g., starting 10 nodes up to 1000
nodes). This phase is needed given the sensitive nature of ATs; there
is no established benchmark AT due to confidentiality reasons.

The second phase concerns converting each AT into its BDD form.
The ATs are generated using the NetworkX library, while the BDDs
use the Sylvan library. In order to convert the NetworkX graph into a
BDD, we first extract the Boolean formula that represents the given
AT (see Algorithm 2). We then use that Boolean expression as input
to Sylvan, which automatically generates the corresponding BDD.
This BDD is what will be used for the calculation of the security
metric. To calculate the security metric, we use the aforementioned
BDD as input to the algorithm mentioned in Section 4.4.

4.1 Tools
A library is needed for graph creation and manipulation, which will
be most useful when populating the AT corpus on which the graph
metrics will be calculated. We have decided to use FOSS (Free Open-
Source Software) for this due to its transparent nature, which gives
us the possibility of adapting the code to our own needs. In order to
find and choose a library, many available libraries are considered,
and the best fit is selected. This selection is based on three unordered
criteria:

(1) Intended application. It should be taken into consideration the
intended use of each library. A library developed specifically
for Attack Trees would have an advantage over a library
developed for tree manipulation.

(2) Programming language. The language for which the library
has been developed is an important factor to consider. The
preferred programming language is Python due to its sim-
ple syntax, powerful functionality, and third-party libraries’
availability. However, other programming languages could
be considered if needed, such as C++, Java, OCaml, Matlab,
or even Haskell.

(3) Latest commit. Libraries that are no longer being actively sup-
ported should be avoided. If a library’s latest commit was
years ago, it signifies that the developers have stopped devel-
oping it, and there will be minimal support.

ADTGenerator. ADTGenerator [7] is a command-line tool that
generates Attack-Defence Trees (ADTs). Unfortunately, it falls short
on two of the three previously mentioned criteria. The last commit
to the repository was in June of 2019, almost three years ago. Fur-
thermore, it generates ADTs, not Attack Trees. Even though ADTs
are basically Attack Trees but extended with extra steps that could
be taken to stop the attacks, we only need ATs for this paper. Having
ADT introduces the extra step of "reducing" them into ATs, which
should be avoided if possible.

ADTool. ADTool [19] is a tool that allows users to manipulate and
visualise ADTs and perform quantitative analyses on them. Even
though ADTool supports Attack Trees, it still has a glaring issue.
The last commit to the repository was in 2017, five years ago. Even
though we may only need some basic functionality that may already
be fully functional, we decided not to use this library in case we ran
into any issues, at which point we would be stuck and have limited
support.

attackTrees. The goal of attackTrees [9] is to model, analyse, and
render attack trees. At first glance, this librarymeets all three criteria
mentioned; it is explicitly developed for attack trees and intended
to be used with Python. The latest commit (at the time of writing)
was in September 2021, eight months ago. However, there is a clear
Work In Progress warning, with a disclaimer from the developer
that it is not recommended for anyone to use this. Furthermore, it
was brought to light that the Attack Trees the library aims to model
are a completely different concept but happen to have the same
name.

mindmup-as-attack-trees. This library [3] aims to utilise themindmup
platform and its framework as a medium to manipulate and analyse
Attack Trees. The tool uses scripts written in Python to manipulate
the given mindmup graphs. This is an advantage since those scripts
can be modified if necessary. However, using the mindmup platform
introduces more work and possible points of failure since we would
have to convert to and from mindmup. The latest commit at the
time of writing was in August 2021 (8 months ago).

NetworkX. NetworkX [14] is a Python library that allows for the
creation, manipulation, and analysis of complex networks. The most
significant advantage of that library is its popularity and, by exten-
sion, its support. Its modularity and flexibility are double-edged; it
gives the user much control over the graphs, but that also means
that there will not be any AT-specific functions, thus introducing
an extra layer of work. The latest commit on the repository was 16
hours ago at the time of writing, so it is safe to assume that it is still
being actively supported.

Sylvan. Sylvan [20] is a library that is focused on BDDs, written
in C, for C/C++ development. It implements parallelised operations
on BDDs and supports "any kind of terminal, including standard
Booleans, integers, floating points, and any user-defined types" [20].
Sylvan also has bindings for languages other than C/C++, including
Python. This can be found in the library called "dd" [10].

4.1.1 Selection/Analysis. After considering each library mentioned
above, two libraries have been chosen to be used throughout this
project: NetworkX and Sylvan/dd. The reason that NetworkX was
chosen is that it meets almost all three of the mentioned criteria. It
is made for Python, which is favourable. It arguably has the most
robust support of all the other libraries, and even though it is not
explicitly developed for ATs, it has strong support for DAGs.
Furthermore, Sylvan/dd was also chosen for its high relevance

to our criteria. Its intended application is almost identical to our
intended use, and while it may not have been developed for Python,
it has bindings for other languages, including Python. Finally, even
though it may not have strong support, its primary author Tom

3

TScIT 37, July 8, 2022, Enschede, The Netherlands Aly Afia

van Dijk, who is currently an assistant professor at the Formal
Methods and Tools group at the University of Twente. This is the
same group where the current work is being developed, thus the
choice of Sylvan is expected to greatly facilitate support in case of
technical difficulties with the usage of the tool.

4.2 Tree Generation
Since ATs represent sensitive information about a given system,
it would be tough to find any real-life examples. As such, we will
generate our own pool of random ATs, where each tree should
be somewhat similar to a real-life AT. In order to ensure that our
generated pool holds some similarity to real-life ATs, we will use
"seeds", which are taken from different sources [12] [8] [11] [1] [2].
These seeds would then be used as building blocks, where we would
combine them in random ways in order to construct bigger ATs.
The first step in generating our AT pool is first to get our seeds.

The structures of the ATs—as taken from their original sources—that
are to be used as seeds, were hard-coded as constants into the code
of the project, to make its continuous reuse as efficient as possible.
The next step is to find ways to combine any two given ATs. To that
end, two methods of combination were defined and implemented:
adding as a leaf and adding as a sibling.

4.2.1 Adding as a leaf. Given two ATs g1 and g2, rooted at r1 and
r2 respectively, this method aims to append g2 as a child of some
leaf node in g1. For example, consider Figure 3a, where we have
two disjoint graphs g1 and g2. A first implementation of adding g1
as a leaf of g2 is shown in Figure 3b. In a mathematical/graphical
framework, Figure 3b shows a correct implementation. However, in
the context of an AT, having a node a with only one child b does not
make sense. If it only takes node b to activate node a, then from a
logical perspective, the two nodes could be considered to be a single
node. Each Intermediate Event node represents a logical function
(namely AND and OR), and its children represent the arguments of
its function. Since the functions both need at least two arguments,
then it follows that each Intermediate Node must have at least two
children nodes.
To resolve this issue, a new node with random metrics is added

as a sibling to r2, such that the former leaf node of g1 has at least
two children. This can be seen in Figure 3c.

4.2.2 Adding as a sibling. Given two ATs g1 and g2, rooted at r1
and r2 respectively, this method aims to join the two graphs such
that they both share the same parent r3. For example, consider the
two graphs given in Figure 3a. Joining them as siblings would result
in a single graph g3 rooted at r3, as seen in Figure 3d.

Given those two methods of combining two given graphs, along
with a pool of graphs taken from the literature, we were able to
generate graphs by recursively calling the two methods. The genera-
tion function has four parameters of interest that should be pointed
out. The first two are the two graphs that will be combined. The
third parameter, base_prob, indicates the probability of making a
recursive call. The fourth parameter, prob_factor, is the factor by
which we multiply base_prob, whose product will become the next
iteration’s base_prob. See Algorithm 1 for the pseudo-code of the
tree generation algorithm.

ba

r1

dc

r2

(a)

ba

r1

dc

r2

(b)

ba

r1

dc

r2 e

(c)

ba

r1

dc

r2

r3

(d)

Fig. 3. Adding two subgraphs

Finally, given the final generated graph, the last step is generating
and attaching the labels and metrics. An alphabetic label is attached
to each leaf node (BAS), as well as a random (integer) metric between
0 and 100.

Algorithm 1 tree_generation
Input: g1, g2, base_prob: float, prob_factor: float, min_iters: int
Output: g3: Graph
1: 𝑝 ← 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚{0..1} ⊲ Get random number between 0 and 1
2: ℎ ← 𝑏𝑖𝑛𝑎𝑟𝑦{0, 1} ⊲ Randomly pick 0 or 1
3: if ℎ = 1 then
4: 𝑔3 ← 𝑎𝑑𝑑_𝑎𝑠_𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑔1, 𝑔2)
5: else
6: 𝑔3 ← 𝑎𝑑𝑑_𝑎𝑠_𝑙𝑒𝑎𝑓 (𝑔1, 𝑔2)
7: end if
8: 𝑔4 ← 𝑝𝑖𝑐𝑘_𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑒𝑑 () ⊲ Pick a random seed graph
9: if 𝑚𝑖𝑛_𝑖𝑡𝑒𝑟𝑠 > 0 then
10: return tree_generation(𝑔3, 𝑔4, 𝑏𝑎𝑠𝑒_𝑝𝑟𝑜𝑏, 𝑝𝑟𝑜𝑏_𝑓 𝑎𝑐𝑡𝑜𝑟,𝑚𝑖𝑛_𝑖𝑡𝑒𝑟𝑠−

1)
11: end if
12: if 𝑝 ≤ 𝑏𝑎𝑠𝑒_𝑝𝑟𝑜𝑏 then
13: 𝑛𝑒𝑤_𝑝𝑟𝑜𝑏 ← 𝑏𝑎𝑠𝑒_𝑝𝑟𝑜𝑏 × 𝑝𝑟𝑜𝑏_𝑓 𝑎𝑐𝑡𝑜𝑟
14: return tree_generation(𝑔3, 𝑔4, 𝑛𝑒𝑤_𝑝𝑟𝑜𝑏, 𝑝𝑟𝑜𝑏_𝑓 𝑎𝑐𝑡𝑜𝑟,𝑚𝑖𝑛_𝑖𝑡𝑒𝑟𝑠−

1)
15: else
16: return 𝑔3
17: end if

4.3 Conversion from DAG to BDD
As shown in [6], any AT could be transformed into a BDD while
conserving each BAS’s label and metric. Given that BDD, one could
perform the analysis on it in a bottom-up fashion and end up with
correct results. This conversion could potentially save much time
since - despite BDDs being DAG-structured as well - bottom-up

4

The impact of graph properties on the complexity of attack tree analysis TScIT 37, July 8, 2022, Enschede, The Netherlands

algorithms work much better on BDDs [6]. As such, we decided
that any ATs that will be analysed will first be converted into BDDs,
even if they are tree-structured. The reason for this is twofold; to
provide an equal comparison between all ATs and keep the bottom-
up algorithm simple.
As discussed in Section 4.1, we use the Sylvan library and its

Python bindings to manage BDDs. The dd library, which is the
Python binding of Sylvan, needs a Boolean formula as input to gen-
erate the corresponding BDD. To that end, given an AT, we needed
the Boolean expression that represents that AT, where the BASs are
the formula’s variables. In order to obtain the formula, a recursive
top-down approach was used. See Algorithm 2 for the pseudo-code.
Note that in line 7, the join function returns a string, which is ob-
tained by combining each element in children and inserting the gate
character between each element.

Algorithm 2 get_boolean_from_AT
Input: g: Graph, root: Node
Output: expression: String
1: if 𝑟𝑜𝑜𝑡 is not leaf then
2: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← []
3: 𝑔𝑎𝑡𝑒 ← 𝑛𝑜𝑑𝑒.𝑔𝑎𝑡𝑒

4: for 𝑛𝑜𝑑𝑒 in 𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
5: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑔𝑒𝑡_𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑓 𝑟𝑜𝑚_𝐴𝑇 (𝑔, 𝑛𝑜𝑑𝑒))
6: end for
7: return 𝑔𝑎𝑡𝑒. 𝑗𝑜𝑖𝑛(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)
8: else
9: return 𝑛𝑜𝑑𝑒.𝑙𝑎𝑏𝑒𝑙
10: end if

4.4 Calculating metrics
Considering the scope of this paper, it was decided only to consider
the calculation of one metric, namely the minimum cost of an attack.
We are not interested in which metric is being calculated but rather
how long that calculation takes, so the minimum cost metric was
arbitrarily chosen. As such, the implementation of that bottom-up
(BU) algorithm is based on Algorithm 2 from [6]. Note that this
algorithm was developed for general metrics; thus, the calculation
time should not be affected by any specific metric.

4.5 Data collection and visualisation
In order to reliably answer each Research Question and to remove
as much uncertainty from the results as possible, we have employed
some redundancy in the generation of the trees, as well as in the
collection of runtime data. For each sub-question (with some excep-
tions), the first step is to define at least ten different data points that
we will want to look at. For example, when considering an AT’s size
(number of nodes), we will want to look at ATs with (10, 20, 30, 50,
100,...) nodes. Those will also be the ticks on the x-axis.

Then, for each data point, we will generate three different ATs
that meet that data point’s criterion. The reason we will use three
different ATs is to try to minimise any ambiguity concerning the
causality of the results. In other words, we want to ensure that
if there were to be a correlation between our data points and the

runtimes, then that correlation is because of the property we are
observing, not some other unobserved property.
Finally, for each of the generated ATs, we will run the BU al-

gorithm ten times and record the runtime of each iteration. Note
that we only record the runtime of the BU algorithm on the BDD
representation of an AT, and we do not include the time taken to
generate that AT or to convert it into a BDD.
We will use vertical box plots to represent each AT’s runtimes

to plot the data. Since we have generated three different ATs per
x-tick, there will be three box plots per column on the graph. To
avoid confusion, each of the three plots will be coloured differently.
Furthermore, we will omit the outlier circles (or ’fliers’) as they
clutter the graphs and do not convey relevant information.

4.5.1 Some exceptions. In some cases, it is hard to generate an
AT that meets a specific criterion, as it would take too long to
generate one, given the random nature of the generation algorithm.
Likewise, it would take too much time to alter the parameters of
said algorithm. As such, a different approach was employed. Instead
of first defining at least ten data points to observe, we will randomly
generate many ATs. For each of those ATs, we will calculate the
property being observed (i.e., size, number of foster nodes). The
current AT will be discarded if an AT has previously been generated
with the same calculated property. This is to avoid having duplicate
x-ticks. From there, the BU algorithm is run ten times on each of
those ATs, and their box plots will be graphed. This approach was
used when answering questions 3, 5, 6, and 7.

5 RESULTS
In this section, we will attempt to answer each sub-question defined
in Section 2.1. For Sections 5.1, 5.2, and 5.4, note that on each column,
there are three separate box plots, each with a different colour,
representing the ten run-times on that AT. They are colour-coded
such that the box with the largest median is blue, the box with the
lowest median is red, and the box with a median in between the
other two is green. Some of them may appear as horizontal lines,
but that is because all ten runtimes are quite close to each other,
especially compared to the scale of the y-axis. For Sections 5.3, 5.5,
5.6, and 5.7, each column only has one box plot. This is because the
alternative approach (discussed in Section 4.5.1) was employed.
In some cases, many of the values are very close to 0, while a

few are much higher (see Figures 5a and 13a). Due to the fact that
the y-axis is on a linear scale, it becomes challenging to read the
graphs. To that end, we used a logarithmic scale on the y-axis when
necessary (see Figures 5b and 13b).

For each subsection, in order to maintain objectivity, we calculate
the correlation coefficient (Pearson’s r-value for measuring linear
correlations) between the x- and y-values. For any graphs with
three points per x-value (the medians of each box plot), we use the
mean of those three points as our x-values when calculating the
"Average r-value." We also calculate the r-values of each colour for
completeness. For the sections that employ the approach discussed
in Section 4.5.1, we simply use the medians of each box plot as our
x-values when calculating the r-value.

According to [16], the calculated r-values should be interpreted
as such:

5

TScIT 37, July 8, 2022, Enschede, The Netherlands Aly Afia

r-value Interpretation
0.00-0.10 Negligible Correlation
0.10-0.39 Weak Correlation
0.40-0.69 Moderate Correlation
0.70-0.89 Strong Correlation
0.90-1.00 Very Strong Correlation

Note that these ranges are the absolute values of the r-values.

5.1 Size
In this section, we will attempt to answer sub-question 1; "How does
the size (number of nodes) of the AT affect the computation time
of its metrics?". As can be observed in Figure 5a, there appears to
be no correlation between the size of an AT and the runtime of the
analysis of that AT. Looking at Figure 5b, even with a logarithmic
scale, there is no apparent correlation between the size and runtime.
This lack of correlation is supported by the following r-values:

• Red: r = -0.1975815932189488
• Green: r = -0.20938905844438085
• Blue: r = -0.06487039829335528
• Average r-value: r = -0.0684892858684561

Given these r-values, we can claim that, given the data collected,
there is no significant linear correlation between the size of an AT
and the analysis runtime of that AT.

5.2 Out-degree
Considering the second sub-question, we have generated different
ATs whose nodes have specific out-degrees. The criterion that each
AT has to meet is that each non-leaf node in said AT should have
an out-degree of at least x. If needed, we add leaves to said node
until it meets the required criterion.

As shown in Figure 6, there appears to be a slight negative corre-
lation between the out-degree of the nodes and the run-times. Note
that the y axis is on a logarithmic scale. This is also supported by
the r-values of each color:

• Red: r = -0.33278300073698297
• Green: r = -0.33994692873285637
• Blue: r = -0.3399259357792736
• Average r-value: r = -0.3395127136620615

These r-values suggest a weak negative correlation between the
out-degree of an AT’s nodes and the runtime of the analysis algo-
rithm. While this is an unexpected result, one could speculate that
this is due to the generation process for this subsection. In order to
generate ATs whose nodes have a specific number of children, we
manipulate each generated AT to meet the specific criterion.

For example, if we want to generate an AT whose nodes have an
out-degree of 12, then we generate a random AT and go through
each of that AT’s nodes. For each node, as long as it has an out-
degree less than 12, we add a leaf to that node. While this approach
is simple, it may have affected the above results. We speculate that
this excess addition of BAS nodes to the AT results in a large graph
with many leaves.

This large number of leaves would translate to a large number
of variables when we extract the Boolean formula of that AT. Con-
sequently, because many of those variables were simply added as

leaves, they probably have not affected the underlying logical ex-
pression of the AT. As a result, despite having many variables in
the Boolean formula, the generated BDD is quite small. The reason
for that is because the dd library outputs reduced ordered BDDs [10].
Having a reduced BDD means that "given variable order, equivalent
propositional formulas are represented by a unique diagram" [10].
In other words, all the extra BAS nodes become increasingly redun-
dant, which results in a smaller BDD. This is under the assumption
that the variable ordering of the BDD is not in the worst case.

5.3 In-degree
To answer the third sub-question, we had to look at the number
of parents of the nodes in an AT. Since ATs are DAG-structured,
nodes could have multiple parents. As such, we specifically look
at the mean in-degree of the nodes of each AT. Since it would be
too difficult and time-consuming to generate ATs with a specific
mean in-degree, we have taken the alternative approach discussed
in Section 4.5.1.

As shown in Figure 7, there seems to be no correlation between the
mean in-degree of the nodes and the runtime of the analysis. Note
that two values were excluded from the graph, namely the values
at x=1.039 and x=1.042. Those were omitted as they are considered
outliers and, given the linear scale of the y-axis, rendered the graph
much harder to read. It should be noted that the logarithmic scaling
of the y-axis did not demonstrate any suggestions of a correlation
either.
Again, this is supported by the r-value of the graph. When cal-

culated, it gave a value of r=-0.22756249154669397. This indicates a
weak negative correlation between the average in-degree of an AT’s
nodes and the runtime of its analysis. Note that the outliers were
included in the calculation of the r-value.

5.4 Depth
As depicted in Figure 8, there are no apparent correlations demon-
strated. This is demonstrated when looking at the calculated r-
values:
• Red: r = -0.3112599051785191
• Green: r = -0.22321313273558854
• Blue: r = -0.09395435570178053
• Average: r = -0.16721945634502614

Note the Average r-value indicating a weak negative correlation
that is almost negligible [16].

5.5 Root to foster nodes
This section considers the median of the depths of all foster nodes of
a given AT. The depth of a node is defined as the maximal shortest
distance between the root of the AT and the node. As demonstrated
in Figure 9, there seems to be no clear correlation between the
property and the algorithm’s runtime. Note that, due to the random-
ness of the generation algorithm, we have employed once again
the alternative approach mentioned in Section 4.5.1. Furthermore,
we’ve excluded the points at x=3.0 and x=5.5, for the same reasons
mentioned in Section 5.3. This lack of correlation is also supported
by the r-value of r = -0.2964100141122183, which indicates a weak
negative correlation.

6

The impact of graph properties on the complexity of attack tree analysis TScIT 37, July 8, 2022, Enschede, The Netherlands

5.6 Foster nodes to leaves
In this section, we consider what could be called the "opposite" of
the previous property. That is, we consider the median of distances
between each foster node in an AT and the leaves of that AT. The
distance between each foster node and the AT’s leaves is calculated
by finding the maximal shortest distance between said node and all
the children that are reachable from that node.
According to Figure 11a, there seems to be no clear correlation

between the graph property in question and the runtime of the
analysis algorithm. Not that the value for x=6 and x=8.5 have been
excluded due to their being outliers. Given the general low values,
Figure 11b shows the same data on a logarithmic scale for the y-axis.
However, despite the wider vertical distribution, there is seemingly
no correlation between the graph property in question and the
algorithm’s runtime. This is supported by the calculated r-value of
r = 0.11583709596444068.

5.7 Number of foster nodes
As shown in Figure 13a, there is a strong increase in the run-times
starting at x=71. However, all the box plots before that are close to 0,
with some slight variance. In order to be able to see those subtle dif-
ferences clearly, the same graph has been plotted with a logarithmic
scale on the y-axis in Figure ??. Observing Figure 13b, there is a very
clear trend upwards, which is supported by the highest r-value so
far of r = 0.5106236999548139. Indicating a Moderate Correlation, this
strongly suggests a direct positive correlation between the number
of foster nodes in an AT and the runtimes of the analysis algorithm.
It is important to remember that this apparent correlation is

visible when the y-axis is on a logarithmic scale. This means that
the correlation between the number of foster nodes and the runtimes
is not linear, but logarithmic.

6 CONCLUSION

Graphical Property Pearson’s r-value
Number of foster nodes 0.5106236999548139

Out-degree -0.3395127136620615
Root to foster nodes (median) -0.2964100141122183

In-degree -0.22756249154669397
Depth -0.16721945634502614

Foster nodes to leaves (median) 0.11583709596444068
Size -0.0684892858684561

Table 2. An overview of the results

Table 2 shows the calculated r-value of each graphical propertywe
have considered throughout this paper. They are sorted by descend-
ing (absolute) r-value. The graphical property affecting AT analysis’s
time complexity most is the number of foster nodes present in said
AT. This is supported by the r-value shown in the table, which is
significantly higher than all other r-values.

Furthermore, there seem to be many weak negative correlations
between the different graphical properties and the runtime of the
analysis. The author could not find a clear and definitive explanation

for these results. While some possible explanations have been dis-
cussed in the relevant sections, those are nevertheless speculations.

Notwithstanding, it is vital to bring to the reader’s attention that
much of the author’s implementations of the discussed algorithms
have not been peer-reviewed. To wit, one must not rule out the
possibility that there may be logical bugs and discrepancies in the
code used throughout this project. The extent of the effect of such
potential bugs is hard to gauge, as it could be a simple, negligible
issue or a fundamentally flawed logical error. However, one could
argue that given the presented results, it would be difficult to argue
that the author’s implementations are fundamentally wrong, or else
one would not end up with such precise and consistent results.

6.1 Future Work
In hindsight, there is a possibly better approach to the Tree Genera-
tion phase of this project. Instead of generating a different corpus
of random ATs for each graph property that was explored in this
paper, a better approach would have been to generate one large
corpus of random ATs. We would then use this large pool for each
graph property and keep track of which graphs were used and the
results of each graph.
Another significant advantage of this approach is that we will

be able to cross-reference each AT between the different observed
properties. In other words, we would be able to cross-check conjec-
tures. For example, if the number of foster nodes matters, but not
the total number of nodes, then we would be able to see that those
ATs with a high number of foster nodes would have the largest
runtimes across all graphs.

This approach implies that we must be able to uniquely identify
each AT in the pool, which is possible since the NetworkX.DiGraph
object is hashable. This means we could easily store each AT in a
dictionary or map, along with each AT’s important properties. Such
a comprehensive and organised data structure could also open doors
to different, possibly better approaches.
For example, given a structure where each AT is stored along

with its different values for each of the seven graph properties
explored in this paper, one could employ Machine Learning. More
specifically, by using Feature Importance techniques, we may gain
deeper insights, as well as much more accurate results [21].
Finally, one last addition to this paper that we, unfortunately,

could not include due to time constraints is also including the time
taken by the conversion phase. Throughout this paper, we have
not considered the time it takes to convert an AT to a BDD, as we
wanted to focus on the runtime of the metric calculation algorithm.
However, in real life, in order to obtain a metric given an AT (using
this paper’s approach), then the conversion time would indeed be
a part of the process and a significant one. To that end, we believe
that exciting insights can be gained on the conversion times and
what graph properties affect that.

REFERENCES
[1] Florian Arnold, Dennis Guck, Rajesh Kumar, and Mariëlle Stoelinga. 2015. Sequen-

tial and Parallel Attack TreeModelling. In Computer Safety, Reliability, and Security
(Lecture Notes in Computer Science), Floor Koornneef and Coen van Gulijk (Eds.).
Springer, Netherlands, 291–299. https://doi.org/10.1007/978-3-319-24249-1_25
Foreground = 80Type of audience = scientific community; Size of audience = 30;
Countries addressed = international;; 34th International Conference on Computer

7

https://doi.org/10.1007/978-3-319-24249-1_25

TScIT 37, July 8, 2022, Enschede, The Netherlands Aly Afia

Safety, Reliability, and Security, SAFECOMP 2015, SAFECOMP ; Conference date:
22-09-2015 Through 22-09-2015.

[2] Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle Stoelinga. 2014.
Time-dependent analysis of attacks. In Proceedings of the Third International
Conference on Principles and Security of Trust, POST 2014 (Lecture Notes in Com-
puter Science). Springer, Netherlands, 285–305. https://doi.org/10.1007/978-3-642-
54792-8_16 Foreground = 50% ; Type of activity = Conference ; Main leader = UT
; Type of audience = scientific community ; Size of audience = 100 ; Countries ad-
dressed = international ;; 3rd International Conference on Principles and Security
of Trust, POST 2014, POST ; Conference date: 05-04-2014 Through 13-04-2014.

[3] BenGardiner. 2021. mindmup-as-attack-trees. https://github.com/BenGardiner/
mindmup-as-attack-trees

[4] B. Bollig and I. Wegener. 1996. Improving the variable ordering of OBDDs is
NP-complete. IEEE Trans. Comput. 45, 9 (1996), 993–1002. https://doi.org/10.1109/
12.537122

[5] Carlos E. Budde, Christina Kolb, and Mariëlle Stoelinga. 2021. Attack Trees vs.
Fault Trees: Two Sides of the Same Coin from Different Currencies. In Quantita-
tive Evaluation of Systems, Alessandro Abate and Andrea Marin (Eds.). Springer
International Publishing, Cham, 457–467.

[6] Carlos E. Budde andMariëlle Stoelinga. 2021. Efficient Algorithms for Quantitative
Attack Tree Analysis. In 2021 IEEE 34th Computer Security Foundations Symposium
(CSF). 1–15. https://doi.org/10.1109/CSF51468.2021.00041

[7] Matthias Eckhart, Kristof Meixner, Dietmar Winkler, and Andreas Ekelhart. 2019.
Securing the testing process for industrial automation software. Computers &
Security 85 (2019), 156 – 180. https://doi.org/10.1016/j.cose.2019.04.016

[8] Marlon Fraile, Margaret Ford, Olga Gadyatskaya, Rajesh Kumar, Mariëlle Ida
Antoinette Stoelinga, and Rolando Trujillo-Rasua. 2016. Using attack-defense
trees to analyze threats and countermeasures in an ATM: A case study. In 9th
IFIP WG 8.1 Working Conference on The Practice of Enterprise Modeling (PoEM)
(Lecture Notes in Business Information Processing). Springer, Netherlands, 326–
334. https://doi.org/10.1007/978-3-319-48393-1_24 Foreground = 100Type of
audience = scientific community; Size of audience = 25; Countries addressed =
international;; null ; Conference date: 08-11-2016 Through 10-11-2016.

[9] hyakuhei. 2021. attackTrees. https://github.com/hyakuhei/attackTrees
[10] johnyf. 2022. dd. https://github.com/tulip-control/dd
[11] Barbara Kordy and Wojciech Wideł. 2018. On Quantitative Analysis of At-

tack–Defense Trees with Repeated Labels. 325–346. https://doi.org/10.1007/978-3-
319-89722-6_14

[12] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. 2015. Quantitative Attack
Tree Analysis via Priced Timed Automata, Vol. 9268. 156–171. https://doi.org/10.
1007/978-3-319-22975-1_11

[13] Harjinder Singh Lallie, Kurt Debattista, and Jay Bal. 2020. A review of attack
graph and attack tree visual syntax in cyber security. Computer Science Review 35
(2020), 100219. https://doi.org/10.1016/j.cosrev.2019.100219

[14] NetworkX. 2022. NetworkX. https://github.com/networkx/networkx
[15] B. Schneier. 1999. Attack Trees. Dr. Dobb’s Journal (1999).
[16] Patrick Schober, Christa Boer, and Lothar A. Schwarte. 2018. Correlation coeffi-

cients. Anesthesia Analgesia 126, 5 (2018), 1763–1768. https://doi.org/10.1213/
ane.0000000000002864

[17] Chris Slater, O. Saydjari, Bruce Schneier, and Jim Wallner. 1998. Toward a Secure
System Engineering Methodolgy. 2–10. https://doi.org/10.1145/310889.310900

[18] T. Sonderen. 2019. A Manual for Attack Trees. http://essay.utwente.nl/79133/
[19] tahti. 2017. ADTool2. https://github.com/tahti/ADTool2
[20] Tom van Dijk. 2022. Sylvan. https://github.com/trolando/sylvan
[21] Alexander Zien, Nicole Krämer, Sören Sonnenburg, and Gunnar Rätsch. 2009.

The Feature Importance Ranking Measure. In Machine Learning and Knowledge
Discovery in Databases, Wray Buntine, Marko Grobelnik, Dunja Mladenić, and
John Shawe-Taylor (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 694–
709.

A PLOTS

A.1 Size

Fig. 4. Size

(a) Size on linear y-scale

10
to
16

20
to
27

40
to
45

70
to
75

100
to

110

150
to

165

200
to

215

300
to

315

400
to

420

500
to

530

750
to

780

900
to

950

1500
to

1600
Number of nodes

0

10

20

30

40

50

60

Ru
nt

im
e

in
 se

co
nd

s

Size

(b) Size on logarithmic y-scale

10
to
16

20
to
27

40
to
45

70
to
75

100
to

110

150
to

165

200
to

215

300
to

315

400
to

420

500
to

530

750
to

780

900
to

950

1500
to

1600
Number of nodes

10 3

10 2

10 1

100

101

102

Ru
nt

im
e

in
 se

co
nd

s

Size

8

https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-642-54792-8_16
https://github.com/BenGardiner/mindmup-as-attack-trees
https://github.com/BenGardiner/mindmup-as-attack-trees
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/CSF51468.2021.00041
https://doi.org/10.1016/j.cose.2019.04.016
https://doi.org/10.1007/978-3-319-48393-1_24
https://github.com/hyakuhei/attackTrees
https://github.com/tulip-control/dd
https://doi.org/10.1007/978-3-319-89722-6_14
https://doi.org/10.1007/978-3-319-89722-6_14
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1016/j.cosrev.2019.100219
https://github.com/networkx/networkx
https://doi.org/10.1213/ane.0000000000002864
https://doi.org/10.1213/ane.0000000000002864
https://doi.org/10.1145/310889.310900
http://essay.utwente.nl/79133/
https://github.com/tahti/ADTool2
https://github.com/trolando/sylvan

The impact of graph properties on the complexity of attack tree analysis TScIT 37, July 8, 2022, Enschede, The Netherlands

A.2 Out-degree

Fig. 6. Out-degree on logarithmic y-scale

2 3 4 5 10 15 20 30 40 50
Out-degree of nodes

10 3

10 2

10 1

100

101

Ru
nt

im
e

in
 se

co
nd

s

Out-degree

A.3 In-degree

Fig. 7. In-degree on linear y-scale

1.014
1.029

1.031
1.034

1.035
1.039

1.042
1.046

1.046
1.047

1.051
1.051

1.052
1.052

1.057
1.062

1.065
1.0671.07

1.074
1.075

1.082
1.088

1.091
1.102

1.103
1.103

1.106
1.106

1.109

Median of in-degrees of nodes

0

1

2

3

4

Ru
nt

im
e

in
 se

co
nd

s

In-degree

A.4 Depth

Fig. 8. Depth on linear y-scale

10 11 12 14 16 19 21 25 30 35
Depth of AT

0

5

10

15

20

25

30

35

Ru
nt

im
e

in
 se

co
nd

s

Depth

A.5 Root to foster nodes

Fig. 9. Root to foster nodes on linear y-scale

3 3.5 4 5.0 5.5 6 7.0 8.0 9 10
Median of distances from root to foster nodes

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ru
nt

im
e

in
 se

co
nd

s

Distances from root to foster nodes

9

TScIT 37, July 8, 2022, Enschede, The Netherlands Aly Afia

A.6 Foster nodes to leaves

Fig. 10. Foster nodes to leaves

(a) Foster nodes to leaves on linear y-scale

1 2.5 4 5 6 6.5 7.0 8.5 11.0 15

Median of distances from foster nodes to leaves

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ru
nt

im
e

in
 se

co
nd

s

Distances from foster nodes to leaves

(b) Foster nodes to leaves on logarithmic y-scale

1 2.5 4 5 6 6.5 7.0 8.5 11.0 15

Median of distances from foster nodes to leaves

10 2

10 1

100

101

Ru
nt

im
e

in
 se

co
nd

s

Distances from foster nodes to leaves

A.7 Number of foster nodes

Fig. 12. Number of nodes

(a) Number of foster nodes on linear y-scale

24 27 31 31 35 40 42 45 48 51 56 57 60 63 63 65 69 72 74 79 81 82 83 90 98102107130146154
Number of foster nodes

0

50

100

150

200

250

300

350

400

Ru
nt

im
e

in
 se

co
nd

s

Number of foster nodes

(b) Number of foster nodes on logarithmic y-scale

24 27 31 31 35 40 42 45 48 51 56 57 60 63 63 65 69 72 74 79 81 82 83 90 98102107130146154
Number of foster nodes

10 3

10 2

10 1

100

101

102

Ru
nt

im
e

in
 se

co
nd

s
Number of foster nodes

10

	Abstract
	1 Introduction
	2 Problem statement
	2.1 Research Question

	3 Preliminaries and Related Work
	3.1 Attack Trees
	3.2 Binary Decision Diagrams
	3.3 Quantitative Attack Tree Analysis

	4 Approach and Methodology
	4.1 Tools
	4.2 Tree Generation
	4.3 Conversion from DAG to BDD
	4.4 Calculating metrics
	4.5 Data collection and visualisation

	5 Results
	5.1 Size
	5.2 Out-degree
	5.3 In-degree
	5.4 Depth
	5.5 Root to foster nodes
	5.6 Foster nodes to leaves
	5.7 Number of foster nodes

	6 Conclusion
	6.1 Future Work

	References
	A Plots
	A.1 Size
	A.2 Out-degree
	A.3 In-degree
	A.4 Depth
	A.5 Root to foster nodes
	A.6 Foster nodes to leaves
	A.7 Number of foster nodes

