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ABSTRACT 

Natural and anthropogenic stressors such as drought, pests, and diseases exert increasing pressure on 
the forests' condition. Forest health assessment, mapping, and monitoring are crucial for targeted 
management interventions and conservation. Direct forest health assessment in the field, despite 
considers as accurate, is a labour-intensive approach. Remote sensing (RS) is widely used in forest 
health assessment to create standardized methods that reduce subjectiveness, extrapolate 
observations in unvisited, inaccessible areas, and reduce labour and costs. Unmanned aerial systems 
(UAS) have gained popularity in many forest-related management activities and research. Stress in 
trees causes a change in their physiological process, resulting in a change in the reflectance of 
multispectral bands (visible; 0.55 - 0.735 µm and near-infrared (NIR) 0.79µm bands) and a 
temperature rise in the canopy. Thermal infrared (TIR, 7.5 -13.5 μm) remote sensing data can detect 
such canopy temperature changes. Previous research has confirmed the ability of UAS imagery to 
detect plants' health status. This study aims to investigate whether UAS-TIR imagery can be used to 
accurately map the health and infestation status of Pine trees (Pinus brutia) and compare the prediction 
accuracy with results obtained using multispectral remote sensing (MS) data. The usefulness of UAS-
acquired TIR and multispectral data were examined in an open Mediterranean Pine forest in west 
Crete, Greece. The UAS campaign was conducted between 30 August and 1 September 2021, 
covering 0.4 km2. During fieldwork, the defoliation as an indicator of the health assessment and 
discoloration for Marchalina hellenica infestation assessment of individual trees were recorded, and 
preliminary analysis was done using 105 observation data. Canopy temperature and vegetation indices 
were computed and further, extracted for the delineated tree crowns, and used to classify trees' health 
and infestation status; RGB image output was also used to improve the segmentation accuracy. In 
line with past research in other ecosystems, the results from present study indicate that canopy 
temperature was able to show the separability between health classes using defoliation as an indicator; 
however, the difference in discoloration-based infestation class was not significant. Alongside, 
vegetation indices find it difficult to show a defined relation with defoliation-based health class, 
although the separability between infestation classes was significantly demonstrated. Among the 
calculated vegetation indices, SAVI obtained the highest separability in the discoloration-based 
infestation classes. A weak negative correlation was observed between canopy temperature and 
vegetation indices. Further investigation is needed to assess the performance of TIR data 
hyperspectral. 
 
Keywords: Forest health, UAS, UAV, Thermal infrared, Canopy temperature, Infestation. 
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1. INTRODUCTION 

1.1. Why Forest health monitoring  
Forest ecosystems are among the most critical natural resources providing numerous ecosystem services. 
Healthy forests are used to generate energy (Hall, 2002), construction material (Eriksson et al., 2007), and 
are considered as a source of food (Rowland et al., 2017) as well as the primary source of oxygen (Trumbore 
et al., 2015), and can also increase the amount and quality of water (Neary et al., 2009). Forests are also 
known for creating stabilized local weather conditions, accumulating carbon emissions, and providing 
shelter for biodiversity; Since the well-being of humans relies on the forest, forest condition highly 
influences human activity (Trumbore et al., 2015).   

The well-being of the forests can be affected by various factors such as disturbances. Forest disturbance can 
be natural or anthropogenic (Sebald et al., 2021). Each disturbance has a variety of effects on forests; some 
cause large-scale tree mortality, whereas others affect ecosystem structure and/or function without resulting 
in massive mortality. Forest stress can be caused due to biotic and abiotic factors (Dash et al., 2018). A 
change in climate might influence the temperature and moisture (e.g., soil), resulting in rapidly multiplying 
introduced viruses and bacteria, such as pathogens, that cause disease and stress in the forest (Smigaj et al., 
2015). In this respect, pests are considered as one of the primary factors that affect forest health. They can 
damage the forest by consuming the foliage and later spreading to the woody parts, posing a threat to species 
and biodiversity (Spanos et al., 2021). There can also be other types of insects that destroy the trees, starting 
from the root and spreading to the leaves. Pests around the forest ecosystem could also destroy or shorten 
the growth of trees and contribute to an increase in the amount of CO2 in the atmosphere (Tubby and 
Webber, 2010). A change might occur in plants' photosynthesis and respiration rate due to insect attacks 
(Moore et al., 2013). Trees under insect attack can have different symptoms, e.g. stress in water content, 
loss of leaf/needle, and change in color (Wulder and Franklin, 2003). Visual observation of tree defoliation 
and discoloration status can be used as indicators for a tree health assessment (Lakatos et al., 2014). Previous 
studies have used visual observation to record tree defoliation and discoloration percentages in assessing 
tree health and also to validate defoliation and discoloration observation from other sources (e.g. UAV and 
satellite) (Otsu et al., 2018; Cardil et al., 2019; Oerke et al., 2006).  

Calabrian Pine (Pinus brutia) is classified as a species of Mediterranean flora due to their adaptability to arid 
ecosystems (Boydak, 2004). It can be found from sea level to 1300 m, with few occurrences reaching up to 
1500 m where the limit can be different from one region to another region (Yesil et al., 2005). Pines are 
discussed concerning environmental protection as they help stabilizing the climate, reduce soil erosion, and 
provide habitat for wildlife (Kukarskih et al., 2020). 

Marchalina hellenica is one of the pests that attack and infest pine trees in the Mediterranean region, which 
led to infecting some parts of the trees that can be used as a food source for honeybees (Mita et al., 2002). 
This insect can be found all over the eastern Mediterranean region, like Turkey, Greece, and Italy (Gallis, 
2007). In many regions of Greece and Turkey M. hellenica was introduced by humans to support honey 
production from pine in the various areas of Greece and Turkey (Oğuzoğlu et al., 2021). In the 1990s, 
expansion of the distribution of Marchalina hellenica was promoted by the Greek ministry of agriculture to 
support the pine honey economy (Tsiaras et al., 2016). Santas (1983) revealed that among five types of 
insects that can be considered as important in the production of forest honeydew Marchalina hellenica takes 
the lead in Greece. It can have a significant influence on the production of honeydew, where the honeybee 
is dependent on the insect substance and have a contribution to the honey economy (Turhan et al., 2008). 
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Infestation of Pine trees decreases the tree's water and affects photosynthesis, considerably affecting the 
pines' health status (Gallis, 2007). 

In circumstances where the forest is under threat, forest monitoring plays a vital role in controlling the 
disturbance and mitigating forest stress, which requires a well-defined monitoring system. Analysis should 
be conducted to begin implementing a management plan. Adopting management interventions to help 
diminish the spread of contamination in the forest; can be managed by discovering and observing affected 
forests as early as possible (Smigaj et al., 2015). However, the main challenge relies on how to sustainably 
monitor trees' health, come up with promising follow-up approaches, and how quickly identification may 
be completed in order to decide, implement and adjust forest health-related decisions. In this respect, remote 
sensing is one of the most vital approaches to forest health assessment (Huete, 2012). This technology is 
combined with computer-aided signal and image analysis; such a method helps identify the stage and extent 
of natural and manmade attacked trees to provide mitigation plans if needed (Lange and Solberg, 2008). 

1.2. Unmanned Aerial Vehicle  for assessing tree health 
Researchers apply diverse approaches to identify trees' infestation, such as field assessment and remote 
sensing data. Visual inspection in the field is an example of a traditional approach that has widely been used 
in detecting an infestation on trees (Ahmed et al., 2019). For monitoring and assessing of tree’s health 
different variables are retrieved using various remote sensing platforms. Among the platforms used by 
researchers are applying canopy temperature using TIR remote sensing data (Kaukoranta et al., 2005), using 
different spectral signatures through multispectral (Lenk et al., 2007), hyperspectral, and LiDAR data 
(Degerickx et al., 2018).  

Syifa et al. (2020) identified Pine trees that are indicated as infested by Pine wilt disease (PWD) based on 
the land cover map produced from a consumer-grade Unmanned Aerial Vehicle (UAV) images (DJI 
Phantom 4). Generally, UAVs have an ultra-high spatial resolution but a lower spatial coverage; therefore, 
individual trees and tree stress status can be easily identified and detected using UAV data (Iizuka et al., 
2018). The UAV (with multispectral sensor) helps alleviate the stress associated with acquisition time and 
also is considered less expensive compared to the acquisition of hyperspectral images using an airborne 
platform (Nisio et al., 2020); however, it needs technical attention, mainly when thermal infrared sensors 
are mounted (Pineda et al., 2020).  

1.3. Thermal infrared remote sensing 
TIR remote sensing data includes acquiring the interpretation of remotely sensed images in the TIR domain 
(Neinavaz, 2017). TIR remote sensing measures the emitted radiation, whereas visible remote sensing mostly 
considers the reflected radiation (Prakash, 2000).  

Land surface temperature (LST) retrieved from TIR data plays a vital role in observing the radiation energy 
coming from the Earth's surface (e.g., vegetation and bare soil) (Hulley et al., 2019). The reduction of green 
vegetation leads to an increase in the LST that also introduces a change in the ecosystem environment (Kafy 
et al., 2021). Relatively LST is higher in defoliated trees than in healthy trees, where stem volume and canopy 
height model (CHM) strongly correlate with LST (Junttila et al., 2016). 

A reduction of water content and stomatal closure in vegetation occurs as a result of stress in the tree, which 
leads to an increase in the canopy temperature (Lin and Lv, 2010). Assessing the temperature on the canopy 
using TIR data can be used as an indicator of water stress in trees which helps the tree health monitor and 
management process (Giménez-Gallego et al., 2021). The TIR emissivity in a green canopy tree with 
sufficient available water content is high (Gupta et al., 1997). Not only does defoliation increase the 
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temperature in the canopy, but maturity, canopy structure,  and age also contribute to the variation in canopy 
temperature (Junttila et al., 2016).  

A recent study revealed that plant stress has a relationship with changes in leaf temperature, which can be 
determined using TIR data (Pineda et al., 2020). Another study also revealed that TIR remote sensing data 
enable to detection of the variation in the leaf and canopy temperature at the early stage of foliar pathogens 
infection (Lindenthal et al., 2005); additionally, it may provide a promising result for identifying changes in 
tree infestation status (Ahmed et al., 2019). 

Some studies have been conducted on the potential application using TIR remote sensing in infested plants 
(Ahmed et al., 2019; Pineda et al., 2020; Vidal and Pitarma, 2019). It was demonstrated that TIR  data could 
be used to detect the thermal change occurring as a result of insect pest infestation on the tree (Vidal and 
Pitarma, 2019). Literature review showed that TIR remote sensing data had successfully detected stress in 
the plants infested by Conophthorus coniperda, Anoplophora chinenis, Anobium punctatum, and Rhynchophorus 
ferrugineus (Al-doski et al., 2016). Additionally, it can indicate the health of trees when there is no visible 
change on the trees' exterior (Meola and Carlomagno, 2004).  

1.4. Multispectral remote sensing  
Multispectral (MS) remote sensing is useful in assessing and mapping tree health, where the reflectance and 
absorption in green, red, and NIR bands are used as indicators (Fletcher et al., 2001). Also, a relationship 
can be defined between the spectral reflectance and the health status of a tree (Masaitis et al., 2013). A 
healthy tree contains chlorophyll that absorbs the green and red bands. The reflectance in red-edge and NIR  
is also higher for trees with higher chlorophyll content (Marx and Kleinschmit, 2017; Baynes, 2007). 
Vegetation indices can be calculated from the MS reflectance band, which helps to fill the gap of information 
from broadband data and helps to produce a tree health status map of a given area (Gupta and Pandey, 
2021).  

MS data contains multiple bands, including RGB gives an option to generate different indices suitable for 
forest health assessment. Red-edge and near-infrared are among the multispectral bands often applied in 
detecting tree stress (Dash et al., 2017). MS data over visible-shortwave infrared (0.45 – 0.88µm) has been 
previously used for the detection of forest stress or health by generating vegetation indices such as 
Normalized Difference Vegetation Index (NDVI) and Red Edge Normalized Vegetation Index (NDRE) 
(Dash et al., 2018). NDVI and NDRE have been commonly used in assessing tree health (Marx and 
Kleinschmit, 2017; Chávez and Clevers, 2012). Other vegetation indices are also introduced based on the 
previously observed gap in vegetation indices. For instance, soil brightness highly affects the NDVI value; 
to minimize the effect of soil background, Soil Adjusted Vegetation Index (SAVI) was developed with 
adjustment factors that depend on the density of trees (Huete, 1988). However, SAVI has low greenness 
sensitivity for higher biomass areas, consequently linearity-adjustment factor was added to SAVI and a new 
vegetation index was developed called two-band Enhanced Vegetation Index (EVI2) (Jiang et al., 2008). 
 
The green and NIR band-based indices also give a promising result by adding leaf area index (LAI) and 
chlorophyll content at the leaf level. The green chlorophyll index (GCI) was developed to include the LAI 
sensitivity where NDVI and SAVI are less sensitive, i.e. LAI is used in estimating canopy structure (Gitelson 
et al., 2003). Also, the green normalized difference vegetation index (GNDVI) involves the chlorophyll 
content at the leaf level in the canopy (Gitelson et al., 1996).  

Various researchers explore both TIR and MS remote sensing data to understand their potential as indicators 
of tree health. Previous studies showed that TIR and MS-based vegetation indices have a negative 
correlation with vegetation health (Lin and Lv, 2010; Ferreira and Duarte, 2019; Ramakrishna, 1989). In this 
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regard, the slope in the correlation between surface temperature and vegetation index can be used as an 
indicator of change in canopy resistance (Ramakrishna, 1989) where the steepness of the slope increases in 
mature vegetation than in the early stage (Gupta et al., 1997). One of the examples from MS-based 
vegetation indices is NDVI, where the opposite trend with LST is highly seen in sparse than dense 
vegetation coverage (Lambin and Ehrlich, 1995).  

Recent observation revealed that Marchalina hellenica could be a cause of stress for Calabria Pine trees (Tsiaras 
et al., 2016). In order to detect these threats, remote sensing techniques can be relied upon. To our 
knowledge, research relating to applying TIR remote sensing for monitoring tree health is limited and has 
not been addressed widely in the open forest environment. In this regard, this research attempts to fill the 
knowledge gap by applying TIR data to detect an infestation. It also aims to compare the detection accuracy 
of Pine trees' health status obtained from  TIR and multispectral remote sensing data.  

1.5. Research Objective, research question, and hypothesis 
 
General Objective  

This thesis aims to evaluate the classification accuracy of MS UAV imagery and TIR  data in detecting 
forest health status and M. hellenica infestation in an open Mediterranean Pine forest. The area under 
investigation is located in Anopoli forest, within the Samaria-Lefka Ori National Park in west Crete, 
Greece.  

Research objective 1: Assess the classification accuracy of the MS and TIR UAV data in detecting the 
health status of Mediterranean Pine trees.  

      Research Question 1.1: Can UAV-based TIR temperature data map the health status of Mediterranean 
Pine trees? 

      Research Question 1.2: What is the difference in classification accuracy of the MS and TIR UAV 
images for detecting the health status of Mediterranean Pine trees? 

         Hypothesis 1: UAV-based TIR data can achieve higher accuracy than multispectral UAV-based data 
in detecting the health status of  Mediterranean Pine trees.  
 
Research objective 2: Assess the ability of TIR UAV data to detect Mediterranean Pine trees infested by 
Marchalina hellenica. 
     Research Question 2:  Can TIR UAV data detect the variability in infestation by Marchalina hellenica in 
Pine trees? 

         Hypothesis 2: TIR can successfully detect Mediterranean Pine trees infested by Marchalina hellenica. 
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2. METHODOLOGY  

2.1. Study area 
Crete is the largest Greece island with an area of 8336 km2. Lefka Ori is a National Park (NP, geographically 
situated at 35.29oN, 24.03oE), located in the west part of Crete, including the famous and longest Gorge 
found in Greece called Samaria Gorge. Lefka Ori NP contains a mountain with white limestone rocks, 
resulting in the name "The white mountains". The Lefka Ori NP is also registered under the Natura 2000 
network. Of the total plant species found in Lefka Ori, 26.6% are endemic to the island (Pediaditi et al., 
2008). This national park beside the Samaria Gorge also has different vegetation types such as maquis, 
phrygana,  conifer woodland, and alpine (Catsadorakis, 1994).  

 

    Figure 1: Study area Lefka Ori National Park. 
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The Lefka Ori  NP forest coverage is degrading as the result of tree death caused by pests (e.g., Marchalina 
hellenica, Matsucoccus josephi, and Thaumetopoea pityocampa) and drought. Marchalina hellenica is one of the insects 
that is contributing to forest degradation in this NP. In the Lefka Ori NP, honey production activities were 
observed as a common practice (Figure 2). Honey production is boosted greatly due to the presence of 
Marchalina hellenica pest. This pest is a monophagous species that is predominantly found in Pine trees; the 
white substance in the branch and trunk helps to produce honeydew, later used by the bees to produce 
honey (Tsagkarakis et al., 2016).  

 
                               Figure 2: Marchalina hellenica and infested branch. 

Matsucoccus josephi is the other pest type that can be found in the Lefka Ori NP. The damage can range from 
creating spots in the Pine needles to killing the whole tree; it also damages the water transport of trees 
(Tsiaras et al., 2016). Like other pests, it is not easy to identify Matsucoccus josephi visually (Figure 3).  

  

                            Figure 3: Adult female Matsucoccus josephi and highly infested trunk. 

Another pest that is seen to widely affect the Mediterranean region, as well as the study area, is Thaumetopoea 
pityocampa (Figure 4). Pine trees are the main tree species affected by this pest; it affects the needle, which 
could later affect growth and reduce the photosynthesis rate (Tsiaras et al., 2016). They have a chemical that 
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helps them protect themselves from external factors through their hair; close contact with the caterpillars 
can result in severe skin irritation, allergic reaction, and other health problems. The nest-looking shelter of 
these pests can be easily identified in the tree's different locations. In addition to the three listed pests, 
drought is another factor that causes tree mortality.  

  

                         Figure 4: Thaumetopoea pityocampa and nest created on the pine trees. 

Below are the methodology used in this study to observe the link between MS or TIR data with defoliation-
based health assessment and assess the relation of both data (i.e., MS and TIR) with discoloration-based 
Marchalina hellenica infestation class on Pine trees (Figure 5). In addition, the link between discoloration from 
infestation and defoliation was examined.  

 
                   Figure 5: Overview of the study. 

 
 



 

14 

The flow chart in Figure 6  shows the overall workflow and methods of the research study to answer the 
raised research questions, including data collection, processing, and analysis. 
 

 
          Figure 6: Flow chart for a methodology of the study area. 

  

2.2. Data collection 
In this study, primary data was collected to address the research objectives and questions. Based on the 
accessibility and representativeness, a study area was selected in Lefka Ori NP. The area coverage for the 
study area is approximately 0.5 km2, where it is fully covered with Pine trees. DJ Phantom 4 UAV was used 
with mounting FLIR Vue Pro R and Parrot Sequoia cameras to capture TIR and MS images in addition to 
the RGB camera.  The UAS campaign was conducted between 30 August and 1 September 2021. LEICA 
differential Global Navigation Satellite Systems (GNSS) was also used to record the location of the Ground 
Control Points (GCPs) as well as individual sample trees (Table 1). For processing and analysis purposes, 
different software was used that, are listed in Table 2. 
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Table 1: Dataset used for the study 

Data  Source  
Thermal Infrared image  FLIR Vue Pro R TIR sensor  

MS image  Parrot sequoia MSS sensor  
RGB image  DJ Phantom 4 with RGB Sensor mounted  

Ground control point  LEICA Global Navigation Satellite (GNSS)  

Tree location and health indicators  
LEICA Global Navigation Satellite (GNSS), visual 

inspection in fieldwork  
Google earth image  Google earth pro  

A supportive picture with coordinate  SW Maps, Avenza Maps in fieldwork  
 

Table 2: Software used in the study 

Software  Function  
Pix4D mapper  Photogrammetry process  

eCognition Developer 10.0  Image segmentation and classification  
Arc GIS 10.8.1  Produce map and Data analysis  

IBM SPSS Statistics Comparison between classes 
RStudio  Data analysis  

Microsoft excel  Data analysis  
 

2.2.1. Field Observation 
During the fieldwork, Pine trees' health and infestation status was observed and recorded within the study 
area. The random sampling strategy was applied because the study site consisted of Pine trees only. In total, 
observations were made from 109 sample trees. From the total samples, four observations are out of the 
area captured by the UAV and therefore were excluded from analysis.  

According to Lakatos et al., (2014) "Defoliation is defined as needle/leaf loss in the assessable crown when compared to 
a reference tree". Defoliation can be used to indicate health status by recording the loss of leaves in the canopy. 
Causes of the defoliation in the study area can be associated with the three pests (i.e., Marchalina hellenica, 
Matsucoccus josephi, and Thaumetopoea pityocampa) or/and drought. UNECE and EU-based classification 
approaches (Table 3) were applied to assess the defoliation percentage and health status of the Pine trees 
(Figure 7).  



 

16 

 

(a) No Defoliation              (b) Slightly Defoliation          (c) Moderately Defoliation      (d) Severely Defoliation 

  Figure 7: Field observation considering defoliation level. 

To observe the infestation level caused by Marchalina hellenica, information related to the discoloration was 
also collected. In this case, discoloration implies the color change in the bark and branches of Pine trees as 
a result of infestation (Figure 9). Based on the visually observed discoloration, percentage infestation classes 
were defined (Table 4). Additional information is documented about white substance coverage caused by 
Marchalina hellenica and distinguishes which part of the tree's color was changed (Figure 8). To differentiate 
among the stages of the infestation, the Pine tree was grouped into three classes, namely lower, middle, and 
upper part, which later was used to investigate the degree of the infestation using remote sensing images. 
Field observations were recorded in a form that can be found in Appendix 1. Remarks were added for 
further clarification or additional information. 

 

                  Figure 8: Discoloration of Pine trees infested by Marchalina hellenica. 

 
 

 



 

17 

 

(a) No Discoloration            (b) Slightly Discoloration    (c) Moderately Discoloration  (d) Severe Discoloration 

Figure 9: Field observed concerning discoloration level. 

Table 3: Tree health classification based on UNECE and EU classification (Lakatos et al., 2014). 

Class Defoliation Status (%) Class 

None/Healthy Up to 10% 0 

Slightly unhealthy >10-25% 1 

Moderately unhealthy >25-60% 2 

Severely unhealthy >60-<100% 3 

Dead 100% 4 

 

  Table 4: Infestation classification based on the discoloration in bark and branches of Pine trees 

Class Discoloration status (%) Class 
None infested Up to 10% 0 

Slightly infested >10-25% 1 
Moderately infested >25-60% 2 

Severely infested >60-<100% 3 
 

It should be highlighted that in this study, defoliation was considered as an indicator of  Pine tree health, 
whereas discoloration was used as an indicator of the infestation from Marchalina hellenica.  

2.2.2. Ground Control Points 
Ground Control Points (GCPs) are marked points in the ground used to measure geographic coordinates 
with high accuracy. GCPs are used to rectify images with geometric distortion and were possibly caused by 
flight altitude, camera, and curvature of the earth (Liew et al., 2012). GCPs were collected to be used in 
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photogrammetry block adjustment, to obtain georeferenced TIR and multispectral ortho-mosaic. In 
planning GCP distribution and number, the area extent and accessibility were taken into consideration. In 
order to have fully identified GCP, it is recommended to have them in an open field (e.g., side roads or 
open area) and avoid confusing features. GCPs can be marked before the acquisition, so-called pre-marking, 
or find a visible object which can be seen in the acquired image (i.e., postmarking) (Figure 10). For this 
research study, visible objects that could be seen clearly from the UAV were selected as GCPs. A total of 
eight GCPs were collected during the fieldwork and used to process the RGB, MS and TIR photogrammetry 
projects; however, the GCPs were not well distributed in the study area. LEICA differential GNSS GS14 is 
also used to record the coordinate system of selected GCPs in Real Time Kinematic (RTK) mode. 

 

                         

                          (a) 

 
 
 
 
 
 
 
                          (b) 
 

 
 

 

   

   

2.2.3. Unmanned Aerial Systems 
Unmanned Aerial  Systems (UAS) include the UAV, the sensor, a person in charge of remotely controlling 
the flight, and a system that connects both. For image acquisition for the selected study area, DJI Phantom 
4 UAV was used (Figure 11). The DJI Phantom 4 Pro, with a weight of 1375 gr, and approximately 30-
minute maximum flight duration, use a gimbal camera to stabilize the image during acquisition. It has 
amounted RGB camera with 20Mpixels, and an image size of 4000 x 3000 pixels. The UAV was modified 
to mount other additional cameras so that the payload of the cameras would not affect the UAV. 

 

 

 

 

 

 

Figure 10: Type of ground control points (a) premark (b) postmark. 



 

19 

 

 

 

 

 

 

 

 

 

 

                       Figure 11: DJI Phantom 4 UAV (Source: ITC Geoscience-laboratory). 

2.2.3.1. Multispectral image  
Parrot Sequoia camera was used to acquire MS images (Figure 12). This camera has four 1.2-megapixel 
monochrome sensors where the single band resolution is  1,280x960 pixels with bands of green (0.55 μm), 
red (0.66μm), red-edge (0.735 μm), and near-infrared (0.79 μm); It also has a 16-megapixel RGB sensor (not 
used in this study). It is small and lightweight, making it easy to mount in the UAV as an additional device. 
Parrot Sequoia camera has its GPS antenna to estimate the accurate location of the receiver, whereas it uses 
a UAV battery to charge its battery. The camera comes with its own irradiance sensor (i.e., right item in 
Figure 12) and a calibration plate, both used to deliver reflectance data.  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Parrot Sequoia camera. 
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2.2.3.2. Thermal infrared image 
FLIR Vue Pro R camera with a bandwidth of 7.5 – 13. 5 μm was used to capture TIR images (Figure 13). 
FLIR Vue Pro R is a radiometric camera where the individual pixels represent temperature. The sensor 
resolution for the captured images was 640x512 pixels with the focal length of 19 mm, and ±5°C accuracy 
manufactured by FLIR Systems, Inc. (Wilsonville, OR, USA). The camera has three image formats as an 
output; RJPG (radiometric JPG, images with embedded radiometric data), TIFF (no radiometric data), and 
JPG (Colored for visual presentation only). In this study, the RJPEG option was used to define the 
emissivity of the objects under investigation. For the Pine trees, emissivity was set at 0.97. The collected raw 
thermal image pixel value was converted from the DN value to non-contact temperature using the provided 
equation by FLIR Systems Inc (2022). 
 
               Temperature (Celcius)  =  0.04 ∗  (counts) −  273                                           Eqn.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Figure 13: FLIR Vue Pro R, 19mm camera (Source: ITC Geoscience-laboratory). 

2.3. Structure from motion 
Structure from motion (SfM) is a photogrammetric technique that helps produce 3D products from 2D 
images using the overlap between sequential images (Fonstad et al., 2013); stitching the collected individual 
images helps to eliminate the y-parallax that occurs as a result of oblique imaging view. Based on the SfM 
technique collected sequence of images for the sample study area has been processed using Pix4Dmapper. 
Pix4Dmapper is a photogrammetry software used to produce a point cloud, digital terrain model (DTM), 
digital surface model (DSM), reflectance, and indices values from the sequenced 2D Images collected using  
Phantom 4 UAV. The RGB, MS, and TIR images were processed in the SfM separately. 

The collected GCPs were imported for block bundle adjustment in each SfM process that later produced a 
georeferenced and close-to-ground reality output. Some of the field-collected GCPs were not identifiable in 
the UAV images, mainly in the multispectral and TIR images as a result of the lower resolution and 
confusion with other nearby features. To overcome the GCP identification problem, additional control 
points were marked manually from the RGB output (Mosaic and DSM) and further used in the processing 
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of MS and TIR projects; RGB from Phantom 4 UAV has a high spatial resolution compared to the two. 
The GCP was used to georeference the three datasets (i.e., RGB, MS, and TIR) and made them comparable.  

2.4. Vegetation indices 
The spectral characteristics of vegetation at different wavelengths can be used for forest health assessment. 
The wideband range limitation makes it difficult to follow in detail the spectral signature of given vegetation 
at different wavelengths. In this respect, vegetation indices were developed to overcome this limitation 
(Gupta and Pandey, 2021). The indices use specific band reflectance/observation responses of vegetation 
to distinguish the healthy and unhealthy vegetation. In this regard, vegetation indices were calculated and 
used to analyze health/infestation status.  Six vegetation indices were calculated for the study area using 
Pix4dmapper. Three vegetation indices were used in the classification process, namely Normalized 
Difference Vegetation Index (NDVI), Soil-adjusted Vegetation Index (SAVI), and Normalized Difference 
Red-edge Index (NDRE). In addition, the other three vegetation indices were included in the analysis (i.e., 
Green Chlorophyll Index (GCI), Two-band Enhanced Vegetation Index (EVI2), and Green Normalized 
Difference Vegetation Index (GNDVI)). 

Normalized Difference Vegetation Index   

NDVI is implemented in vegetation health assessment by using greenness as an indicator; NIR and Red 
bands are used to calculate this index (Bhandari et al., 2012). NDVI is seen to be used widely for various 
applications. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅

                                                                                                                   Eqn.2 

Soil-Adjusted Vegetation Index  

SAVI is a type of vegetation index presented to minimize the effect of soil brightness (Huete, 1988). It uses 
the NDVI as a base and upgrades the prediction result from the indices by adding a correction factor to soil 
brightness.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  (1+𝐿𝐿)(𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅+𝐿𝐿)

                                                                                                          Eqn.3 

Where L stands as the vegetation coverage of a given area. Depending on the nature of the study area, the 
value for L can change between 0 (Highly vegetated), 0.5 (Sparsely vegetated area), and 1(no vegetation 
coverage). Therefore, for this research, a 0.5 correction factor is used as the nature of the study area is 
sparsely vegetated. 

Normalized Difference Red Edge Index  

Like most of the other vegetation indices, the NDRE shows the amount of chlorophyll also greenness based 
on the two bands (NIR and Red edge) (Tucker, 1979). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅

                                                                                                                    Eqn.4 

Green Chlorophyll Index  

GCI estimates the chlorophyll content based on green and near-infrared bands where the sensitivity of 
chlorophyll is high (Gitelson et al., 2003). 

𝐺𝐺𝐺𝐺𝐺𝐺 = ( 𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

) − 1                                                                                                                 Eqn.5 
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Two-band Enhanced vegetation index  

EVI2 is derived from the previous existing enhanced vegetation index (use three bands) to compromise for 
sensors that do not have the third band (Blue). EVI2 shows the greenness of vegetation with additional 
atmospheric and noise correction (Jiang et al., 2008).  

    𝐸𝐸𝐸𝐸𝐸𝐸2 = 2.5 ∗ (𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁+2.4∗𝑅𝑅𝑅𝑅𝑅𝑅+1.0)

                                                                                           Eqn.6                            

 

Green Normalized Difference Vegetation Index  

GNDVI uses green and NIR bands to determine the concentration in the chlorophyll as well as to estimate 
the vegetation photosynthesis rate (Gitelson et al., 1996).   

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑁𝑁𝑁𝑁𝑁𝑁−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁+𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁

                                                                                                              Eqn.7 

2.5. Object-based image analysis 
Image objects are created by clustering neighbouring pixels based on their similarity in character and having 
a meaningful spatial object (Chen et al., 2018). Object-based image analysis (OBIA) can produce a sound 
output when color and texture are considered (Chouhan et al., 2019). Since the aim of this study is to assess 
the tree health status at the tree level, object-based segmentation was selected to delineate individual trees. 

2.5.1. Segmentation 
A region-based multi-resolution segmentation algorithm was chosen to segment the data and create an 
image object. For the purpose of segmentation, the canopy height model (CHM) was calculated by 
subtracting DTM from DSM derived from SfM processing of RGB data. The RGB-CHM was further used 
because of its fine resolution; the CHM can easily illustrate the tree crown. The crowns of the 105 trees with 
field observations were digitized in ArcMap and used as a thematic layer in the segmentation procedure. 
The scale parameter was set to 18, where shape and compactness were 0.1 and 0.5, respectively. The large-
scale parameter allows heterogeneity with large segment objects.  

After the segmentation, to differentiate between the tree and the non-tree objects, a threshold condition 
was set. The segmented object where CHM values were greater than 2 m was defined as tree class, whereas 
segment objects less than or equal to 2 m were categorized as non-tree. However, some trees were classified 
as non-tree while using the upper condition. To correct this omission, additional threshold conditions were 
determined using non-tree as a class filter to solve this issue. The new threshold condition includes SAVI 
and LST mosaic data. Among the considered vegetation indices (i.e., NDVI, NDRE, and SAVI), SAVI 
could distinguish between the tree and non-tree objects better. From the non-tree class, based on a try 
segment, objects with a SAVI value greater than 0.2 and an LST less than 45°C were able to differentiate 
the trees that are under the non-tree class and used to reclassify. Finally, the non-tree segmented objects 
were merged into one.  

The tree class was refined after the separation of trees and non-trees classes. Refinement is required to have 
a segment object as an individual tree and minimize the over- or under- segmentation. Two threshold 
algorithms were applied, watershed transformation for separating individual trees with a length factor of 16 
and morphology for smoothening segment objects with close image object operation. Canopy temperature 
is sensitive to the delineation between tree crown and background objects resulting in additional manual 
editing of the segmented object. 
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2.5.2. Classification 
Image classification is used for grouping pixels based on the radiance similarity value in continuous image 
bands; in addition different statistical learning methods are introduced to extract the information from the 
images (Manthira Moorthi et al., 2011). Supervised classification is a more accurate approach compared to 
unsupervised methods (Wang et al., 2010). However, supervised classification is highly dependent on 
training samples. For the present study, of the total collected sample trees, 70% were used for training 
classification of the segmented trees. The training samples were categorized into four classes. It should be 
highlighted that the dead class is not included in this study for assessing health status and infestation level. 
The healthy and slightly unhealthy as well as non-infested and slightly infested were merged as no significant 
difference was found to distinguish between data from these two classes; also, the number of samples 
collected for these classes was not statistically enough. The Health and infestation status of the study area 
was classified based on the 74 observation samples (i.e., individual trees) recorded to train and apply to the 
whole area.  
 
In total, four classification scenario was performed, using vegetation indices and canopy temperature layer 
to classify the health status and also using the same layers to classify the infestation status.  For the training 
samples of LST data, each segmented tree's mean and standard deviation features, were used. In addition, 
in the case of MS data, the mean and standard deviation feature of NDVI, SAVI, and NDRE was also used 
for each segmented tree.  
 
To observe the classification of in-hand data using an intelligent and efficient classification algorithm is 
recommended (i.e., machine learning as a classifier algorithm). According to the application and data, there 
are different machine learning techniques; among them, Random Forest (RF) has gained popularity over 
the last years. It is a method developed by Leo Breiman in 2001, which generates classification criteria 
through a voting process (Patel and Jokhakar, 2017). This classifier is one of the statistical learning methods 
used in image classification by extracting the information from the image. RF classifiers have remarkable 
potential in forest health classification (Lausch et al., 2017). RF uses training sample-based decision trees.  
 
In the present research, the segmented MS and canopy temperature data for the entire site are classified 
based on the training data. In this thesis, the mean reflectance value for the 105 sample trees in each band 
(i.e., green, red, red-edge, and NIR) was extracted using eCognition software and linked to the field 
observations (i.e., Health and infestation classes). The spectral signature of each class was extracted to 
understand if there is any relationship between the three health/infestation status and their reflectance value. 

2.5.3. Accuracy assessment 
A quantified output accuracy helps in analysis and decision-making. It also makes it easier to make 
comparisons between outputs rather than using only visual observation for quality checking. In order to 
evaluate the performance of the RF classifier, a confusion matrix was used. A confusion matrix is a way of 
assessing the accuracy of the classifier based on validation samples. An independent validation sample data 
was used to evaluate the output accuracy of supervised tree health/infestation classification produced using 
canopy temperature and MS data. The matrix shows the relationship between the classified and reference. 
The reference is an independent sample that is not used for training simultaneously. Of the total collected 
in situ data, 30% were used to validate the classification. The matrix includes user, producer, and overall 
accuracy.  

2.6. Comparison between class 
After classifying every delineated tree polygon using the RF classifier, the mean and standard deviation for 
vegetation indices and canopy temperature of each class were extracted using eCognition software. 
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Additional to the three vegetation indices (i.e., NDVI, SAVI, and NDRE), which were used in classification, 
the mean and the standard deviation of three other vegetation indices (i.e., GCI, EVI2, and GNDVI) were 
extracted using the crown delineated polygons.  
 
An analysis of variance (ANOVA) with a confidence interval of 95% was used to investigate if there is a 
statistically significant difference among the classes (i.e., Health classes and Infestation classes) for the field 
observed samples as well as for the classes from classification result. ANOVA shows the difference between 
the three independent classes using the mean value of vegetation indices and canopy temperature for the 
classified objects. To understand where the significant difference occurred among the classes Tukey post 
hoc test was used.  
Furthermore, separability analysis was applied. This analysis includes the standard deviation and mean values 
and quantifies the value difference between the classes. The mean and standard deviation was from the 
vegetation indices and canopy temperature map. It not only shows the difference between the mean of the 
class in addition, it includes how low/high is the standard deviation. 
   

𝑆𝑆 = (𝜇𝜇1−𝜇𝜇2)
(𝜎𝜎1+𝜎𝜎2)

                                                                                                                         Eqn.8 

                                        
Where S denotes separability and μ is the mean, and σ is the standard deviation.       
  
Canopy temperature and vegetation indices mean value for tree health/infestation classes were assessed to 
see if there was a defined trend or relation between consecutive classes. The delineated and classified 
individual trees' mean value was extracted and used for further analysis. In addition, bivariate linear 
regression was used to show the type of relationship that exists between the canopy temperature and 
vegetation indices, where the canopy temperature was defined as the independent and vegetation indices as 
a dependent variable. In addition, the result from regression also shows how much variation percentage the 
relation accounts for. The relationship between the infestation caused by Marchalina hellenica and tree health 
was investigated. 
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3. RESULT 

3.1. Field observation 
In percentile, defoliation and discoloration status for the 105 collected samples was recorded and grouped 
into four classes, where the number of observations was high for both moderately and severely 
unhealthy/infested classes. For healthy and slightly unhealthy classes, the collected number of observation 
(defoliation) samples were nine and 21, respectively, whereas for the none infested and slightly infested 
classes in assessing infestation using discoloration, five and ten number of the samples were recorded. In 
this study area, the severely unhealthy and severely infested class has the largest number of sample 
observations comparing the other classes, where the number of observations was 43 and 49, respectively. 
The moderately unhealthy and moderately infested class also had a large number of samples, with 32 and 
41 number of observation, respectively. The 105 total number of field observed data and their distribution 
within the defined classes were plotted (Figure 14). 

 

  
(a) (b) 

Figure 14: Number of fields observed samples per each Health(a) and Infestation  (b) class. 

3.2. Ground control point 
As can be seen from Figure 15, most of the field-collected GCPs are found in the south part of the study 
area, and there were no GCPs in the north and west parts of the study because of accessibility problems.  
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           Figure 15: The ground control points location used in the RGB project 

As can be seen from Figure 16, the additional 12 control points (CP) were collected and field-collected 
GCPs used in the process of the MS project. Also, the six identified GCPs in the TIR project and the 
manually collected 22 CPs were visualized in Figure 17.  

 
         Figure 16: Ground control points (GCPs) and control points (CPs) used in the multispectral (MS) project. 
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       Figure 17: Ground control points (GCPs) and control points (CPs) used thermal infrared (TIR) project. 

3.3. Structure from motion 
 The primary outputs from SfM processing are the RGB orthomosaic, reflectance orthomosaics in the 
four dedicated spectral bands, an orthomosaic of the LST, and Six calculated vegetation indices.  
 

3.3.1. RGB mosaic 
The mosaic for RGB sequenced images, including reflectance value, has an area coverage of 0.446 km2 and 
2.25 cm GSD generated in Pix4Dmapper with RMSE  of 0.03, 0.05, and 0.05m for X, Y, and Z, respectively. 
Figure 18 shows the RGB mosaic output of the study area. 
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3.3.2. Multispectral mosaics 
The Pix4Dmapper gave reflectance orthomosaics for the four MS bands (i.e., green, red, red-edge, and 
NIR). Figure 19 shows the composite of the four-band mosaic processed in ArcMap. The total area coverage 
for the MS project was 0.49 km2 and 8.46 cm GSD with RMSE of 0.1, 0.16, and 0.39 in X, Y, and Z, 
respectively.  
 

  Figure 18: RGB mosaic of the study area. 
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3.3.3. Land surface temperature mosaic  
An LST mosaic map obtained from the TIR camera was generated by passing through the photogrammetry 
process (Figure 20). The mosaic map covers an area of 0.455 km2  with a GSD of 11.37 cm, having 0.19, 
0.17, and 0.76 m RMSE in X, Y, and Z, respectively in relation to 22 control points collected from the RGB 
orthomosaic. In this study area, the temperature of the canopy tree has a lower value compared to the bare 
soil. The maximum temperature extracted from the canopy of the in situ data was approximately 45°C, and 
the minimum was 31.5°C.  LST value for the soil in the west part of the study area was higher than in the 
east part. The LST at the edge of the study area has an extreme low or high value as a result of the low 
accuracy in the photogrammetry project at the edge. Also in the LST mosaic, the structure of the trees 
canopy in the eastern part of the study area is stretched compared with the western part. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Multispectral composite mosaic of the study area. 
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  Figure 20: Land surface temperature (LST) map of the study area. 

3.3.4. Vegetation indices  
The vegetation indices generated in Pix4DMapper have different range values (Table 5). All the vegetation 
indices in Table 5 except for GCI, are in the range of -1 and 1 where the minimum values are near 0 or -1, 
and the maximum values are near 1. The average value for SAVI, NDVI, and EVI2 was close; also, NDVI 
and GNDVI have a close average value. The lower average value from the calculated vegetation index was 
in NDRE (0.15) and the highest of 1.36 from GCI. The vegetation indices value at the edge of the study 
area has extremely low or high values as a result of the low photogrammetry MS project accuracy on the 
edge of the study area. 
 
Table 5: Descriptive statistics of vegetation indices 

 
The NDVI values of the study area ranged from -0.195 to 0.918. The building and bare soil of the study 
area were in the lowest value range (Figure 21). In addition, the study area with the open forest has an 
average NDVI value of  0.34. 

Vegetation Indices Minimum Maximum Average 
NDVI -0.2 0.92 0.34 
SAVI -0.09 0.68 0.19 

NDRE -0.68 0.82 0.15 
EVI2 -0.08 0.74 0.18 
GCI -0.57 18.67 1.36 

GNDVI -0.4 0.9 0.39 
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       Figure 21: Normalized Difference Vegetation Index (NDVI) map of the study area.                                                                  

The SAVI values of the study area ranged between -0.092 and 0.678 with an average of 0.19, where most of 
the trees in the area have approximately above 0.4 values. Similar to the NDVI, the building and bare soil 
are the ones with low value (Figure 22).  

 
        Figure 22: Soil-Adjusted Vegetation Index (SAVI) map of the study area. 
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A clear difference can be seen using NDRE between areas on edge and the other parts of the study area 
(Figure 23). The value for this index ranges from -0.676 to 0.816 with a 0.15 average value, where most parts 
of the study area lay around 0.2. 
 

 
         Figure 23: Normalized Difference Red Edge Index (NDRE) map of the study area. 

 
The range of EVI2 values for the research area is -0.079 to 0.744, with an average of 0.18. The majority of 
trees along the boundary of the research area have a value close to 0.5. Figure 24 depicts the generated EVI2 
index map with the research area's value range. 
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       Figure 24: 2-band Enhanced Vegetation Index (EVI2) map of the study area. 

The GCI is a non-normalized vegetation index. It can be seen from Figure 25 that the range of GCI for this 
study area was from -0.572 to 18.67, but only small area coverage has above 0.4 value, where the average 
value is 1.36.  

 
      Figure 25: Green Chlorophyll Index (GCI) map of the study area. 
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Concerning GNDVI, most of the study areas obtained a GNDVI value above 0.5 (Figure 26). This GNDVI 
value ranges from – 0.4 to 0.9 and has a 0.39 average value. In all the vegetation indices, the building area 
had a low value. 
 

 
      Figure 26: Green Normalized Difference Vegetation Index (GNDVI) map of the study area. 

3.4. Classification  
From the two performed classification scenarios in classifying the health status Figure 27 shows the first 
scenario with a classification map of the health status for the study area using information obtained from 
vegetation indices as an input. More than half of the delineated trees in the study area were classified as 
severely unhealthy, followed by approximately 30% slightly unhealthy and 15% moderately unhealthy.  
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       Figure 27: Health status map of the study area using vegetation indices. 

The second scenario was canopy temperature-based classification, and the obtained result demonstrated 
that more than 60% of the study area was classified as severely unhealthy, with approximately 33% and 4% 
of slightly unhealthy and moderately unhealthy classes, respectively (Figure 28).   

 
       Figure 28: Health status map of the study area using canopy temperature. 



 

36 

As shown in Figure 29, slightly infested trees were rarely found in the study area, covering less than 4% of 
the classified study area using vegetation indices concerning the discoloration scenario. However, around 
34% and 62% were classified as moderately and severely infested. 
 

 
       Figure 29: Infestation status map of the study area using canopy temperature. 

 
Figure 30 shows the classification for infestation status using a canopy temperature scenario. The result 
indicates that 6%, 40%, and 54% of the study area were classified as slightly infested, moderate infested, 
and severe infested, respectively. 
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       Figure 30: Infestation status map of the study area using canopy temperature. 

Table 6 shows the classification accuracy for the four scenarios as mentioned above. The vegetation indices 
layer had a higher producer, user, and overall accuracy than the canopy temperature in classifying trees using 
defoliation with 52% and 45% overall accuracy, respectively. In discoloration-based classification, both 
layers had the same 42% producer accuracy. However, the overall accuracy was higher when classified using 
vegetation indices (55%) than canopy temperature (48%).  

Table 6: Classification accuracy assessment in the four different scenarios. 

 

3.5. Spectral signature of individual class  
The relation between the mean spectral reflectance value of delineated tree crowns (i.e., defoliation-based 
health classes) and MS bands is shown in Figure 31. As shown in Figure 31, slightly unhealthy classified 
trees showed higher reflectance value in NIR and higher absorption in red bands compared to the other 
two classes (i.e., moderately and severely unhealthy). Whereas unexpectedly, the reflectance for severely 
defoliated trees had a higher reflectance value than the moderate defoliated trees in red-edge and NIR bands.  

      Scenarios Accuracy 

Indicators                    Layers Producer User Overall 

Defoliation 
Vegetation Indices 80% 47% 52% 

Canopy temperature 70% 41% 45% 
 

Discoloration 
Vegetation Indices 42% 57% 55% 

Canopy temperature  42% 42% 48% 
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                         Figure 31: Spectral signature of trees according to their health status. 

Figure 32 shows the reflectance value in the four bands for delineated trees grouped in three discoloration-
based infestation classes. The slightly infested class has a higher reflectance value in red-edge and NIR 
bands. The reflectance value for the moderately infested class was lower than the severely infested class in 
the red band and vice versa in the NIR bands. Figure 32 also illustrates a trend where the reflectance values 
decrease in the NIR band when infestation levels increase. 
 

 
                            Figure 32: Spectral signature of trees according to their infestation status. 

3.6. Statistical comparison  
For the 105 field observed sample trees, P-Values from Post hoc Tukey’s HSD show that there is no 
statistically significant difference between moderately and severely unhealthy classes in all the layers used to 
assess health status, compared to the other used layers canopy temperature and NDRE seems to be close 
to the 0.05 where mean difference is expected to be significant. In addition, there is no significant difference 
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between slightly and moderately infested classes while using canopy temperature and NDRE mean values 
to assess the infestation status (Table 7). 
 
The result from ANOVA and Post hoc Tukey’s HSD test with a confidence interval of 95% after 
classification shows a statistically significant difference between the classes in both assessment types (i.e., 
health and infestation status assessment). For most layers, the class difference shares the same P-value in 
Tukey’s HSD test for multiple comparisons (Table 8). 
 
Table 7: Post hoc analysis result for 105 sample trees in health and infestation assessment. 

Layer 

P-Values 
Health status assessment Infestation status assessment 

Slightly-
Moderately 

Slightly-
Severely 

Moderately-
Severely 

Slightly -
Moderately 

Slightly -
Severe 

Moderately-
Severely 

Canopy 
temperature 

1.53x10-2 1.0x10-5 1.34x10-1 7.82*10-1 1.05*10-3 1.76x10-4 

NDVI 9.37*10-4 1.2*10-5 6.29*10-1 6.3*10-2 2.19*10-4 3.65*10-2 

SAVI 5.2*10-5 5.2*10-5 7.38*10-1 7.62*10-3 5.0*10-6 2.12*10-2 

EVI2 4.9*10-5 8.33*10-7 7.71*10-1 6.84*10-3 5.0*10-6 2.49*10-2 

GCI Not used Not used Not used 1.42*10-2 1.8*10-5 3.06*10-2 

GNDVI 6.7*10-5 2.68*10-7 5.53*10-1 Not used Not used Not used 

NDRE 5.55*10-2 6.0*10-5 1.14*10-1 7.70*10-1 2.6*10-2 2.2*10-2 
 
     Table 8: Post hoc analysis results in health and infestation status assessment after classification. 

The result of separability analysis between classes in order to assess the health status is shown in Table 9. 
The separability analysis between health classes defined based on the defoliation indicates that slightly 
unhealthy class is higher than moderately unhealthy class; however, moderately unhealthy class is less than 
severely unhealthy class, while using the vegetation indices except in NDRE. However, using canopy 
temperature, the separability between slightly and moderately unhealthy classes was -0.417. The separability 
between moderately and severely unhealthy status was -0.250, meaning the difference was negative.  
 

 
 

Layer 

P-Values 
Health status assessment Infestation status assessment 

Slightly-
Moderately 

Slightly-
Severely 

Moderately-
Severely 

Slightly -
Moderately 

Slightly -
Severely 

Moderately-
Severely 

Canopy 
temperature 

9.7*10-9 5.1*10-9 3.5*10-5 5.1*10-9 5.4*10-7 5.1*10-9 

NDVI 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 
SAVI 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 
EVI2 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 5.1*10-9 
GCI Not used Not used Not used 5.1*10-9 5.1*10-9 5.1*10-9 

GNDVI 5.1*10-9 5.1*10-9 5.1*10-9 Not used Not used Not used 
NDRE 1.43*10-2 5.1*10-9 1.43*10-4 2.28*10-4 3.84*10-4 1.33*10-3 
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Table 9: Separability analysis between defoliation-based classes. 

Separability 

Indicator Class NDRE NDVI SAVI EVI2 GNDVI 
Canopy 

temperature 

Defoliation  

Slightly unhealthy – 
Moderately unhealthy 0.017 0.254 1.215 1.187 0.151 -0.417 

Moderately unhealthy - 
Severely unhealthy 0.122 -0.300 -0.508 -0.521 -0.059 -0.250 

Slightly unhealthy - Severely 
unhealthy 0.037 0.158 0.485 0.453 0.405 -0.559 

 
In assessing the difference among the infestation classes separability method was used, where the classes 
were discoloration based. The result from separability analysis for the infestation classes shows that 
vegetation indices enable to show the difference between the classes (Table 10). For instance, SAVI was 
able to show separability well compared to the other vegetation indices and the highest separability was 
found between slightly infested and severely infested status (1.014), as well as between slightly infested and 
moderately infested classes (0.716). On the other hand, canopy temperature obtained from TIR data did not 
follow the same trend among the classes, where the separability between slightly infested and moderately 
infested classes was found between 0.462 and -0.567 for moderately and severely infested classes. 
 
Table 10: Separability analysis between discoloration-based classes. 

Separability 

 Indicator  Class NDRE NDVI SAVI EVI2 GCI 
Canopy 

temperature  

Discoloration  
Slightly infested - Moderately infested 0.15 0.527 0.716 0.708 0.41 0.462 

Moderate infested - Severely infested  0.061 0.387 0.297 0.281 0.18 -0.567 
Slightly infested – Severely infested 0.216 0.952 1.014 0.986 0.59 -0.254 

3.7. Canopy temperature and vegetation indices versus health class 
The results revealed that the mean canopy temperature value increased with rising defoliation in health 
classes (Figure 33). The severely unhealthy class had many outliers, and approximately 75% of the trees had 
a temperature greater than 35°C. For the moderately class, the canopy temperature of many trees was found 
to be approximately between 35°C  and 35.5°C temperatures and very close to each other. 
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                    Figure 33: Relation between Canopy temperature and health class. 
 

Figures  34 to 38 show the relationship between different vegetation indices and defoliation-based health 
classes. For NDVI, the slightly unhealthy class was normally distributed, whereas, for moderately and 
severely unhealthy classes, the skewness of outliers started around 0.4 with a mean value of 0.66, 0.55, and 
0.59 for slightly, moderately, and severely unhealthy classes, respectively. As can be noticed from Figure 34, 
the mean value change between moderately and severely unhealthy classes did not follow the same 
downward direction as the change between slightly and moderately unhealthy classes using NDVI; also, the 
result showed that there no relationship can be found between the health class and the NDVI values. 
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                 Figure 34: Relation between NDVI and health class. 

Similar to NDVI, a defined positive or negative relation can not be seen between the SAVI and health 
classes. As can be seen from Figure 35, the mean value for the severely unhealthy class increased to 0.32 
value unexpectedly from the moderately unhealthy class of 0.29 value. The moderately unhealthy class mean 
value was lower than the slightly unhealthy class, where the slightly unhealthy class mean value was 0.36. 
The change between consecutive classes did not follow a consistence order and did not show a defined 
positive or negative relationship between the SAVI and the health class. 

 
                   Figure 35: Relation between SAVI and health class. 
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The other relation analysis was performed between EVI2 and health classes. The mean values for the three 
classes were the same as SAVI. The relationship with the increment in defoliation was not able to be fully 
described by the EVI2 values (Figure 36). 

 
                 Figure 36: Relation between EVI2 and health class. 
 
Figure 37 shows the relationship between health class and GNDVI. From all the vegetation indices used to 
indicate a relationship with the defoliation-based health class, the GNDVI value of the three classes had 
more or less a normal distribution type; even if it was normally distributed, a clear relationship could not be 
seen. The 0.53 GNDVI mean value of the slightly unhealthy class was closer to the severely unhealthy class 
(0.5) than the moderately unhealthy class (0.48). 
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                Figure 37: Relation between GNDVI and health class. 
 
The mean difference between the two classes (i.e., Slightly and moderately unhealthy classes) in NDRE was 
minor. The mean value for the slightly, moderately, and severely unhealthy was approximately 0.17, 0.17, 
and 0.16, respectively. For the three classes, the skewness as a result of outliers started at approx. 0.20 
(Figure 38). 

 
               Figure 38: Relation between NDRE and health class. 
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3.8. Canopy temperature and vegetation indices versus infestation class 
The result indicates that canopy temperature and discoloration-based infestation classes did not have a 
defined relation (Figure 39). Most trees in the slightly infested class had 35°C canopy temperature values. 
The moderately infested tree class had a lower mean canopy temperature value (34.42°C) than the slightly 
infested unexpectedly, whereas the severely infested class showed a 37°C average canopy temperature. 
Considering the canopy temperature mean value, three infestation classes did not follow the same upward 
trend when discoloration increased.  

 
              Figure 39: Relation between Canopy temperature and Infestation class. 
 
The  Figures below (Figure 40 - 44) show the relationship between infestation classes and vegetation indices; 
The infestation class had the same downward trend in all vegetation indices. An inverse relationship can be 
seen between NDVI and the infestation class (Figure 40). Moderately and severely infested classes had mean 
values of 0.63 and 0.58, respectively, while the slightly infested class had a higher NDVI mean value of 0.68. 
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                Figure 40: Relation between NDVI and Infestation class. 

The SAVI and infestation class relationship shown in Figure 41 implies there was a negative relationship. 
Unlike the NDVI, SAVI values were not normally distributed for the slightly infested class. The SAVI mean 
value decreased from slightly to severely infested class, where the mean value for the classes was 0.4, 0.34, 
and 0.32 for slightly, moderately, and severely infested, respectively. 

 
              Figure 41: Relation between SAVI and Infestation class. 
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Figure 42 shows the EVI2 mean values decreased when the discoloration in trees increased for the 
infestation class. With this inverse relationship, the mean values decreased from 0.39 (slightly infested) to 
0.33 (moderately infested) and 0.31(severely infested).  

 
                    Figure 42: Relation between EVI2 and Infestation class. 

There was a defined relationship between GCI and infestation class, as shown in Figure 43. Moderately and 
severely infested classes had a skewed distribution than the slightly infested class. The mean values give a 
picture of how the GCI decreased from slightly to severely infested status, where the mean values of the 
classes are 2.45, 2.17, and 2.04 for slightly infested, moderately infested, and severely infested, respectively. 

 
                   Figure 43: Relation between GCI and Infestation class. 
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The same as the above-explained relations NDRE and infestation class followed the same trend between 
slightly infested and moderately infested as well as between moderately infested and severely infested. 
However, the mean value difference between successive classes was slightly different (Figure 44). The mean 
values of the classes were close and were 0.171, 0.168, and 0.164  for the slightly, moderately, and severely 
infested classes, respectively.  

 
                   Figure 44: Relation between NDRE and Infestation class. 
 

3.9. Relationship between canopy temperature and vegetation indices 
As can be seen in Figure 45, there is a negative relationship between all vegetation indices and canopy 
temperature. Among the applied vegetation indices, NDVI had a better relationship with canopy 
temperature (Figure 45(a)). For example, NDVI showed a very weak relationship with canopy temperature 
(R2=0.2) despite it was performed better in comparison with other considered vegetation indices in this 
study. In addition, NDRE showed the weakest relation (R2=0.013) with canopy temperature.  

In addition, an overestimation can be found between canopy temperature and NDVI, SAVI, and EVI2.  In 
general, in this study area, the relationship between canopy temperature and vegetation indices was found 
weak. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  
(a) (b) 
  

(c) (d) 
  

(e) (f) 

Figure 45: The relationship between canopy temperature and vegetation indices NDVI (a), SAVI (b), EVI2(c), NDRE 
(d), GCI (e), and GNDVI (f) concerning health status assessment. 
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3.10. Relationship between tree Infestation and health 
The relationship plot in Figure 46 shows a high positive correlation between discoloration from Marchalina 
hellenica infestation and defoliation (R2=0.69) using the average percentile for each class (Table 11). Many of 
the observations overlapped in health and infestation classes (n=105); all field observed trees that were 
classified as slightly infested for infestation class are also slightly unhealthy for the health class. Mostly the 
difference between the indicators (i.e., discoloration and defoliation) was in the moderately and severely 
infested/unhealthy observed tee classes. 
 
Table 11: Average discoloration and defoliation percentile for each class in infestation/health class. 

Infestation class Healthy class Average percentile(%) 
Slightly infested Slightly unhealthy 12.5 

Moderately infested Moderately unhealthy 42.5 
Severely infested Severely unhealthy 80 

 
 

 
           Figure 46: Relationship between tree infestation and health. 
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4. DISCUSSION 

4.1. Classification and accuracy assessment 
In this study, four scenarios were used to assess the health and infestation status, where vegetation indices 
and canopy temperature data were used as the input layers. Concerning tree health status manifested as 
defoliation, the vegetation indices-based classification obtained a low overall accuracy (52%). In addition, 
the canopy temperature was also used to classify defoliation status with a low overall classification accuracy 
(45%). However, the classification accuracy obtained using canopy temperature was less compared with 
vegetation indices. These results are not in agreement with previous research by Marx and Kleinschmit 
(2017), who applied NDRE and NDVI using a decision tree-based classification of Pinus sylvestris defoliation 
classes as they classified defoliation classes with higher overall accuracy compared to the results obtained in 
this research. Their visual observation of tree samples was less subjective compared to our study, and they 
used the percent remaining foliage to estimate the defoliation by considering various factors (e.g. crown 
shade). In another study done by Cardil et al. (2019) that assessed the impact of the Pine processionary 
moth in a Pine-oak mixed forest using UAS technology with multispectral data,  the results showed high 
overall accuracy in classifying the non-defoliated, partially defoliated and completely defoliated trees using 
a combination of NDVI and Excess green index with an overall accuracy of 81%. Implementing the 
individual tree identification and delineation (ITDe) algorithm for automatic individual canopy delineation 
can be the reason for this study to have higher overall accuracy compared to our study. 
 
Additionally, vegetation indices (e.g., NDVI and moisture stress index) derived from Landsat imagery that 
was calibrated using UAV showed high overall accuracy in classifying the degree of defoliation from the 
Thaumetopea pityocampa attack on the Mediterranean pine forest (Otsu et al., 2018). In line with Otsu et al., 
(2018), implementing a moisture stress index using NIR and shortwave infrared bands in this study can give 
a good indication of tree stress and moisture content.  
 
The classification accuracy for vegetation indices and canopy temperature in classifying the intermediate 
stage of defoliation demonstrated misclassification problems with other classes (i.e.., slightly and severely 
unhealthy). This can be attributed to the inconsistency of tree structure within the field-collected moderately 
unhealthy trees. Most of the trees in this class had an open canopy by nature in addition to the defoliation 
effect, making it difficult to use those trees' information for training a classifier. The trees characterised as 
severely unhealthy in the field often appeared heavily defoliated in the lower parts but with a restricted but 
dense green canopy at the top. Although this could be a sign of recovery, it led to confusion with the other 
classes (i.e., slightly unhealthy and moderate unhealthy). As it can be seen in Table 7, the Post Hoc test 
performed in the classes of the 105 collected samples shows that there is no significant difference between 
moderately and severely unhealthy classes concerning health status assessment. This no significant 
difference between the classes can contribute to the misclassification. 
 
The vegetation indices-based classification in discoloration showed a low overall accuracy. As mentioned 
above, the vegetation indices obtained slightly higher overall classification accuracy considering 
discoloration than the canopy temperature-based classification. In assessing infestation status, there was 
mostly misclassification between moderately and severely infested classes. The number of sample 
observations for the slightly infested class counts for only 14.3% of the total observation, this can be the 
reason to have lowest classification accuracy for the slightly infested class in using layers (i.e., canopy 
temperature, and vegetation indices). 
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In this study area, tree health degradation could also be caused by drought and three pests factors (Ogeda 
Oliech, 2019; Tsiaras et al.. 2016). As shown in Figure 46, from the total field observed sample trees, nine 
were severely discolored by Marchalina hellenica and moderately defoliated, while some of the sample trees 
(18) that were moderately infested are considered as slightly or severely unhealthy based on defoliation. 
Discoloration of the bark and branches was not directly observed by the sensor and, therefore an indirect 
indicator, also defoliation has a contribution in assessing discoloration. 
 
Dash et al. (2017) applied an RF classifier using a UAV-based vegetation index (NDVI) and were able to 
classify the discoloration level in Pinus radiata. Classification had good accuracy (82.3%), and discoloration 
level was shown to be promising using UAV-based NDVI (R2 = 0.84) followed by satellite-based NDRE 
(R2 = 0.73) compared to GNDVI. In another study, TIR remote sensing data acquired together with visible 
and NIR bands were used in the classification of an infested Citrus tree using a support vector machine 
classifier, which resulted in a promising accuracy (Overall accuracy of 87%) (Sankaran et al., 2013). 
 
The results showed that the vegetation indices as a layer obtained higher overall accuracy compared to the 
canopy temperature layer in assessing health and infestation status. This can be due to the fact that the 
canopy temperature is sensitive to defoliation (Junttila et al., 2016). The vegetation indices that were used in 
classification include SAVI, which helps the training process in addition to NDVI and NDRE; unlike 
thermal-based canopy temperature, which has a single information layer, the vegetation indices used 
different multispectral bands and have different responses to the health status of vegetation. Additionally, 
the vegetation indices such as SAVI minimize the uncertainty that occurs caused by the soil as a background. 
In other words, the uncertainty in classification will minimize if more information is provided to a classifier. 
 
This study also observed the reflectance spectra of the health and infestation classes for the Pine trees. In 
assessing the health status, the reflectance spectra showed a higher value for the slightly unhealthy class in 
the NIR band compared to the two other classes (i.e., moderately and severely unhealthy). However, 
unexpectedly, the severely unhealthy class showed a higher reflectance value in the NIR band than the 
moderate unhealthy class. In green wavelength, the reflectance difference between the classes was minor, 
and the reflectance value of the severe unhealthy class was higher than the healthy class, which can be due 
to the dense canopy on top of the highly defoliated trees. This is in line with Fletcher et al. (2001) finding 
that revealed the green reflectance value was higher for infected Citrus trees (Phytophthora foot rot) than 
the non-infected trees; however, infected trees have lower NIR reflectance than healthy trees.  When 
moderate and severe unhealthy classes were merged into one class, the present study's results agree with the 
previous study done by Baynes (2007), which found a negative relationship between red bands and Pine 
needles' health. However, our results are in disagreement with Radeloff et al. (1999) study, which did not 
show the expected negative relation between reflectance in NIR and defoliation for Jack pine stands. 
Recently, Yu et al. (2021) observed that the UAV-based spectral signature for Pine wilt disease-infected 
trees has a lower reflectance in green, red-edge, and NIR bands and is absorbed less in red band compared 
to non-infected trees in the early stage of infestation. 
 
The spectral reflectance value of green and red bands was not able to show a clear difference among the 
infestation classes, whereas by seeing the NIR, a negative relationship between reflectance value and 
infestation status can be defined. The effect on distinguishing the classes in the green band was weak. It 
should be highlighted that the recorded discoloration status as an indicator of infestation could not be 
observed at the needle or canopy level by the observer, whereas it could be only observed in the bark and 
branches. In normal circumstances, healthy vegetation has leaf pigments that lead to high absorption in the 
visible part of the spectrum and high reflectance in the NIR band (e.g., absorption is low or non). Near-
infrared reflectance, declines compared to the visible reflectance due to a drop in the near-infrared 
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enhancement resulting from fewer overlapping leaf layers, an increase in understory and soil exposure as a 
background (Sankaran et al., 2013). 
 
Minařík and Langhammer (2016) and Sankaran et al. (2013) findings showed that infested trees have a higher 
reflectance value in the visible wavelength compared to a healthy tree and vice versa for red-edge and NIR 
wavelengths using UAV data. This is in line with our study that showed the reflectance difference in NIR 
and red-edge wavelength for non-infested and infested Pine trees were easily distinguishable where the 
slightly infested class has a higher reflectance value compared to moderately and severely infested classes in 
both wavelengths (i.e., NIR and red-edge). However, the difference between moderately and severely 
infested classes was minor.  

4.2. Separability of health/infestation classes using canopy temperature and vegetation indices 
Concerning defoliation, the health classes' separability did not show a consistence result while using the four 
vegetation indices (i.e., NDVI, SAVI, EVI2, and GNDVI). The separability value between slightly and 
moderately unhealthy classes was positive,  while among moderately unhealthy and severely unhealthy 
classes was negative.  Unexpectedly, the severely unhealthy class has a higher average vegetation index value 
compared to the moderately unhealthy class. Unlike the other vegetation indices, NDRE calculated 
separability result shows the average vegetation indices value decrease with defoliation status by considering 
the standard deviation where the separability between moderately and severely unhealthy was high compared 
to slightly and moderately unhealthy. However, the calculated separability values between classes were low. 
This can be related to NDRE being the only vegetation index that used red-edge reflectance in its equation, 
which can differentiate well between the healthy and defoliated Pine trees. 
 
Canopy temperature was able to show the separability between health classes. Slightly and moderately 
unhealthy classes can be distinguished moderately; however, the difference between moderately and severely 
unhealthy classes was low; this can be because the trees that are classified as moderately unhealthy were low 
in the amount of number compared to the two other classes (i.e., slightly and severe unhealthy). Additionally, 
the detected canopy temperature values for moderately and severely unhealthy were also close to each other. 
 
Regarding discoloration, all used vegetation indices were able to show the separability between the 
infestation classes (i.e., NDRE, NDVI, SAVI, EVI2, and GCI). All vegetation indices perform well in 
distinguishing the infestation stages in Pine trees; slightly infested trees were differentiated from moderately 
and severely infested trees. Also, our results successfully showed the variation between moderately and 
severely infested classes. Among applied vegetation indices, SAVI performed well in differentiating the 
slightly infested from the moderately infested classes, followed by EVI2. The ability of SAVI to minimize 
the effect of soil as a background for the open forest ecosystem like this study area can be the reason for 
performing better. Also, EVI2 includes background correction (i.e., Atmospheric and noise), which helps 
minimize the effect of other external factors in assessing tree health. A study by Sankaran et al. (2013) 
showed a maximum separability between healthy and huanglongbing infected trees using NDVI among 
different vegetation indices. 
 
However, the canopy temperature was not able to perform a descriptive separability between the infestation 
classes. The average canopy temperature of the severely infested class was higher than the non-infested 
class; however, the moderately infested class was lower than both other classes. The low performance of 
the canopy temperature in separating the classes can be from the inconsistency in the structure of the trees 
resulting in uncertainties while training the classifier.  
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Overall, canopy temperature exhibited a good separability between the health classes concerning defoliation, 
whereas the vegetation indices performed well for infestation classes in discoloration.  

4.3. Relationship between health/infestation class and canopy temperature 
Although there was low overall accuracy and misclassification of the health classes while using canopy 
temperature, our results revealed a positive relationship between defoliation and canopy temperature. As 
stated previously, the defoliation in this study area starts from the trees' lower part, resulting in some highly 
defoliated Pine trees having a similar or lower temperature than slightly unhealthy trees due to the dense 
green canopy on top. This result is in agreement with Smigaj et al. (2015) finding, who found a positive 
relation between the infected Pine trees (Pinus sylvestris and Pinus contorta) and canopy temperature using 
UAV-based thermal data.  
 
Considering discoloration, canopy temperature was a weak indicator to show infestation degrees. The mean 
value of canopy temperature for the slightly infested class was greater than the moderately infested class and 
less than the severely infested class. Unexpectedly, as mentioned a large number of trees in the slightly 
infested class had canopy temperatures greater than the mean value in the moderately infested class. Our 
interpretation from the field observation was that the canopy size of healthy trees was small,  making it 
difficult to perform the CHM-based segmentation and might result in uncertainty in the canopy temperature 
estimation. However, it needs further investigation to understand the effect of the canopy size or other 
related variables on canopy temperature. Previous findings stated that infested canopy trees have a higher 
temperature than healthy trees in the TIR wavelength due to changes in water content, stomatal opening, 
and transpiration (Sankaran et al., 2013; Oerke et al., 2006). 
 
The canopy temperature was highly affected by defoliation rather than discoloration of the bark and 
branches by M. Hellenica. In addition, the canopy temperature seems more sensitive to the openness of the 
canopy. The openness in the canopy (canopy fraction) can be resulted from defoliation or the tree's canopy 
structure, which leads to an increase the soil's effect as a background on the canopy temperature. In addition 
to pests and drought, which can affect canopy temperature, other factors can also contribute to canopy 
temperatures, such as air temperature and soil properties (Junttila et al., 2016; Leinonen et al., 2006; Pineda 
et al., 2020). The LST of soil in this study area was overestimated which can be from different additive 
factors such as soil type and time of acquisition; this might have a high effect on calculating the mean value 
of canopy temperature.  

4.4. Relationship between health/infestation class and vegetation indices 
Regarding defoliation, a negative relationship was observed between NDRE value and discolorated classes. 
In this regard, the differences between the classes are slight while using the NDRE vegetation index. 
However, the other used vegetation indices for assessing the defoliation were not able to show any defined 
relationship among health classes. In fact, in this study, two-band indices could not define the separability 
among defoliation-based health classes. It should be highlighted that this result might be associated with the 
bands which were used in calculating vegetation indices. For instance, NDVI, SAVI, EVI2, and GNDVI 
use a green or red band with a combination of NIR bands in their equation, while NDRE applies red-edge 
and NIR bands. The red-edge reflectance occurs at the abrupt transition between lower red and higher NIR 
reflectance values. Due to its sensitivity to the change of chlorophyll content, red-edge reflectance can easily 
manifest the spectral features of vegetation and various indicators of tree health status (Boiarskii, 2019; 
Hallik et al., 2019). The reflectance in NIR is commonly used in assessing tree health because of the 
distinguishable highest reflectance value compared to the visible part of the spectrum (Lillesaeter, 1982). 
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Moreover, the severely unhealthy trees had a higher reflectance value than moderately unhealthy in red-edge 
and NIR bands. In spite, both bands (i.e., Red-edge and NIR) were able to determine the slightly unhealthy 
class and had higher reflectance than the other classes. However, our findings disagree with Marx and 
Kleinschmit (2017), who found a highly negative correlation between the vegetation indices (i.e., NDRE 
and NDVI) and defoliation. Our results also are in disagreement with Chávez and Clevers (2012) findings, 
who used NIR/Red-edge ratio, NDRE, and NDVI and showed a significant correlation between considered 
vegetation indices and green canopy percentage (defoliation). In this study, NDVI, SAVI, EVI2, and 
GNDVI mean value for the healthy class was greater than the severely defoliated class. 
 
In this study, trees in slightly and severely defoliated classes with a close vegetation indices mean value can 
be explained by having a dense canopy in some severely defoliated Pine trees which affects the spectral 
reflectance of the bands used to calculate the index. It should be highlighted that the literature review 
revealed the background of the vegetation canopy could affect the reflectance spectral and vegetation indices 
(Dash et al., 2017). However, the moderately defoliated class had a lower mean value in the four vegetation 
indices compared to the severely defoliated ones. In common with other studies (Dash et al., 2017; Marx 
and Kleinschmit, 2017), vegetation indices find it challenging to classify the middle defoliated class. There 
is no defined reason why this difficulty occurs, but there are various factors that can contribute including 
the structure of the tree, canopy fraction, soil properties, type of defoliation, and ecological effect.  
 
Concerning infestation, the decrease in the mean value of the vegetation indices has been observed in 
moderately and severely infested trees more than in the slightly infested classes; this showed that there was 
a positive relationship between vegetation indices (i.e., NDVI, SAVI, EVI2, GCI, and NDRE) and non 
infested Pine trees. In this study, SAVI and EVI2 showed well the difference between slightly and 
moderately infested classes, whereas the NDVI showed a bigger difference between moderately and severely 
infested classes. However, in this study, NDRE was the least performer to establish the relationship between 
the infestation classes. In agreement with the finding by Minařík and Langhammer (2016), the UAV-based 
NDVI and NDRE were able to show that infested trees have a lower value compared to the healthy class, 
although anthocyanin reflectance index and red-edge GNDVI were not able to show the difference between 
infested and healthy classes. In disagreement with Donchenko et al. (1997), who observed that the 
discoloration percentage in trees related to losing chlorophyll content has unexpectedly a positive 
relationship with the NDVI value. On the other hand  (Sankaran et al., 2013) stated that NDVI and NDRE 
values in the infested trees have a lower value compared to healthy classes.  

4.5. Relationship between canopy temperature and vegetation indices  
Previous studies showed a negative relationship between vegetation indices and canopy temperature (Lin 
and Lv, 2010). In this research study, all used vegetation indices also showed a negative relationship with 
the canopy temperature; however, the correlation between canopy temperature and vegetation indices was 
found to be weak.  

Outlier values are observed for the relationship between canopy temperature and vegetation indices; 
however, unexpectedly, the Pine trees with higher canopy temperature have higher vegetation indices values 
at the same time (Figures 45). The tree canopy's size and structure can cause this uncertainty (Nisio et al., 
2020; Pineda et al., 2020; Junttila et al., 2016). It is also possible that a weak correlation between vegetation 
indices and canopy temperature might be due to the high sensitivity of canopy temperature to defoliation 
compared to discoloration caused by Marchalina hellenica, as well as the low performance of vegetation indices 
in assessing the defoliation.  
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In wilted or infested trees, decreasing chlorophyll content, stomatal closure, and water stress lead to a 
reduction in the photosynthesis process (Boiarskii, 2019 Marx and Kleinschmit, 2017;  Smigaj et al., 2015). 
The discoloration (needle) and defoliation in wilted or infested trees have an influence on spectral 
reflectance, vegetation indices, and canopy temperature (Donchenko et al., 1997; Marx and Kleinschmit, 
2017). In addition, it was revealed that healthy trees have high vegetation indices value and low canopy 
temperature compared to wilted or infested trees (Marx and Kleinschmit 2017, Smigaj et al. 2015). 

5. CONCLUSION AND RECOMMENDATION  

5.1. Conclusion 
 
This study investigated the capability of TIR and MS ultra-high-resolution UAV remote sensing in assessing 
the health and infestation status of an open Mediterranean pine forest. Defoliation and discoloration of the 
bark and branches were considered as the indicators of the health and infestation status, respectively. In line 
with the previous studies, this study showed that canopy defoliation in Pine trees reflects their canopy 
temperature. Also, the vegetation indices performed well in describing the different degrees of infestation 
by Marchalina hellenica. The highest separability was found using SAVI to differentiate infestation classes. 
The canopy temperature has a weak negative relationship with all the vegetation indices used in defoliation 
and discoloration-based assessments.  

 
This study suggests that UAV-based multispectral-derived vegetation indices and TIR remote sensing data 
can be used in the assessment of tree health status at the individual canopy level despite the possible 
uncertainties that occur from various factors (e.g., unreliable field observation, miss classification, scarcity 
of thermal multispectral, and random errors). Below are the answers to the research question.  
 
Can UAV-based TIR temperature data map the health status of Mediterranean pine trees? 
 
The canopy temperature was increasing with an increase in the defoliation. However, at the individual tree 
level, a miss classification of trees was observed, especially between slightly and severely unhealthy trees, 
when using the canopy temperature as a layer.   
 
What is the difference in classification accuracy of the MS and TIR UAV images for detecting the 
health status of Mediterranean Pine trees? 
 
NDVI, SAVI, and NDRE obtained slightly higher overall accuracy compared to the canopy temperature 
for detecting the health status using the RF as a classifier. 
 
Can TIR UAV data detect the variability in infestation by Marchalina hellenica in Pine trees? 
 
The overall accuracy for the RF classifier-based classification using canopy temperature derived from TIR 
UAV data was low (48%) in line with that, this study indicates a weak relation between the discoloration 
and canopy temperature.  
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5.2. Recommendation 
The field observation data were not fairly distributed over the study area, and there was an inconsistency in 
the number of sample trees within the defined health/infestation class. Well-planned field observation is 
necessary, including additional information recording (e.g., structure of the canopy) for a better description 
of trees' health and infestation status. In this study, the acquired LST mosaic using the FLIR Vue Pro R 
camera includes a shadow, removing the shadow while delineating the tree crown. However, a more advanced 
approach needs to be considered to increase the quality of the TIR images and minimize the overestimated 
LST value resulting from the soil as a background. Increasing acquisition accuracy through forwarding motion 
compensation can help reduce or remove the blurred/stretch seen in TIR images. Also, introducing 
hyperspectral and multispectral thermal data seems necessary for better accuracy in the separability of 
defoliated or discolored trees. Since the study area is an open forest, applying approaches that minimize soil 
as background more efficiently can be introduced. 
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APPENDICES 

Appendix 1: Field observations recording form 
 

 
Observation 

ID  

Coordinate 
  

Class type Characteristic 
of the 
infested tree 

Remarks 

X Y Z Discoloration (%) Defoliation (%) 

        
        
        

 
 
Appendix 2: Quality check for RGB photogrammetry project of the study area 
 

 
 
 
Appendix 3: Quality check for MS photogrammetry project of the study area 
 

 
 
Appendix 4: Quality check for TIR photogrammetry project of the study area 
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Appendix 5: ANOVA and Post hoc test within vegetation indices and canopy temperature using 
defoliation as an indicator  

ANOVA 
NDRE 

 Sum of Squares df Mean Square F Sig. 
Between Groups .025 2 .013 42.112 0.00 
Within Groups .723 2417 .000   

Total .748 2419    

 
Multiple Comparisons 

Dependent Variable:   NDRE   
Tukey HSD   

(I) Class_Numeric (J) Class_Numeric 
Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 
1 2 .00314* .00112 .014 .0005 .0058 

3 .00729* .00081 5.1001E-9 .0054 .0092 

2 1 -.00314* .00112 .014 -.0058 -.0005 
3 .00415* .00102 0.000143 .0018 .0065 

3 1 -.00729* .00081 5.1001E-9 -.0092 -.0054 
2 -.00415* .00102 0.000143 -.0065 -.0018 

*. The mean difference is significant at the 0.05 level. 
 

ANOVA 
NDVI   
 Sum of Squares df Mean Square F Sig. 
Between Groups 3.353 2 1.677 442.161 0.00 
Within Groups 9.165 2417 .004   

Total 12.518 2419    
 

Multiple Comparisons 
Dependent Variable:   NDVI   
Tukey HSD   

(I) Class_Numeric (J) Class_Numeric 
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
1 2 .10730* .00399 5.1001E-9 .0979 .1167 

3 .06937* .00288 5.1001E-9 .0626 .0761 
2 1 -.10730* .00399 5.1001E-9 -.1167 -.0979 

3 -.03793* .00363 5.1001E-9 -.0464 -.0294 
3 1 -.06937* .00288 5.1001E-9 -.0761 -.0626 

2 .03793* .00363 5.1001E-9 .0294 .0464 
*. The mean difference is significant at the 0.05 level. 
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ANOVA 

SAVI   
 Sum of Squares df Mean Square F Sig. 
Between Groups 1.498 2 .749 452.034 0.00 
Within Groups 4.005 2417 .002   

Total 5.503 2419    
 

Multiple Comparisons 
Dependent Variable:   SAVI 
Tukey HSD 

(I) Class_Numeric (J) Class_Numeric 
Mean 

Difference (I-J) 
Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

1 
2 .07682* .00264 5.1001E-9 .0706 .0830 

3 .03926* .00190 5.1001E-9 .0348 .0437 

2 
1 -.07682* .00264 5.1001E-9 -.0830 -.0706 

3 -.03756* .00240 5.1001E-9 -.0432 -.0319 

3 
1 -.03926* .00190 5.1001E-9 -.0437 -.0348 

2 .03756* .00240 5.1001E-9 .0319 .0432 

*. The mean difference is significant at the 0.05 level. 

 
ANOVA 

GNDVI  
 Sum of Squares df Mean Square F Sig. 
Between Groups .603 2 .301 213.769 0.00 
Within Groups 3.408 2417 .001   

Total 4.011 2419    
 

Multiple Comparisons 
Dependent Variable:   GNDVI   
Tukey HSD   

(I) ClassNumeric (J) ClassNumeric 
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
1 2 .04593* .00243 5.1001E-9 .0402 .0516 

3 .02896* .00176 5.1001E-9 .0248 .0331 
2 1 -.04593* .00243 5.1001E-9 -.0516 -.0402 

3 -.01697* .00221 5.1001E-9 -.0222 -.0118 
3 1 -.02896* .00176 5.1001E-9 -.0331 -.0248 

2 .01697* .00221 5.1001E-9 .0118 .0222 
*. The mean difference is significant at the 0.05 level. 
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ANOVA 

EVI2   
 Sum of Squares df Mean Square F Sig. 
Between Groups 1.640 2 .820 436.895 0.00 
Within Groups 4.536 2417 .002   

Total 6.176 2419    
 

Multiple Comparisons 
Dependent Variable:   EVI2   
Tukey HSD   

(I) Class_Numeric (J) Class_Numeric 
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
1 2 .08072* .00281 5.1001E-9 .0741 .0873 

3 .04032* .00203 5.1001E-9 .0356 .0451 
2 1 -.08072* .00281 5.1001E-9 -.0873 -.0741 

3 -.04040* .00255 5.1001E-9 -.0464 -.0344 
3 1 -.04032* .00203 5.1001E-9 -.0451 -.0356 

2 .04040* .00255 5.1001E-9 .0344 .0464 
*. The mean difference is significant at the 0.05 level. 

 
ANOVA 

Canopy temperature  
 Sum of Squares df Mean Square F Sig. 
Between Groups 2601.696 2 1300.848 302.302 0.00 
Within Groups 10310.317 2396 4.303   

Total 12912.013 2398    
 

Multiple Comparisons 
Dependent Variable:   Canopy temperature  
Tukey HSD   

(I) Class_Numeric (J) Class_Numeric 
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
1 2 -1.31098* .21626 9.6936E-9 -1.8182 -.8038 

3 -2.23475* .09092 5.0989E-9 -2.4480 -2.0215 
2 1 1.31098* .21626 9.6936E-9 .8038 1.8182 

3 -.92376* .21036 0.000035 -1.4171 -.4304 
3 1 2.23475* .09092 5.0989E-9 2.0215 2.4480 

2 .92376* .21036 0.000035 .4304 1.4171 
*. The mean difference is significant at the 0.05 level. 
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Appendix 6: ANOVA and Post hoc test within vegetation indices and canopy temperature using 
discoloration as an indicator  
 

ANOVA 
NDRE   
 Sum of Squares df Mean Square F Sig. 
Between Groups .006 2 .003 9.995 <.001 
Within Groups .691 2377 .000   

Total .697 2379    
 

Multiple Comparisons 
Dependent Variable:   NDRE 
Tukey HSD 

(I) Class_Numeric (J) Class_Numeric 
Mean 

Difference (I-J) 
Std. Error Sig. 

95% Confidence Interval 
Lower Bound Upper Bound 

1 
2 .00502* .00190 .023 .0006 .0095 
3 .00713* .00186 0.000384 .0028 .0115 

2 
1 -.00502* .00190 .023 -.0095 -.0006 
3 .00210* .00075 .013 .0004 .0039 

3 
1 -.00713* .00186 0.000384 -.0115 -.0028 
2 -.00210* .00075 .013 -.0039 -.0004 

*. The mean difference is significant at the 0.05 level. 
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ANOVA 

NDVI 
 Sum of Squares df Mean Square F Sig. 

Between Groups 1.908 2 .954 221.182 0.00 
Within Groups 10.254 2377 .004   

Total 12.163 2379    

 
 

Multiple Comparisons 

Dependent Variable:   NDVI 
Tukey HSD 

(I) Class_Numeric (J) Class_Numeric 
Mean Difference 

(I-J) 
Std. Error Sig. 

95% Confidence Interval 

Lower Bound 
Upper 
Bound 

1 
2 .05033* .00734 5.124E-9 .0331 .0675 

3 .10058* .00717 5.1E-9 .0838 .1174 

2 
1 -.05033* .00734 5.124E-9 -.0675 -.0331 

3 .05025* .00287 5.1E-9 .0435 .0570 

3 
1 -.10058* .00717 5.1E-9 -.1174 -.0838 

2 -.05025* .00287 5.1E-9 -.0570 -.0435 
*. The mean difference is significant at the 0.05 level. 

 
 

ANOVA 
SAVI 

 Sum of Squares df Mean Square F Sig. 
Between Groups .796 2 .398 207.397 0.00 
Within Groups 4.563 2377 .002   

Total 5.359 2379    

 
 

Multiple Comparisons 
Dependent Variable:   SAVI 

Tukey HSD 

(I) 
Class_Numeric 

(J) Class_Numeric 
Mean Difference 

(I-J) 
Std. Error Sig. 

95% Confidence Interval 

Lower Bound 
Upper 
Bound 

1 
2 .05523* .00489 5.1E-9 .0438 .0667 
3 .08117* .00478 5.1E-9 .0700 .0924 

2 1 -.05523* .00489 5.1E-9 -.0667 -.0438 



 

69 

3 .02594* .00192 5.1E-9 .0214 .0304 

3 
1 -.08117* .00478 5.1E-9 -.0924 -.0700 
2 -.02594* .00192 5.1E-9 -.0304 -.0214 

*. The mean difference is significant at the 0.05 level. 
 
 

ANOVA 
GCI 

 Sum of Squares df Mean Square F Sig. 
Between 
Groups 

19.613 2 9.806 82.696 0.00 

Within 
Groups 

281.877 2377 .119   

Total 301.490 2379    

 
 

Multiple Comparisons 
Dependent Variable:   GCI 

Tukey HSD 

(I) Class_Numeric (J) Class_Numeric 
Mean 

Difference (I-J) 
Std. Error Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper Bound 

1 
2 .28790* .03846 5.1003E-9 .1977 .3781 

3 .41166* .03758 5.1E-9 .3235 .4998 

2 
1 -.28790* .03846 5.1003E-9 -.3781 -.1977 

3 .12376* .01506 5.1E-9 .0884 .1591 

3 
1 -.41166* .03758 5.1E-9 -.4998 -.3235 

2 -.12376* .01506 5.1E-9 -.1591 -.0884 

*. The mean difference is significant at the 0.05 level. 

 
ANOVA 

EVI2 
 Sum of Squares df Mean Square F Sig. 

Between Groups .865 2 .433 199.703 0.00 
Within Groups 5.150 2377 .002   

Total 6.015 2379    
 

Multiple Comparisons 
Dependent Variable:   ENVI2   
Tukey HSD   
(I) Class_Numeric (J) Class_Numeric Std. Error Sig. 95% Confidence Interval 
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Mean 
Difference (I-J) Lower Bound Upper Bound 

1 2 .06011* .00520 5.1E-9 .0479 .0723 
3 .08624* .00508 5.1E-9 .0743 .0982 

2 1 -.06011* .00520 5.1E-9 -.0723 -.0479 
3 .02613* .00204 5.1E-9 .0214 .0309 

3 1 -.08624* .00508 5.1E-9 -.0982 -.0743 
2 -.02613* .00204 5.1E-9 -.0309 -.0214 

*. The mean difference is significant at the 0.05 level. 

 
 

ANOVA 
Canopy temperature   
 Sum of Squares df Mean Square F Sig. 
Between Groups 3258.907 2 1629.453 384.861 0.00 
Within Groups 11054.654 2611 4.234   

Total 14313.560 2613    
 
 

Multiple Comparisons 
Dependent Variable:   Canopy temperature   
Tukey HSD   

(I) Class_Numeric (J) Class_Numeric 
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
1 2 1.39376* .17809 5.1002E-9 .9761 1.8114 

3 -.92062* .17594 5.4412E-7 -1.3332 -.5080 
2 1 -1.39376* .17809 5.1002E-9 -1.8114 -.9761 

3 -2.31438* .08344 5.1002E-9 -2.5101 -2.1187 
3 1 .92062* .17594 5.4412E-7 .5080 1.3332 

2 2.31438* .08344 5.1002E-9 2.1187 2.5101 
*. The mean difference is significant at the 0.05 level. 
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