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Measurement-based Rotational Hand Gesture
Recognition Using mmWave MIMO FMCW Radar

Jelle Wilbrink

Abstract—Contact-free gesture recognition can be used to
convey commands to computers, allowing for more user-friendly
Human-Computer Interactions than traditional input devices,
like remote controllers. This paper proposes methods to estimate
the radius and period of periodic rotational gestures measured
using millimeter-wave (mmWave) radar based on the Doppler-
Time Map (DTM), Range-Time Map (RTM) and a combination
of the DTM and RTM. Following the literature, a 3D Fast Fourier
Transform is applied to the radar data, yielding the DTM and
RTM. These are then further processed using existing techniques,
like subtracting the mean over time from the RTM to remove
static objects and constant false alarm rate detection to find
the approximate distance between the center of the gesture and
the radar. The accuracy and robustness of these methods, that
combine existing processing steps in a novel way, are determined
using a set of measurements of various radii and periods of the
hand’s circular trajectory at different distances and angles with
respect to the radar. Virtual Reality glasses are used to establish a
ground truth for the measurements. It is found that the combined
method using both the DTM and RTM is most robust for radius
recognition with 4.4cm average error. Besides, the estimate for
period recognition is found accurate in 83% of the scenarios for
all methods.

I. INTRODUCTION

SMART objects are seemingly everywhere nowadays.
These objects, ranging from curtains to light bulbs, have

a computer in them, which needs to be controllable by the
users. Traditional mobile input devices like remote controllers
are not ideal for this, as they have to be picked up and
touched in order to convey information to a computer. An
alternative is provided by contact-free interaction methods,
such as voice commands or gesture recognition, where users
interact with a fixed controller at a distance [1]. Cameras or
radio devices, like radar systems, can be used for gesture
recognition. Cameras have high recognition accuracy, but they
depend on lighting and atmospheric conditions. They may also
raise privacy concerns [2]. Radar systems do not have these
drawbacks, but generally have worse resolution than cameras.

In [1], [3], [4], [5] and [6], mmWave radar is used for ges-
ture recognition, focusing on distinguishing between different
gestures from a set of both linear and rotational motions. This
paper will look into the recognition of variations in radius and
period of a single periodic hand gesture, since such variations
can be used to control computers, but have not yet been
investigated. A periodic circular hand gesture of the hand in
the elevation-range plane, as seen from the radar, is chosen,
because a circle performs a sinusoidal motion over time along
both axes of this plane. So, if a circle can be characterized, the
same algorithm is expected to work for other periodic motions,
like moving back and forth a line.

A. mmWave radar theory

A radar works by first transmitting a signal, which is
then partially scattered back by objects in space. This back
scattering is received by another antenna on the radar.

This paper will use millimeter-wave (mmWave) radar,
specifically the TI IWR1843BOOST radar in combination with
the DCA1000 data capture adapter [7]. This radar has a carrier
frequency fc of 77GHz and a maximum bandwidth of 4GHz. It
has 4 receivers (Rx) and 3 transmitters (Tx), forming an array
of Multiple Input and Multiple Output (MIMO) antennas, as
shown in Fig. 1.
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Fig. 1: Antenna configuration of TI IWR1843BOOST and
antenna layout after TDM for NTx ×NRx = 3× 4. Adapted
from [8].

The radar used in this paper is a so-called Frequency
Modulated Continuous Wave (FMCW) radar, indicating that
it sends out chirps. These are signals that linearly increase
their frequency over time during period Tc. By mixing the
transmitted and received chirps together, the beat frequency
fbeat is obtained [1]. Each chirp is sampled with a number
of NADC samples. Nc chirps of a single transmitter together
form a frame with duration Tf and each measurement contains
Nf frames.
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Fig. 2: Chirps transmitted by the radar.
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By Time-Disivion Multiplexing (TDM) of the Tx antennas
(Fig. 2), antenna layouts can be formed with combinations
of NTx transmitters and NRx receivers in the following
set: NTx × NRx = {1 × 4, 2 × 4, 3 × 4} (Fig. 1). It will
be assumed that the different antennas are receiving their
signals simultaneously. However, as Fig. 2 shows the chirps
are separated by the time Tc between two consecutive chirps
from the same transmitter. The target should be approximately
static for time Tc for this assumption to hold. This is the case
for the measurements in this paper, as the change in velocity,
distance and angle within the period of one chirp is much
smaller than the resolution that can be detected.

Using the data from the radar, the radial distance, radial
velocity and angle with respect to the radar can be measured.
Below their relation to the physical parameters of the radar
[9] will be given, because they play a role in the estimation of
the radius of the gesture. The range resolution and maximum
range are given in (1) and (2), respectively. In these equations,
c denotes the speed of light, B the bandwidth in Hz, Fs the
ADC sample frequency and S the slope of the chirps in Hz/s.

dres =
c

2B
(1)

dmax =
fsc

2S
(2)

vres =
λ

2Tf
(3)

vmax =
λ

4Tc
(4)

For velocity, the resolution and maximum are given by (3)
and (4). Here, the wavelength is denoted by λ = c

fc
[10].

θres =
λ

Nd cos(θ)
(5)

θmax = sin−1

(︃
λ

2d

)︃
(6)

The maximum measurable angle is given in (6). N denotes
the number of antennas NTx×NRx and d the distance between
them. The antennas of the IWR1843BOOST are spaced by
d = λ

2 (Fig. 1), yielding a field of view of ±90 deg. Using
(5), this results in an optimal angular resolution of 14.2◦ at
θ = 0◦, but the resolution gets worse with an increasing angle.

So far, factors for the radius recognition have been dis-
cussed, but the frequency of the gesture will also be estimated.
According to the Nyquist sampling rate, the frame frequency
(i.e. 1

Tf
) should be at least twice the frequency of the gesture

[11].

B. Processing

The processing of the measured radar data can be divided
in three stages: sensor data representation, feature extraction
and detection [12]. These will be discussed next.

1) Sensor data representation: The first processing steps
are the same in [1]-[6], [10] and [12]. As mentioned, the data
measured by the radar is grouped in ADC samples, chirps and
frames for each antenna. For each measurement this results in
a data matrix with dimensions (NRx · NTx, NADC , Nc, Nf ).
Performing Fast Fourier Transforms (FFTs) along the ADC
sample-, chirp- and antenna-dimensions of the matrix yields
distance, velocity (i.e. (micro-)Doppler) and angle information,
respectively. The frame dimension is unaltered and contains
time information.

Now, the points in the matrix represent the intensity of the
back scattered signal. However, the corresponding axes are in
terms of fbeat or phase shift ω, so (7), (8) and (9) [9] are
used to obtain the intensity of distance, velocity and angle,
respectively:

d =
fbeatc

2S
(7)

v =
λω

4πTc
(8)

θ = sin−1

(︃
λω

2πd

)︃
(9)

After the 3D-FFT has been performed on the raw data, the
complex-valued data is converted to magnitude in dB. Then it
is passed on to the feature extraction stage.

2) Feature extraction: Unlike the similarity in sensor data
representation, a variety of different features is extracted in
literature. For example, slices from the data matrix are directly
used as features, like a 2D-matrix of Doppler or angle against
range for each frame in time [6]. The so-called Range-Doppler
Map (RDM) is also used in [1] and [2]. Range-Time and
Doppler-Time Maps (RTM and DTM, respectively) can also
be used as features [12]. Additionally, a number of features
are listed in [13], subdividing them in three categories: explicit
tracking of scattering centers, low level descriptors of the radio
frequency environment and data-centric features.

3) Detection: Various types of Artificial Intelligence (AI)
are used to detect gestures in [1]-[6], [10] and [12], like deep
learning [3] or support vector machines [5].

Properties of periodic gestures, like the one in this paper,
can be extracted using discrete signal processing techniques
and without AI. Since the trajectory of the hand is a circle in
the elevation-range plane, the radius rg and period Tg = 1

fg
of

the gesture can directly be estimated using distance, velocity
or angle information over time, which are all obtained from
the the signal processing stage.

The resolution rres,d for estimating the radius of the gesture
using distance information is equivalent to dres in (1), since
both are distances along the same axis. Velocity is the time
derivative of distance, so scaling vres from (3) yields the
resolution rres,v of the gesture radius that can be detected
using velocity information:

rres,v =
1

2πfg

λ

2Tf
=

λ

4πTffg
(10)
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Fig. 3: Example of DTM (a) and RTM (b).

rres,θ = 2d sin

(︃
θres
2

)︃
(11)

Eq. (11) is used to convert the angle to the radius of a
gesture. In this equation, rres,θ is the smallest detectable radius
and d denotes the distance to the radar.

C. Contribution of this paper

The radius resolution rres,θ in (11) is worse than rres,d and
rres,v. Even though this could be improved using algorithms
like MUSIC [2], the accuracy of detecting radius of a gesture
is inversely proportional to d, whereas rres,d and rres,v do
not have this dependence on distance. Hence the processing
methods in this paper focus on distance and velocity over time,
i.e. using the RTM and DTM (Fig. 3).

No AI is used, unlike in [1]-[6], [10] and [12], since the
desired characteristics can be obtained using signal processing.
Contrary to AI, the proposed recognition method is not a
black box and hence might be more insightful. Besides,
the computational complexity and the amount of data to be
processed might be lower. For instance, a 2D-matrix is fed to
the recognition algorithm for each frame in [6], whereas the
current approach will only need a 1D-vector for each frame.
Also, this approach does not require the large set of training
data the needed for AI.

This paper will first design post processing algorithms to
recognize the radius and period of the specified hand gesture
in Section II. Then, a measurement is set up in Section III to
test the algorithms. The results of these experiments are shown
and discussed in Sections IV and V. Finally, a conclusion will
be drawn comparing the robustness and error of the proposed
processing methods.

II. METHODOLOGY

As mentioned in the introduction, methods for estimating
the radius and period of a gesture from the RTM and DTM
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Fig. 4: Block diagram of the proposed processing methods
to estimate a hand gesture’s radius and period: DTM method
(yellow), RTM method (orange) and combined method (blue).

will be designed. The outcomes of the two methods will
also be combined. Fig. 4 shows a block diagram of the
proposed processing methods. Between the blocks in the
diagram filtering steps take place.

A. DTM-based method

After the data matrix in dB is obtained by applying a 3D-
FFT, the data matrix is summed in the range and angle dimen-
sions in order to summarize the data along these dimensions
in a single value. This step reduces the 4D-matrix to a 2D-
matrix, i.e. the DTM. For the angle dimension, only the angles
θ around 0◦ are summed, because the gesture is not covering
the entire field of view of the radar.

In the DTM, all static objects are concentrated at 0m/s,
resulting in a high peak (Fig. 3a), which is removed by taking
the the mean over time for velocities near 0m/s.

Next, 75th percentile highest intensity value is set as a lower
bound for the intensity, to which all values below this threshold
are clipped. This removes low intensity noise and increases the
average intensity of the DTM, for example around v = 0m/s

The next step is the application of a Gaussian filter, which
applies a weighted average to each cell in the matrix, where
the weights are a Gaussian distribution with standard deviation
σ [14]. This filter reduces noise caused by single data points
with high intensity.

Following Fig. 4, the DTM is now reduced to the 1D
signal v(t), by only keeping the velocity corresponding to the
maximum value from each intensity vector along the time axis
of the DTM. Ideally, v(t) is a sinusoid representing the hand’s
velocity over time, but in reality, this is not the case. Hence,
more filtering steps are applied, like a low-pass filter with
cutoff frequency fcut to filter out high frequency noise and
subtracting the mean over time to remove the DC-component.

Next, an FFT is applied to v(t), yielding V (f). Now, the
only step left is estimating the radius and period of the gesture.
The estimated frequency fg,DTM = 1

Tg,DTM
is found by

taking the frequency of the highest peak of V (f), because
that peak corresponds to the hand gesture.

rDTM,timedomain =
1

2πfg,DTM

max(vg(t)) +min(vg(t))

2
(12)

rDTM,fft =
1

2πfg,DTM
max(V (f)) (13)
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The radius can be estimated in two ways, using either v(t)
or V (f), as shown in (12) and (13), respectively. Eq. (13) is
expected to give a low estimate of the radius, because ideally
all signal energy is in a single peak, but in reality the energy
is spread out over a wider frequency band. In contrast, (12)
is expected to yield a higher estimate, because only the very
highest and lowest peak are considered. However, in order for
(12) to work, there cannot be any outliers left in v(t) after
the filtering steps. This requirement is met, so (12) is used to
estimate the radius of the gesture for the DTM method.

B. RTM-based method

Similar processing steps are taken for the RTM method as
for the DTM method (Fig. 4), but there are some differences.

The main difference is that the RTM may include multipath
propagations which make the gesture appear to happen at
multiple distances, due to different delays of back scattered
signals that take a longer path. This would cause detected 1D
distance over time d(t) to sometimes pick up the real gesture
and sometimes detect the back scattering a few meters further,
corrupting the extracted data. To prevent this, 2D Constant
False Alarm Rate (CFAR) detection is used to detect the center
distance of the gesture dg,center, before the RTM is filtered
and used to estimate the radius and period of the gesture.

Th = βPn (14)

2D-CFAR looks at each cell in a matrix and compares it
to a threshold value Th. If the cell is above the threshold,
a detection is made. The threshold depends on the noise
power Pn, which is scaled with a factor β as shown in (14).
The CFAR detector automatically adjusts β to achieve the
desired Probability of False Alarm (PFA). The CFAR detector
estimates Pn from a band of Ntb nearby cells called training
band. These cells are separated from the cell under test by
Ngb cells, the guard band [15].

To implement the CFAR detector, first an unfiltered RTM
is constructed by summing along the velocity and angle
dimensions of the data matrix. The RTM is then fed to the
CFAR algorithm, yielding a 2D-matrix with value 1 for each
cell of the RTM that exceeds threshold Th and value 0 for
other cells. This matrix is summed along the time axis to
get the number of detections for each distance Ndet(d). After
applying a moving average filter, the distance corresponding
to the highest peak of Ndet(d) is taken as dg,center. The RTM
processing below will only look at distances dg,center±rg,max.
Here, rg,max is the maximum detectable radius for the RTM
method, which will be chosen later.

Next, the RTM is constructed (Fig. 4) similar to the DTM,
apart from the range restrictions. However, the filtering steps
are not all the same as for the DTM. Next to the Gaussian
filter, the mean over time is subtracted from the RTM in order
to remove static objects [8]. Examples of static objects are
visible as vertical lines in Fig. 3b.

For estimating the period Tg,RTM of the gesture, the same
steps are followed as for the DTM: extracting peaks to get
a 1D signal d(t) of distance of the hand over time, low-pass
filtering, DC-component removal and an FFT yielding D(f).

However, because the signal has too much outliers to use (12),
the radius is determined similar to (13):

rRTM = max(D(f)) (15)

C. Combined method

Having two separate methods to determine the radius and
period of a gesture allows us to combine them. For the radius
the average of the DTM and RTM estimates is taken:

rcombi =
rDTM,timedomain + rRTM

2
(16)

This can result in an overall more accurate and robust
outcome, since the DTM method is expected to give a high
and the RTM method a low estimate, relative to each other.

Tcombi =

{︄
Tg,DTM+Tg,RTM

2 , if | 1
Tg,DTM

− 1
Tg,RTM

| < 0.25Hz

Tg,DTM , otherwise
(17)

Eq. (17) shows the combined period Tcombi. Early testing
has shown that the RTM method produces significantly more
outliers than the DTM methods, so the RTM estimate is only
used if it is close the DTM estimate. For this, a maximum
of 0.25Hz deviation is chosen, because that is the smallest
frequency step that will be measured in this paper.

III. MEASUREMENT CAMPAIGN

A set of experiments is designed to test the processing
algorithms developed in the previous section. First, the ex-
periment setup will be described, followed by the variations
of the parameters of the experiment.

A. Measurement setup

This paper is only interested in angle measurements of the
elevation dimension in 3D-space. Hence, the radar will be
rotated 90◦, such that the array of 8 antenna elements from
Tx1 and Tx2 (Fig. 1) are directed along the elevation axis.
This is also why Tx3 (Fig. 1) will not be used in this paper.

For the radar configuration, a rate of 20 frame/s is chosen,
well above the Nyquist sampling rate [11] for the fastest
gesture frequency in the measurements in this paper. A total
of 256 frames for each measurement is chosen, yielding a
total measurement duration of 12.8s. A slope of 60MHz/µs
is used to keep Tc low and thus vres optimal. Besides, ramp a
start- and endtime of 6µs and 66µs are chosen for each chirp,
respectively. This leads to a bandwidth of 3.96GHz, which is
close to the radar’s maximum of 4GHz and thus close to the
optimal dres. Lastly, a sample rate of 10Msps, NADC = 512
and Nc = 128 are chosen.

Using equations (1) and (10), the range and velocity res-
olution of the radar for the chosen settings are calculated
(Table I). Besides, because the radar captures discrete data
points, the axes of velocity and distance are divided in Nc and
Nf equal intervals, respectively. This gives these axes a finite
resolution, which will be referred to as ”discrete resolution”
(Table I). The discrete resolution is slightly worse than the
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radar resolution for both rres,d and rres,v . This was chosen
on purpose, because doubling the number of samples would
double the amount of data, but only yield a slight improvement
of the resolution, since the radar resolution would then become
the limiting factor.

TABLE I: Range and velocity resolution.

rres,d (m) rres,v (m)
Radar resolution 0.038 0.025
Discrete resolution 0.049 0.029

Besides choosing parameters for the radar, a number of
parameters need to be chosen for the estimation algorithm
proposed in Section II. These are shown in Table II, along
with a short motivation. The parameters for CFAR are chosen
by sweeping over the possible values and choosing the com-
bination with the minimum square error between the detected
center distance and ground truth distance.

TABLE II: Algorithm parameters including motivation.

Parameter Value Motivation

Gaussian filter σ 0.5 Default value in Matlab [14]
fcut,LPF 2Hz Target cannot comfortably exceed this
rg,max ±0.5m Target cannot comfortably exceed this
CFAR PFA 0.36 This yields the minimum square error
CFAR Ntb 9 cells This yields the minimum square error
CFAR Ngb 3 cells This yields the minimum square error

Fig. 5: Experiment setup with variable parameters indicated.

To make the experiments more accurate and repeatable, a
ground truth is needed, since one can only move his hand with
±5cm accuracy when guided. For this purpose the Virtual
Reality (VR) app shown in Fig. 6 is built and a Meta Quest
2 [16] is used to run the app. All one has to do is face in
the direction of the desired angle and follow the target disk
with his hand. To verify whether the accuracy goal of ±5cm
is reached, the screen of the VR glasses is recorded.

Besides the VR glasses, a fencing glove that contains a
metal mesh is worn in order to increase the reflectivity of the
hand during the measurements. The complete setup is shown
in Fig. 7.

B. Measurement scenarios

For the experiment a human subject will perform the
specified gesture in front of the radar. The radius r and period

Fig. 6: Screenshot of virtual reality app, where the yellow
disk with the red dot rotates around the other yellow disk at a
configurable speed and radius, demonstrating the gesture. The
white lines indicate α = {−60,−30, 0, 30, 60}◦.

Fig. 7: Measurement setup.

T of the hand gesture will be measured for various distances d
between the center of human gravity and the radar and various
angles α of the human torso with respect to the radar (Fig. 5).
All variations that will be measured are listed in appendix A.

IV. RESULTS

A. Overall performance

After processing the measured data, the overall performance
of the estimation methods proposed in Section II is evaluated.
For this purpose, the robustness and error for each method
are computed. The robustness is defined as the number of
measurements that are recognized within acceptable deviation
divided by the total number of relevant measurements. For
the radius, the threshold is an absolute error of 5cm and the
threshold for the frequency is 0.25Hz, which corresponds to
the maximum gesture period of 4s. Only the measurements
for α = 0◦ are included for the robustness of the radius
detection, because other angles are not expected to be accurate.
This yields a total of 20 measurements for the detected radius
and 40 measurements for the period. To get more insight, the
average absolute error is also computed. Both these measures
are shown in Table III.
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The table shows that the combined method is the most
robust and has the lowest error for radius detection, whereas
only 50% of the detections are found accurate for the DTM
and RTM methods. Note however, that the average error is
only slightly above the threshold of 5cm, so many data points
are almost accurate.

Looking at the robustness of the period estimation, all 3
methods perform equally good. However, the DTM has a
lower average error, meaning it is more accurate than the other
methods.

TABLE III: Robustness and error for each method.

DTM RTM Both

Radius robustness (%) 50 50 75
Radius error (m) 0.061 0.051 0.044
Period robustness (%) 83 83 83
Period error (s) 0.068 1.12 0.075

Table III shows an exceptionally high error for the period
estimate of the RTM method compared to the errors of the
other methods. Besides, the individual data points of the RTM
method have some outliers. When investigating this, it is
found that the CFAR detector sometimes finds the wrong
center distance for the gesture. This causes the actual gesture
to be outside of the distance window of the RTM. Most
measurements are detected correctly for d = 1m, whereas all
measurements for d = 2m and d = 3m are misdetected. This
is found to be the cause of the large errors at α = ±60◦ in Fig.
13. It also explains and invalidates the datapoints for the RTM
(and thus the combined method) in Fig. 9 and 12. It appears
that the CFAR parameters found in Table II are perhaps not
optimal. A reason for this could be that the parameters with
the lowest average error are selected. However, the data set
contains more measurements for d = 1m than the other
distances, biasing the CFAR detector towards d = 1m.

B. Gesture radius

Fig. 8 shows the detected radius for all three methods
discussed in the previous section. It shows that both the DTM
and RTM methods are able to detect the radius, but that the
RTM method is less accurate. In line with the different peak
detection for the DTM and RTM methods, as discussed in
Section II, the RTM method overall estimates a lower radius
than the DTM method.

The relation between the detected radius and the distance d
between the center of human gravity and the radar is shown
in Fig. 9. The error of the DTM method increases with the
distance. This might be due to propagation loss, causing the
signal intensity to decrease at larger distances and making it
harder to distinguish the gesture from noise, like in-phase back
scattered signals (e.g. Fig. 14) that have high intensity.

The relation between the detected radius the angle α with
respect to the radar is also investigated, as shown in Fig. 10.
For reference, the theoretical radius that should be detected
based on radial distance to the radar is also displayed. The
detected radius follows the shape of the theoretical curve, but
has a higher error. This shape shows that the error increases
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Fig. 8: Detected radius against actual radius for different
detection methods, where d = 1m, T = 1s and α = 0◦.
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Fig. 9: Average error |rdetected − rideal| for various distances
d, where T = 1s and α = 0◦.

with an increase in angle, so at some angle α the estimation
will not be sufficiently accurate anymore. However, more
measurements would be required to determine the maximum
angle for which the proposed methods can accurately be used
to detect the radius of the specified gesture.

C. Gesture period

The detected period is shown in Fig. 11. For all these
measurements, both the DTM and RTM methods detected
the same period. These measurements all have the minimum
possible error, since their detected period corresponds to the
discrete frequency closest to the reference frequency. The
largest error is about 7% (Fig. 11) and could be improved
by measuring for a longer time.

Fig. 12 shows the error for period detection for different
distances d. It follows that the DTM method can accurately
recognize the period of a gesture independent of the distance
d. Similarly, from Fig. 13 we learn that period estimation using
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Fig. 10: Average error |rdetected − rideal| for various angles
α, where d = 1m and T = 1s.
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Fig. 11: Detected period against actual period for different
detection methods, where d = 1m, r = 0.2m and α = 0◦.

the DTM is independent of angle α within the measured range
of |α| < 60◦.

V. DISCUSSION AND RECOMMENDATIONS

From the findings of this research a number of recommen-
dations can be made. Firstly, as mentioned in Section IV, the
CFAR detector did not detect the correct center distance of
the gesture for d > 1m. This leaves the performance of the
RTM method with respect to distance inconclusive, so future
work could investigate this using different CFAR parameters.
Besides, a detection method that does not depend on angle
α could be investigated. If the θres can be made sufficient, a
method based on angle θ can be used for this.

Furthermore, the accuracy of the ground truth of the mea-
surements can be improved. During this research, it was
assumed that an accuracy of ±5cm can be reached for the
ground truth, if the human subject is presented with a target
to follow. Even though this method of obtaining a ground
truth was sufficiently accurate for the measurements in this
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Fig. 12: Average error |Tdetected−Tideal| for various distances
d, where r = 0.2m and α = 0◦.
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Fig. 13: Average error |Tdetected − Tideal| for various angles
α, where d = 1m and r = 0.2m.

paper, capturing the coordinates of the VR controller would
allow for a more quantitative comparison between the data
from the radar and the ground truth. Lastly, The accuracy and
repeatability of the gesture itself could be improved by using
a humanoid robot.

VI. CONCLUSION

In this paper, processing methods were designed and evalu-
ated to recognize the radius and period of a periodic rotational
hand gesture using signal characteristics of mmWave radar. A
range based method, velocity based method and a combination
of the other two were constructed. Also, the dependence of the
estimated period and radius on the distance d and the angle α
were tested. For d = 1m and α = 0◦, both the RTM and DTM
methods were found accurate. However, when evaluating over
more measurements with different parameters, their robustness
dropped to 50% for the detected radius. The combined method
shows an improved robustness of 75%. For larger distance d,
the error of the detected radius increased for the DTM method.
The RTM method was invalidated for d > 1m, because of
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misdetections of the CFAR algorithm used to find the center
distance of the gesture. Besides, the error of the detected radius
was found to increase, when the angle α was increased.

The period estimates for all three methods were found to
be accurate in 83% of the cases. Hence overall, the combined
method is found the most robust of the three proposed methods
for recognizing the radius and period of periodic rotational
gestures.
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APPENDIX A
MEASUREMENT VARIATIONS

TABLE IV: All variations of parameters for which a measure-
ment is conducted.

d (m) α(◦) T (s) r (m)

1 0 1 0.05
1 0 1 0.1
1 0 1 0.15
1 0 1 0.2
1 0 1 0.25
1 0 1 0.3
1 0 0.5 0.2
1 0 2 0.2
1 0 3 0.2
1 0 4 0.2
1 -60 1 0.1
1 -30 1 0.1
1 30 1 0.1
1 60 1 0.1
1 -60 1 0.2
1 -30 1 0.2
1 30 1 0.2
1 60 1 0.2
1 -60 1 0.3
1 -30 1 0.3
1 30 1 0.3
1 60 1 0.3
1 -60 0.5 0.2
1 -30 0.5 0.2
1 30 0.5 0.2
1 60 0.5 0.2
1 -60 4 0.2
1 -30 4 0.2
1 30 4 0.2
1 60 4 0.2
2 0 0.5 0.2
2 0 1 0.2
2 0 4 0.2
2 0 1 0.1
2 0 1 0.3
3 0 0.5 0.2
3 0 1 0.2
3 0 4 0.2
3 0 1 0.1
3 0 1 0.3

APPENDIX B
ADDITIONAL FIGURES

Fig. 14: DTM for d = 2m, α = 0◦, T = 1s and r = 0.1m.
Decreased intensity compared to d = 1m and a smaller
sinusoid visible in the larger one.
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