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Abstract 

In this research, we study how we can improve the risk-based revision model of a Dutch bank that 

signals the need for measures that should prevent clients from going into default based on the 

current financial situation of clients. We test various machine learning models, namely logistic 

regression, decision trees and random forests, to obtain a new improved classification model. Most 

of the clients of the bank are in a healthy financial situation and do not need measures to prevent 

a default. Therefore, we implement imbalanced dataset techniques such as alternative cut-off 

strategies and the synthetic minority oversampling technique (SMOTE) to boost the performance 

of the models. Also, we apply hyperparameter tuning by implementing a grid search. Higher 

precision is preferred over lower recall by management in this study. Therefore, we measure model 

performance with the F0.33 score. We found that by using a random forest model and applying an 

alternative cut-off point, we could improve the F0.33 score from 7 percent to 71 percent, indicating 

that the new model can be seen as an improvement over the old model. Underlying here is that 

precision increased from 6 percent to 84 percent but the recall performance decreased from 80 

percent to 30 percent. Besides suggesting a configuration for the new model, we show what 

configurations are possible in terms of different precision versus recall trade-offs to provide insight 

to management on what performance levels can be achieved.  

Keywords: Forbearance measures, risk-based revisions, logistic regression, decision trees, random 

forests, imbalanced dataset techniques, alternative cut-off, SMOTE, grid search 
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Executive Summary 

The main goal of this study was to improve the risk-based revision (RBR) model used at the 

business department of the Volksbank. The RBR model is used to signal clients on a monthly basis 

that appear to be going into default and should get a revision in which they could get forbearance 

measures that should prevent a default. The problem with the current RBR model that uses trigger 

conditions to signal clients is that it is not precise enough according to employees directly involved 

in the RBR process. The model signals a lot of clients that do not need a revision. Besides that we 

create a new improved model, this study provides insight into the trade-off that exists for the 

configuration of a new model with respect to false positive and false negative predictions from a 

new model. 

We analyzed the current RBR process and evaluated the performance of the current model. 

Relevant performance metrics to measure the performance of the current model are precision, recall 

and the F score. Precision reflects the ratio of correct signals versus incorrect signals and recall 

reflects the proportion of actual positives that was identified correctly. Generally, these two metrics 

are competing with each other, the higher the precision, the lower the recall and vice versa. The F1 

score combines the performance in terms of precision and recall into one metric with equal weights. 

After consulting the management directly supervising this study, we established that for the new 

model, the improvement in terms of precision is more important than the recall because other 

processes in the bank such as arrears management and Unlikely to Pay triggers could also signal 

clients with financial difficulties. Therefore, we chose to use the F0.33 score variant of the F1 score 

in this study to decide on which new model performs best because this variant gives a larger weight 

to the precision performance than the recall performance. We found that the current model achieves 

a precision of only 6% with a recall of 80% and a F0.33 score of 7%, thereby confirming that the 

current model is not precise.  

By testing various machine learning (ML) models and techniques, we created a new RBR model. 

We found that of the type of ML models we tested, we could achieve the best performance with a 

random forest model. We were restricted in the type of ML models we could use as regulatory 

requirements do not allow for black box type of models to be used. The challenge in this study is 

that we had to work with a limited-sized dataset which was also very imbalanced, two factors that 

make it more difficult to create a well-performing model.  

We configured the new RBR model such that it has high precision, which is also reflected in the 

performance of the new model. The new model achieves a F0.33 score of 71% versus 7% for the old 

model. Precision increased to 84% versus the 6% of the old model. The recall decreased as a result 

of the configuration of the model we chose. The recall is 30% for the new model versus 80% for the 

old model. An interesting insight we found is that recall increases to 53% if the signal from the RBR 

model can also come 1 month later from the next monthly run of the model. Important predictors 

we decided to use in the new RBR model are the probability of default calculated by another risk 

model within the bank and whether there is payment traffic going in and out of the current account 

of the client. 

We acknowledge that although the new model is an improvement over the old model, it is still not 

extremely good. We say that this would be when both precision and recall are larger than 90%. We 

identified four potential reasons why performance is not perfect with the first being inconsistency 

in the evaluation of the shortlist of the current model that we use to train the new model. The 

current model produces a shortlist of clients that it signals, this list is manually evaluated by an 

employee. Manual evaluation leaves room for arbitrariness and so inconsistencies with which a ML 

model has troubles. The second reason could be the small size of the dataset available to us. As the 

Volksbank has currently a relatively small number of business clients, there are very few examples 

of risk-based revisions (only 97). It could be that this number of examples is too limited to be able 

to achieve better performance. Subsequently, it could be that we did not define the appropriate 
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features that could capture the patterns in the data that is available to us. Potentially, features 

could be constructed that could grasp the patterns in the available data better. The last reason 

could be the lack of patterns in the data. It is possible that with the current set of predictors, the 

dataset does not contain sufficiently strong patterns. Other factors currently not in our dataset 

could also influence whether a revision is needed or not. It is also the question of whether there 

exist patterns that could be captured by any set of predictors or whether the outcome is intrinsically 

noisy. 

This study showed that the current RBR model can be improved. We recommend implementing the 

new model as it is clear that it is an improvement over the old model. We would recommend 

updating the model after some years when more examples of risk-based revisions are available. 

Also, we suggest performing follow-up research on in which type of situation clients should get a 

revision and which not, currently there is no defined policy on this within the bank. Next, we would 

recommend quantifying the costs of false positive predictions and false negative predictions of the 

RBR model. This can justify the configuration of the RBR model in terms of precision versus recall. 

Lastly, we suggest experimenting with more (advanced) predictors than used in the dataset used 

by us in this study. It could be that other predictors better capture the patterns in predicting risk-

based revisions. 
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Glossary 

Decision tree = A machine learning model that makes predictions based on how a 

set of questions is answered. This set of questions is reflected in a 

Christmas tree shape. 

Forbearance measures = These are measures in which a bank helps a client by changing 

some of the conditions on the loan it provided to prevent a client 

from going into default. Examples of these are postponing 

repayments or changing the duration of the loan. 

Logistic regression = A classification machine learning model that is used to estimate 

the probability of an observation belonging to a class. 

LTV ratio = The Loan-To-Value ratio is the total loan amount divided by the 

value of the underlying collateral of the loan. 

Majority class = In a dataset with two labels, the class (group of observations from 

the same category) that contains the majority of the observations is 

called the majority class.  

Minority class = In a dataset with two labels, the under-represented class (group of 

observations from the same category) of the observations is called 

the minority class. 

Non-performing = A loan becomes non-performing when there are indications that 

the borrower is very unlikely to repay the loan, or if more than 90 

days have passed without the borrower paying the agreed 

installments. 

Overdraft   = An allowed negative balance in the account. Overdraw. 

Performing = A loan is performing when the obligor met his payment obligations 

on time. But also loans for which payment arrears are fewer than 90 

days late are considered performing. 

Random forest = A machine learning model that combines multiple decision trees 

to make predictions. 

Revision = A revision is a reassessment of the credit risk and the associated 

customer strategy of/for a client. 

SMOTE = Synthetic Minority Oversampling TEchnique, a technique that 

oversamples the minority class of a dataset by creating synthetic but 

very similar new observations of the minority class instead of 

oversampling with replacement. 

Special Asset Management  = Department at a financial institution that takes care of financially 

distressed clients (Dutch = Bijzonder Beheer).  

UtP Trigger = Triggers that cause a client to be declared in default. Some UtP 

triggers are mandatory, as they are defined by regulators. Non-

mandatory UtP triggers are more subjective/refutable signals that a 

client will not repay a loan. 
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Abbreviations 

ACC = Accuracy 

AIC = Akaike Information Criterion  

BIC  = Bayesian Information Criterion 

DT = Decision Tree 

EAD = Expose at Default 

EBA = European Banking Authority 

EL = Expected Loss 

FN = False Negative 

FP = False Positive 

LOCF = Last Observation Carried Forward 

LR = Logistic Regression 

LTV = Loan-To-Value 

MAR = Missing At Random 

MCAR = Missing Completely At Random 

ML = Machine Learning 

NMAR = Not Missing At Random 

NOCB = Next Observation Carried Backward 

NPV = Negative Predictive Value 

PD = Probability of Default  

RBR = Risk-Based Revision 

RF = Random Forest 

RSS = Residual Sum of Squares 

SMOTE = Synthetic Minority Oversampling TEchnique 

SVMs = Support Vector Machines 

TN = True Negative 

TP = True Positive 

UtP  = Unlikely to Pay 
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1.  Introduction 

This chapter introduces the research and the research context. In Section 1.1, we introduce the 

Volksbank, the company at which this study is performed. Also, we briefly introduce the business 

process of a risk-based revision. Section 1.2 presents the problem statement and research goal of 

this study. In Section 1.3, we provide the research questions and sub-questions of this study. 

Finally, Section 1.4 presents the research approach of our study. 

 

1.1. Background 

Nowadays, the banking industry is complex. Banks have to comply with a large number of 

regulations and in a bank’s day-to-day operations mathematical models are used. This also holds 

for the Volksbank, the bank at which this study is performed. The Volksbank, from this point also 

referred to as the bank, is the bank behind brands like SNS, ASN Bank, BLG Wonen and 

RegioBank. One of the processes at the Volksbank is the monitoring of business loans. The bank 

takes precautionary action when clients appear to become in default in the near future due to 

temporary financial stress. This monitoring is even compulsory under legislation coming from the 

European Banking Authority (EBA). For the specific regulation, we refer to European Banking 

Authority (2020, pp. 60-67)  

Measures banks can take in these situations are called forbearance measures. These are measures 

in which a bank is lenient to a client. The bank supports a client by changing some of the conditions 

on the loan it provided. Examples of changes to conditions on a loan are allowing clients to postpone 

repayments or extending the duration of the loan. Also, the client can be transferred to the Special 

Asset Management department, which takes care of clients with very high-risk profiles or clients 

that are already in default.  

Reevaluating a client is called a revision. A revision is a reassessment of the credit risk and the 

associated customer strategy of/for a client. A revision is carried out on the basis of the current 

(financial) information of a client. The Volksbank has a model in place that pre-screens its portfolio 

of small and medium-sized enterprise clients each month. Based on the risk the model determines 

for a client, it decides whether an employee should evaluate that client to take measures if needed. 

Therefore, this entire process is referred to as the risk-based revision (RBR) process. Within the 

business department of the Volksbank, there is the wish to improve the current RBR model. 

 

1.2. Problem statement 

The current RBR model that determines which clients are eligible for further inspection is not 

working satisfactorily. The current model is based on triggering conditions (if-then statements on 

various financial ratios of a client). If one of the conditions set is triggered, the model marks a client 

as up for revision. However, the performance of this model is insufficient according to management. 

Estimates from practice are that +- 90% of clients marked by the model as up for revision turn out 

to be false positives. This means that after a risk manager evaluated the client, 90% of the time the 

decision was made that a forbearance measure was not needed. Also, the number of false negatives 

resulting from the current model is unknown. That is, the number of clients that need a forbearance 

measure but are not marked by the model is unknown.  

Because of the perceived poor performance of the current RBR model, management requests to 

have the model improved, possibly by advanced data science techniques. The improvement should 

focus on significantly reducing the number of false positive signals from the model. Besides, 

management wants to gain more insight into what are the important characteristics when 

predicting the need for a forbearance measure as this is currently not clear. 
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The RBR process can be described as a process that provides early warning messages when 

problems are occurring around loans. Based on these warning messages, adequate actions can be 

taken to prevent a loan from going into default. In this study, the effectiveness of these measures 

is out of scope. We assume that these actions, the forbearance measures work and therefore we will 

not cover the effect of such measures on the Probability of Default (PD). The RBR model only 

predicts whether a forbearance measure is needed, not which specific measure is needed. The 

potential for value creation of the process is plentiful. Firstly, if fewer clients default, more 

principals are paid back to the bank. Secondly, the process helps to retain business and potentially 

creates new business. If clients improve their financial situation because of applied forbearance 

measures, the bank keeps the earnings from the business they bring in. Furthermore, if clients 

fully recover and after some time even decide to expand their business, they are likely to come back 

to the bank that was lenient to them initially, creating even more business for the bank and in the 

end growing the assets under management of the bank. Lastly, fewer clients in default will result 

in the bank needing to make fewer capital provisions. A prerequisite for overall value creation of 

the RBR process is that the benefits outweigh the costs generated by the process. Currently, it is 

questionable whether this is the case as a lot of costs are generated in the process because of the 

evaluation of all the false positive signals. Therefore, having a well-functioning RBR model is 

essential.  

There is a feeling in the department that the current model is not working well enough because it 

is very hard to predict whether measures should be taken. The outcome of whether a loan to a client 

becomes non-performing is stochastic. A certain financial situation will end up in a default the one 

time and a very comparable situation will not the other time. The presumption is that future 

macroeconomic factors/fluctuations that are unpredictable have a large effect on the outcome of a 

certain situation. This study will have to show whether this suspicion could be true.  

Considering all requests of the management, the main goal of this study is to create a new RBR 

model with better performance than the current model. Creating an improved model will have the 

direct effect that the labor effectiveness in the RBR process is increased. Employees will lose less 

time inspecting false positive output from the model and can work on more cases that can create 

value for the bank. In the long term, an improved model has the potential to recover more 

principals, retain more business and even generate new business in the future as employees will 

waste less time inspecting false positive signals of the model. Besides delivering a new RBR model, 

we will give insight in this study on how the new model can be tweaked after we complete this 

study. The reason for this is that an implementation procedure of a new model at a bank, which is 

out of the scope of this study, is lengthy and in which often new requirements or issues arise. By 

delivering insight, we preempt changing requirements and performance preferences. 

Although there is a conjecture that future macroeconomic factors have a significant impact on the 

RBR process, we decided not to elaborately explore these factors in this study because of time 

reasons. We expect that even without implementing future macroeconomic factors, the time needed 

to create a new RBR model will be significant. When we are not able to create a considerably better 

performing RBR, we can conclude that the suspicion about macroeconomic factors within the 

department could be correct and this could then be a topic for further research.  

Our first conjecture is that applying machine learning techniques using internal client data of the 

bank is an effective strategy to achieve our goal of a new and better performing RBR model as 

machine learning (ML) is a great tool to make predictive models. To be able to improve the model, 

insight into the RBR process is needed. Besides, important characteristics of clients can be derived 

from a new model (depending on the type of ML algorithm used). This matches the request of the 

management with the research goal. 
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1.3. Research setup 

As the goal of this study is to improve the performance of the risk-based revision model, our main 

research question is: “How can the risk-based revision model be improved using machine learning?” 

To answer the main research question, we formulate 5 sub-research questions. Each of these 

corresponds to one chapter of this report. If needed, we broke down a question into more sub-

questions to go into more detail about what we will research in that phase of our study. Answering 

all these questions will result in answering the main research question. We identified that we first 

need to study the current situation. This is reflected in Question 1.  Next, we need to find out what 

ML models and techniques we can apply which is reflected in Question 2. Thereafter in Question 

3, we need to establish what design decisions we make for our new model(s) and how we bring the 

literature into practice, for example, which parameters we set for the ML model(s) we implement. 

Then we will compare our new model(s) with the old model (Question 4). Finally, we have to 

determine which conclusion we can make about our work and identify what topics for further 

research could be which is reflected in Question 5.  

1. What are the current risk-based revision process and model? 

a. What is the current working procedure using the output of the risk-based revision 

model? 

b. How does the current risk-based revision model work? 

c. What are relevant performance metrics to evaluate the performance of the risk-

based revision model? 

d. What is the performance of the current risk-based revision model?  

e. How does the available data on the risk-based revision process look like? 

2. What machine learning models and techniques are most suitable to use to create a new 

risk-based revision model? 

a. Why use machine learning techniques to create a new risk-based revision model? 

b. What machine learning techniques can we use to validate our model? 

c. What machine learning models are relevant for creating a new risk-based revision 

model? 

d. What machine learning techniques are useful to improve the performance of the 

selected machine learning model(s)? 

3. How do we implement relevant machine learning theory into a new risk-based revision 

model? 

4. How does the new model compare with the initial risk-based revision model? 

a. What are the scores of the new risk-based revision model(s) on the earlier identified 

performance metrics? 

b. What are the important features for the prediction of clients needing a forbearance 

measure?  

5. What are the conclusions and points for further research of our study? 

 

1.4. Research approach 

In this section, we will elaborate on the steps we take in this study. Firstly, we will familiarize 

ourselves more with the problem using a systematic approach. This involves contacting 

stakeholders of the RBR process and getting to know the procedures in place at the Volksbank by 

interviewing employees. We will thoroughly analyze the current model, understand how it works 

and measure its performance. For performance measurement, data on past outcomes of the revision 

process is needed and the performance metric(s) to be used will have to be identified. We will have 

to gather, analyze and clean this data to be able to perform performance measurements and to 

create our new model at a later stage. The results of these steps we cover in Chapter 2. 
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Secondly, in Chapter 3, we will perform the theoretical part of this study. We will have to establish 

the theoretical framework of this research. Starting with identifying whether applying ML is the 

way to go in this study. This includes whether we can improve the model in simpler ways than 

applying ML models. We will identify relevant model validation methods, ML models and ML 

techniques that can be applied to our problem context.  

Subsequently, in Chapter 4, we will create new models based on our findings from the previous 

step. We will establish and explain the design decisions of the models we will create. An important 

step in this phase is the verification of our models.  

Next, we will evaluate the results that our models produce and determine which type of ML model 

has the best performance in Chapter 5. A comparison between the new and the old models we will 

make. Also, we will identify what are the important variables in the new RBR model.  

Finally, in Chapter 6, we will draw our conclusion about the study. In this last step, we will present 

our findings to the management and state which ML model we would recommend implementing. 

Also, we will present topics of future research related to our study. 
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2.  Context Analysis 

In this chapter, we will describe the context of this study in more depth. In Section 2.1, we will 

cover the current work procedure of the RBR process. In Section 2.2, we will describe how the 

current RBR model works. Following that, we will introduce the performance metrics we will use 

to measure the performance of the RBR model in Section 2.3. From that, in Section 2.4, we introduce 

some performance measurement metrics and calculate the performance of the current model. 

Subsequently, in Section 2.5, we will present the characteristics of the dataset that is available to 

us. Lastly, in Section 2.6, we summarize this chapter. 

 

2.1. Work procedure of the risk-based revision process 

In this section, we will describe the current work procedure of the RBR process. We will cover the 

context of the RBR process, for which type of clients the RBR process is in place, the chronological 

steps that are taken in the process and describe decision rules we identified in the process. 

2.1.1. Context 

Clients that have a loan from a bank can be classified into two states. A client can be performing 

or non-performing. Performing clients are clients that met their payment obligations on time. But 

also clients for which payment arrears are fewer than or equal to 90 days late are considered 

performing. Non-performing clients are borrowers for which there are indications that the borrower 

is very unlikely to repay the loan, these indications are called Unlikely to Pay triggers. Also, clients 

are non-performing when more than 90 days have passed without the borrower paying the agreed 

installments. If one of these conditions is met, a client is considered as in default. 

The Volksbank wants to prevent that clients go into default. To prevent a default, the bank can 

give forbearance measures to clients. These are measures in which a bank helps a client by 

changing some of the conditions on the loan it provided if the client is in temporary financial stress. 

Examples of these are postponing repayments or changing the duration of the loan. Clients will 

only receive these measures when it is clear they have a viable business in the long term and have 

a good financial relationship with the bank. In our study, we assume that forbearance measures 

have a significant positive effect on the probability of default. To decide whether a forbearance 

measure is needed, a revision is needed. A revision is a process in which an employee reevaluates 

a client. Labor capacity does not allow to revise every client periodically. Therefore, the RBR is 

used. The RBR model determines which clients likely need a forbearance measure, producing a 

dropout list of clients that should be manageable with the available labor capacity. The current 

RBR model flags approximately 1 percent of the clients. The goal of the RBR process is to identify 

clients that are not yet in the picture but do need forbearance measures to prevent default. Of 

course, some clients also contact the bank themselves when they run into financial difficulties. 

When this occurs, an employee makes a quick scan of the situation and decides which steps to take 

next. This is also a very interesting process within the bank but we will not cover it in the scope of 

this research. We focus on the RBR process and the clients that are flagged by the RBR model. 

2.1.2. Type of clients 

The RBR process is not applied to every type of client. A distinguishment is made based on the 

exposure of a client and the Loan-To-Value (LTV) ratio of a client. The LTV is the total loan amount 

divided by the value of the underlying collateral of the loan. Clients with performing loans with an 

exposure larger than €E1 always get a periodical individual revision (figures in this section are 

anonymized because of confidentiality). Clients with an exposure between €E1 and €E2 that also 

have a LTV ratio larger than X% also get a periodical individual revision (€E1 > €E2). The high 

outstanding amounts of these types of clients make the costs a periodical individual revision 
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justified. Clients with performing loans with an exposure of less than €E3 are revision-free (€E1 > 

€E2 > €E3). For these types of clients, a revision process is not rewarding from a business 

perspective because of the small exposure involved with the loan. On all remaining clients with 

performing loans, the RBR process is applied. Finally, non-performing clients will always get an 

individual revision. An overview of the applied methodology per client type can be found in Table 

1. This study only focuses on the group of clients that fall into the risk-based revision methodology. 

Table 1, Overview of Status, Exposure and Applied Methodology. 

Status Exposure  Applied Methodology 

Performing Exposure > €E1 Individual revision 

€E1  >Exposure > €E2 & LTV ratio > X% Individual revision 

Remaining exposures > €E3 Risk-Based revision 

Remaining exposures < €E3 Revision free 

Non-performing All exposures Individual revision 

 

2.1.3. Steps in the process 

The RBR process is a recurring process. Every month, the RBR model creates a shortlist of clients 

that appear to be going into default. Evaluation of the shortlist by an employee can have three 

outcomes. The first outcome is that there is not enough financial stress that a revision is needed in 

the opinion of the employee, no action is necessary. The second outcome is that there is financial 

stress but with forbearance measures, a client can be helped to continue to meet his obligations in 

the opinion of the employee. Therefore, a revision is needed. The last outcome is that there is 

financial stress but a client will even with forbearance measures not be able to meet his obligations, 

resulting in the client being declared in default and/or will be transferred to the Special Asset 

Department. Such an outcome can be the result of the opinion of the employee on the situation of 

a client, a client not wanting to meet his obligations, or (mandatory) unlikely to pay (UtP) triggers. 

For more information on (mandatory) UTP triggers, see ECB (2017). 

 

Figure 1: Schematic overview of the steps in the process. 

The manual part of the RBR process starts with an employee evaluating the shortlist produced by 

the RBR model. The employee verifies whether a revision of each client is indeed needed. The 

employee does this by checking factors such as overdraft of a client, use of the limit on the current 

account, the trend in the use of the current account, payment arrears and whether payment traffic 

is still going in and out on the bank account of the client in the various systems the bank has to 

monitor its clients. For unclear reasons we could not identify why these factors, except for the 

payment traffic, are not yet in the current model, making them appealing to put into our new model 

as they would be indicators if action is needed or not. The reason for not implementing payment 

traffic was a practical issue. When a client has a loan at the bank but the account with payment 

traffic at another bank this data is not available. The next step in the process is that the employee 

presents his findings to another employee from the risk management department. This other 

employee must give his approval for the new list of clients that need a revision. When approval is 
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given, the first employee will send revision tasks to the back office of the bank. At the back office, 

the revision tasks will be distributed over the pool of account managers. An individual account 

manager is responsible for the execution of a revision task assigned to him. On sending a revision 

task to the back office, a revision date is set. This is the date before which the revision should be 

performed.  

2.1.4. Decision rules 

The critical step in the RBR process is the employee verifying whether a revision is needed for the 

clients on the shortlist. After interviewing the employees directly involved in the RBR process, we 

identified two reasons when an employee determines a revision is needed: 

1. A negative trend in the current account in combination with a decreasing turnover. 

2. No payment traffic over the current account. 

The first reason is when there is an obvious negative trend in the use of the current account in 

combination with a decreasing turnover in the account. A negative trend is when the loan amount 

outstanding steadily increases, this might indicate a problem. A threshold for the increase of the 

outstanding amount is not decided on in a policy of the bank but the trend should at least be 

obvious. Also, solely a negative trend does not have to indicate financial difficulties. This could also 

indicate that the client is expanding his business. Therefore, it is a requirement that there should 

be a negative trend in combination with decreasing turnover. 

The second reason for revision is when there is no longer payment traffic going in and out over the 

current account. This indicates that the current account is used as an additional loan by the client. 

A current account should not be used as a permanent loan, this is not allowed by the bank. We 

identify that these decision rules are susceptible to randomness. No hard descriptions of these 

decision rules exist or are documented. Also, as this part of the process is executed by people, it is 

clear that the current process leaves room for inconsistent decision-making.  

 

2.2. The current risk-based revision model 

In this section, we will describe the current RBR model. We discuss the methodology of the model 

and explain the financial ratios that are used in the model. Some of the ratios mentioned are 

anonymized because of confidentiality. 

The current model uses triggering conditions on the financial ratios of a client to determine which 

clients need a revision and puts these clients on a shortlist. If one of the conditions set is triggered, 

the model marks a client as up for revision. But as described in Section 2.1.3, this shortlist is 

checked on its correctness by an employee in the current way of working. The first ratio that is used 

for triggering conditions is the Probability of Default (PD) score. The bank uses a credit risk model 

to determine a new PD score class each month. The higher the PD score, the larger the PD. It can 

be seen as a black box score as it is not clear what the exact difference is between scores to the 

employees directly involved in the RBR process. If the PD score of a client is above a certain 

threshold, the client will be marked as up for revision. Also, if a PD score of a client worsened more 

than X classes compared to last month(s) and the PD scores of these months are above a certain 

threshold, the client will be marked as up for revision. 

The next ratio that is used is Expected Loss (EL) in combination with the Exposure at Default 

(EAD). If a client’s EL is larger than X1% of the EAD, the client will be marked as up for revision. 

The last ratio that is used in the current model is the LTV ratio. If the LTV ratio of a client is lower 

than X2%  percent, a client will not be marked as up for revision. In these cases, no losses for the 

bank will occur at default because the underlying collateral has enough value. 
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2.3. Performance metrics 

In this section, we define what performance metrics we will use to measure the performance of the 

RBR model. We will introduce the concepts of True Positive, False Positive, False Negative and 

True Negative. But we will also cover the performance metrics of accuracy, precision, recall, 

specificity, negative predictive value, F1 score and Fβ score. 

The RBR model can be referred to as a classification model. The model predicts the qualitative 

outcomes ‘revision needed’ or ‘no revision needed’. We define ‘revision needed’ as a positive 

classification and ‘no revision needed’ as a negative classification. Positives or positive observations 

are observations of the label ‘revision needed’ and negatives or negative observations are 

observations of the label ‘no revision needed’. 

When classifying, we have the actual class and the predicted class. The actual class is the real 

group an observation belongs to. In our case, this is whether a client actually needed a revision or 

not. The predicted class is the forecasted group an observation belongs to. In our case, this is the 

output of the RBR model that labels clients on whether a revision is needed or not. This results in 

four combinations of outcomes being possible.  

The first combination is actual class positive with predicted class positive. This combination is 

known as a True Positive (TP). Secondly, we have the combination of actual class negative and 

predicted class positive. This combination is known as a False Positive (FP). Next, we have the 

combination of actual class positive and predicted class negative. This combination is known as a 

False Negative (FN). Lastly, we have the combination of actual class negative and predicted class 

negative. This combination is known as a True Negative (TN). These combinations are illustrated 

in  

Figure 2. 

Also illustrated in  

Figure 2, are performance metrics we define that can be derived from the confusion matrix. The most 

intuitive metric is accuracy. We define accuracy as the percentage of observations that are classified 

correctly. With balanced positive and negative observations, accuracy is quite a good performance 

metric. However, in the RBR process, we deal with imbalanced classes. Most of the clients do not 

need a revision. When we would solely use accuracy, the performance would be pretty high because 

most TNs will likely indeed be predicted as negative cases. So only using the performance metric 

accuracy would give an incorrect image of the actual performance. Accuracy is not a good metric for 

reflecting the performance of predicting a minority class. 

  Predicted Class  

  Positive Negative  

Actual Class 

Positive True Positive (TP) False Negative (FN) 
Recall 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Negative False Positive (FP) True Negative (TN) 
Specificity 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 
 

 

Precision 
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative Predictive 
Value 

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

Accuracy 
 

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Figure 2: After An (2020), Illustration of a confusion matrix with performance metrics. 
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Alternatives to using accuracy as a performance metric are metrics based on subsets of the TP, FP, 

FN and TN classes. We will discuss these in this paragraph. The first metric we will cover is 

precision. We define precision as the true number of positive predicted observations divided by the 

total number of positive predicted observations. Precision is an important metric to us as the 

precision of the current process is very low as we can derive from our problem statement. 

Management estimates the precision of being around 10 percent. Furthermore, we have the metric 

specificity. We define specificity as the true number of negative predicted observations divided by 

the total number of true negative observations. Also, we have the metric negative predictive value 

(NPV). We define the negative predictive value as all true negative observations divided by all 

negative predicted observations. Both specificity and the negative predictive value are less 

important metrics in this study because they reflect the performance considering negative cases 

(no revision needed). These cases are less relevant to us as they do not require a revision. 

Lastly, we have the performance metric recall (also known as sensitivity). We define recall as the 

number of true predicted positive observations divided by the total number of true positive 

observations (Zhu et al., 2010). Recall reflects how good the model is at determining all truly 

positive observations. Therefore, recall is another important performance metric for us. It reflects 

the percentage of clients that need a revision that is correctly identified by the RBR model. 

We conclude that precision and recall are relevant metrics to us, with precision being the most 

important. Management prefers high precision over a high recall as other processes in the bank, 

such as arrears management and UTP triggers, could be safety nets that reduce the costs of a 

false negative prediction of the model. Preferably, we would quantify the cost of a false positive 

and a false negative to justify the preferences for higher precision over higher recall. However, we 

found this to be a very large and difficult task. Also, a quantification of especially a false negative 

would be very questionable. It would be hard to determine the PD decreases for a client would 

they have been signaled and received forbearances measures. For every situation of a client, the 

PD decrease would be different. On top of that, every client has a different loss given default. 

Therefore you could get a mean cost of a false negative but for every individual client, the cost 

will be different, likely with a significant standard deviation. Besides, as the number of false 

negatives in our dataset is limited, our ability to draw precise statistical conclusions from the 

data is limited. Therefore, we chose to not include quantifying the costs of a false negative or false 

positive in the scope of this study. 

Conveniently, there is a metric that combines precision and recall. This is the F1 score. The F1 

score represents the harmonic mean performance in precision and recall of a model in one number. 

Just as all earlier mentioned performance metrics, the F1 score can range from 0 to 1, with 0 the 

worst score possible and 1 the best score possible (Lipton et al., 2014).   

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The F1 score can be adjusted to give unequal weights to precision and recall. The concept used for 

giving precision and recall different weights is the Fβ-measure. In this measure, a β < 1 gives more 

importance to precision, with a lower β resulting in more relative importance for precision. When β 
> 1, more weight is given to recall, with a higher β resulting in more relative importance for recall 

(Chinchor, 1992). As precision is more important than recall according to management, we choose 

to use β =1/3  in this study. 

𝐹𝛽 =
(1 + 𝛽2) ∗ 𝑇𝑃

(1 + 𝛽2) ∗ 𝑇𝑃 + 𝛽2 ∗ 𝐹𝑁 + 𝐹𝑃
=

(1 + 𝛽2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

(1 + 𝛽2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Summarizing, recall and precision are relevant metrics in this study. The F1 score combines both 

recall and precision into one metric. Using the Fβ-measure, we can adapt the F1 score to take into 

account the larger importance of precision over recall. Therefore, we will use the F0.33 measure to 

decide which model performs best in this study. 
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2.4. Performance existing risk-based revision model 

In this section, we discuss how we make the distinction between positive observations and negative 

observations. Also, we implement these definitions and measure the current performance of the 

RBR model. 

2.4.1. Defining positive and negative observations 

In the performance of the existing RBR model we define a positive case as ‘revision needed’. We 

define a negative case as ‘no revision needed’. However, the underlying question here is what 

determines whether a revision is actually needed. We found that there is currently no precise 

description or working instruction available at the bank of which type of clients should actually be 

revised and which not. Therefore we defined these cases ourselves.  

In consultation with management, we decided that we define a ‘revision needed’ for the true positive 

observations by taking a reference date and looking into the future whether a risk-based revision 

occurred within the subsequent three months after the observation was signaled by the model. For 

example, if the model signaled a client on 1 March 2020, then we look between 1 March 2020 and 

1 June 2020 for the occurrence of a risk-based revision. When this is the case, we say the 

observation is true positive. If a risk-based revision did not occur in this period, we say the 

observation is false positive. A disadvantage of this methodology is the potential for incorrect 

classification of false positives as due to limited staff capacity, the bank is not able to perform a 

large number of revisions. Potentially this resulted in clients that were on the shortlist and not 

revised but which should have been, resulting in more false positives due to the methodology that 

are actually true positives. 

We found that it is not straightforward to properly define/identify false negative observations. 

Therefore, we chose to identify the false negative observations by taking a reference date and 

looking into the future whether a default occurred within the subsequent three months with an 

additional filter. The additional filter excludes defaults resulting from life events of clients or other 

unpredictable events, such as the disease of a client. These types of events cannot be predicted by 

the bank or occur at random so therefore it would not be logical to label these clients as positives. 

We chose this method because it is not feasible to evaluate every negative prediction of the current 

RBR to whether a forbearance measure would be needed using the same manual procedure 

currently used by employees evaluating the clients on the shortlist produced by the RBR model. We 

thought of the possibility of detecting false negatives by also including clients that received a 

revision but were not signaled by the model. However, this turned out to be not feasible as a revision 

is executed in multiple processes of the bank. We found it was not technically possible with the data 

available to us to make distinctions between revisions due to a bad financial situation at a client 

and due to other reasons. Summarizing, we identify false negatives using a three-month lookahead 

on whether a default occurred.  

We found that the method we implemented does not work perfectly; as for most of the observations 

identified by this method, it is questionable or unclear whether they would have required a revision. 

Also, the false negative group of clients that did not go into default but nearly did, that would have 

received forbearances measures would they have been signaled by the current model, is not 

identified. The question here is whether a default is a proper criterion as for a client that did not 

default it does not necessarily hold that forbearance measures could not have been applied. This is 

especially important as the Volksbank profiles itself as the bank that goes the extra mile for its 

clients. However, a more appropriate method could not be identified without a significantly larger 

time investment. We decided not to make this time investment as the time available for this study 

is limited. Instead, we acknowledge the recall score of the current model is likely lower than 

identified using this method. 
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Table 2: Explicit definitions of TP, FP, FN and TN. 

Type Definition 

True positive An observation is true positive when an observation was signaled by the model 

and in the subsequent three months, a risk-based revision took place. 

False positive An observation is false positive when an observation was signaled by the model 

and in the subsequent three months, no risk-based revision took place. 

False 

negative 

An observation is false negative when an observation was not signaled by the 

model but defaulted in the subsequent three months without the events of a 

decease, an enforcement order, the direct effect of the Covid-19 pandemic, the 

being under the supervision of special asset management, business termination 

without financial problems, a too high LTV ratio or other data quality issues 

occurring. 

True  

negative 

An observation is true negative when an observation was not signaled by the 

model and not defaulted in the subsequent three months.  

 

2.4.2. Numeric performance 

After implementing our definitions of revision needed and performing data cleaning activities (see 

Appendix A), we calculated the performance metrics of the current model (we discuss the dataset 

in Section 2.5). The calculated performance metrics can be found in Table 3. Also, we visualized 

performance with a confusion matrix, which can be found in Figure 3. As expected, the precision of 

the current model is very low, even lower than the 10% estimated by management. The recall score 

of 80% reflects an estimation based on our applied definition for false negatives observations of 

which we expect to be lower in reality. The combination of both the precision and recall score result 

in a low F0.33 of 7%. The confusion matrix shows the distribution of the observations in our dataset 

over the TPs, FPs, FNs and TNs. The confusion matrix clearly indicates that there is a class 

imbalance. We will need to take this fact into consideration when creating a new model. 

Table 3: Performance metrics of the current RBR model. The recall reflects an estimation based on our chosen method to 
identify the number of false negatives.  

Metric Value 

Accuracy 97.5% 

Precision 6.0% 

Specificity 97.6% 

Negative Predictive Value 99.9% 

Recall  79.5% 

F1 Score 11.1% 

F0.33 Score 6.6% 
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Figure 3: Confusion matrix of the performance of the current RBR model. Clockwise starting top-left, the number of true 
positives, false negatives (estimation), true negatives and false positives. 

 

2.5. Characteristics of the available data 

The data we use in this study we retrieve from the internal data warehouse of the business 

department of the bank. This limits the number of potential features we can use and create because 

the data stored in the data warehouse is limited. The data from the bank is highly confidential, 

therefore we cannot elaborate in the fullest detail on the data, but we disclose what we can.  

Each instance in the dataset we retrieved is an observation of one client in a certain month. Giving 

multiple entries of one client but at different moments in time. Therefore, instances of the same 

client are related and can be seen as time-series observations. This makes it possible to use feature 

engineering to derive new features based on the change between variables of the previous month(s) 

of the same client. The timeframe of the data ranges from when the initial RBR model was taken 

into use to the most recent data available. So our dataset only comprises of instances when the RBR 

model was active. The total number of instances in our dataset is 62042, making it at first glance 

a reasonably large dataset. However, the number of positive observations, the observations we want 

to predict, is small, resulting in limited relevant observations for us to work with. We performed 

data cleaning to make the retrieved data suitable for model development. See Appendix A for the 

description of these steps.  

The features in our dataset consist of numerical as well as categorical variables. In total, we have 

10 numerical features that we directly retrieve from the data warehouse. We retrieve 4 categorical 

features from the data warehouse, such as the legal entity of the client. The numerical variables 

are a mixture of variables being the output of other (credit risk) models, such as a PD or an EL, 

and variables that are not an output of other models, such as a LTV ratio. We identified that the 

current PD model, which output we use, the PD, as a feature in our dataset, makes use of some 

macroeconomic factors, factors on which we cannot elaborate in this report. This means that the 

effect of current macroeconomic factors is already present in our dataset. It is reflected in the PD. 

This finding further supports our decision that we will not further look into the impact of future 

macroeconomic factors as macroeconomic factors already have a role in the PD. We investigated 

whether it was possible to obtain the underlying drivers of the PD model as data for our model. We 
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found that this would not be straightforward to achieve for various technical reasons. Therefore we 

decided not to include the underlying drivers in our dataset.  

Next to the features directly retrieved from the data warehouse, we also derived/computed new 

features based on other features, for example, changes in ratios between months. This action was 

taken because these features have the potential to unlock information that is not accurately 

represented in the features we can directly retrieve from the data warehouse. Also, the current 

model makes use of these features as it looks at for example the PD ratio development over the last 

months. The decision on which features to derive ourselves was taken in consultation with 

management and data engineers of the bank. After one-hot encoding the categorical variables of 

our dataset, the process that splits up every category of a categorical variable into a new Boolean 

feature which is needed to apply most ML learning algorithms, we have a dataset containing a total 

of 68 features. 

We analyzed how the variables in our dataset relate to each other. We tested on multicollinearity 

of our numerical variables that we directly retrieved from the data warehouse. Multicollinearity is 

the linear relation/correlation between variables (Fox & Monette, 1992). The variance inflation 

factor (VIF) is a metric to measure multicollinearity between variables. For the interpretation of 

the VIF, see Table 4.  

Table 4: After (Daoud, 2017), Interpretation of the variance inflation factor. 

VIF  = 1 Conclusion 

VIF = 1 Not correlated  

1 < VIF ≤ 5 Moderately correlated 

5 < VIF ≤ 10 Highly correlated 

VIF > 10 Very highly correlated 
 

Table 5: The variance inflation factor of the numeric variables of our dataset.  

Feature 1 2 3 4 5 6 7 8 9 10 

VIF 6.4562 1.61512 2.24593 1.66965 4.79141 1.57493 1.06661 1.05741 1.5231 2.77923 

 

We measured multicollinearity because high levels of correlation between variables can result in 

certain ML algorithms to not perform well. A high correlation between a group of variables makes 

it difficult to determine the importance of a single variable in that group. Variables that we derived 

from other variables we left out of this analysis, as these naturally will have a high correlation with 

the variables they are derived from. Also, we left out the multicollinearity analysis of our categorical 

variables because we estimate that the time investment this would need would not justify the 

benefit we would receive from this. The VIFs we obtained on our dataset can be found in  

Table 5.  

We observe that feature 1 already has a high VIF score. We expect that VIF scores would even be 

higher when we added the variables derived from other variables. Therefore, we conclude that our 

dataset contains some highly correlated variables. This causes difficulties when implementing 

certain ML models as some do not perform well when variables are correlated.  

 

2.6. Summary 

In this chapter, we discussed the context in which this study is performed. The RBR process has 

the goal to identify clients that are not yet in the picture but do need forbearance measures to 

prevent default. The process is not applied to all clients but only to those with exposure between 

certain levels (€E2 and €E3). There are two decision rules currently used by employees reviewing 
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the shortlist produced by the current RBR model. The first rule is an increasing amount 

outstanding in the current account in combination with a decreasing turnover. The second rule is 

no payment traffic over the current account. We established that we should investigate how to 

implement aspects of these rules in a new model. Next, we presented the financial ratios that are 

used in the current RBR model. These are the probability of default, expected loss, exposure at 

default and the loan to value ratio.  

Subsequently, we discussed how we can measure the performance of a RBR model. We introduced 

the concepts of true positive, false positive, true negative and false negative observations and the 

performance metrics we can determine from them. Precision and recall are relevant performance 

metrics in our study. We established that management finds precision more important than recall 

as there are other safety nets that reduce the costs related to false negative observations. We chose 

to not quantify the costs of false negatives and false positives due to the challenges of quantifying 

the costs of false negatives to support the preference of the management. The F0.33 score combines 

the performance in terms of precision and recall into one score, with precision having a larger 

weight. Therefore, we chose this metric as the main metric to decide on what the performance is of 

a model in this study.  

Next, we presented how we define positive observations. We say that a client needed a revision 

when in the 3 months after the measuring moment a client underwent a risk-based revision or went 

into default without a life event. In evaluating the performance of the current model, we found as 

expected that the performance of the current model is lacking. The 6% precision of the current 

model we found is even lower than the 10% estimated by the management. Combined with the 

estimated recall of 80% this resulted in a F0.33 score of only 7%. 

Lastly, we presented characteristics of the data that is available to us in this study. Although we 

could not elaborate in the greatest detail on the data because of confidentially, we did investigate 

and presented how some features of our dataset correlate to each other. Examples of features in 

our dataset are the probability of default and the expected loss. We found that some features in our 

dataset are correlated. This can cause difficulties when implementing certain ML models at a later 

stage of this study because some models do not perform well when variables are correlated. These 

difficulties we will discuss further in the next chapter when we will introduce ML theory. 
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3.  Theoretical framework 

The previous chapter described the context of this study. In this chapter, we establish the 

theoretical basis needed for this study. In Section 3.1 we discuss the reasons for implementing ML 

in this study. Next in Section 3.2, we present basic ML concepts before we introduce more advanced 

concepts in the following sections. In Section 3.3, we elaborate on model validation and in Section 

3.4 we cover several ML models. Subsequently, in Section 3.5, we discuss various ML techniques 

that can be used to overcome dataset issues or improve the performance of ML models introduced 

in Section 3.4. Lastly, in Section 3.6, we summarize this chapter. 

 

3.1. Justification machine learning 

In this section, we present why we implement ML techniques. We present two possible ways in 

which we could improve the performance of the RBR model and discuss the advantages and 

disadvantages of each option. 

The current situation is that we have a RBR model that does not perform satisfactory. To have a 

RBR model with better performance, we can improve the current triggering conditions model or we 

can create a completely new model using ML techniques. We chose the latter. In the following 

paragraphs, we will motivate this decision. 

Improving the current model would require us to adapt, create new, or remove current triggering 

conditions of the model. This would be a process in which we would have to identify the important 

attributes manually. We could interview employees about what they think are important variables 

in the process and analyze the data by hand to identify certain patterns. Next, after we identified 

the important attributes, we could perform strategies such as fractional factorial design or full 

factorial design to discover which combination of threshold values would perform best (Law, 2015, 

pp. 629-692). 

In theory, this strategy could work to improve the model. We expect that we could rather quickly 

achieve improvements in the performance of the model. However, we expect that the improvement 

would be limited. Interviewing employees could result in a bias on which attributes are important. 

Besides, employees could indicate that a certain attribute is important but this does not have to be 

the truth. Validation of the importance of the attributes is hard. Also, the results of analyzing the 

data to find patterns by hand are limited. It is impossible to find all relations in large datasets by 

hand for humans. Furthermore, when adding more attributes to the model, we will face the curse 

of dimensionality in evaluating which combination of attributes to use is best. The curse of 

dimensionality is the increasing complexity combined with the increasing sensibility to overfitting 

when adding more attributes. The number of combinations exponentially increases when adding 

extra attributes. This would result in an unmanageable number of potential models to evaluate. 

Besides, adding more attributes makes the data sparser and therefore overfitting is more likely. 

Although, strategies exist to soften this problem to an extent (Law, 2015, pp. 629-692). Lastly, 

implementing a strategy of improving the current model would not give us insight into the relative 

importance of attributes of clients which is a request of the management of the bank. 

The second option is to create a new RBR model; a model based on ML techniques. The advantages 

of ML techniques are according to Khanzode & Sarode (2020) that trends and patterns relatively 

easily can be identified, no human intervention is needed, they allow for continuous improvement, 

they can handle multi-dimensional and multi-variety data and they allow for wide applications. 

Disadvantages are data acquisition, time and resources, interpretation of results and high error-

susceptibility. For detailed descriptions, see Khanzode & Sarode (2020). 

Concluding, if we compare the two options of improving the current model or making a new model, 

we argued that making a new model is the best alternative. The advantages of making a new model 
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and the disadvantages of improving the current model outweigh the disadvantages of making a 

new model and the advantages of improving the current model. The decisive factors in this decision 

are that by making a new model we can fulfill the request of the management to give insight into 

the most important factors in predicting which clients need forbearance measures and we are likely 

to create a more accurate model. 

 

3.2. Introduction Machine Learning 

In this section, we will introduce and explain several basic concepts in ML to establish a solid base 

before introducing specific models and techniques. ML is a branch of artificial intelligence that uses 

data to predict future outcomes, to cluster observations, or to detect patterns. The field of machine 

learning is the study of algorithms that allow computer programs to automatically improve through 

experience (Mitchell, 1997). With ML, the goal is to estimate output based on one or more inputs. 

Dividing ML into subdomains, supervised learning is performed when outputs are known and 

unsupervised learning is performed when outputs are unknown. In unsupervised learning, the 

computer algorithms detect patterns in data without having the output. In supervised learning, we 

provide computer algorithms examples from which input resulted in what output from which the 

algorithms can learn and detect patterns. We speak of a regression problem if the output variable 

is continuous or quantitative. When the output variable is categorical or qualitative we speak of a 

classification problem (James et al., 2021). The set of input variables in a dataset we know as 

features, predictors, or independent variables. The output variable is often referred to as the label, 

the target, the outcome, or the dependent variable. A set of measurements in a dataset that belongs 

to one observation/occurrence we know as an instance (Hoogendoorn & Funk, 2017) (James et al., 

2021). Applying ML techniques can generally have two goals. The goal can be to determine 

relationships between features and the response, which we call inference. The goal of forecasting a 

response based on the features we call prediction.  

3.2.1. Reducible and irreducible error 

In prediction, we deal with two quantities influencing accuracy, the reducible error and the 

irreducible error (Loeffel, 2017). The reducible error is the error we have because we are not 

applying the most fitting machine learning method. The irreducible error is the error that remains 

after applying the most fitting machine learning method. Real-word data contains random noise or 

missing values, such that there will always be some error in our prediction (James et al., 2021).  

3.2.2. Accuracy versus interpretability trade-off 

Over the years, several types of ML models have been defined and studied. In ML, there does not 

exist a type of model that is best in every situation (Kotthoff, 2016). Depending on the problem, 

different models will perform better or worse (Lee & Shin, 2019).  Each model has its strengths and 

weaknesses. Examples are interpretability of the model, speed, accuracy and size of the dataset 

required (Akinsola, 2017).  

The general challenge in deciding which ML method to use is in the trade-off between accuracy and 

interpretability. Some flexible ML methods can achieve very high accuracy but are not 

interpretable. These flexible methods can be seen as black boxes (Sarkar et al., 2016). However, 

often interpretability of the model output is needed, as in this study. Interpretability can be 

interpreted in two ways, understanding how the model works (global interpretability) or knowing 

what caused a certain decision (local interpretability). In this study, we refer to local 

interpretability when we speak of the interpretability of a model. Interpretability is the capability 

to explain to the user how a decision or response is made. A ML algorithm is interpretable if its 

classification can be explained by conditional statements about the data (Valdes, et al., 2017). 

Regulators in for example the financial services industry often require reasons why certain 
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decisions are made. Therefore, it is not always possible to use black-box type ML models (European 

Banking Authority, 2021).  

3.2.3. Overfitting & underfitting and the bias-variance trade-off 

Flexibility of a ML method is the degree to which the behavior of a method is influenced by the 

characteristics of the data. The most flexible ML method does not have to result in the most 

accurate predictions. A less flexible method can outperform a very flexible method. This 

counterintuitive phenomenon is the high potential for overfitting of flexible methods (James et al., 

2021). Overfitting is the problem that due to the high degree of flexibility of the ML method, the 

noise in the training data is followed too strongly when creating a model (Hoogendoorn & Funk, 

2017). The danger is that noise in the data will be seen as an underlying pattern in the data. If 

then new test data with other noise is given to the model this results in a worse performance of the 

model. However, the opposite could also happen for very inflexible ML methods. When the method 

is too restrictive, a result can be that the underlying data patterns are not fully captured by a 

model. Which also results in a worse performance of the model than what could be achievable. This 

phenomenon we call underfitting (James et al., 2021).  

The overfitting & underfitting problem is partly the result of the bias-variance trade-off (James et 

al., 2021). The approximation error of ML models can be decomposed into three factors: The 

variance of the estimation, the bias of the estimation and the irreducible error. As we cannot 

decrease the irreducible error, the approximation error can be reduced by reducing the combination 

of the bias and the variance (Hastie et al., 2009). The bias refers to the error that is introduced by 

approximating real-life problems when there is not sufficient training data available to capture all 

the patterns in the data. Real-life problems are often complicated but can be estimated by simpler 

models making assumptions about the problem and therefore underfit the problem. These 

assumptions make it possible to make estimations but they do have the effect that there we will 

systemically prejudice our estimations (James et al., 2021). The variance refers to how our 

estimations would change if we would use another training set of data from the process we are 

predicting. High variance indicates that our estimations would change a lot when other training 

set data would be used. The variance is linked to the overfitting problem. The danger of high 

variance is that we get a significantly different model due to randomness in our training set data 

(Hastie et al., 2009). The bias and variance are competing quantities. Less flexible ML methods 

have a high bias and a low variance. Flexible ML methods have a low bias and a high variance. The 

challenge is to choose a ML method that minimizes the prediction error resulting from the bias and 

the variance. 

 

Figure 4: From Hastie et al. (2009), test and training error as a function of model complexity.  
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3.2.4. Scope 

In this study, we will follow the methodology suggested by Lee & Shin (2019) for selecting which 

ML algorithm to use. The key driving factors in this methodology are whether we will apply 

unsupervised or supervised ML algorithms and whether interpretability is required. The 

methodology can be observed in Figure 5.  

We are facing a supervised binary classification problem in this study. Also, an interpretable model 

is required. Regulators require that the prediction the RBR model makes is interpretable. 

Consequently, we should choose a ML algorithm with the highest accuracy with an acceptable level 

of interpretability. Hence, we will limit our discussion of ML models in this chapter to models that 

have an acceptable degree of interpretability.  

 

Figure 5: From Lee & Shin (2019), workflow for choosing the proper machine learning algorithm to use. 

 

3.3. Model validation 

Before we elaborate on specific ML models and techniques in Section 3.4 and Section 3.5, we first 

discuss model validation in ML. We do this because a grasp of some model validation techniques is 

needed to properly explain various ML models and techniques. 

3.3.1. Validation set approach 

In ML, model validation is the process of verifying whether a model performs as expected. A 

common procedure is the validation set approach. That is, evaluating a trained model with a test 

dataset. The test dataset is a separate part of data on the same process not used to train the model. 

A test dataset is used to test the generalization ability of a trained model (Alpaydin, 2020). 

The validation set approach gives an unbiased approximation of the performance of a ML model to 

unseen data. So it estimates how the model would perform in real-world situations (Vabalas et al., 

2019). However, the use of a Train/Test split approach comes at a cost. A drawback of the validation 
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set approach is that the test error can highly depend on the instances that are in the training set 

and the instances that are in the test set. A solution for this problem can be to perform multiple 

iterations of the validation set approach and use the average performance. Another drawback of 

the approach is that sacrificing a portion of a dataset for validation has the result that fewer data 

will be available to perform statistical learning on (James et al., 2021). A commonly used Train/Test 

split is 80/20. However, also other ratios can be used, for example, 50/50, 60/40, 70/30, or 90/10. 

Which ratio works best depends on the size of the dataset. Generally, if the dataset is small, you 

want the percentage of training data to be larger to extract more information from the small 

number of observations you have (Vabalas et al., 2019).  

3.3.2. K-Fold Cross-Validation 

The K-Fold cross-validation (CV) approach is a widely used approach for estimating the 

performance of a model. The approach is to randomly divide the data into K equal-sized parts. Next, 

we train a model on the data using K–1 parts. Thereafter we use the part that we did not use to 

train the model as a test set. We then train another model with a different part left out and repeat 

the procedure K times. In the end, we measure performance by taking the average performance of 

all K models.   

K-Fold CV is very efficient in the use of data as it allows data to be used for training and validation. 

Theoretically, K-Fold CV gives a more accurate test error estimate than the Validation set approach 

(Vabalas et al., 2019). A good choice for the number of folds K is 5 or 10. Also, any subset of 

predictors ML technique, such as Forward stepwise selection discussed in Section 3.5.1, should not 

be performed before applying CV (James et al., 2021). Figure 6 provides a visual representation of 

the validation set approach and K-Fold CV. In this figure, ACC is short for accuracy.  

.

 

Figure 6: After Vabalas et al. (2019), Visualization of Train/Test Split versus K-Fold Cross-Validation. 

3.4. Machine learning models 

Various types of supervised classification ML models exist, for example, Support vector machines, 

Random forests, (Deep) neural networks, Logistic regression, Naïve Bayes, K-nearest neighbors 

and Decision trees (James et al., 2021). An overview of some of these algorithms in terms of 

interpretability versus accuracy can be found in Figure 7. We establish that Support Vector 

Machines (SVMs) and deep neural networks ML models do not have the acceptable level of 

interpretability needed for this research. Regulators demand that the reason the model signals a 

client should be derivable from the model. SVMs and deep neural networks do not meet this 

requirement. This requirement could limit the potential performance we could achieve as black box 

models in general have a better ability to capture non-linearity and interaction between features. 
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Figure 7: After Yang & Bang (2019), interpretability versus accuracy of various machine learning algorithms. 

3.4.1. Logistic regression 

Logistic regression is a ML classification algorithm very related to linear regression. We assume 

that the reader is familiar with linear regression. Otherwise, see Montgomery et al. (2021). Logistic 

regression uses mostly the same techniques as linear regression but instead of predicting 

quantitative variables, we predict qualitative variables with logistic regression. In a binary 

classification problem with multiple predictors, the logistic function is: 

𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝

1 + 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝
 

The coefficients β0 up to βp are the regression coefficients, of which β0 is the intercept. Generally, 

these coefficients are estimated using the maximum likelihood method. The logistic function gives 

an output between 0 and 1 and the output can be interpreted as a probability. If we have a binary 

dependent variable that can be 0 or 1, p(X) is the probability that the dependent variable is 1, given 

all independent variables represented in the vector X. In mathematical notation: 

𝑝(𝑋) = Pr (𝑌 = 1 |𝑋) 

It is common to make the prediction Y = 1 if p(X) > 0.5, thereby predicting Y = 1 if the conditional 

probability of Y = 1 is larger than that of Y = 0.  However, also other thresholds could be chosen if 

one wants to be more conservative in predicting a positive or negative outcome. The p-value of an 

independent variable indicates the likelihood that the relation between the independent variable 

and the response is by chance. A low p-value indicates a very high probability that there is a 

relationship between the variables.  

For logistic regression, the scale of the variables is not very relevant. When the scale of a predictor 

xj would be multiplied by a constant c, the resulting coefficient βj of that predictor xj will simply be 

estimated by a factor of 1/c compared to the coefficient of the variable when the variable would not 

be scaled. The coefficients in logistic regression are scale equivariant. This means that regardless 

of how a variable is scaled, the product xjβj will be the same and thereby the impact of a certain 

predictor in the prediction (James et al., 2021). 

Logistic regression performs well with small datasets (Juárez-Orozco et al., 2018).  Also, it is a real 

advantage that its output can be interpreted as a probability as we discussed in the previous 
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paragraphs of this section. Disadvantages of the method are that it can only provide linear solutions 

and that data assumptions are needed (Juárez-Orozco et al., 2018). Namely, observations should 

be independent of each other. That is, there should be no overlap between observations. Also, there 

should be little or no multicollinearity between features, there should be no influential outliers and 

there should be linearity in the logit for any continuous independent variables, meaning that a 

linear relationship exists between the logit-transformed outcomes and each (potentially 

transformed) independent variable (Stoltzfus, 2011). With respect to multicollinearity, such an 

issue could be solved by dropping features from the data that have a very high correlation with 

other features. The problem of influential outliers in the data can be solved by quantile-based 

capping and/or quantile-based flooring. Quantile-based capping is a technique that replaces data 

points that are greater than the Xth percentile (e.g. 90th) with the 90th percentile value. Quantile-

based flooring replaces the data points that are smaller than the Xth (e.g. 10th) percentile with the 

10th percentile. 

3.4.2. Decision trees 

A decision tree is an intuitive method to split into segments based on certain decision rules. A 

decision tree can both be used for regression and classification problems. A decision tree consists of 

nodes and branches. The node on top of a tree, the location at which the tree starts, is referred to 

as the root node or decision node. The nodes on the bottom of a tree are called leaf nodes. These 

represent the prediction the tree makes. All nodes that are not leaf nodes are internal nodes, 

including the root node. Internal nodes represent choices on which path an observation should 

follow. Each path that can be followed in a decision tree is called a branch. Each choice or question 

in the tree is referred to as a split (Song & Lu, 2015). 

 

Figure 8: After Song & Lu (2015), an example of a decision tree with binary dependent variable Y. 

In a classification tree, we make predictions on new observations based on which leaf node an 

observation ends up in. The most occurring outcome in a leaf node of the training observations is 

the prediction we make for new observations. Therefore, the degree of purity in a node should be 

optimized. That is, all observations in one node should belong to one group as much as possible 
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(James et al., 2021). The most common measures used to indicate purity in a classification decision 

tree are the Gini index and entropy. The Gini index is defined as: 

𝐺 =  ∑ p̂𝑚𝑘(1 − p̂𝑚𝑘)

𝐾

𝑘=1

 

Here, �̂�𝑚𝑘 represents the ratio of training instances in the in node m that are from class k (Hastie 

et al., 2009). A small value indicates a lot of observations from one class.  

Entropy is defined as: 

𝐷 =  − ∑ p̂𝑚𝑘  logp̂𝑚𝑘

𝐾

𝑘=1

 

Just as the Gini index, entropy takes on small values if a lot of observations are from the same class 

(James et al., 2021). 

To build a decision tree, we start at the top of the tree with all observations and make a split based 

on a characteristic of the observations. Which split we make is based on the split that creates the 

smallest purity value. We continue the splitting until a pre-determined stopping criterion is met 

(Song & Lu, 2015). This method is seen as a top-down, greedy approach. Greedy because we only 

select splits that are best at that particular step, rather than looking further to future splits that 

could create a better tree after future splits. Top-down because we begin at the top of the tree. This 

method is also known as recursive binary splitting (James et al., 2021). 

A stopping criterion could for example be that no leaf node contains more than 5 observations. Such 

a criterion would create a very large tree for a reasonably sized dataset and result in good 

predictions but is likely to overfit the data. To avoid overfitting and underfitting, a rule-of-thumb 

is that the proportion of observations in a leaf node should be between 0.25% and 1.00% of the 

training dataset (Berry & Linoff, 1999). 

Another solution for this problem is to grow a very large tree and shorten the tree backward to 

create a smaller tree. We refer to this as tree pruning. To determine how much a tree should be 

pruned, cost complexity pruning is commonly used (James et al., 2021). The parameter used with 

cost complexity pruning is alpha and a higher value for alpha results in a more pruned tree. 

The use of decision trees has several advantages (Juárez-Orozco et al., 2018; James et al., 2021; 

Song & Lu, 2015). 

1. Performs well in datasets with a lot of features 

2. Few parameters to tune 

3. Can handle categorical data 

4. Decision trees are simple and have very good interpretation 

5. Deriving the relative importance of variables is easy 

6. Mirrors human decision making 

7. Can be displayed graphically 

The main disadvantage of the method is that it is a less competitive type of supervised learning. 

More advanced methods or more flexible methods often result in better performance (James et al., 

2021). 

3.4.3. Random forest 

We ended the previous section with the main disadvantage of decision trees, the fact that their 

performance is lacking compared to other supervised learning methods. However, there is a method 

to overcome this problem. This method aggregates multiple decision trees into one model. Such a 

model we know as a random forest model. The random forest model uses more trees, which results 
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in improved performance. However, the improved performance comes at the cost of reduced 

interpretability (James et al., 2021). 

Bagging  

Bootstrap aggregation or bagging is an ensemble method. That is, a method that combines multiple 

independent models. This method has the goal to reduce the variance of statistical learning. The 

method is frequently used with decision trees (James et al., 2021). In this method, multiple training 

sets are created using the bootstrap technique. In the bootstrap technique,  multiple samples are 

drawn of a dataset with replacement (Biau & Scornet, 2016). Each of these multiple samples is 

then used to create its own decision tree. The class that is eventually predicted is the most 

frequently occurring prediction (majority vote) of all decision trees combined. The multiple decision 

trees are not pruned afterward, as would introduce more bias in the model and by applying bagging, 

the variance of the model is already decreased (James et al., 2021).  

From bagging to random forests 

A random forest is an improved version of the bagging technique. By using a small tweak in the 

technique, it decorrelates the trees, which reduces the variance. With random forests, the same 

procedure as bagging is used but instead of using all predictors, only a random subset of m 

predictors is used to create a tree. This random subset of predictors is changed for every tree (James 

et al., 2021).  

Parameters 

Random forests require two not earlier parameters to be set. The number of m predictors in the 

random subset and the number of trees. As a rule-of-thumb, the number m is set to the square root 

of the number of predictors in the dataset (Hastie et al., 2009). The cost of more trees is a longer 

computation time. Also, more trees will not have to result in a better model. At a certain threshold 

of trees, a random forest model will no longer significantly improve. Oshiro et al. (2012) found that 

the number of trees should be between 64 to 128.  

Interpretability 

Conveniently, most modern programming languages have a built-in measure that represents 

feature importance and so the interpretability of random forest models. The degree of importance 

of a feature is represented in a feature importance score. The importance scores of the features are 

calculated on the mean and standard deviation of the accumulation of the impurity decrease within 

the trees. So a higher score of a feature reflects that the feature is better at separating the two 

classes in our trees compared to the other features. From this, we can conclude that a feature is 

more important. An alternative is to calculate the permutation feature importance scores. The 

permutation feature importance score is computationally intensive but can be used regardless of 

the type of ML model. The basic idea of the technique is to observe what happens to the accuracy 

of the model when feature values are randomly shuffled. If the decrease in performance is low, the 

feature has low importance. If the decrease in performance is high, the feature has high importance 

(Orlenko & Moore, 2021).  

 

3.5. Machine learning techniques 

In this section, we discuss various machine learning techniques that can be used to improve the 

performance of ML models or overcome dataset issues. We first cover variable subset selection. 

Then we discuss alternative fitting procedures with logistic regression in Section 3.5.2. Next, we 

cover in Section 3.5.3 techniques for handling imbalanced datasets. In Section 3.5.4, we discuss 

techniques to handle missing data. Finally, in Section 3.5.5, we discuss hyperparameter tuning. 
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In Section 3.4.1, we discussed the logistic regression model. In this model, a maximum likelihood 

fitting procedure is used to determine the coefficients indicating the weights of the independent 

variables of the model. However, including all available variables in a model does not have to result 

in the highest accuracy and interpretability (James et al., 2021). Often, a subset of the independent 

variables can achieve higher accuracy and better interpretability. Also, using slightly other fitting 

procedures could result in better models. Therefore, we will discuss techniques for variable subset 

selection and alternative fitting procedures in Section 3.5.1 and Section 3.5.2. 

3.5.1. Variable subset selection 

Intuitively it makes sense to select a subset of variables from a dataset that can make the best 

model. However, implementing the best subset strategy is not as straightforward as it seems. This 

is due to computational limitations. We have the problem that as the number of predictors p 

increases, the number of subset combinations grows exponentially (Hastie et al., 2009).  When we 

have p number of predictors, we have a number of 2p possible subset combinations. If we then would 

for example have 30 predictors, we would have over 1 billion combinations. This would make it 

computationally impossible to determine the subset that would result in the best model. We will 

discuss two methods to overcome the computational problem. Namely, forward stepwise selection 

and backward stepwise selection 

Forward Stepwise Selection 

In forward stepwise selection, we start with a model containing no predictors and check by adding 

which predictor of our dataset would give the largest improvement in performance.  After having 

established this, we add that predictor to the model and repeat the process. We will check which 

additional predictor would have the largest additional improvement and add this predictor to our 

model. We repeat this procedure until we have a model containing all predictors of our dataset 

(Hastie et al., 2009). Applying forward stepwise selection results in only having to fit 1+p(p+1)/2 

models (James et al., 2021). Which for p=30 would result in 466 models compared to over 1 billion. 

Backward Stepwise Selection 

Backward stepwise selection is very similar to forward stepwise selection. However, in backward 

stepwise selection, we start with a model containing all predictors and check removing which 

predictor from the model would result in the best model and take again iterative steps from here 

(Hastie et al., 2009). This procedure fits the same number of models as forward stepwise selection. 

It is important to realize that forward and backward selection do not have to result in the same 

subsets. Also, both strategies do not guarantee to find the best subset possible. Evaluating which 

subset is best could be performed using cross-validation, Akaike information criterion (AIC), 

Bayesian information criterion (BIC), or adjusted R2 (Pereira et al., 2015). The AIC, BIC and 

adjusted R2 are measures that indicate in some form the relative quality of a statistical model for 

a given set of data (Taddy, 2019). When using CV to evaluate the subset, it is common to use data 

not yet seen by the model. That is, use the first 50% of the data to find the subsets of features using 

forward or backward stepwise selection. Then use the other 50% of the data to evaluate the 

performance of the subsets (James et al., 2021). 

3.5.2. Other fitting procedures in regression 

Conventional logistic regression maximizes the likelihood function to fit its coefficients. 

Alternatively of using subsets of predictors for increasing performance, we can apply shrinkage 

methods. Shrinkage methods use all predictors but the estimated coefficients are shrunken towards 

zero compared to estimates using least squares (Pereira et al., 2015). The advantage of shrunk 

coefficients is that it reduces model variance (James et al., 2021). 
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Ridge regression 

In conventional logistic regression, the coefficients are obtained by maximizing the log-likelihood 

function: 

𝑙(𝛽) = ∑[𝑦𝑖𝑥𝑖𝛽 − log (1 + 𝑒𝑥𝑖𝛽)]

𝑛

𝑖=1

 

Ridge regression introduces an additional tuning parameter λ, which is determined separately, that 

places a penalty on the size of the coefficients in the log-likelihood function (Pereira et al., 2015). 

This L2 penalty is added to the conventional function and results in the following function where p 

is the number of predictors (Duffy & Santner, 1989; Cessie & van Houwelingen, 1992): 

𝑙(𝛽) = ∑[𝑦𝑖𝑥𝑖𝛽 − log (1 + 𝑒𝑥𝑖𝛽)]

𝑛

𝑖=1

− 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 

The effect of the shrinkage penalties is that the estimates of β1,…, βp are closer to zero. A value for 

λ of zero results in the shrinkage penalty having no effect and as λ becomes larger all coefficients 

will shrink towards zero but to typically remain larger than zero. A good value for λ is selected 

using cross-validation (James et al., 2021). 

Lasso regression 

An alternative to ridge regression is lasso regression. The log-likelihood function that is maximized 

has the form (Hastie et al., 2009): 

𝑙(𝛽) = ∑[𝑦𝑖𝑥𝑖𝛽 − log (1 + 𝑒𝑥𝑖𝛽)]

𝑛

𝑖=1

− 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 

The advantage of lasso regression over ridge regression is that some coefficients can go to zero, 

thereby reducing the number of predictors. This has the effect that the interpretability of a lasso 

model is better than that of a ridge model (James et al., 2021). In lasso regression, the penalty term 

used is a L1 penalty (Pereira et al., 2015). 

Scale of predictors 

For both lasso regression and ridge regression, the scale equivariant property does not hold due to 

the penalty placed on larger coefficients, for example, when the scale of a predictor would be 

increased with a factor c, in conventional logistic regression the coefficient of that predictor would 

be c times smaller than the coefficient of the predictor when the scale of the predictor would not be 

increased. However, now due to the penalty placed on larger coefficients, the smaller coefficient of 

this predictor will be less impacted by this penalty because the coefficient is smaller, resulting that 

the final model will be different. Concluding, the value xjβj,λ can depend on the scaling of predictors. 

Lasso and ridge models generally perform best when predictors are of the same scale. To achieve 

that predictors are of the same scale, standardization by standard deviation can be used (James et 

al., 2021). Alternative standardization and transformation techniques for predictors can also be 

used, for example, log transformations or min-max normalization. 

3.5.3. Techniques for imbalanced datasets 

In this section, we will discuss several strategies to handle class imbalances. We speak of 

imbalanced datasets if the different classes in a dataset are not evenly distributed. In binary 

classification, The class that contains the majority of the observations is called the majority class. 

The under-represented other class is called the minority class (Nanni et al., 2015). With imbalanced 

datasets, most of the classification algorithms applied will be biased toward the majority class, 

which results in bad results in the prediction of the minority class. Possibly, it could even happen 
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that an algorithm predicts every observation as a majority class, as this yields the correct prediction 

for most of the observations (Longadge et al., 2013).  

Alternative cut-off  

As we already covered in Section 3.4.1, the output of a logistic regression model can be interpreted 

as a conditional probability. Generally, we use 0.5 as the cut-off point on which class we assign to 

the instance. However, also other thresholds could be chosen if one wants to be more conservative 

in predicting a positive or negative outcome (James et al., 2021). Suppose we assign the number 0 

to the majority class and the number 1 to the minority class. If we then lower the cut-off point, we 

will more often label an instance as the minority class. Tweaking the cut-off point could improve 

the performance of the model. 

We can also use an alternative cut-off for random forest models. A standard random forest for 

classification makes its prediction by a majority vote of all its trees. In a binary classification 

problem, the prediction 1 or 0 is made when at least 50 percent of the trees make this prediction. 

Instead of using the 50 percent as a cut-off, a lower percentage could be used. This will result in 

fewer false negatives but more false positives. Therefore, the optimal cut-off percentage depends 

on the trade-off between the performance of a model in terms of precision and recall. 

Undersampling 

Undersampling is a method in which only a fraction of the instances of the majority class is used. 

By dropping a random fraction of records of the majority class, the dataset becomes more balanced 

(Longadge et al., 2013).  A drawback of this procedure is that useful information in the dropped 

instances could be lost (Nanni et al., 2015). 

Oversampling 

Oversampling is a method in which instances of the minority class are randomly duplicated, which 

creates a more balanced dataset (Nanni et al., 2015). With implementing oversampling, one should 

take care not to compromise the validation of a model. It should be prevented that the same instance 

is both in the train and test set because this will cause overoptimism and overfitting (Santos et al., 

2018).  

SMOTE 

SMOTE (Synthetic Minority Oversampling TEchnique), is a more advanced oversampling 

technique. With this technique, the minority class is oversampled by creating synthetic but very 

similar new observations of the minority class instead of oversampling with replacement (Chawla 

et al., 2002). Undersampling, oversampling and SMOTE can also be combined (Longadge et al., 

2013). 

Cost-sensitive learning techniques 

Cost-sensitive learning is another technique to handle the imbalanced classes problem. In this 

technique, a different cost is assigned to false positives and false negatives. This results in a model 

that is more steered towards preventing false positives and false negatives (Nanni et al., 2015). 

Cost-sensitive learning cannot be implemented in every ML model (Longadge et al., 2013). 

3.5.4. Techniques for handling missing data 

More often than not, we face the problem of missing data in ML. Frequently some instances in a 

dataset have entries missing. This is a problem as some operations or ML models require or perform 

better with no missing entries. In this section, we discuss techniques to take care of the missing 

data problem. 

Little & Rubin (2002) suggest that missing data can be divided into three classes. Batista & Monard 

(2003) define these classes as follows: 



27 

 

1. Missing Completely At Random (MCAR). We say that a datapoint is MCAR if the 

probability of a missing value of an instance does not depend on the known values of the 

instance. The interpretation of this is that the missing value occurred completely at 

random. In such a case, we can take care of the missing data point without introducing bias 

into our dataset.  

2. Missing At Random (MAR). We say that a datapoint is MAR if the probability of a missing 

value of an instance may depend on the known values of the instance. However, not on the 

missing value itself. 

3. Not Missing At Random (NMAR). We say that a datapoint is NMAR if the probability of a 

missing value of an instance may depend on what would be the value of that attribute. 

If a missing datapoint is MAR or NMAR, implementing data treatment methods could result in 

introducing bias in a dataset. Therefore, it is clear that the classes (MCAR, MAR or NMAR) of the 

missing data points should be identified before implementing data treatment methods. If the 

decision is made to perform data treatment methods on datapoint that are MAR or NMAR, one 

should take into account that this can impact the performance of a ML model.  

Generalizing, we can deal with missing data in two ways. We can delete the instances or features 

of the missing data points or we can use imputation, replacing missing values with estimates based 

on the entire dataset. Deletion is an applicable method when data points are MCAR. Listwise 

deletion is the removal of instances that have one or more missing values. However, the problem 

with deletion is that we often do not know whether the data points are MCAR, resulting that 

removal would reduce the statistical power of our later applied ML model or introduce bias into our 

data (Hippel, 2012).  

There are various methods of imputation. A common method is mean, median or mode imputation. 

If an instance has one predictor value missing, we use the mean, median, or mode of the known 

observations of that predictor. This method works best when the number of missing values is small 

(Little & Rubin, 2020). 

When a dataset holds time series data, another strategy is to use earlier or later observations of 

the same process, an individual, or in our case from the client. We impute the missing data points 

with measurements of earlier or later observations. We can use the methods Next Observation 

Carried Backward (NOCB) or Last Observation Carried Forward (LOCF). As both names suggest, 

NOCB uses a future observation and LOCF uses a past observation. A danger of such a strategy is 

that it could introduce bias into a dataset (Little & Rubin, 2020). 

A more advanced method is to look at the K-Nearest neighbors of an instance. By looking at the 

average value of the missing datapoint of the nearest neighbors an estimate can be made for the 

missing datapoint (Little & Rubin, 2020). For all of the above-discussed imputation methods hold 

that the data points should not be NMAR as then the missing of the datapoint can hold valuable 

statistical information. When data points are NMAR, it is best to keep this information in the 

dataset by for example adding one additional category to a categorical feature or creating a derived 

Boolean feature based on the missing data point(s). 

3.5.5. Hyperparameter tuning 

Every ML model has hyperparameters. Hyperparameters are the explicitly specified factors that 

control the training process of a ML learning model (e.g. the number of trees in a random forest 

model). Intuitively, changing these hyperparameters changes the performance of the ML model. 

Hyperparameter tuning, which is also referred to as hyperparameter optimization, is the process 

of optimizing the settings of the hyperparameters to increase the performance of the ML model. A 

grid search is the most straightforward method to perform hyperparameter tuning. This method 

calculates the performance for all combinations of settings for the hyperparameters that are in the 

specified hyperparameter space. The advantage of the method is that it is easy to implement but 

the method has the drawback that it is not computationally efficient (Feurer & Hutter, 2019).  For 
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a grid search holds that the number of combinations grows exponentially when the set of parameter 

values that are checked grows. The effect is that often a large number of combinations exist which 

all are checked, although most combinations do not produce relevant results. 

 

3.6. Summary 

In this chapter, we discussed the theoretical framework of this study. The reason for implementing 

machine learning in this study is that we then are very likely to create a more accurate model than 

with other methods. Also, with machine learning, we can give insight into the most important 

factors in predicting which clients need forbearance measures. When deciding which machine 

learning model to use, the accuracy versus interpretability trade-off exists. Generally, the higher 

the accuracy of a model, the lower the interpretability of the model, with interpretability being the 

capability to explain to the user how a decision or response is made. The new RBR model needs a 

certain level of interpretability due to regulation. We identified 3 appealing machine learning 

models that have the desired level of interpretability. These are the logistic regression model, the 

decision tree model and the random forest model. A machine learning model should be validated. 

That is, the model should work for unseen data. Validation of the model can be performed by the 

validation set approach or K-Fold cross-validation. There exist various machine learning 

techniques that can improve the performance of machine learning models. With subset selection 

techniques, only a subset of the variables in a dataset is used which could result in increased 

performance. Also, when dealing with imbalanced datasets, techniques such as using an alternative 

cut-off point or the Synthetic Minority Oversampling Technique can be used to achieve better 

performance. When there are missing data points in a dataset, deletion or imputation can be used. 

To optimize the performance of a certain machine learning model, hyperparameter tuning can be 

used, for example, by performing a grid search. The design decisions we make about implementing 

the theory we introduced in this chapter we discuss in Chapter 4. 
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4. Model construction 

In this chapter, we discuss how we construct a new RBR model. We will first state the steps we 

take in our model construction in Section 4.1. Subsequently, we cover in Section 4.2 how and why 

we focus on true positive observations and what design decisions we make specific to individual ML 

models we found to be appealing to construct. This section also covers our implementation of 

imbalanced dataset techniques and model validation methods. 

 

4.1. Steps in model construction 

The procedure we used to construct our new RBR model can be summarized into 8 steps. These 

steps can be found in Figure 9. Based on our study of ML literature, we identified 3 appealing ML 

models to construct: the logistic regression model, the decision tree model and the random forest 

model. The first step we take is to construct a basic logistic regression model. The second step is 

that we use the basic model to implement various more advanced techniques/variants of the logistic 

regression model. These same steps are applied for the decision tree model and the random forest 

model, creating first a basic variant of the model which we then make various variants of. 

Performing these steps gives us a good impression of which models and techniques have a good 

performance and which do not. This obtained knowledge we will use in the next step to determine 

which variant(s) of which model(s) we will further tune. We will select the variant(s) of the model(s) 

that have the highest performance on the F0.33 score. Computational speed is the limiting factor in 

the number of models we select for hyperparameter tuning. We will select the number of models 

such that the total computational time of our hyperparameter tuning will not exceed 48 hours. The 

last step is then to perform hyperparameter tuning for the selected model(s) to determine whether 

we can further optimize the performance and decide on which specific model we recommend to 

become the new RBR model.  

 

Figure 9: Overview of steps in our model construction, LR = Logistic Regression, DT = Decision Tree, RF = Random Forest. 

4.2. Design decisions 

This section states the design decision we make in the construction of our models. We start in 

Section 4.2.1 with a decision considering focusing on true positives. Thereafter, in Sections 4.2.2, 

4.2.3 and 4.2.4, we state our design decisions with respect to our logistic regression, decision tree 

and random forest models. We present which variants of these models we cover and explain the 

reasons for investigating certain variants. Next, in Section 4.2.5, we discuss how we implement 

imbalanced dataset techniques. Subsequently, we state how we implement model validation in 

Section 4.2.6. Finally, in Section 4.2.7, we close this section off with a statement about our design 

decisions. 

4.2.1. Focus on true positives 

Before we elaborate on design decisions related to specific ML models, we explain a decision we 

made related to the input for all models. As stated in Section 2.4.1, it is hard to identify false 

negative observations, causing that the method we decided on to identify these observations with 
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is a non-perfect estimation. Data exploration showed that the observations that are false negative 

with our chosen method are significantly different than the observations that are true positive with 

respect to their feature values. We also found that our models performed worse when we included 

the false negatives in the set of positive observations we train the models with. The true positives 

are less often signaled by the new models. Because of these reasons we created the new models 

using only the true positives as positive observations in our dataset. We rather create a model based 

on only true positive observations and predict these observations better than also include doubtful 

false negative observations. The consequence of this decision is that when our model would be used 

in practice, it will not be as good at spotting false negative observations as when we would include 

the false negative observations. However, the current model does not spot the false negative 

observations at all, although the current model produces a lot of false positive observations. So 

compared to the old model, our new model will not perform worse with respect to signaling the false 

negative observations.  

4.2.2. Design decisions of logistic regression models 

The first appealing ML algorithm we identified is logistic regression. For a logistic regression model 

to work properly, there should be no influential outliers. Some numerical features in our data 

contain severe right-tailed outliers. Therefore, we implement quantile-based capping. We cap the 

features with outliers to the 99.5 percentile because this percentile results in no longer having very 

influential outliers but it maintains significant variance in the data to perform statistical analysis 

on. The effect of this action is that we expect the logistic regression model to perform better.  

Quantile-based flooring is not needed as the numerical features in consideration are already floored 

by the number zero. 

As discussed, we can add a shrinkage penalty term to the log-likelihood function to be maximized 

for fitting the coefficients of the model. A L1 penalty represents a lasso model and a L2 penalty a 

ridge model, see Section 3.5.2. We investigate both options in addition to the basic regular model 

with no shrinkage penalty because more often than not a logistic regression model with a L1 penalty 

or a L2 penalty has better performance than without an added penalty. Also, we test whether 

standardizing the numerical variables in our dataset benefits the lasso and ridge model. Besides, 

we still investigate the model with no added penalty to establish a baseline performance.  

In Section 2.5, we found that some variables in our dataset are correlated. However, the logistic 

regression model assumes that variables are not correlated. A solution is to drop correlated 

variables from our dataset. Conveniently, we can combine dropping variables from our dataset with 

implementing forward stepwise selection. Hence, we will implement forward stepwise selection to 

a maximum of 23 features, 23 features are 33 percent of the total 68 features of our dataset. We 

chose this maximum number of features because of the otherwise unmanageable computational 

time. We do not implement backward stepwise selection because of again the significant 

computational time it requires. 

4.2.3. Design decisions of decision tree models 

For constructing a decision tree model, we have 3 factors to decide on: the measure with which we 

calculate impurity, the stopping criterion used and the pruning of the tree. We will use the Gini 

index to calculate impurity as performance compared to using entropy is very similar but training 

the model with the Gini index is faster which is convenient as we will create a significant number 

of variants of the model. Also, we can still find out the effect of using the entropy criterion in a later 

grid search. As a stopping criterion for the leaf nodes, we will study multiple options. We use the 

very small numbers of 1, 3, 5 and 10 as well as the 0.25%, 0.50%, 0.75% and 1% of the number of 

observations as suggested by literature sources. Lastly, we will implement cost complexity pruning 

and also test multiple options for the tuning parameter alpha. For the decision tree model, outlier 

cleaning is not needed because decision trees are not sensitive to outliers. Since we will test multiple 

variants for the stopping criterion of the leaf nodes and the parameter alpha applied in the pruning 

of the tree, we have a significant number of models to test. However, the computation effort of the 
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decision tree algorithm is manageable so the total computation time of all these models is not an 

issue. 

4.2.4. Design decisions of random forest models 

As the random forest model is basically multiple decision tree models combined, we have some 

overlap in our design choices. We will also use the Gini index in our basic random forest models for 

the same reasons as with the decision tree model; the faster computation time. We will use a 

number of 128 trees in our random forest models. We chose to be in the top of the 64 to 128 range 

suggested by Oshiro et al. (2012) as we prefer the potential higher performance of 128 trees to the 

shorter computation time of choosing fewer trees. For each tree in the basic models, we will only 

use m number of random features from the dataset. Here, we follow the rule-of-thumb and set m to 

the square root of the number of features in the dataset, resulting in that we will use 5 features per 

tree. We found that the random forest model had the best performance compared to logistic 

regression and the decision tree model, resulting in that we are performing hyperparameter tuning 

on the random forest model. We included using the Gini index versus entropy and the number of 

features used in a single tree as parameters in our hyperparameter tuning procedure.  

We decided not to test forward or backward subset selection for the random forest model because 

of the significant computation time such procedures require. However, we will remove the subset 

of features that are not relevant to our random forest model to increase performance. We decide 

which features to include on the basis of the feature importance scores. 

4.2.5. Implementation of imbalanced dataset techniques 

Imbalanced dataset techniques have the goal to improve model performance when datasets are 

imbalanced. To achieve a better performance, we implement SMOTE combined with 

undersampling of the majority class to create balanced datasets. As a basic setup, we first 

oversample the minority class to obtain a ratio of 1:10 (1 positive observation per 10 negative 

observations). Then we undersample the majority class to obtain a ratio of 1:2. For the random 

forest model, we also implement the alternative cut-off strategy. We do not implement the cost-

sensitive learning technique because of the time constraints in which this study is performed. We 

focus on the implementation the SMOTE and the alternative cut-off strategy. 

4.2.6. Implementation of model validation 

Model validation is needed to determine whether a ML model also performs as expected for new 

unseen observations. Therefore, we will perform the validation set approach as well as K-Fold CV, 

with K = 5, to perform validation of our models. Initially, we used the regular validation set 

approach with an 80/20 split. We found that performance drastically depended on instances that 

are in the train or test set. Therefore we perform multiple repetitions of the split, with each 

repetition having different random subsets of training and test data. The reason for not simply 

using K-Fold CV only is that CV for the random forest model with an alternative cut-off was not 

possible in the ML module we use to program the ML models in this study. The combination of 

implementing the validation set approach and K-Fold CV is a good solution to overcome this issue 

in our opinion. To make sure that the multiple repetitions of the validation set approach are 

comparable for different models, we will make use of the same random number stream. Thereby, 

eliminating that different train test set combinations cause a difference in performance between 

models.  

4.2.7. Closing statement 

This section presented various design decisions we make. We presented these with the goal to 

explain why we make certain design decisions, why we test certain variants of models and why 

we make certain trade-offs. We made a selection of the type of models and variants we test but if 

we would have had more time, more options could be explored. If possible, we made our decisions 
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on the basis of recommendations from literature. Also, when provided with the same dataset as 

us, these statements in this section allow reproducing the models and results we found.  

In the end, after testing and evaluating multiple types of models, we found that a random forest 

model with the criterion entropy, using 4 features per tree (resulting from the log 2 rule) and a 

cut-off of 0.35 has the best performance considering the preferences of management for the new 

model. The performance of this model and the performance of the intermediate models that we 

constructed to obtain this model we discuss in the next chapter. 

 

  



33 

 

5. Results 

The previous chapter provided an overview of how we constructed our ML models. In this chapter, 

we present the results of the models we created. In Section 5.1, we discuss the numeric performance 

of the models we created and state which models and techniques we found to be effective. Next, in 

Section 5.2, we compare the new RBR model with the old model. In Section 5.3, we state what are 

the important features to predict the risk-based revisions we identified. 

 

5.1. Numeric performance 

As stated in Section 4.1, we first constructed basic logistic regression, decision tree and random 

forest models and resulting variations of those models to get an indication of which models and 

techniques have good performance and which do not. In Table 6, an overview of the performance 

basic models can be found. Here we tested the performance of the basic LR model, the basic LR 

model with outlier cleaning applied and/or the SMOTE applied, the basic DT model with or without 

the SMOTE and the basic RF model with or without the SMOTE. It is interesting that the F0.33 

score and the precision of the standard random forest model are the highest. The random forest 

model with the SMOTE has the highest recall but it has significantly lower precision and F0.33 score 

than the random forest model without the SMOTE. 

Table 6: Performance of the basic Logistic Regression model, basic Decision Tree model and basic Random Forest model with 
or without outlier cleaning or/and the SMOTE (with added undersampling) applied. Validation is performed by 5-fold cross-
validation. The highest performance in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Accuracy Precision Recall F1 

Score 

F0.33 

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Logistic Regression  0.9982 0.0002 0.0222 0.0497 0.0100 0.0224 0.0138 0.0198 

Logistic Regression + outlier cleaning  0.9983 0.0002 0.1000 0.2236 0.0100 0.0224 0.0182 0.0526 

Logistic Regression + SMOTE 0.9513 0.0207 0.0288 0.0161 0.7458 0.1733 0.0550 0.0319 

Logistic Regression + SMOTE + outlier cleaning 0.9478 0.0191 0.0248 0.0112 0.7458 0.1886 0.0479 0.0275 

Decision Tree 0.9977 0.0002 0.2663 0.0524 0.2874 0.0923 0.2736 0.2683 

Decision Tree + SMOTE 0.9940 0.0006 0.1514 0.0285 0.6074 0.0744 0.2421 0.1637 

Random Forest 0.9986 0.0001 0.8400 0.1497 0.1753 0.0249 0.2874 0.6090 

Random Forest + SMOTE 0.9968 0.0005 0.2791 0.0550 0.6284 0.0782 0.3833 0.2955 

 

5.1.1. Performance logistic regression models 

In this section, we discuss the performance of the LR models in detail. We observe that the most 

basic LR model performs very poorly with a mean precision of 2% and an extremely low mean recall 

of 1%. The basic LR model with outlier cleaning performs better but we see that the standard 

deviation of the precision is very high, indicating a lot of instability in the performance of the model. 

The basic LR with the SMOTE has a low precision of 3% but the recall of 75% is decent. We observe 

that the outlier cleaning has a minimum impact on the performance of the model when the SMOTE 

is applied. For more advanced variants of the LR model without the SMOTE (e.g. lasso or forward 

subset selection), we found similar very low recall scores. Therefore, we will not discuss the 

performance of these models further in this report because we now establish that these models are 

clearly not performing well enough. 

The performance of more advanced variants of the LR model, the lasso regression model, the ridge 

regression model, and the model with forward stepwise selection applied, all with the SMOTE  and 

outlier cleaning applied, can be found in Appendix B. We observe here that all more advanced 

variants outperform the basic LR model with the SMOTE applied. Forward stepwise selection 

performs best, although lasso regression comes close. Using forward stepwise selection, a precision 
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of +- 8% can be achieved with a high recall of +- 90%, resulting in a F0.33 score of +- 10%. This is an 

improvement over the current model but it is not the improvement we aim for. Concluding, using 

a logistic regression model is not a satisfactory solution. Unexpectedly, the performance of the lasso 

regression and ridge regression models was worse when we applied standardization but as we 

decided it was not worthwhile to further investigate this observation because the general 

performance of logistic regression was lacking.   

5.1.2. Performance decision tree models 

In this section, we discuss the performance of the DT models in detail. We observe in Table 6, that 

the basic DT model with or without the SMOTE applied significantly outperforms the basic LR 

models with the SMOTE in terms of precision (15% and 27% versus 3%), although the recall in both 

cases is lower (61% and 29% versus 75%) and the precision achieved is still rather low. However, 

the F0.33 scores are higher compared to the basic LR models with the SMOTE, 27 and 16% versus 

3%. The DT model without the SMOTE applied achieves a higher precision but a lower recall that 

its counterpart with the SMOTE. 

The performance of more advanced variants of the DT model, variants with cost complexity pruning 

applied or with a different stopping criterion, can be found in Appendix C. Changing the stopping 

criterion could not significantly improve the basic DT model, both with and without the SMOTE 

applied. For the variant without the SMOTE, setting the minimum number of instances in a leaf 

up to and over the 155 even resulted in a precision of zero. This can be explained by the fact that 

there are significantly fewer than 155 positive observations given to the model, causing that the 

observations of the majority class in every node will always be with more than those observations 

from the minority class. 

The DT models with cost complexity pruning applied could also not produce significantly better 

performance than the DT models without cost complexity pruning. We also observe here for the 

variant without the SMOTE that when the value of alpha, the parameter used in cost complexity 

pruning, becomes larger, the precision becomes zero. The larger value of alpha results in more tree 

pruning, which causes the majority class to always be with more observations in the leaf nodes. 

Overall we conclude that variants of a DT model are not a satisfactory solution for a new RBR 

model. The combinations of precision versus recall performance (27% vs. 29% or 15% vs. 61%) we 

can achieve with a DT model are not good enough to be able to improve the current RBR model. 

5.1.3. Performance random forest models 

In this section, we discuss the performance of the random forest models in detail. We observe in 

Table 6, that the basic RF model achieves a very high precision but a low recall, resulting in a 

significant increase in the F0.33 score. This result signals that the RF model with an alternative cut-

off probabilities could be interesting to explore as with this technique we can increase the recall by 

decreasing the precision. Possibly, we can find an optimum of high precision and high recall. The 

RF model with the SMOTE achieves a much lower precision, 28% versus 84%, but a higher recall, 

63% versus 18%, with the result that the F1 score is higher for SMOTE variant of the model; 38% 

versus 29%. However, the F0.33 score is higher for the RF model without the SMOTE; 61% versus 

30%. 

We created more advanced variants of the RF model by experimenting with alternative cut-offs 

because the basic RF model outperforms the other models and has more potential for further 

exploration. We tested alternative cut-off probabilities from 0.0125 to the regular 0.5 for both the 

RF model with and without the SMOTE. For the variant with the SMOTE, we changed our 

approach slightly. Instead of combining oversampling and undersampling to obtain a 1:2 ratio of 

positive versus negative observations, we chose to only use oversampling to obtain a 1:1 ratio. We 

also used only a subset of the features of our dataset. By identifying and thereafter not using the 

features that had a zero feature important score in the basic RF model. This resulted in decreasing 

the number of features from 68 to 27. 
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Table 7: Performance of the random forest model with various different cut-offs. The different cut-offs illustrate the precision 
versus recall combinations possible. Validation is performed by 20 repetitions of the validation set approach with a training 
size of 80%. The highest performance over the 20 repetitions in terms of precision, recall, F1 score and F0.33 score are 
highlighted. 

Random forest 

Cut-

off 

Accuracy Precision Recall F1 

Score 

F0.33 

Score 

Grid 

Search 

Mean  Std Mean  Std Mean  Std Mean  Mean 

0.0125 0.9797 0.0013 0.0661 0.0135 0.9201 0.0607 0.1230 0.0728 No 

0.025 0.9881 0.0011 0.1137 0.0301 0.9059 0.0505 0.2008 0.1246 No 

0.0375 0.9898 0.0006 0.1186 0.0228 0.8701 0.0848 0.2080 0.1298 No 

0.05 0.9928 0.0009 0.1635 0.0395 0.8184 0.0738 0.2701 0.1777 No 

0.075 0.9951 0.0008 0.2218 0.0594 0.7688 0.0849 0.3406 0.2388 No 

0.1 0.9965 0.0006 0.2788 0.0731 0.6768 0.0852 0.3898 0.2962 No 

0.125 0.9972 0.0005 0.3298 0.0842 0.6229 0.0762 0.4235 0.3461 No 

0.15 0.9979 0.0004 0.4131 0.1066 0.5572 0.0862 0.4654 0.4240 No 

0.175 0.9983 0.0003 0.4864 0.1035 0.5257 0.0890 0.4955 0.4900 No 

0.2 0.9985 0.0004 0.5509 0.1403 0.4734 0.0654 0.5017 0.5421 No 

0.225 0.9986 0.0003 0.6015 0.1259 0.4337 0.0732 0.4958 0.5791 No 

0.25 0.9987 0.0004 0.6630 0.1402 0.4146 0.0853 0.5026 0.6255 No 

0.275 0.9987 0.0003 0.6866 0.1452 0.3506 0.0929 0.4565 0.6265 No 

0.3 0.9987 0.0004 0.7111 0.1696 0.3290 0.0821 0.4423 0.6371 Yes 

0.325 0.9986 0.0004 0.7290 0.1670 0.2942 0.0913 0.4110 0.6351 Yes 

0.35 0.9986 0.0003 0.7556 0.1536 0.2661 0.0651 0.3882 0.6382 Yes 

0.375 0.9987 0.0003 0.8096 0.1526 0.2505 0.0817 0.3730 0.6619 Yes 

0.4 0.9986 0.0004 0.8357 0.1749 0.2135 0.0761 0.3311 0.6471 Yes 

0.425 0.9986 0.0004 0.8441 0.1791 0.1879 0.0743 0.2977 0.6256 No 

0.45 0.9986 0.0003 0.8299 0.1730 0.1866 0.0675 0.2969 0.6172 No 

0.475 0.9986 0.0004 0.8905 0.1539 0.1765 0.0675 0.2869 0.6341 No 

0.5 0.9986 0.0004 0.9207 0.1275 0.1538 0.0843 0.2525 0.6143 No 

 

Table 8: Performance of the random forest model with the SMOTE (1:1 ratio) with various different cut-offs. The different cut-
offs illustrate the precision versus recall combinations possible. Validation is performed by 20 repetitions of the validation set 
approach with a training size of 80%. The highest performance over the 20 repetitions in terms of precision, recall, F1 score 
and F0.33 score are highlighted. 

Random forest + SMOTE 
 

Cut-

off 

Accuracy Precision Recall F1 

Score 

F0.33 

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

0.0125 0.9751 0.0025 0.0573 0.0137 0.9358 0.0553 0.1075 0.0632 

0.025 0.9846 0.0015 0.0888 0.0141 0.9113 0.0594 0.1615 0.0976 

0.0375 0.9862 0.0014 0.0a954 0.0210 0.9049 0.0794 0.1716 0.1047 

0.05 0.9895 0.0011 0.1228 0.0195 0.8867 0.0614 0.2149 0.1344 

0.075 0.9918 0.0009 0.1455 0.0252 0.8312 0.0861 0.2467 0.1586 

0.1 0.9932 0.0008 0.1696 0.0267 0.8148 0.0941 0.2796 0.1842 

0.125 0.9943 0.0007 0.1939 0.0346 0.7816 0.0849 0.3092 0.2096 

0.15 0.9953 0.0006 0.2204 0.0475 0.7377 0.1176 0.3373 0.2370 

0.175 0.9959 0.0005 0.2404 0.0483 0.7167 0.1142 0.3584 0.2575 

0.2 0.9963 0.0004 0.2679 0.0492 0.7219 0.1172 0.3886 0.2858 

0.225 0.9967 0.0005 0.2843 0.0570 0.6892 0.1170 0.3996 0.3020 

0.25 0.9969 0.0004 0.3020 0.0617 0.6824 0.1164 0.4159 0.3198 

0.275 0.9973 0.0005 0.3422 0.0678 0.6273 0.0897 0.4373 0.3585 

0.3 0.9975 0.0005 0.3568 0.0697 0.5929 0.0931 0.4413 0.3716 

0.325 0.9977 0.0005 0.3793 0.0772 0.5692 0.0958 0.4507 0.3924 

0.35 0.9977 0.0004 0.3845 0.0705 0.5502 0.0964 0.4472 0.3964 

0.375 0.9979 0.0004 0.4115 0.0845 0.5215 0.1096 0.4539 0.4204 
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0.4 0.9980 0.0004 0.4314 0.0879 0.4875 0.1151 0.4521 0.4364 

0.425 0.9981 0.0004 0.4499 0.0890 0.4795 0.1119 0.4583 0.4527 

0.45 0.9983 0.0003 0.4834 0.0987 0.4613 0.1051 0.4648 0.4811 

0.475 0.9983 0.0003 0.4969 0.1064 0.4416 0.1191 0.4608 0.4908 

0.5 0.9984 0.0003 0.5188 0.1184 0.4152 0.1163 0.4543 0.5062 

 

The results of these variants of the RF model can be found in Table 7 and Table 8. In both tables, 

we highlighted the models with the highest performance in terms of precision, recall, F1 score and 

F0.33 score. Table 7 indicates the effect of changing the cut-off probability of the RF model without 

the SMOTE. As expected, lowering the cut-off point of the model results in a lower precision but a 

higher recall. By changing the cut-off, we can illustrate the level of precision versus the level of 

recall that can be achieved to management, for example, Table 7 suggests that we could create a 

model with a precision of around 60% and a recall of around 40% at a cut-off of 0.25. However, if 

higher precision is desired we could also create a model with a precision of around 73% and a recall 

of around 30%. In these examples, we do note that the high standard deviations of the performance 

of our models suggest that performance fluctuates significantly depending on the observations in 

the train or test set of our models, resulting in that the real-world performance of these models 

could significantly differ. 

Table 8, with the results of the RF model with the SMOTE, shows similar findings to the RF model 

without the SMOTE. The results indicate that with the SMOTE, we cannot achieve a precision and 

F0.33 score as high as without the technique. However, with the technique, it is possible to achieve 

higher levels of recall for some of the same levels of precision compared to the model without the 

SMOTE. We also see that with this variant of the technique (1:1 ratio without undersampling), we 

can achieve higher precision levels than with our initial RF model with the SMOTE.  

At this point, it is clear that the RF model is the best performing model; it has the highest F0.33 

scores. Therefore, we apply hyperparameter tuning to the RF model. We will explore what 

maximum performance we can extract from this model. In Table 7, the column Grid Search 

indicates whether we investigate this setting of the RF model further by a grid search. We made 

this selection based in consultation with management. We selected the models with a F0.33 score 

above 63.5 percent. These models have the desired level of precision but still an acceptable level of 

recall taking into account the other safety nets to identify clients with financial difficulties.  We do 

not look further into RF models with the SMOTE applied as these have lower F0.33 scores. 

5.1.4. Hyperparameter tuning of the random forest model 

In this section, we discuss the results of our grid search. We graphically represented the results in 

Figure 10 in the form of a scatterplot. We performed 50 repetitions in our grid search instead of the 

20 repetitions used per setup for the results presented in Section 5.1.3 to get a more accurate mean 

performance measurement. For most combinations we checked, the entropy criterion outperforms 

the Gini index criterion. We also see that for the number of features used in a tree, 8 or 10 features 

per tree perform worse than using 4 or 5 features resulting from the log 2 or the square root of the 

number of features. The numeric results of the grid search can be found in Appendix D. 
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Figure 10: Precision versus recall performance of the models of the grid search reflected in a scatterplot. The dotted line reflects 
the optimal combination of precision versus recall achievable with the random forest model. 

Figure 10 provides a graphical representation of the precision versus recall combinations that are 

possible, for example, we can calibrate our model such that we have a precision of +- 0.85 with a 

recall of +- 0.26. or a combination of a precision of +- 0.84 with a recall of +- 0.30. An approximation 

of the optimal trade-off of precision versus recall we can achieve with our model is reflected in the 

black dotted line in the scatterplot. The line can be seen as the efficient frontier of precision versus 

recall. It reflects how much precision we potentially can achieve with our current model given a 

level of recall. This information can be used to tweak the model if at a later stage when 

implementing our model a slightly other preference in precision versus recall is desired. Still, based 

on the current preferences of the management of the bank and the model that has the highest F0.33 

score, the configuration of the model that uses entropy as the criterion, 4 features per tree (from 

the log 2 rule) and a cut-off of 0.35 best suits the current wishes. 

5.1.5. Impact of having more data 

In this section, we discuss the results of what giving the new model more data does to the 

performance of the model. Generally, the performance of a ML model improves if given more data. 

We checked whether this is also the case for our new model. The result of this experiment is 

striking. We found that when we would only train the new model with 50% of the data, the precision 

was only 49% and the recall was only 14.3%. We suspect that this difference is such large because 

we go from using very few positive observations to almost too few observations. Nevertheless, this 

comparison does show that by adding more data, the performance of the model can be improved. 

 

5.2. Comparison with the old model  

When we compare the old and the new model we recommend, we can clearly see the strengths and 

weaknesses of the new model. The performance of the old model and the new model we recommend 

can be found in Table 9. The new model has significantly higher precision and F0.33 score than the 

old model (84% and 71% versus 6% and 7% ). The drawback of the new model is the lower recall 

score (30% versus 80%). Although the recall of the old model is an estimation and is likely lower in 

reality, the new model does perform less well for this metric. Meaning, that the new model results 

in more false negatives. Still, the F1 score of the new model is higher than the old model (43% 

versus 11%). From this observation, we can derive that the combined performance of precision and 

recall with both having equal weight is higher for the new model. 
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Table 9: Performance of the old model versus the new model. *Recall of old model is an imperfect estimation and is likely 
lower in reality. 

Metric Old model New model 

Accuracy 97.5% 99.9% 

Precision 6.0% 83.6% 

Specificity 97.6% 99.9% 

Negative Predictive Value 99.9% 99.9% 

Recall  79.5%* 30.0% 

F1 Score 11.1% 43.4% 

F0.33 Score 6.6% 70.9% 

 

Besides the direct comparison of the old and new model, we examined how the new model signals 

false negative observations at a later time. That is, we checked whether a client that needs a 

revision but is not marked will be marked by the model the next month. We found this was the case 

for 33 percent of the false negative observations. As 33 percent of the 70% of observations not 

identified is +- 23 percent of the total positive instances, we can state that the new model signals 

over 50 percent of the clients that it should signal if we also include signals that come 1 month 

later.  

With respect to the F0.33 score, we can conclude that the new model is an improvement over the old 

model. The improvement in terms of precision is especially very large. The weak point of the new 

model is the lower recall compared to the old model. The fundamental difference between the two 

models is that the new model is configured for high precision and the old model in configured for 

high recall. Precision and recall are competing performance metrics so a trade-off has to be made. 

The new configuration better suits the preference of management that precision is more important 

than recall. The signals of the new model will be correct much more often than the signals of the 

old model but the new model will signal fewer total clients that need a risk-based revision.  

 

5.3. Important features 

Getting insight into the important features for the prediction of risk-based revisions was a demand 

from management. As the new RBR model we recommend is a random forest model, we give this 

insight by presenting the feature important scores and the permutation feature important scores 

that can be derived from our random forest model. As earlier stated in Section 3.4.3, the feature 

importance score is computed on the mean and standard deviation of the accumulation of the 

impurity decrease within the trees of a random forest model. So a higher score of a feature reflects 

that the feature is better at separating the two classes in the trees compared to the other features. 

From this, we can conclude that a feature is more important. The permutation feature importance 

score is calculated by the effect on performance if all the values of one feature in the dataset are 

randomly shuffled over all the observations in the dataset. This method disconnects the relation 

between the actual feature value of an observation and the dependent variable as the feature value 

is replaced by a random value from the dataset. If performance is still about the same, the 

conclusion is that the feature has little importance. Also here a higher score of a feature indicates 

higher importance. 
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Figure 11: Feature importance scores and permutation feature important scores. 

The feature important scores can be found in the left part of Figure 11. We anonymized the names 

of the features for confidentiality reasons. What we can disclose is that the PD ratio calculated by 

another model of the bank is a very important predictor in our model. The combination of the PD 

ratio itself and derived predictors that reflect the PD ratio development over the last months have 

a combined score of over 50 percent. From this, we can conclude that the PD ratio is heavily used 

in our model to make a distinguishment between clients that need a risk-based revision and clients 

that do not. Clients with high PD scores more often need a revision. However, it is not a one-to-one 

relation, we found that a high PD score does not have to imply the need for a risk-based revision, 

this is also the main reason that the current RBR model does not function properly. 

In Section 2.1, we identified that the current RBR model does not use predictors related to the 

payment traffic of the client. It was not possible to add it to the current model because when a client 

has a loan at the Volksbank but its account with payment traffic at another bank this data is not 

available. However, we found that adding relatively basic payment traffic data that is available 

within the Volksbank helps to distinguish between clients that need a risk-based revision and 

clients that do not. We see that clients more often need a revision when there is less money going 

in and out of their current account. 

What is left to be said is that we found that a single feature does not solely predict on itself the 

need for a risk-based revision. A high PD ratio does not automatically mean that a revision is 

needed. The key is to combine multiple factors to determine whether a revision is needed. 
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6. Conclusion & Recommendations 

In this chapter, we present our conclusions in Section 6.1 and our recommendations to the 

Volksbank in Section 6.2. Subsequently, in Section 6.3, we state limitations of our study. Finally, 

we present topics for further research in Section 6.4. 

 

6.1. Conclusions 

Currently, the risk-based revision (RBR) process at the Volksbank does not function properly. A 

revision is a reassessment of the credit risk and the associated customer strategy of/for a client. In 

the RBR process, clients that appear to go into default are revised. During a revision, it is 

determined whether measures could be taken that could prevent the client from defaulting. These 

measures are called forbearance measures. Not all clients are revised, a risk-based procedure is 

used. The current RBR model that uses trigger conditions to signal clients that need a revision has 

very low precision, the model produces a lot of false positive signals. Therefore the main goal of this 

study was to create a new RBR model with better performance than the current model using 

machine learning. We posed the following main research question: 

“How can the risk-based revision model be improved using machine learning?” 

To answer this question, we analyzed the current RBR process/model, researched methods that we 

could use to create a new model and thereafter constructed and tested various new models. We 

established that the current RBR model indeed performs poorly, achieving only a precision of 6% 

and a F0.33 score of 7%. We could not identify the exact recall performance because there currently 

does not exist a hard definition of which clients need to be revised and which do not in the bank. 

However, we approximated that the current model identifies 80% of the clients that would need a 

revision with the note that we expect this performance to be lower in reality. We conclude that the 

old model can be characterized as throwing enough mud at the wall and observing that some of it 

will stick.  

After consultation of management, we conclude that a model with fewer false positives (clients that 

do not need a revision that are signaled by the model) is preferred over a model with fewer false 

negatives (clients that should have been signaled by the model but were not). Other processes in 

the bank, such as arrears management and UTP triggers, could be safety nets that reduce the costs 

of a false negative prediction of the model. Therefore, we created a new RBR model with a focus on 

increasing precision and use the F0.33 metric to determine which new type of RBR model performs 

best. 

For the construction of a new model, we tested various models and techniques. Due to regulatory 

requirements, we were not allowed to implement black box type models, such as support vector 

machines or neural networks. Out of the type of models that were available and tested, we found 

that a random forest model performs best. With this type of model, we can achieve a precision that 

is higher than 75 percent, which is a very large increase compared to the current model. However, 

we found that added precision comes at a cost because we find that with a random forest model, we 

cannot achieve the same recall score as the current model. This all means that we can make a model 

of which its signals will be correct much more often than the signals of the old model but the new 

model will signal fewer total clients that need a risk-based revision.  

The model that we recommend to management achieves a F0.33 score of 71%, a precision of 83.6% 

and a recall of 30.0%. An interesting insight we found is that recall increases to 53% if the signal 

from the RBR model can also come 1 month later from the next monthly run of the model. Based 

on the F0.33 score, the new model is a significant improvement over the current model but it is not 

perfect as the number of false negatives of this model is considerable. We are able to reduce the 

number of false negatives of the model but this has the effect that the number of false positives will 
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increase. For the insight into what combinations of precision versus recall can be achieved we refer 

back to Section 5.1.3 and Section 5.1.4. In the new model, predictors related to the PD and payment 

traffic in the current account of the client are most important, clients with a high PD and low 

payment traffic in the current account more often need a revision. 

We identified 4 reasons that individually or combined could have resulted in the new model not 

being perfect: 

• Inconsistency in the evaluation of the shortlist produced the RBR model 

• Small size of the dataset   

• No appropriate features were defined that grasp the available patterns in the data 

• Lack of patterns in the data 

The first potential reason is inconsistency in the evaluation of the shortlist produced by the current 

RBR model. Currently, an employee manually verifies the need for a revision by checking factors 

such as the use of the limit of the current account or payment traffic in the account of the client in 

the various systems the bank has to monitor its clients. As this is a manual process and currently 

no pre-set criteria of the clients that need a revision exist, this process is susceptible to randomness 

and inconsistent decision making. Also, the decision-making of an employee could be affected by 

the limited staff capacity for risk-based revisions of the bank. If the employee already confirmed 

that some clients on the shortlist need to get a revision, he might be unconsciously tempted to not 

confirm more cases as capacity does not allow these clients to be reviewed. We use the evaluation 

of the shortlist as input for our model to learn from, so our model could be affected by inconsistent 

decision-making.  

Secondly, the size of our dataset is limited, especially the number of instances that are labeled as 

‘revision needed’ which is only 97. When also taking into account that we use 20% of our instances 

to test our models and that due to the characteristic of corporate clients that every client is slightly 

different, the limited number of examples for the algorithm to learn from could be too limited.  

Next, it could be that we did not define the appropriate features that could capture the patterns in 

the data that is available to us. Potentially, using feature engineering, other (more advanced) 

features could be constructed that could grasp the patterns in the outcome whether a risk-based 

revision is needed. 

The last reason could be the lack of patterns in the data. It is possible that the dataset does not 

contain sufficiently strong patterns. Other factors currently not in our dataset could also influence 

whether a revision is needed or not. It is also the question of whether there are patterns that could 

be captured by any set of predictors or whether the outcome is intrinsically noisy, for example, 

unpredictable future macroeconomic factors are an example of patterns that cannot be captured by 

predictors 

In the old model, the features derived from the PD are mostly used to determine whether a client 

needs a risk-based revision. In the new model we created, the PD ratio is also an important driver. 

Besides the PD ratio, the new model also makes use of the payment traffic data of the clients. We 

found that making use of the relative basic payment traffic data that is available within the 

Volksbank helps to distinguish between clients that need a risk-based revision and clients that do 

not in a new model. Potentially, more advanced payment traffic features that also take into account 

whether the client has his payment traffic at the Volksbank or another bank could further increase 

the performance of the model.  

Summarizing the findings of this study, the risk-based revision model can be improved by 

implementing a random forest model. The configuration of the model we suggest drastically 

improves the F0.33 score and the precision of the model but the recall is reduced. However, the higher 

precision is preferred over the lower recall by management. Predictors related to the PD and 

payment traffic in the current account of the client are most important in the model we suggest. 
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6.2. Recommendations 

In this section, we present our recommendations to the Volksbank based on the findings of our 

study. We will list these recommendations below after we will elaborate on and explain each 

recommendation. 

• Implement the new RBR model. 

• Update the model after some years when more data is available. 

• Perform follow-up research on in which type of situation clients should get a revision and 

which not. 

• Quantify the costs of false positives and false negatives. 

• Examine how payment traffic can more elaborately be implemented in the model. 

• Investigate if the underlying drivers of the PD can be used to further improve the model. 

The first recommendation we have is to implement the new model we created. The new model better 

suits the preference of management that fewer false positives (clients that do not need a revision 

that are signaled by the model) are more important than fewer false negatives (clients that should 

have been signaled by the model but were not). If during the implementation process of the new 

model this preference slightly changes, which could be the case because of numerous requirements 

when implementing a new model in a bank such as approval from the risk department or several 

committees of the bank, we provided the tools in the form of internal documentation about our 

model to make these changes and the insight into what effect a different calibration of the model 

would have in terms of precision versus recall in the form of presentations and this report. Besides, 

for effectively implementing and maintaining the model in the future, employees with knowledge 

of these topics are needed. Also, when there would be disagreement on how to configure the model 

in the future, quantifying the costs of a false positive and a false negative could be a solution, 

although this is a very difficult and extensive task (see Section 2.3 for a full elaboration on this 

topic). 

Secondly, we recommend updating the model after some time when more data is available. 

Currently, there is a limited number of cases in which clients received a risk-based revision. 

resulting in the ML model having limited examples to learn from. If after some time, more examples 

of risk-based revisions are collected, these added observations could be used to retrain the model. 

This will very likely create a better-performing model but the quantity of additional data that is 

needed to reach a certain performance level or whether that level can be reached by adding more 

data we cannot predict. We confirmed by an experiment of us, see Section 5.1.5, that the 

performance of the model can improve when more data is used. In that experiment, we only used 

50% of the available data. The model produced in this experiment only achieved a precision of 49% 

compared to 84% of the model with 100% of the available data, thereby proving that adding more 

data can help to increase the performance of the model. We found that training the current model 

takes approximately 1 to 2 minutes. Therefore time is not a limiting factor when updating the 

model. An issue with updating the model is that old data may be less representative because of 

changing circumstances. Representativeness of data should be taken into account when updating 

the model with new data and the question should be asked whether the old data still reflects the 

current process and circumstances.   

Next, we would recommend follow-up research on the topic of risk-based revisions. Currently, it is 

not exactly clear which clients should be revised and which not. Therefore, we were also not able to 

accurately identify false negative instances in our study. We recommend defining and documenting 

which clients should be revised, thereby creating a clear risk-based revision policy. Also, we advise 

research into what happens after a risk-based revision. It is interesting or even fundamental to 

study how often the effect of a risk-based revision is successful and which forbearance measures 

are effective. In this study, we simply assumed that forbearance measures have a significant 

decreasing effect on the probability of default. Potentially, the effect of a forbearance measure could 

be quantified by a reduction in the probability of default. 
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Subsequently, we identified in this research that features related to payment traffic are useful for 

predicting risk-based revisions. We currently implemented features directly available from the data 

warehouse from the bank. However, these features give limited insight into clients when a client 

has his payment traffic at another bank. Therefore, we recommend exploring whether it is possible 

to create new features that incorporate this aspect of the payment traffic of a client. 

Lastly, we recommend investigating the underlying drivers of the PD model as potential new 

features. We tried to implement these drivers ourselves in our dataset but we ran into various 

practical constraints and therefore decided not to implement these due to time constraints. 

However, we suspect that after the time investment needed to gather this data, the underlying 

drivers have to potential to increase the performance of our model. 

 

6.3. Limitations 

Some limitations we encountered during this study restricted the methods we could apply and the 

results we could achieve. These were the availability of data, a restriction on using black box ML 

models, a missing policy from the bank and data quality. In this section, we go into detail on these 

limitations and if needed, what action we took to still perform this study. 

The first limitation in this study is the availability of data and especially the number of examples 

of risk-based revisions. This number is limited which reduces the effectiveness of machine learning. 

Another aspect of the availability of data is limitations in the data warehouses of the bank. 

Bundling all data sources together turned out to be a challenge and one that could not always be 

overcome, resulting that we were not always able to extract all the data we preferred to have. 

Another limitation in this study is the restriction of using black box machine learning models. Due 

to regulatory requirements, models like support vector machines and neural networks were not 

available for us to implement, although these models could have the potential to make better 

performance than the random forest model we currently recommend. Generally, black box models 

have a better ability to capture non-linearity and interaction between features. 

Next, we have the limitation that there currently is no concrete policy on which clients should 

receive a risk-based revision and which not. This severely limited us in identifying false negative 

instances from our dataset. In the end, it also resulted in that we not included false negative 

instances as positives to train our model with. 

The last limitation of this study we mention is data quality issues. The data we have available to 

us contains missing data points. To still be able to implement ML algorithms, we had to perform 

several data cleaning operations. These operations could have impacted this study.  

 

6.4. Further research 

We identified several topics for further research of which some we already mentioned in our 

recommendations. The first topic of further research is increasing the number of relevant features 

of the data. Adding more macroeconomic factors or underlying drivers of features such as the PD 

could be very interesting to study. Also, feature engineering could be used to extract more 

information from the current dataset. 

Secondly, implementing a complete subset selection technique could be worthwhile. In this study, 

we used the subset of features that at first grasp contains all the features that have some degree of 

importance for predicting revisions. Examining other subsets of features has the potential to 

increase the performance of the model. 
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Next, despite models like SVMs and neural networks are not allowed in the context of this research, 

it could be studied what kind of performance could be achieved with these kinds of models. This 

could indicate a benchmark of the performance that could be achieved with machine learning with 

the currently available data. 

Subsequently, a topic of further research could be to quantify the costs of false positives and false 

negatives. The costs of false positives could be rather easily identified by establishing the average 

costs of checking the output of the RBR model. The challenge here is to establish the costs 

associated with a false negative which could potentially be modeled by multiplying the average 

decrease in default probability from forbearance measures with the average cost of default. These 

two factors will be challenging to determine and at least questionable assumptions will be needed. 

In our study, we assumed that forbearance measures have a significant positive effect on the PD. 

However, proving this can be tricky, especially given the limited number of data points.  Besides, 

it is questionable if averages could be used as the cost of a false negative is significantly higher 

when the client has an exposure of 1 million than with an exposure of  0.1 million, resulting in 

likely large standard deviations of the average costs. Using an average would not correctly display 

the trade-off of the costs of false positives and false negatives and therefore confidence intervals 

should be used. Further research should show whether these challenges could be overcome. 

Then, when we performed lasso regression and ridge regression, we standardized the numerical 

features of our dataset as the scale of our variables has an effect on the results of these type of 

models. Unexpectedly, we found that standardizing did not increase the performance of our models. 

It could be interesting to establish the reason for this result. Also, other methods of standardization 

or transformation could be performed. Examples of these are min-max standardizing or log 

transformations.  

Lastly, in our discussion of techniques for imbalanced datasets, we covered cost-sensitive learning 

(assigning different misclassification costs for false positives or false negatives). We decided due to 

time constraints to not test this method. However, it could be interesting to observe the effect of 

implementing this technique. It could be that cost-sensitive learning is a more effective technique 

than using an alternative cut-off or the synthetic minority oversampling technique. 
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Appendices 

Appendix A: Data cleaning operations 

In this appendix, we describe some issues in our dataset for which we performed data cleaning 

operations that are worthwhile to mention. 

Issue 1 

The observations in our dataset are monthly time series of a client. When multiple types of revisions 

are performed in one month, we have multiple observations of one month in our dataset, which is 

undesirable. 

Solution 

When we have multiple observations of one month of a client due to multiple revisions, we select 

the observation with the revision type that is relevant to us. The other observation we drop from 

the dataset. Thereby, preventing duplicates. 

 

Issue 2 

New clients often have some empty data points in their first occurrence in our dataset.  

Solution 

Using NOCB, we use the data points of the client in the next month to fill the empty data points in 

the first month. 

 

Issue 3 

Some features in our dataset have as default empty values (a None value), which can give trouble 

in some operations or ML models.   

Solution 

We replace the empty values with logical values that are more fitting. In most cases zero. 

 

Issue 4 

A risk-based revision is not always performed in the same month as when a client is signaled by 

the RBR model. This creates trouble with matching a performed revision with a signal of the RBR 

model. 

Solution 

When a RBR revision is performed,  we look back 3 months to check if the RBR model signaled the 

client. If this is the case, we say that those signals are true positives. 
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Issue 5 

Disturbing data after a true positive. The observations after a true positive are very similar to the 

true positive observation because they are of the same client but one or two months later. However, 

these observations are not true positives. This will make it hard for a ML algorithm to distinguish 

between the observations. 

Solution 

After a true positive followed by a not true positive, we drop all future instances of that client.  

 

Issue 6 

We have clients in our dataset that are in default at the first observation we have of them. These 

are not clients the RBR model is applied to. 

Solution 

We drop those clients from the dataset 

 

Issue 7 

We have clients in our dataset that are already undergoing a revision process at the first 

observation we have of them. These are not clients the RBR model is applied to. 

Solution 

We drop those clients from the dataset. 
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Appendix B: Results Logistic Regression 

In this appendix, we highlighted the models with the highest performance in terms of precision, recall, F1 score and F0.33 score per type of model. 

Table 10: Performance of the Lasso regression model with varying lambdas and with the SMOTE + undersampling applied (SMOTE to a 1:10 ratio and undersampling to a 1:2 ratio) without 
standardizing numerical features of the dataset. Validation is performed using 5-fold cross-validation. The highest performance in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Lambda Accuracy Precision Recall F1  

Score 

F0.33  

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Lasso regression + SMOTE  0.01 0.9776 0.0019 0.0524 0.0047 0.7811 0.1141 0.0982 0.0578 

Lasso regression + SMOTE  0.1 0.9822 0.0019 0.0659 0.0081 0.7816 0.0930 0.1214 0.0725 

Lasso regression + SMOTE  0.5 0.9856 0.0014 0.0783 0.0071 0.7611 0.0822 0.1419 0.0860 

Lasso regression + SMOTE  1 0.9863 0.0021 0.0849 0.0093 0.7832 0.0774 0.1530 0.0932 

Lasso regression + SMOTE  2 0.9863 0.0023 0.0840 0.0087 0.7721 0.0863 0.1511 0.0922 

Lasso regression + SMOTE  3 0.9861 0.0026 0.0850 0.0148 0.7826 0.1023 0.1527 0.0933 

Lasso regression + SMOTE  4 0.9863 0.0017 0.0853 0.0105 0.7926 0.0937 0.1537 0.0936 

Lasso regression + SMOTE  5 0.9867 0.0016 0.0864 0.0129 0.7721 0.0960 0.1553 0.0948 

Lasso regression + SMOTE  6 0.9862 0.0018 0.0812 0.0099 0.7516 0.0718 0.1464 0.0892 

Lasso regression + SMOTE  7 0.9869 0.0021 0.0890 0.0114 0.7826 0.0920 0.1594 0.0977 

Lasso regression + SMOTE  8 0.9860 0.0018 0.0807 0.0113 0.7516 0.0718 0.1455 0.0886 

Lasso regression + SMOTE  9 0.9857 0.0020 0.0806 0.0131 0.7716 0.1034 0.1457 0.0886 

Lasso regression + SMOTE  10 0.9864 0.0016 0.0854 0.0101 0.7832 0.0774 0.1537 0.0937 

Lasso regression + SMOTE  25 0.9864 0.0011 0.0802 0.0106 0.7300 0.0880 0.1445 0.0881 

Lasso regression + SMOTE  50 0.9862 0.0014 0.0761 0.0082 0.7000 0.0644 0.1372 0.0835 

Lasso regression + SMOTE  100 0.9867 0.0012 0.0770 0.0059 0.6795 0.0447 0.1383 0.0845 

Lasso regression + SMOTE  1000 0.9865 0.0014 0.0773 0.0077 0.6984 0.1063 0.1390 0.0848 
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Table 11: Performance of the Lasso regression model with varying lambdas and with the SMOTE + undersampling applied (SMOTE to a 1:10 ratio and undersampling to a 1:2 ratio) with 
standardizing numerical features of the dataset. Validation is performed using 5-fold cross-validation. The highest performance in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Lambda Accuracy Precision Recall F1  

Score 

F0.33  

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Lasso regression + SMOTE  0.01 0.9754 0.0015 0.0560 0.0022 0.9279 0.0416 0.1056 0.0618 

Lasso regression + SMOTE  0.1 0.9795 0.0011 0.0627 0.0072 0.8647 0.0926 0.1169 0.0691 

Lasso regression + SMOTE  0.5 0.9802 0.0017 0.0642 0.0094 0.8542 0.1132 0.1194 0.0708 

Lasso regression + SMOTE  1 0.9807 0.0019 0.0645 0.0086 0.8337 0.1034 0.1196 0.0710 

Lasso regression + SMOTE  2 0.9810 0.0012 0.0644 0.0096 0.8237 0.1237 0.1195 0.0710 

Lasso regression + SMOTE  3 0.9808 0.0012 0.0653 0.0081 0.8442 0.1063 0.1211 0.0719 

Lasso regression + SMOTE  4 0.9814 0.0010 0.0678 0.0100 0.8542 0.1132 0.1256 0.0747 

Lasso regression + SMOTE  5 0.9802 0.0017 0.0625 0.0093 0.8332 0.1316 0.1163 0.0689 

Lasso regression + SMOTE  6 0.9806 0.0011 0.0653 0.0048 0.8553 0.0619 0.1213 0.0719 

Lasso regression + SMOTE  7 0.9814 0.0017 0.0672 0.0069 0.8442 0.0887 0.1244 0.0740 

Lasso regression + SMOTE  8 0.9809 0.0020 0.0652 0.0097 0.8342 0.1122 0.1208 0.0718 

Lasso regression + SMOTE  9 0.9813 0.0013 0.0662 0.0116 0.8337 0.1274 0.1226 0.0729 

Lasso regression + SMOTE  10 0.9812 0.0010 0.0649 0.0059 0.8237 0.0730 0.1204 0.0715 

Lasso regression + SMOTE  25 0.9807 0.0019 0.0636 0.0080 0.8242 0.0984 0.1181 0.0701 

Lasso regression + SMOTE  50 0.9803 0.0022 0.0642 0.0105 0.8442 0.1109 0.1193 0.0708 

Lasso regression + SMOTE  100 0.9812 0.0011 0.0673 0.0071 0.8547 0.0704 0.1247 0.0741 

Lasso regression + SMOTE  1000 0.9811 0.0013 0.0670 0.0061 0.8547 0.0704 0.1242 0.0738 
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Table 12: Performance of the Ridge regression model with varying lambdas and with the SMOTE + undersampling applied (SMOTE to a 1:10 ratio and undersampling to a 1:2 ratio) without 
standardizing numerical features of the dataset. Validation is performed using 5-fold cross-validation. The highest performance in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Lambda Accuracy Precision Recall F1  

Score 

F0.33  

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Ridge regression + SMOTE  0.01 0.9683 0.0082 0.0398 0.0137 0.7611 0.1289 0.0754 0.0440 

Ridge regression + SMOTE  0.1 0.9676 0.0077 0.0382 0.0077 0.7826 0.1023 0.0727 0.0422 

Ridge regression + SMOTE  0.5 0.9608 0.0092 0.0316 0.0094 0.7611 0.1654 0.0605 0.0349 

Ridge regression + SMOTE  1 0.9688 0.0056 0.0353 0.0051 0.7016 0.0330 0.0671 0.0390 

Ridge regression + SMOTE  2 0.9636 0.0049 0.0306 0.0048 0.7121 0.0477 0.0586 0.0338 

Ridge regression + SMOTE  3 0.9689 0.0046 0.0348 0.0048 0.6911 0.0548 0.0661 0.0384 

Ridge regression + SMOTE  4 0.9603 0.0052 0.0290 0.0033 0.7426 0.0627 0.0558 0.0321 

Ridge regression + SMOTE  5 0.9662 0.0095 0.0361 0.0095 0.7432 0.0401 0.0687 0.0399 

Ridge regression + SMOTE  6 0.9659 0.0083 0.0319 0.0054 0.6805 0.0859 0.0608 0.0353 

Ridge regression + SMOTE  7 0.9685 0.0076 0.0348 0.0055 0.6911 0.0949 0.0661 0.0385 

Ridge regression + SMOTE  8 0.9669 0.0088 0.0343 0.0055 0.7121 0.0910 0.0653 0.0380 

Ridge regression + SMOTE  9 0.9662 0.0062 0.0345 0.0053 0.7432 0.0401 0.0659 0.0382 

Ridge regression + SMOTE  10 0.9664 0.0070 0.0345 0.0059 0.7332 0.0536 0.0658 0.0382 

Ridge regression + SMOTE  25 0.9696 0.0065 0.0389 0.0091 0.7521 0.1225 0.0738 0.0429 

Ridge regression + SMOTE  50 0.9648 0.0065 0.0352 0.0106 0.7716 0.1559 0.0673 0.0389 

Ridge regression + SMOTE  100 0.9670 0.0051 0.0354 0.0082 0.7421 0.1243 0.0674 0.0391 

Ridge regression + SMOTE  1000 0.9619 0.0091 0.0333 0.0120 0.7621 0.1194 0.0637 0.0368 
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Table 13: Performance of the Ridge regression model with varying lambdas and with the SMOTE + undersampling applied (SMOTE to a 1:10 ratio and undersampling to a 1:2 ratio) with 
standardizing numerical features of the dataset. Validation is performed using 5-fold cross-validation. The highest performance in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Lambda Accuracy Precision Recall F1  

Score 

F0.33  

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Ridge regression + SMOTE  0.01 0.9775 0.0016 0.0579 0.0033 0.8763 0.0512 0.1085 0.0638 

Ridge regression + SMOTE  0.1 0.9783 0.0019 0.0583 0.0043 0.8453 0.0716 0.1090 0.0643 

Ridge regression + SMOTE  0.5 0.9787 0.0019 0.0592 0.0042 0.8453 0.0716 0.1106 0.0653 

Ridge regression + SMOTE  1 0.9793 0.0016 0.0603 0.0056 0.8347 0.0751 0.1124 0.0664 

Ridge regression + SMOTE  2 0.9798 0.0019 0.0625 0.0057 0.8453 0.0716 0.1163 0.0689 

Ridge regression + SMOTE  3 0.9801 0.0015 0.0624 0.0060 0.8353 0.0862 0.1160 0.0687 

Ridge regression + SMOTE  4 0.9794 0.0019 0.0600 0.0078 0.8247 0.0879 0.1117 0.0661 

Ridge regression + SMOTE  5 0.9799 0.0019 0.0620 0.0072 0.8347 0.0751 0.1154 0.0683 

Ridge regression + SMOTE  6 0.9800 0.0020 0.0630 0.0061 0.8453 0.0716 0.1172 0.0695 

Ridge regression + SMOTE  7 0.9799 0.0022 0.0614 0.0062 0.8247 0.0879 0.1142 0.0676 

Ridge regression + SMOTE  8 0.9801 0.0019 0.0617 0.0050 0.8247 0.0814 0.1148 0.0680 

Ridge regression + SMOTE  9 0.9802 0.0021 0.0632 0.0078 0.8342 0.0611 0.1174 0.0697 

Ridge regression + SMOTE  10 0.9802 0.0022 0.0603 0.0064 0.7932 0.0854 0.1121 0.0665 

Ridge regression + SMOTE  25 0.9802 0.0021 0.0636 0.0056 0.8453 0.0716 0.1183 0.0701 

Ridge regression + SMOTE  50 0.9810 0.0017 0.0653 0.0050 0.8353 0.0862 0.1210 0.0719 

Ridge regression + SMOTE  100 0.9804 0.0023 0.0637 0.0077 0.8347 0.0751 0.1183 0.0702 

Ridge regression + SMOTE  1000 0.9807 0.0018 0.0643 0.0044 0.8353 0.0795 0.1192 0.0708 
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Table 14: Performance of logistic regression model using subset of features of the available data with the SMOTE + undersampling applied (SMOTE to a 1:10 ratio and undersampling to a 1:2 
ratio). The subsets are determined using the forward stepwise selection technique, 50% of the data was used for the feature selection with 3 fold CV and the other 50% of the data was used for 
performance testing using 3-fold CV. The highest performance in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Number of 

features 

Accuracy Precision Recall F1 

Score 

F0.33 

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Logistic regression forward stepwise 1 0.9705 0.0027 0.0493 0.0039 0.9412 0.0480 0.0936 0.0544 

Logistic regression forward stepwise 2 0.9767 0.0029 0.0645 0.0080 0.9804 0.0277 0.1210 0.0712 

Logistic regression forward stepwise 3 0.9775 0.0025 0.0616 0.0062 0.9007 0.0260 0.1151 0.0679 

Logistic regression forward stepwise 4 0.9823 0.0020 0.0784 0.0060 0.9216 0.0555 0.1443 0.0863 

Logistic regression forward stepwise 5 0.9821 0.0012 0.0773 0.0030 0.9216 0.0555 0.1425 0.0851 

Logistic regression forward stepwise 6 0.9818 0.0018 0.0763 0.0054 0.9216 0.0555 0.1408 0.0840 

Logistic regression forward stepwise 7 0.9830 0.0021 0.0831 0.0084 0.9412 0.0480 0.1525 0.0914 

Logistic regression forward stepwise 8 0.9821 0.0012 0.0771 0.0031 0.9216 0.0555 0.1423 0.0849 

Logistic regression forward stepwise 9 0.9824 0.0014 0.0769 0.0032 0.9020 0.0734 0.1416 0.0846 

Logistic regression forward stepwise 10 0.9835 0.0011 0.0817 0.0036 0.9020 0.0734 0.1497 0.0899 

Logistic regression forward stepwise 11 0.9838 0.0018 0.0835 0.0065 0.9020 0.0734 0.1527 0.0919 

Logistic regression forward stepwise 12 0.9835 0.0017 0.0785 0.0019 0.8627 0.1000 0.1437 0.0864 

Logistic regression forward stepwise 13 0.9837 0.0017 0.0813 0.0042 0.8824 0.0832 0.1487 0.0894 

Logistic regression forward stepwise 14 0.9844 0.0017 0.0828 0.0029 0.8627 0.1000 0.1509 0.0910 

Logistic regression forward stepwise 15 0.9847 0.0014 0.0825 0.0011 0.8431 0.1109 0.1501 0.0907 

Logistic regression forward stepwise 16 0.9850 0.0014 0.0878 0.0034 0.8824 0.0832 0.1595 0.0965 

Logistic regression forward stepwise 17 0.9856 0.0017 0.0895 0.0038 0.8627 0.1000 0.1618 0.0983 

Logistic regression forward stepwise 18 0.9859 0.0017 0.0878 0.0041 0.8235 0.1271 0.1584 0.0964 

Logistic regression forward stepwise 19 0.9863 0.0017 0.0901 0.0105 0.8223 0.1259 0.1621 0.0989 

Logistic regression forward stepwise 20 0.9862 0.0013 0.0915 0.0085 0.8419 0.0988 0.1648 0.1004 

Logistic regression forward stepwise 21 0.9865 0.0017 0.0952 0.0136 0.8615 0.1101 0.1711 0.1045 

Logistic regression forward stepwise 22 0.9857 0.0022 0.0811 0.0038 0.7635 0.1254 0.1462 0.0891 

Logistic regression forward stepwise 23 0.9860 0.0018 0.0888 0.0114 0.8223 0.1259 0.1599 0.0974 
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Appendix C: Results Decision tree 

In this appendix, we highlighted the models with the highest performance in terms of precision, recall, F1 score and F0.33 score per type of model. 

Table 15: Performance of the decision tree model with varying minimum leaf sizes. Validation is performed using 5-fold cross-validation. The highest performance in terms of precision, recall, F1 
score and F0.33 score are highlighted. 

Model Minimum leaf 

size 

Accuracy Precision Recall F1  

Score 

F0.33  

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Decision Tree + Stop Criterion 1 0.9977 0.0002 0.2663 0.0524 0.2874 0.0923 0.2736 0.2487 

Decision Tree + Stop Criterion 3 0.9976 0.0002 0.1747 0.0614 0.1537 0.0708 0.1622 0.1723 

Decision Tree + Stop Criterion 5 0.9980 0.0004 0.2594 0.1701 0.1558 0.1144 0.1921 0.2432 

Decision Tree + Stop Criterion 10 0.9982 0.0002 0.3124 0.1714 0.1126 0.0593 0.1623 0.2653 

Decision Tree + Stop Criterion 15 0.9984 0.0001 0.3950 0.2100 0.1026 0.0563 0.1610 0.3074 

Decision Tree + Stop Criterion 20 0.9983 0.0001 0.1952 0.1954 0.0516 0.0459 0.0807 0.1527 

Decision Tree + Stop Criterion 25 0.9982 0.0002 0.2673 0.1876 0.1021 0.0633 0.1465 0.2301 

Decision Tree + Stop Criterion 30 0.9982 0.0003 0.1127 0.0923 0.0516 0.0459 0.0691 0.1008 

Decision Tree + Stop Criterion 155 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 

Decision Tree + Stop Criterion 310 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 

Decision Tree + Stop Criterion 465 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 

Decision Tree + Stop Criterion 620 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 

 

Table 16: Performance of the decision tree model with varying minimum leaf sizes and with the SMOTE + undersampling applied (SMOTE to a 1:10 ratio and undersampling to a 1:2 ratio). 
Validation is performed using 5-fold cross-validation. The highest performance in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Minimum leaf 

size 

Accuracy Precision Recall F1 Score F0.33 Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Decision Tree + Stop Criterion + SMOTE 1 0.9940 0.0006 0.1514 0.0285 0.6074 0.0744 0.2421 0.1608 

Decision Tree + Stop Criterion + SMOTE 3 0.9944 0.0006 0.1315 0.0437 0.4737 0.1951 0.2048 0.1417 

Decision Tree + Stop Criterion + SMOTE 5 0.9937 0.0007 0.1392 0.0235 0.5874 0.1561 0.2244 0.1507 

Decision Tree + Stop Criterion + SMOTE 10 0.9928 0.0004 0.1390 0.0279 0.7005 0.1473 0.2318 0.1511 

Decision Tree + Stop Criterion + SMOTE 15 0.9913 0.0012 0.1219 0.0160 0.7337 0.1519 0.2083 0.1330 

Decision Tree + Stop Criterion + SMOTE 20 0.9899 0.0015 0.1114 0.0032 0.7832 0.1389 0.1942 0.1218 

Decision Tree + Stop Criterion + SMOTE 25 0.9885 0.0008 0.0965 0.0158 0.7632 0.1390 0.1711 0.1057 

Decision Tree + Stop Criterion + SMOTE 30 0.9871 0.0019 0.0916 0.0195 0.7942 0.1280 0.1639 0.1005 

Decision Tree + Stop Criterion + SMOTE 155 0.9823 0.0044 0.0708 0.0162 0.8053 0.1265 0.1290 0.0779 

Decision Tree + Stop Criterion + SMOTE 310 0.9683 0.0071 0.0447 0.0101 0.8984 0.0957 0.0848 0.0494 

Decision Tree + Stop Criterion + SMOTE 465 0.9624 0.0036 0.0382 0.0025 0.9484 0.0658 0.0733 0.0422 
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Decision Tree + Stop Criterion + SMOTE 620 0.9646 0.0030 0.0404 0.0032 0.9484 0.0658 0.0775 0.0447 

 

Table 17: Performance of the decision tree model with varying alphas used in cost complexity pruning. Validation is performed using 5-fold cross-validation. The highest performance in terms of 
precision, recall, F1 score and F0.33 score are highlighted. 

Model Alpha Accuracy Precision Recall F1 Score F0.33 Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Decision Tree + Pruning  0.000000 0.9977 0.0002 0.2663 0.0524 0.2874 0.0923 0.2736 0.2154 

Decision Tree + Pruning  0.000025 0.9979 0.0005 0.2850 0.0810 0.1953 0.0566 0.2246 0.2725 

Decision Tree + Pruning  0.000050 0.9982 0.0004 0.4167 0.1826 0.1121 0.0571 0.1643 0.3277 

Decision Tree + Pruning  0.000075 0.9983 0.0003 0.2364 0.3883 0.0411 0.0503 0.0639 0.1602 

Decision Tree + Pruning  0.000100 0.9984 0.0001 0.1000 0.2000 0.0211 0.0421 0.0348 0.0727 

Decision Tree + Pruning  0.000125 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 

Decision Tree + Pruning  0.000150 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 

Decision Tree + Pruning  0.000175 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 

Decision Tree + Pruning  0.000200 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 

 

Table 18: Performance of the decision tree model with varying alphas used in cost complexity pruning and with the SMOTE + undersampling applied (SMOTE to a 1:10 ratio and undersampling 
to a 1:2 ratio). Validation is performed using 5-fold cross-validation. The highest performance in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Alpha Accuracy Precision Recall F1 Score F0.33 Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Decision Tree + Pruning + SMOTE 0.000000 0.9948 0.0010 0.1598 0.0377 0.5268 0.1314 0.2437 0.1717 

Decision Tree + Pruning + SMOTE 0.000025 0.9940 0.0007 0.1363 0.0319 0.5353 0.1500 0.2164 0.1473 

Decision Tree + Pruning + SMOTE 0.000050 0.9950 0.0002 0.1690 0.0162 0.5674 0.0681 0.2603 0.1817 

Decision Tree + Pruning + SMOTE 0.000075 0.9949 0.0004 0.1636 0.0053 0.5568 0.0695 0.2523 0.1760 

Decision Tree + Pruning + SMOTE 0.000100 0.9945 0.0005 0.1547 0.0255 0.5668 0.0976 0.2424 0.1668 

Decision Tree + Pruning + SMOTE 0.000125 0.9940 0.0007 0.1425 0.0249 0.5579 0.0956 0.2263 0.1540 

Decision Tree + Pruning + SMOTE 0.000150 0.9941 0.0012 0.1497 0.0520 0.5679 0.1399 0.2364 0.1616 

Decision Tree + Pruning + SMOTE 0.000175 0.9933 0.0008 0.1350 0.0170 0.6089 0.1216 0.2203 0.1464 

Decision Tree + Pruning + SMOTE 0.000200 0.9932 0.0009 0.1283 0.0255 0.5674 0.0892 0.2089 0.1390 
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Appendix D: Results Grid Search Random Forest 

In this appendix, we highlighted the models with the highest performance in terms of precision, recall, F1 score and F0.33 score per type of model. We 

also highlight the model that is best in our opinion based on the preferences of management. 

Table 19: Results of grid search of the random forest model. Validation is performed by 50 repetitions of the validation set approach with a training size of 80%. The highest performance over 
the 50 repetitions in terms of precision, recall, F1 score and F0.33 score are highlighted. 

Model Cut-off Criterion Maximum features Accuracy Precision Recall F1 

Score 

F0.33 

Score 

Mean  Std Mean  Std Mean  Std Mean  Mean 

Random forest 0.3 Gini log2 0.9988 0.0003 0.7744 0.1766 0.3451 0.0844 0.4711 0.6888 

Random forest  0.3 Gini sqrt 0.9988 0.0003 0.7509 0.1811 0.3497 0.0807 0.4686 0.6736 

Random forest 0.3 Gini 8 0.9988 0.0002 0.7154 0.1575 0.3625 0.0988 0.4720 0.6519 

Random forest  0.3 Gini 10 0.9988 0.0003 0.7122 0.1936 0.3756 0.1066 0.4836 0.6536 

Random forest 0.3 entropy log2 0.9988 0.0003 0.7897 0.1649 0.3564 0.0901 0.4842 0.7041 

Random forest 0.3 entropy sqrt 0.9988 0.0002 0.7846 0.1630 0.3618 0.0900 0.4876 0.7025 

Random forest  0.3 entropy 8 0.9988 0.0003 0.7394 0.1905 0.3702 0.1098 0.4857 0.6724 

Random forest 0.3 entropy 10 0.9988 0.0002 0.7341 0.1612 0.3791 0.1100 0.4889 0.6712 

Random forest  0.325 Gini log2 0.9988 0.0003 0.7876 0.1976 0.2984 0.0881 0.4248 0.6766 

Random forest 0.325 Gini sqrt 0.9988 0.0002 0.7855 0.1910 0.3065 0.0884 0.4339 0.6793 

Random forest  0.325 Gini 8 0.9988 0.0003 0.7601 0.2045 0.3382 0.1040 0.4604 0.6758 

Random forest 0.325 Gini 10 0.9988 0.0003 0.7655 0.1890 0.3599 0.1075 0.4787 0.6880 

Random forest  0.325 entropy log2 0.9988 0.0002 0.7971 0.1948 0.3158 0.0897 0.4452 0.6917 

Random forest 0.325 entropy sqrt 0.9988 0.0003 0.8130 0.1750 0.3232 0.0964 0.4556 0.7060 

Random forest 0.325 entropy 8 0.9988 0.0003 0.7633 0.1943 0.3489 0.1010 0.4728 0.6823 

Random forest  0.325 entropy 10 0.9988 0.0002 0.7671 0.1617 0.3551 0.0875 0.4772 0.6874 

Random forest 0.35 Gini log2 0.9988 0.0002 0.8150 0.1874 0.2775 0.0907 0.4072 0.6827 

Random forest 0.35 Gini sqrt 0.9988 0.0003 0.7930 0.2047 0.2879 0.0871 0.4160 0.6747 

Random forest  0.35 Gini 8 0.9988 0.0002 0.7734 0.1921 0.3030 0.0977 0.4275 0.6695 

Random forest 0.35 Gini 10 0.9988 0.0003 0.7708 0.2056 0.3125 0.1039 0.4378 0.6722 

Random forest  0.35 entropy log2 0.9988 0.0003 0.8361 0.1998 0.2995 0.0917 0.4343 0.7089 

Random forest 0.35 entropy sqrt 0.9988 0.0003 0.8223 0.1728 0.3018 0.0927 0.4348 0.7013 

Random forest 0.35 entropy 8 0.9988 0.0003 0.8065 0.2007 0.3135 0.0917 0.4452 0.6969 

Random forest  0.35 entropy 10 0.9988 0.0003 0.7985 0.1644 0.3293 0.0980 0.4592 0.6989 

Random forest 0.375 Gini log2 0.9988 0.0003 0.8523 0.2025 0.2637 0.0891 0.3965 0.6968 

Random forest 0.375 Gini sqrt 0.9987 0.0003 0.8267 0.2037 0.2623 0.0875 0.3924 0.6804 

Random forest  0.375 Gini 8 0.9988 0.0003 0.7994 0.1988 0.2848 0.0976 0.4115 0.6771 
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Random forest 0.375 Gini 10 0.9987 0.0003 0.7794 0.1956 0.2922 0.0917 0.4183 0.6680 

Random forest 0.375 entropy log2 0.9988 0.0003 0.8284 0.2041 0.2689 0.0937 0.3993 0.6858 

Random forest  0.375 entropy sqrt 0.9988 0.0003 0.8422 0.1927 0.2871 0.0873 0.4228 0.7058 

Random forest 0.375 entropy 8 0.9988 0.0003 0.8009 0.2000 0.2966 0.0990 0.4263 0.6845 

Random forest 0.375 entropy 10 0.9988 0.0002 0.7988 0.1751 0.2926 0.0966 0.4217 0.6810 

Random forest  0.4 Gini log2 0.9987 0.0003 0.8544 0.2014 0.2338 0.0875 0.3609 0.6752 

Random forest 0.4 Gini sqrt 0.9987 0.0003 0.8392 0.2099 0.2364 0.0913 0.3613 0.6687 

Random forest 0.4 Gini 8 0.9987 0.0003 0.8201 0.2063 0.2523 0.0945 0.3780 0.6695 

Random forest  0.4 Gini 10 0.9987 0.0003 0.7936 0.2138 0.2576 0.0966 0.3821 0.6569 

Random forest 0.4 entropy log2 0.9988 0.0003 0.8515 0.1949 0.2502 0.0934 0.3800 0.6865 

Random forest 0.4 entropy sqrt 0.9988 0.0003 0.8536 0.1905 0.2685 0.0887 0.4029 0.7008 

Random forest  0.4 entropy 8 0.9988 0.0003 0.8355 0.2003 0.2688 0.0953 0.3995 0.6900 

Random forest 0.4 entropy 10 0.9987 0.0003 0.8118 0.1943 0.2724 0.0897 0.4020 0.6776 


