
Formalization of Tangle and Tangle Learning Algorithm
BONIFACIUS GERALDO CHRISTIANO, University of Twente, The Netherlands

A parity game is an infinite duration game played on a directed graph by

two players with each node labeled with a certain natural number. Both

players move a token along the edges of the graph and the winner of a game

depends on the parity of the highest labeled number of the nodes occurring

infinitely often in a path of the token’s movement. Parity game is involved

in many formal verification problems such as automaton synthesis and veri-

fication, and bounded model checking. Solving a parity game is the process

of computing the winner of a parity game; various algorithms have been

created for this purpose and one of them, the tangle learning algorithm, is

of interest in this research. A proof of the algorithm’s correctness written in

pen-and-paper has been given and this research defines and proves several

underlying concepts involved in the algorithm in Isabelle, a software for

interactive theorem proving. Isabelle provides a generic approach in veri-

fication of specifications or properties of software and algorithms defined

as mathematical theorems. Formal proofs are written in a formal system

and mechanically verifiable which makes them more accurate, reliable, and

easier to verify. First, we define and prove several underlying theoretical

concepts involved in the algorithm, then we give a partial implementation

of the algorithm in Isabelle.

Additional Key Words and Phrases: Parity games, Formal proof, Formaliza-

tion, Isabelle, Tangle learning

1 INTRODUCTION
Parity games are turn-based games played on a finite directed graph

[4]. Two players, Even and Odd, move a single shared token along

the edges of the graph. Each vertex is labeled with a natural number

called the priority and owned by (exactly) one of the two players.

The token is initially placed on a starting vertex, the owner of the

vertex selects a successor vertex for that token, respecting the edges

of the graph. This process is repeated by whoever owns the vertex

the token lands on, thus forming a (possibly infinite) sequence of

vertices (and their priorities) called the play. Player Even wins when

the highest priority appearing infinitely often in the play is an even

number, otherwise Odd wins, hence the name parity.
Parity games have many applications such as in model checking

of 𝜇-calculus [6], LTL, CTL and controller synthesis [10]. Because

parity game is an important tool in many fields, fast and efficient

algorithms for solving parity games are very valuable so they are also

studied in complexity theory. It has been shown that the problem of

solving parity games (i.e. determining the winner) lies in the NP and

co-NP complexity class [6], more precisely in the UP and co-UP [8]

and also in quasi-polynomial (QP) [3]. It remains an open question

whether a polynomial time solution exists.

A parity game algorithm is an algorithm for solving parity games.

Solving parity games means deciding which player wins a parity

game. Various algorithms have been created for this purpose. One

of those algorithms that is of interest in this research is called tangle

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

learning, described in a paper by van Dijk [4]. The algorithm is

based on the concept of a tangle, a strongly connected subgraph

of a parity game for which a player has a strategy to win all the

cycles in the subgraph. Van Dijk has given an informal proof of the

algorithm’s correctness and termination in his paper. An informal
proof here means a proof that is written in natural languages and

can not be verified in a mechanical or automated manner.

Isabelle is a software for interactive theorem proving [12] avail-

able from http://isabelle.in.tum.de. Isabelle allows creation
and mechanical verification of a formal proof which is a proof

written in a formal system [13] and can be verified mechanically

according to the system’s rules. Isabelle provides several logics for

theorem proving, one of them being the Higher Order Logic (HOL)

which is the most developed one
1
and we will use in this research

(Isabelle/HOL). Formalization is the process of creating a formal

proof from an informal proof, and the formal proof is called the

formalization of the informal proof. A formal proof is more reli-

able than an informal proof because it is based upon an established

system and easier to verify by a peer-reviewer [7].

Contribution
The contribution of this paper is formalization in Isabelle/HOL of:

• definitions of closed subset and dominion, and some lemmas

about them,

• definition of tangle and some lemmas about tangle,

• partial implementation of the tangle learning algorithm: the

attractor and tangle attractor computation that also computes

the attracting strategy.

Along with these, there are also several auxiliary definitions and

lemmas, such as reachability and strongly connected component.

Also, a small lemma that proves parity games with no dead-ends

always have infinite plays. The formalization is available on https:
//github.com/CafRdkdD/TangleLearningIsabelle.

2 PRELIMINARIES
This section explains some background knowledge related to this

research. The definitions introduced in this section may also be

included in other sections.

2.1 Parity Game
A parity game Γ = (𝑉 , 𝐸,𝑉0, 𝜔) is a turn-based infinite game played

on a directed finite graph G = (V,E) : V are the vertices, 𝐸 ⊆ 𝑉 ×𝑉 are

the edges, and 𝜔 : 𝑉 ↦→ N is the priority function which maps each

vertex to a priority number. The priority of a vertex v is denoted by

𝜔 (𝑣), while the highest priority of a set of vertices V is denoted by

𝜔 (𝑉). The winner of a priority is denoted by w(p) where p is the

priority.

A parity game is played by two players, Even andOdd. Each vertex
is owned by either Even or Odd. Vertices owned by player Even are

denoted by 𝑉0 and player Odd by 𝑉1 = 𝑉 \𝑉0. Since each vertex is

1
stated in the official manual "Isabelle’s Logics"

1

http://isabelle.in.tum.de
https://github.com/CafRdkdD/TangleLearningIsabelle
https://github.com/CafRdkdD/TangleLearningIsabelle

TScIT 37, July 8, 2022, Enschede, The Netherlands Bonifacius Geraldo Christiano

owned by either players, i.e. V =𝑉0∪𝑉1 and𝑉0∩𝑉1 = ∅, it is enough
to only define 𝑉0. An (existence of) edge between two vertices v
and w is denoted by 𝑣 → 𝑤 . The successor vertices of a vertex v are

denoted by E(v)where 𝑣 → 𝑢 for all𝑢 ∈ 𝐸 (𝑣). Throughout the paper,
if a player is denoted by 𝛼 , then the other player is denoted by 𝛼∗∗.
Van Dijk does not consider finite plays which means vertices with

no successors (also called dead-ends) are not allowed, i.e. ∀𝑣 ∈ 𝑉 .

𝐸 (𝑣) ≠ ∅. We will also not consider dead-ends in this paper.

The game is played by moving a shared token along the edges of

the graph. Initially, the token is placed at a starting vertex 𝑣0 ∈ 𝑉 . If

𝑣0 ∈ 𝑉0 then player Even chooses the successor vertex the token will
move to, otherwise Odd chooses. Whichever player owns the vertex

the token is at chooses the next vertex will move to. The sequence

of vertices the token visited creates a path 𝑃 = 𝑣0𝑣1𝑣2 ... called the

play where ∀𝑛 ≥ 0 : 𝑣𝑛 → 𝑣𝑛+1. Since there are no dead-ends, there
can only be infinite plays. The vertices occurring infinitely often

in a path P is denoted by 𝑖𝑛𝑓 (𝑃). Player Even wins the path P if

𝜔 (𝑖𝑛𝑓 (𝑃)) is an even number, otherwise Odd wins.

A strategy 𝜎 : 𝑉 ↦→ 𝑉 is a (partial) function that maps each

vertices to its successor vertices, respecting the edges of the graph.

Since strategy in this case is just choosing an edge for each vertex,

strategy can be viewed as a subset of the edges of the graph, i.e.

𝜎 ⊆ 𝐸. A strategy 𝜎 ′ is called a strategy for player 𝛼 if the domain

of 𝜎 ′ is restricted to vertices of player 𝛼 (𝑉𝛼), i.e. 𝜎
′
: 𝑉𝛼 ↦→ 𝑉 . 𝜎 ′

is a valid strategy if it is total, i.e. it assigns a successor for every

vertex owned by 𝛼 . 𝜎 ′ is a winning strategy (also must be valid) from

vertex 𝑣 ∈ 𝑉 if all plays starting from v that is consistent with 𝜎 ′ is
winning for player 𝛼 . A set of vertices 𝑉 ′ ⊆ 𝑉 is a winning region
for player 𝛼 if 𝛼 has a strategy 𝜎 that is winning from all 𝑣0 ∈ 𝑉 ′.
A game Γ′ with graph G’ is called a subgame of Γ with graph G

(denoted Γ′ ⊆ Γ) if G’ is a subgraph of G. Given a set of vertices V’,
we say Γ\𝑉 ′ to be the subgame of Γ whereG’ is a subgraph ofG with

V’ (and the corresponding edges) removed, i.e.𝑉𝐺\𝑉 ′ = 𝑉𝐺 \𝑉 ′ and
𝐸𝐺\𝑉 ′ = 𝐸𝐺 \ (𝑉 ′×𝑉 ′). Additionally, since an edge in a game Γ does

not mean the edge is also in a subgame Γ′ ⊆ Γ, we write 𝑣 →Γ′ 𝑤

to denote an (existence of) edge between v and w in subgame Γ′

when discussing about subgames.

2.2 Closed Subset and Dominion
The concepts of closed subset and dominion are related to tangles.

They allow more convenient proving of lemmas about tangles. The

definitions are based on the definitions by van Dijk [4] and Jurdz-

iński’s [9].

Definition 2.1 (Closed subset). A non-empty set of vertices𝑉 ′ ⊆ 𝑉
is called a closed subset with respect to valid strategy 𝜎 (strategy for

player 𝛼) if: ∀𝑣 ∈ 𝑉 ,

∃𝑤 : 𝑣 → 𝑤 (1)

𝑣 ∈ 𝑉𝛼 =⇒ 𝜎 (𝑣) ∈ 𝑉 ′ (2)

𝑣 ∈ 𝑉𝛼∗∗ =⇒ 𝐸 (𝑣) ⊆ 𝑉 ′ (3)

This means that all moves in V’ that are consistent with 𝜎 stay in

V’. In other words, 𝜎 traps 𝛼∗∗ in V’.

Definition 2.2 (Dominion). A non-empty set of vertices 𝐷 ⊆ 𝑉

is called a dominion with respect to valid strategy 𝜎 (strategy for

player 𝛼) if:

(1) D is a closed subset with respect to 𝜎 (𝜎 traps 𝛼∗∗ in D),

(2) all plays in D that is consistent with 𝜎 is winning for player

𝛼 .

Informally, a dominion of player 𝛼 is a set of vertices where player

𝛼 has a strategy to force all plays in the dominion to stay in the

dominion and win.

2.3 Tangle
The definition of tangle is based on van Dijk’s paper [4].

Definition 2.3 (Tangle). A non-empty set of vertices 𝑈 ⊆ 𝑉 is

called a tangle of player 𝛼 if:

(1) player 𝛼 has a valid strategy 𝜎 such that the graph (V’,E’)
with 𝑉 ′ = 𝑉 ∩𝑈 and 𝐸 ′ = 𝐸 ∩ (𝜎 ∪ (𝑈𝛼∗∗ ×𝑈)) is strongly
connected,

(2) player 𝛼 wins all plays that stay in (V’,E’).

Since player 𝛼 wins all plays in U with strategy 𝜎 , the other player

𝛼∗∗ is forced to escape the tangle to avoid losing.

2.4 Tangle Learning Algorithm
The tangle learning algorithm mainly consists of two subroutines

(or methods):

• solve: iteratively searches and removes dominion of the

game and computes the winning regions and winning strate-

gies for both players,

• search: given a game and a set of tangles, returns the updated

set of tangles and a dominion

The search algorithm uses an extension of attractor set [14] called
the tangle attractor and the algorithm extract − tangles to extract
tangles in a region A with respect to a strategy 𝜎 .

2.4.1 Tangle attractor. Several algorithms that solve parity games

use the notion of attractor set [14] (or attractor). An 𝛼-attractor in

game Γ of a set of vertices A is a set of vertices where player 𝛼 can

force 𝛼∗∗ to play to A. Let us denote this 𝛼-attractor by 𝐴𝑡𝑡𝑟 Γ𝛼 (𝐴). It
can be computed using inductive definition for sets: adding vertices

in A as the base step, and in each induction step, 1) adding vertices
of 𝑉𝛼 in Γ that have at least an edge to A and 2) vertices of 𝑉𝛼∗∗ in

Γ that have all edges to A. To formally define this, let us denote 𝐷𝑖

as induction at step i, then,

𝐷0 = 𝐴

𝐷𝑖+1 = 𝐷𝑖 ∪ {𝑣 ∈ 𝑉𝛼 |∃𝑤 : 𝑣 → 𝑤 ∧𝑤 ∈ 𝐷𝑖 }
∪{𝑣 ∈ 𝑉𝛼∗∗ |∀𝑤 : 𝑣 → 𝑤 =⇒ 𝑤 ∈ 𝐷𝑖 }

𝐴𝑡𝑡𝑟 Γ𝛼 (𝐴) =
∞⋃
𝑖=0

𝐷𝑖

The definition completes at the least fixed point, i.e. 𝐷𝑖+1 = 𝐷𝑖 , or

there are no more vertices left in the game that is not already in the

attractor set.

Suppose a tangle of player 𝛼 denoted by t. The escapes from tangle

t, denoted by 𝑒𝑠𝑐 (𝑡), are defined as a set of vertices in 𝑉 \ 𝑡 where
there exists at least an edge from vertices of 𝑎∗∗ in t to those vertices.
In set notation, 𝑒𝑠𝑐 (𝑡) = {𝑤 | (𝑣 → 𝑤) ∧ (𝑣 ∈ 𝑡 ∩𝑉𝑎∗∗) ∧ (𝑤 ∈ 𝑉 \ 𝑡)}.
Denote T as a set of tangles and 𝑇𝛼 ⊆ 𝑇 as tangles won by player 𝛼 .

2

Formalization of Tangle and Tangle Learning Algorithm TScIT 37, July 8, 2022, Enschede, The Netherlands

The tangle attractor 𝑇𝐴𝑡𝑡𝑟
Γ,𝑇
𝛼 (𝐴) extends the definition of attractor

by adding vertices of tangles in 𝑇𝑎 that have all escapes to the

attractor set. To formally define this, let us denote 𝐷𝑖 as induction

at step i, then

𝐷0 = 𝐴

𝐷𝑖+1 = 𝐷𝑖 ∪ {𝑣 ∈ 𝑉𝛼 |∃𝑤 : 𝑣 → 𝑤 ∧𝑤 ∈ 𝐷𝑖 }
∪{𝑣 ∈ 𝑉𝛼∗∗ |∀𝑤 : 𝑣 → 𝑤 =⇒ 𝑤 ∈ 𝐷𝑖 }

∪{𝑣 ∈ 𝑡 |𝑡 ∈ 𝑇𝛼 ∧ 𝑒𝑠𝑐 (𝑡) ≠ ∅ ∧ 𝑒𝑠𝑐 (𝑡) ⊆ 𝐷𝑖 }

𝑇𝐴𝑡𝑡𝑟
Γ,𝑇
𝛼 (𝐴) =

∞⋃
𝑖=0

𝐷𝑖

Since 𝛼 wins inside the tangle, 𝛼∗∗ is forced to escape the tangle to

avoid losing inside the tangle. However, in iteration i+1, the only
escapes are to 𝐷𝑖 in which 𝛼 can force the token to reach A where

𝛼 also wins. Hereafter, we say tangle-attracted to mean TAttr and
attracted to mean Attr.

2.4.2 The search algorithm. The search algorithm, given a game

and a set of tangles, computes the updated set of tangles and a tangle

that is a dominion. The algorithm recursively decomposes the game

into sets of vertices called regions such that each region is won by

𝛼 and can not tangle-attract any vertices, i.e., 𝑇𝐴𝑡𝑡𝑟
Γ,𝑇
𝛼 (𝐴) = 𝐴.

Given a game Γ, the algorithm retrieves a set of vertices with the

highest priority in the game H, then computes a region Z by adding

all vertices that are tangle-attracted to H. The next iteration repeats

this procedure with the subgame Γ \ 𝑍 , which repeats again until

there are no more vertices left. Thus, each iteration creates a region

where each region contains a highest priority that is unique to other

regions since each iteration computes a region with decreasing

highest priority. For more details about the algorithm, see van Dijk’s

paper [4].

Algorithm 1 The search algorithm

1: function search(Γ,T)
2: while True do
3: 𝑟 ← ∅, 𝑌 ← ∅
4: while Γ \ 𝑟 ≠ ∅ do
5: Γ′ ← Γ \ 𝑟 ;𝑇 ′ ← 𝑇 ∩ Γ′;
6: 𝑝 ← 𝜔 (𝑉Γ′);𝛼 ← 𝑤 (𝑝);
7: 𝐻 ← {𝑣 ∈ 𝑉Γ′ |𝜔 (𝑣) = 𝑝};
8: 𝑍, 𝜎 ← 𝑇𝐴𝑡𝑡𝑟

Γ′,𝑇 ′
𝛼 (𝐻);

9: 𝐴← extract − tangles(𝑍, 𝜎);
10: if ∃𝑡 ∈ 𝐴 : 𝑒𝑠𝑐 (𝑡) = ∅ then
11: return 𝑇 ∪ 𝑌, 𝑡 ;
12: end if
13: 𝑟 ← 𝑟 ∪ 𝑍 ;𝑌 ← 𝑌 ∪𝐴;
14: end while
15: 𝑇 ← 𝑇 ∪ 𝑌 ;
16: end while
17: end function

2.4.3 The extract − tangles algorithm. The algorithm as given in

van Dijk’s paper [4]. The extract − tangles algorithm searches for

tangles won by player 𝛼 in a region A with respect to strategy 𝜎 (𝜎

is strategy for player 𝛼). First, A is reduced by removing all vertices

of player 𝛼∗∗ that have all escapes in the lower regions (regions

with lower highest priority) in the subgame Γ′ (see Algorithm 1)

and all vertices of player 𝛼 that are constrained in A by 𝜎 . Then,

each bottom strongly connected components in the reduced region

is a tangle. For more details, see van Dijk’s paper.

2.4.4 The solve algorithm. The solve algorithm computes the win-

ning regions and winning strategies for both players of a game. It

recursively decomposes the game, each time reducing the subgame

with the attractor set of the dominion in the subgame found using

the search algorithm. In each recursion, the attractor set of the

dominion is the winning region of either player. For more details

about the algorithm, see van Dijk’s paper.

2.4.5 Isabelle keywords and terminologies. Here, we explain some

keywords and terminologies in Isabelle included in this paper. The

highlighted words are the keywords in Isabelle. The function key-

word declares a recursive function. To declare a non-recursive func-

tion, also called definition, definition is used. type_synonym
creates a synonym for (combinations of) already existing types. An

inductive_set is Isabelle’s equivalent to the concept of an in-

ductively defined set. The definition of an inductive set are rules of

which the set is inductively defined (base steps and induction steps).

A lemma is declared using the lemma keyword. The statement

of a lemma can be a chain of propositions with the last proposition

being the conclusion (e.g. A =⇒ B =⇒ C where A and B are the

assumptions and C is the conclusion that needs to be proven), or a

combination of fixes, assumes, and shows keywords. Proposi-

tions declared after assumes are the assumptions, each separated

by spaces or the optional and. Propositions that we need to prove, i.e.
the conclusions are declared after shows, also separated by spaces

or the optional and. fixes is optional, it is used to declare parame-

ters that will be used in the assumptions and/or conclusions which

is not required by Isabelle. The unfolding keyword refines the

conclusion by expanding definition(s) in the goal to their definition

body. The using keyword adds facts that may help in proving a

lemma or another fact, and the by keyword proves the lemma or

fact using a proof method, such as simp, auto, blast, etc.
A locale in Isabelle is a class that fixes some parameter(s) (or

variable(s)) and assumes some properties about these parameter(s)

without knowing their value. From a logical perspective, locales are

just contexts that have been made persistent [2]. Anything (func-

tions, definitions, lemmas, etc) declared inside a locale can refer to

the fixed parameter(s) of the locale and use the assumption(s) of

the locale as fact(s). For each locale, Isabelle automatically creates a

locale definition which is a definition with equally qualified name as

the locale that has the locale’s parameter(s) as the definition’s param-

eter(s), the logical conjunction of all locale’s assumption(s) as the

definition’s body, and returns true if the parameter(s) fulfills all the

assumption(s). From outside a locale, any functions and definitions

inside the locale is added with the parameter(s) of the locale before

the actual parameter(s), and any lemmas are also added with the

assumption(s) of the locale before the actual assumptions. The fully

3

TScIT 37, July 8, 2022, Enschede, The Netherlands Bonifacius Geraldo Christiano

qualified name of a function/definition inside a locale (locale name +

function/definition name) is used to refer to that function/definition

as seen from outside the locale, i.e. it takes all parameters, including

those of the locale’s. Similarly, the fully qualified name of a lemma

inside a locale refers to that lemma that includes all the assumptions,

including those of the locale’s. The fully qualified name can be used

from both outside and inside the locale.

3 METHODOLOGY
Isabelle/HOL is used as the formal theorem prover [12] in this re-

search. Isabelle is an interactive theorem prover, meaning that there

is no need for any "compilation" process to get any results. The

software does all checks and proving (type inference, declaration

checking, natural deduction, etc) as you type which makes it very

convenient and more time-efficient. There are 2 methods of writing

proofs in Isabelle, using apply-scripts or using the Isar proving lan-

guage [11]. We will be using Isar instead of writing apply-scripts as

it allows more robust proof structure and improve readability.

Furthermore, the Archive of Formal Proofs (AFP) contains collec-

tions of formal mathematical proofs written in Isabelle, including of

parity games created by Dittmann [5]. We use this formalization as

the basis of our research since it already contains lots of definitions

and lemmas about parity games. Some of Dittmann’s formalization

that are of interest in this research are:

• ParityGame G is a locale, the definition checks if G is a parity
game.

• ParityGame.VV G p returns the set of vertices of player p
in game G.
• type_synonym ′a Strategy = ”

′a⇒ ′a” defines strat-

egy as a function from a vertex to another vertex.

• ParityGame.strategy G p 𝜎 checks if𝜎 is a valid strategy

in game G for player p, i.e. it assigns a successor for every
vertex owned by p.
• ParityGame.winning_strategy G p 𝜎 v0 checks if 𝜎 is

a winning strategy from vertex v0 in game G for player p.
• ParityGame.subgame G V′ returns a subgame of G with

vertices of G intersected with V′.
• ParityGame.winning_region G p returns thewinning re-
gion of player p in G.
• ParityGame.winning_path G p P checks if P is a path in

game G won by player p.
• Digraph.valid_path G P checks if P is a valid path, a path

that respects the edges of the directed graph G.
• Digraph.maximal_path G P checks if P is a maximal path,

a path that is either empty or ends on a dead-end, in directed

graph G. Infinite paths are maximal.

• vm_path G P v0 is a locale, the definition checks if P is a

non-empty valid maximal path that starts from vertex v0 in

game G.
• vmc_path G P v0 p 𝜎 is a locale, the definition checks if P
is a non-empty valid maximal path that starts from vertex v0
in game G and conforms to strategy 𝜎 .

There are some drawbacks from using Dittmann’s formalization.

Dittmann considers dead-ends and infinite graphs in his formaliza-

tion which makes it quite challenging to work with. Also, Dittmann

considers the minimum priority as the winning priority even though

many literature consider the maximal priority as the winning prior-

ity. This happens because there is no general consensus on whether

the winning priority is the lowest or the highest priority in the game

[1]. Either way, we follow the definition of Dittmann that considers

the minimum priority as winning, to not cause complication later

on.

Van Dijk’s paper [4] is used as the main reference in this research

as the tangle learning algorithm is relatively novel. This research

also formalizes the concepts of closed subset and dominion as aux-

iliary methods for proving tangles and tangle learning algorithm.

The concepts of closed subset and dominion themselves contain

several small lemmas that can be proven in Isabelle.

4 RESULTS
This section explains the formalization produced during the research.

Some of the important lemmas will have their informal proofs ex-

plained first then the formal proofs. Most of the lemmas have too

long formal proofs, so the proofs are not shown, only the statement

of the lemmas are shown instead.

4.1 Locale PG
Most definitions and lemmas in the formal proof are declared inside

the locale PG. Locales can extend other locales, such is the case

with PG. The child (extending) locale inherits the fixed parameter(s)

and assumption(s) of the parent (extended) locale and can add its

own parameter(s) and definition(s). The locale PG extends the locale

ParityGame defined by Dittmann [5] and adding the assumption

of finite graph by just using finite vertices:

locale PG = ParityGame +

assumes finite_V: "finite V"
Because the vertices are finite, it follows that the edges are also

finite which completes the definition of finite graph:

lemma finite_E[simp]: "finite E" using finite_V

valid_edge_set by (simp add: finite_subset)
ParityGame also contains several parameters involved in parity

games which we will use. V is the set of vertices, E is the set of

edges, V0 is the set of vertices of player Even, and 𝜔 is the priority

function. ParityGame defines 3 assumptions:

(1) valid_edge_set: validity of edges, i.e. E ⊆ V × V,
(2) valid_player0_set: validity of player Even’s vertices, i.e.

V0 ⊆ V,
(3) priorities_finite: the game has finite number of dis-

tinct priorities, i.e. finite (𝜔 ‘ V)

4.2 Utilities and auxiliary lemmas
We also create several definitions and lemmas that act as auxiliary

methods to help simplify defining and proving later on. They are

all contained in the locale PG (see subsection 4.1).

strategy_to_edge_set 𝜎 converts a strategy 𝜎 to an equal

set of edges.

winning_prio V′ returns the winning priority from a set of

vertices V′, corresponds to 𝜔 (𝑉 ′)

4

Formalization of Tangle and Tangle Learning Algorithm TScIT 37, July 8, 2022, Enschede, The Netherlands

winning_prio_nodes V′ returns a subset of V′ assigned with

the winning priority.

prio_winner p returns the winning player of a priority number,

corresponds to w(p).
node_winner v returns the winning player of a vertex v.
nodes_winner V′ returns the winning player of a set of vertices

V′.
subgame_PG is a lemma that proves that if a game G fulfills the

assumptions of PG, then all subgames of G also fulfills the assump-

tions of PG. Below is the lemma declaration:

lemma subgame_PG: "PG (subgame V')"
The declaration uses the locale definition of PG. The definition takes

the same parameter as locale definition of ParityGame which is

a parity game. Since subgame V′ is still a parity game, we pass

it to the locale definition to prove that it also fulfills the locale’s

assumptions.

The formal proof of the lemma requires proving the assumptions

of PG which is the combination of assumptions of ParityGame
and finite vertices (”finite V”) for subgames. The assumptions of

ParityGame for subgames are already proven by Dittmann. We

only need to prove finite vertices for subgames. Since the set of

vertices of a subgame𝐺 ′ ⊆ 𝐺 is just the subset of the set of vertices

of game G, then if G has finite set of vertices, G’ also has finite set

of vertices.

One exception that is not declared in PG is a lemma that proves

parity games with no dead-ends always have infinite plays. It is

declared in locale vm_path instead since it involves paths. vm_path
extends ParityGame and fixes a (possibly infinite) list of path

named P. This lemma is not exactly an auxiliary lemma since it can

be interesting and useful on its own. However, putting it in another

section is a waste of space, so it is added here.

Lemma 4.1. If a game G has no-deadends, then all valid maximal
paths in G are infinite.

Proof. Proof by contradiction. If a valid maximal path P in G is

finite, then the last vertex on the path is a dead-end by definition of

maximal path. However, this contradicts the assumption that G has

no dead-ends. So, all valid maximal paths must be infinite. □

lemma (in vm_path)

vm_path_infinite_in_no_deadends_game:

assumes "∀v ∈ V. ¬ deadend v"

shows "¬ lfinite P"

4.3 Closed subset and dominion
4.3.1 Closed subset. The definition of closed subset is a predicate

(Boolean function) that checks if a set of vertices is a closed subset

with respect to a certain strategy and that strategy is a strategy for

a certain player. It takes 3 parameter(s): 1) V′, a set of vertices, 2) 𝜎 ,
the strategy that closes the set of vertices, and 3) p, the player that
owns 𝜎 . Below is the definition of closed subset:

definition closed :: "'a set ⇒ Player ⇒ 'a

Strategy ⇒ bool" where
"closed V' p 𝜎 ≡ V' ⊆ V ∧ V' ≠ {} ∧

ParityGame.strategy (subgame V') p 𝜎 ∧
(∀v ∈ V'.

(¬ Digraph.deadend (subgame V') v) ∧
(v ∈ VV p∗∗ −→ ∀w. (v → w) −→ w ∈ V')))"

The definition is based on the description and equations in Definition

2.1. Line 3 establishes non-emptiness and that V′ is a subset of V.
Line 6 (with the universal quantifier in line 5) establishes the non-

existence of dead-ends described in equation 1. Line 4 and 6 (along

with the quantifier at line 5) establishes equation 2 which we will

prove later on. Line 7 establishes equation 3.

Below we prove 2 lemmas about closed subset:

Lemma 4.2. Suppose G’ is a subgame with no-deadends (with set of
vertices 𝑉 ′) and 𝜎 is a valid strategy for player p in subgame G’. If
𝑣 ∈ 𝑉 ′ is a vertex of player p, then:

(1) 𝜎 (𝑣) ∈ 𝑉 ′,
(2) 𝑣 → 𝜎 (𝑣).

Proof. Suppose a vertex 𝑣 ∈ 𝑉 ′ is owned by player p (𝑣 ∈ 𝑉 ′𝑝).
From the assumption, 𝜎 is a valid strategy in the subgame G’ for
player p, which means 𝜎 is (minimally) restricted to 𝜎 : 𝑉 ′𝑝 ↦→ 𝑉 ′.
Therefore, 𝜎 maps v to some vertex in V’, i.e. 𝜎 (𝑣) ∈ 𝑉 ′ which
proves the first sub-lemma.

The second sub-lemma is trivial to prove. By definition of strategy,

𝜎 respects the edges of the graph. So, there must exists an edge

between v and 𝜎 (𝑣) which proves the second sub-lemma. □

lemma strategy_in_subgame_with_no_deadends:

assumes "ParityGame.strategy (subgame V') p 𝜎"

"∀v ∈ V'.¬ Digraph.deadend (subgame V') v"

shows "∀v ∈ V'. v ∈ VV p −→ v ∈ V'" and
"∀v ∈ V'. v ∈ VV p −→ v → 𝜎 v"

Lemma 4.3. Suppose V’ is closed with respect to a valid strategy 𝜎
owned by player p and v0 is any vertex in V’. Then all valid maximal
path conforming to 𝜎 starting from v0 stays in V’.

Proof. Take a random vertex 𝑣0 ∈ 𝑉 ′. By definition of closed

subset and lemma 4.2, if v0 is a vertex of player p, then 𝜎 (𝑣0) ∈ 𝑉 ′.
By definition of closed subset, if v0 is a vertex of player p**, then all

successor vertices of v is also in V’. Player p playing consistently

with 𝜎 will never let the token leave V’ and the opponent, p**, can
not leave V’ in any way. This means that all valid maximal paths

that conform to 𝜎 starting in v0 will never leave V’. □

lemma vmc_path_in_closed_subgame_lset:

assumes "closed V' p 𝜎" "v0 ∈ V'"

"vmc_path G P v0 p 𝜎"

shows "lset P ⊆ V'"

4.3.2 Dominion. The definition of dominion uses the definition of

closed subset defined above. Similar to closed subset, it is also a

predicate that checks if a set of vertices is a dominion of a certain

player with respect to a certain strategy. It also takes the same

parameter as closed subset. Below is the definition of dominion:

5

TScIT 37, July 8, 2022, Enschede, The Netherlands Bonifacius Geraldo Christiano

definition dominion :: "'a set ⇒ Player ⇒ 'a

Strategy ⇒ bool" where
"dominion D p 𝜎 ≡ closed D p 𝜎 ∧

(∀v ∈ D. winning_strategy p 𝜎 v)"
This definition corresponds to the description in Definition 2.2.

Line 3 corresponds the first description in the list. Line 4 uses

ParityGame.winning_strategy defined by Dittmann. The def-

inition is:

definition winning_strategy :: "Player ⇒ 'a

Strategy ⇒ 'a ⇒ bool" where
"winning_strategy p 𝜎 v0 ≡ ∀P. vmc_path G P v0 p

𝜎 −→ winning_path p P"
winning_strategy states that "all valid maximal paths (or plays)

conforming to 𝜎 that start from v0 are winning for player p". Apply-
ing this for all vertices in D in definition of dominion and the fact

that dominion is closed, we get the fact that "all plays conforming

to 𝜎 that start from some v ∈ D are winning for player p and stays

in D".
Below we prove 2 lemmas about dominion:

We prove that dominion is a closed subset. Since dominion is a

closed subset by definition, it is a trivial proof.

lemma dominion_is_closed[simp]:"dominion D p 𝜎

=⇒ closed D p 𝜎"

unfolding dominion_def by auto

Lemma 4.4. Suppose D is a dominion of player p with respect to a
valid strategy 𝜎 . D is a subset of the winning region of player of p.

Proof. By the definition of subset, we need to prove that for

all 𝑣 ∈ 𝐷 , then also v in the winning region of p. Take any vertex

𝑣 ∈ 𝐷 . Then by definition of dominion, 𝜎 is a winning strategy

from v for player p. A logically equivalent alternate definition of

winning region is if 𝑤 is in the winning region of p, then there

exists a winning strategy from w for player p. Using this alternate
definition, v must also be in the winning region of p since 𝜎 is the

winning strategy from v for player p. Generalizing this to all vertices
in D and using the definition of subset, we see that 𝐷 is a subset of

winning region of p.
□

lemma dominion_subset_of_winning_region:

assumes "dominion D p 𝜎" "strategy p 𝜎"

shows "D ⊆ winning_region p"

4.4 Tangle
4.4.1 Reachability. Since the definition of tangle includes the no-

tion of strongly connected, we need to define what it means for a

set of vertices to be strongly connected. But before we can define it,

we need to define reachability, a vital concept in defining strongly

connected. A vertex w is said to be reachable by a vertex v if there

exists a path from v to w. A vertex can always reach itself using the

trivial empty path. Below, we define reachability in Isabelle using

an inductive set:

inductive_set reachable_by :: "'a ⇒ 'a set" for
u where

refl: "u ∈ V =⇒ u ∈ reachable_by u" |

trans: "v ∈ reachable_by u =⇒ v → w =⇒ w ∈
reachable_by u"

The definition takes a vertex u and returns a set of vertices reach-

able by the vertex. It is defined using 2 rules:

(1) refl is the reflective (base) rule which says that the vertex

u is reachable by itself.

(2) trans is the transitive (induction) rule which says that if v
is reachable by u and there exists an edge between v and a

vertex w, then w is also reachable by u.

We also prove a lemma that relates valid_path with our defi-

nition of reachability above.

Lemma 4.5. Suppose 𝑃 = 𝑣0𝑣1𝑣2 ... is a valid path, 𝑛, 𝑛′ ∈ N with
𝑛 ≤ 𝑛′ and n’ strictly less than the length of P (𝑛 < 𝑙𝑒𝑛(𝑃)). Then 𝑣𝑛′
is reachable by 𝑣𝑛 .

Proof. Since 𝑛 ≤ 𝑛′ and 𝑛′ < 𝑙𝑒𝑛(𝑃), we rewrite 𝑛′ = 𝑛 + 𝑗 with
𝑛 ≤ (𝑛 + 𝑗) < 𝑙𝑒𝑛(𝑃). Now we prove: if 𝑛 + 𝑗 < 𝑙𝑒𝑛(𝑃), 𝑣𝑛+𝑗 is
reachable by 𝑣𝑛 using induction on j.

Base step: j = 0, prove if 𝑛 + 0 < 𝑙𝑒𝑛(𝑃), 𝑣𝑛 can reach 𝑣𝑛+0. Since
𝑣𝑛+0 is just 𝑣𝑛 , by reflection rule that says 𝑣𝑛 can reach itself, 𝑣𝑛 can

reach 𝑣𝑛+0.
Induction hypothesis (IH): For some arbitrary but fixed j, if 𝑛+ 𝑗 <

𝑙𝑒𝑛(𝑃), 𝑣𝑛 can reach 𝑣𝑛+𝑗 .
Induction step: Assuming IH, prove that if 𝑛 + (𝑗 + 1) < 𝑙𝑒𝑛(𝑃),

𝑣𝑛 can reach 𝑣𝑛+(𝑗+1) . Since P is a valid path, 𝑣𝑛+𝑗 → 𝑣𝑛+(𝑗+1) .
Transitively, since 𝑣𝑛 can reach 𝑣𝑛+𝑗 , 𝑣𝑛+𝑗 → 𝑣𝑛+(𝑗+1) , and 𝑛 + (𝑗 +
1) < 𝑙𝑒𝑛(𝑃), we prove that 𝑣𝑛 can reach 𝑣𝑛+(𝑗+1) .

Substituting n + j with n’, we prove that if 𝑛′ < 𝑙𝑒𝑛(𝑃), then 𝑣 ′𝑛 is

reachable by 𝑣𝑛 . □

lemma valid_path_reachability:

assumes "valid_path P" "n ≤ n'" "n' < llength P"

shows "(P $ n') ∈ reachable_by (P $ n)"

4.4.2 Strongly connected. A set of vertices U is strongly connected

if every vertex in U can reach all vertices of U. The definition of

strongly connected in Isabelle uses reachable_by defined in the

previous subsection. Below is the definition:

definition scc :: "'a set ⇒ bool" where
"scc V' = (∀v ∈ V'. ∀w ∈ V'. w ∈ reachable_by v

) "

4.4.3 Strategy defined subgame. In the definition of tangle, we need

to check whether the graph (V’,E’) with 𝑉 ′ = 𝑉 ∩ 𝑈 and 𝐸 ′ =
𝐸∩(𝜎∪(𝑈𝛼∗∗×𝑈)) is strongly connected. Since a strongly connected
component in a graph is also affected by edges of the graph, we

can not use ParityGame.subgame. Two graphs with same sets of

vertices but different sets of edges may not have the same strongly

connected component(s). ParityGame.subgame only allows us

to intersect the vertices and not the edges. For this purpose, we

introduce the definition a strategy defined subgame:

6

Formalization of Tangle and Tangle Learning Algorithm TScIT 37, July 8, 2022, Enschede, The Netherlands

definition subgame_strategy :: "'a set ⇒ Player

⇒ 'a Strategy ⇒ ('a,'b) ParityGame_scheme

" where
"subgame_strategy V' p 𝜎 =

G(verts := V ∩ V',

arcs := (E ∩ (V' × V')) -

{(u, v)|u v. u ∈ VV p ∧ 𝜎 u ≠ v},

player0 := V0 ∩ V')"
Similar to ParityGame.subgame, but edges with the head owned

by player p that is not in 𝜎 are removed.

4.4.4 Tangle. The definition of tangle in Isabelle is given below:

definition tangle :: "'a set ⇒ Player ⇒ 'a

Strategy ⇒ bool" where
"tangle V' p 𝜎 ≡ V' ⊆ V ∧ V' ≠ ∅ ∧

ParityGame.strategy (subgame V') p 𝜎 ∧
PG.scc (subgame_strategy V' p 𝜎) V' ∧
(∀v ∈ V'.

(¬ Digraph.deadend (subgame V') v) ∧
(∀P. vmc_path G P v p 𝜎 ∧ lset P ⊆ V'

−→ winning_path p P))"
Line 3 establishes non-emptiness and that V′ is a subset of V. Line 4
and 7 (with universal quantifier in line 6) serves the same purpose

as the one in definition of closed subset. Line 5 establishes strong

connectivity of subgame limited by strategy 𝜎 . In line 8 and 9, the

vmc_path which checks if P conforms to strategy 𝜎 , lset P ⊆ V′

which checks if P stays in V′, and winning_path which checks if

P is winning for player p, together with the universal quantifier ∀P
states that "all paths consistent with 𝜎 that stay in V′ are winning
for p" which completes the second description in Definition 2.3.

Below, we prove several lemmas related to tangles.

Lemma 4.6. Suppose T is a tangle won by player 𝛼 and 𝛼∗∗ can not
leave T, i.e. 𝛼∗∗ have no escapes from T. Then, T is a dominion won by
𝛼 .

Proof. In any tangle, the losing player can escape from the tangle

through the escapes from the tangle (t is a tangle, esc(t) are the

escapes). However, since the losing player 𝑎∗∗ have no escapes from
T and 𝛼 win all plays that stays in T, all plays starting from some

vertex 𝑣 ∈ 𝑇 is always won by 𝛼 , which is just the definition of

dominion. So, tangle T won by 𝛼 is a dominion won by 𝛼 . □

lemma unescapable_tangle_is_dominion:

assumes "tangle T p 𝜎" "∀e ∈ T. e ∈ VV p∗∗ −→
(∀f. (e → f) ⇒ f ∈ T)"

shows "dominion T p 𝜎"

Lemma 4.7. If D is a dominion won by player 𝛼 with some strategy
𝜎 , then D contains at least a tangle also won by player 𝛼 with 𝜎 .

Proof. Since D is closed, any plays in D consistent with 𝜎 must

eventually form a cycle with the vertices in the cycle being a strongly

connected component (SCC) in D. Also, since 𝛼 won all plays in D,

this SCC must also be won by 𝛼 with 𝜎 and so, the SCC is a tangle

won by player 𝛼 with 𝜎 . □

To formalize the proof of this lemma, we created 2 lemmas:

SCC_in_closed_subset proves a closed subset contains an SCC,

and dominion_contains_a_tangle uses the previous lemma to

prove dominion contains at least a tangle. Unfortunately, we were

unable to completely prove the former which means we also can

not prove the latter.

lemma SCC_in_closed_subset:

assumes "closed V' p 𝜎"

shows "∃S. S ⊆ V' ∧ PG.scc (subgame V') S"

lemma dominion_contains_a_tangle:

assumes "dominion D p 𝜎"

shows "∃T. T ⊆ D ∧ tangle T p 𝜎"

4.5 Tangle learning algorithm
4.5.1 Tangle attractor. When doing the attractor set computation

for player 𝛼 , a commonly neglected but important process is also

computing the strategy that attracts the vertices of player 𝛼 . In

Dittmann’s formalization, the attractor set computation does not

consider computing the strategy when computing the attractor set.

The tangle learning algorithm utilises this strategy in its algorithm

making the strategy computation important to include. First, we

introduce 2 type_synonym-s:

• ′a Tangle = ”
′a set × ′a Strategy” represents a tangle

(
′a set) won by a player 𝛼 along with the strategy for 𝛼 that

wins the tangle (
′a Strategy).

• ′a AttrState = ”
′a set × ′a Edge set” represents state

of the attractor computation where
′a set is the set of ver-

tices at an induction step and
′a Edge set is the strategy

that attracts the vertices in
′a set, represented as a set of

edges. This representation allows us to combine strategies

which would be hard to do otherwise with strategies being

functions.

Then, we formalize attractor set (𝐴𝑡𝑡𝑟) computation that includes

computation of the attracting strategy:

function attractor_strategy :: "Player ⇒ 'a

AttrState ⇒ 'a AttrState" where
"attractor_strategy p Z = (let Z' =

attr_strategy_step p Z in

(if Z = Z' then Z

else attractor_strategy p Z'))"

by auto
It recursively compute the attractor until the if condition states

that it has reached a fixed point. attr_strategy_step defines an

induction step in the attractor set computation. Recursive functions

in Isabelle must be proven to be able to terminate in all cases; in this

case, Isabelle can automatically prove its termination (by auto).
Before we can define tangle attractor, we must define escapes and

tangles of a player which are used in the tangle attractor computa-

tion.

7

TScIT 37, July 8, 2022, Enschede, The Netherlands Bonifacius Geraldo Christiano

definition escapes :: "Player ⇒ 'a set ⇒ 'a

set" where
"escapes p T = {v|u v. (u → v) ∧

(u ∈ T ∩ VV p∗∗) ∧ (v ∈ V - T)}"

definition player_tangles :: "Player ⇒ 'a

Tangle set ⇒ 'a Tangle set" where
"player_tangles p T = {(Tp,𝜎)|Tp 𝜎. (Tp,𝜎) ∈ T

∧ tangle Tp p 𝜎}"
Below, we define the tangle attractor (𝑇𝐴𝑡𝑡𝑟) that includes com-

putation of the attracting strategy:

function tangle_attractor :: "Player ⇒ 'a

AttrState ⇒ 'a Tangle set ⇒ 'a AttrState"

where
"tangle_attractor p Z T = (let attr_step =

attr_strategy_step p Z;

t_attr_step = tangle_attr_step p Z T;

Z' = (fst attr_step ∪ fst t_attr_step,

snd attr_step ∪ snd t_attr_step) in

(if Z = Z' then Z else tangle_attractor p Z'

T))"

by auto
Similar to the "normal" attractor computation, it also uses recur-

sion. While attr_strategy_step defines an induction step of

attractor set computation, tangle_attr_step defines an induc-

tion step of attracting the tangles. It uses the defined escapes to

only get tangles with escapes only to Z, and player_tangles to

only get the tangles of player p.

5 DISCUSSION
In this paper, we formalize underlying and main concepts related to

tangle learning algorithm and parity games in general in Isabelle.We

used a predefined formalization of parity games to reduce workload

and solve a drawback of usimg this formalization, namely infinite

graphs by creating the locale PG.
Closed subset and dominion are quite important concepts in par-

ity games. They simplify the problem of finding winning regions

of players which is the main objective of parity game solving algo-

rithms. One of the research question is to prove several properties of

tangles that are related to these concepts. Since Dittmann’s formal-

ization does not include these concepts, we define them in Isabelle.

Besides defining them, we also prove several interesting lemmas

about them that may help us prove lemmas about tangles. Although

initially we define these concepts in Isabelle to help us in prov-

ing several properties of tangles, the definitions and especially, the

lemmas can be interesting on their own.

Before we define the concept of tangle, we define several concepts

involved in the definition of a tangle, such as the notion of strongly

connected and strategy defined subgame.We then define the concept

of tangle, a core concept in the tangle learning algorithm. We prove

the first lemma and tried to prove the second lemma about tangles

as described in van Dijk’s paper [4]. Unfortunately, we were unable

to completely prove the second one (see Lemma 4.7) due to difficulty

and lack of time, so the proofs for both SCC_in_closed_subset
and dominion_contains_a_tangle are ended with the oops
keyword. This keyword allows us to end an incomplete proof with-

out throwing any error. In the proof of SCC_in_closed_subset,
the last thing we manage to do is proving that any paths in a

closed subset eventually form a cycle, a path where the first and

last vertices are the same. One idea to complete the proof is to

show that since the first and last vertices are the same, all ver-

tices in one such cycle can reach each other which makes them a

strongly connected component. Then, this lemma can be used to

prove dominion_contains_a_tangle.
Next, we give a partial implementation of the algorithm by defin-

ing the attractor and tangle attractor computation that also com-

putes the attracting strategy. This is required since the tangle learn-

ing algorithm uses the attracting strategy unlike the well-known

Zielonka’s algorithm [14]. Unfortunately, wewere unable to progress

further due to difficulties in implementing the extract − tangles
algorithm and lack of time.

Throughout the research, we encounter some difficulties in prov-

ing lemmas in Isabelle. Isabelle has a steep learning curve which

makes it hard for beginners to use it. While the Isabelle environ-

ment itself is interactive and can even search proofs for the user

which makes it somewhat easier to use, some facts/lemmas that

seem to have obvious proofs at first glance can actually be hard to

prove in Isabelle. Trying to prove lemmas in a certain way does not

always work out in the end and may require changing the whole

approach. One example is unescapable_tangle_is_dominion
where we have to adapt the definition of tangle and create the

lemma vmc_path_in_closed_subgame_lset just to prove the

lemma.

6 CONCLUSION
The tangle learning algorithm is a novel parity game solving algo-

rithm based on the notion of a tangle. Ensuring the algorithm can

indeed solve parity games requires proving the algorithm’s termina-

tion and correctness. For that purpose, an informal proof has been

given and the formalization of the proof will allow more accurate,

reliable and easier verification of the proof. In this paper, we con-

tribute to the formalization of the algorithm’s proof by formalizing

the concept of tangles, the core concept in the tangle learning algo-

rithm, along with other related concepts in an interactive theorem

prover: Isabelle. Finally, we define the tangle attractor computation,

a variant of the attractor set computation that used in the tangle

learning algorithm. Further work for the formalization is to define

the tangle learning algorithm itself and then start proving lemmas

about the algorithm’s termination and correctness in Isabelle.

7 ACKNOWLEDGEMENT
I would like to thank Tom van Dijk for his assistance and guid-

ance regarding parity games and Peter Lammich for his technical

assistance for Isabelle and both of them for their useful feedback

throughout the research.

REFERENCES
[1] Remco Abraham. 2019. A Formal Proof of the Termination of Zielonka’s Algorithm

for Solving Parity Games. B.S. thesis. University of Twente.

8

Formalization of Tangle and Tangle Learning Algorithm TScIT 37, July 8, 2022, Enschede, The Netherlands

[2] Clemens Ballarin. 2003. Locales and locale expressions in Isabelle/Isar. In Interna-
tional Workshop on Types for Proofs and Programs. Springer, 34–50.

[3] Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan.

2020. Deciding parity games in quasi-polynomial time. SIAM J. Comput. 0 (2020),
STOC17–152.

[4] Tom van Dijk. 2018. Attracting tangles to solve parity games. In International
Conference on Computer Aided Verification. Springer, 198–215.

[5] Christoph Dittmann. 2015. Positional determinacy of parity games. Archive of
Formal Proofs (2015).

[6] E Allen Emerson, Charanjit S Jutla, and A Prasad Sistla. 2001. On model checking

for the 𝜇-calculus and its fragments. Theoretical Computer Science 258, 1-2 (2001),
491–522.

[7] John Harrison. 2008. Formal proof—theory and practice. Notices of the AMS 55,
11 (2008), 1395–1406.

[8] Marcin Jurdziński. 1998. Deciding the winner in parity games is in UP∩ co-UP.

Inform. Process. Lett. 68, 3 (1998), 119–124.

[9] Marcin Jurdziński and Rémi Morvan. 2020. A universal attractor decomposition

algorithm for parity games. arXiv preprint arXiv:2001.04333 (2020).
[10] Michael Luttenberger, Philipp J Meyer, and Salomon Sickert. 2020. Practical

synthesis of reactive systems from LTL specifications via parity games. Acta
Informatica 57, 1 (2020), 3–36.

[11] Makarius Wenzel. 2007. Isabelle/Isar—a generic framework for human-readable

proof documents. From Insight to Proof—Festschrift in Honour of Andrzej Trybulec
10, 23 (2007), 277–298.

[12] Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow. 2008. The isabelle

framework. In International Conference on Theorem Proving in Higher Order Logics.
Springer, 33–38.

[13] Wikipedia contributors. 2022. Formal system — Wikipedia, The Free Encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Formal_system&
oldid=1071134805 [Online; accessed 4-May-2022].

[14] Wieslaw Zielonka. 1998. Infinite games on finitely coloured graphs with applica-

tions to automata on infinite trees. Theoretical Computer Science 200, 1-2 (1998),
135–183.

9

https://en.wikipedia.org/w/index.php?title=Formal_system&oldid=1071134805
https://en.wikipedia.org/w/index.php?title=Formal_system&oldid=1071134805

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Parity Game
	2.2 Closed Subset and Dominion
	2.3 Tangle
	2.4 Tangle Learning Algorithm

	3 Methodology
	4 Results
	4.1 Locale PG
	4.2 Utilities and auxiliary lemmas
	4.3 Closed subset and dominion
	4.4 Tangle
	4.5 Tangle learning algorithm

	5 Discussion
	6 Conclusion
	7 Acknowledgement
	References

