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Abstract

In this thesis we mainly study matching congestion games with identity cost func-
tions and bipartite graphs. A congestion game is a game where a finite set of players
individually choose a strategy which consists of a subset of a finite set of resources.
The cost of a resource depends on the number of players using it and the cost of
each player is the sum over the cost of every resource a player uses. In a match-
ing congestion game resources are represented by the edges of a graph and the
edges in every strategy form a perfect matching. We are interested in the price of
anarchy; the total cost of the worst equilibrium when agents choose selfishly their
own strategy relative to the total cost of a strategy profile that minimizes total cost.
With p the number of players, we found that the upper bound is equal to 2 − 1/p for
two, three and four players. For five or more players the best bound is still the bound
which was already known, namely 5/2. For a special case, when the graph allows
as many disjoint matchings as there are players, our proof shows that the price of
anarchy is at most 2 − 1/p. For this special case this bound also holds for five or
more players. We found a lower bound example, which also holds for the special
case, where the price of anarchy is equal to 2 − 1/p for two players, which makes
the bound tight.
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Chapter 1

Introduction

A congestion game, first introduced by Rosenthal [17], is a game where a number
of selfish agents chooses simultaneously from a set of strategies. Each strategy
consists of resources and the cost of a player depends on the number of players
using the same resource. To our knowledge there is no study yet about matching
congestion games, which we study in this thesis. In matching congestion games
each game is represented in some bipartite graph G = (V1 ∪ V2, E) with p players
and where every edge of the graph represents a resource. Every player chooses re-
sources which form a perfect matching. Matching congestion games are a subclass
of general congestion games.
The price of anarchy, first introduced by Koutsoupias and Papadimitriou [15], shows
the inefficiency that can occur when selfish agents choose their own strategy (a set
of resources). More precisely, the price of anarchy measures the efficiency of a
game by comparing the worst Nash equilibrium with the optimal solution [3]. The
higher the ratio, the the higher the potential loss of efficiency. It is interesting to
know how high this ratio can be, because it is not always easy or without cost to let
agents choose a strategy which leads to an optimal solution.
Christodoulou and Koutsoupias [3] proved that the price of anarchy for symmetric
general congestion games with affine cost functions is (5p−2)/(2p+1), with p being
the number of players. A subclass of general congestion games are for example
congestion games with restrictions on the strategy spaces such that every player
needs to choose exactly n resources, this is called an n-uniform congestion game,
this is studied by de Jong et al. [7], [6]. Another subclass of congestion games are
network congestion games. For this type of congestion games, every player’s strat-
egy space consists of every path possible between a source and a sink node. In
this thesis we study the price of anarchy for symmetric matching congestion games.
Matching congestion games are defined as congestion games where the players
(agents) choose from the edges of a bipartite graph such that the edges chosen by
any player form a perfect matching (for server-matching or semi-matching conges-
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2 CHAPTER 1. INTRODUCTION

tion games, where every player is matched to one server, see Kothari et al. [13] and
Harvey et al. [10]). Matching congestion games are a subclass of congestion games
and therefore we know that the upper bound on the price of anarchy for matching
congestion games is at most (5p − 2)/(2p + 1). The main question we are studying
here is whether the price of anarchy for symmetric matching congestion games is
even smaller than for general symmetric congestion games and whether this bound
is tight, i.e. if we can find a lower bound example such that the bound is tight.
Next, we motivate matching congestion games on the basis of an example.
Example: Assume a cruise ship docks in a city and a number of buses are filled with
tourists from the cruise ship. Those buses have to visit all the sight seeing locations
of that city. Clearly, a bus can only be at one place at a time. The problem is de-
scribed as follows: every bus has to choose at which time slot it will be at a certain
location and the bus chooses this for all the sight seeing locations. All sight seeing
locations need to be visited by all buses, therefore this can be seen as a matching
congestion problem. Assuming that the number of time slots is equal to the num-
ber of places to visit, a solution where one bus visits all locations once is a perfect
matching. This can be described as a bipartite graph where time slots are the nodes
on one side of the graph and the locations are the nodes on the other side of the
graph. The edges are the possibilities of a bus to visit a location at a certain time.
For illustration see Figure 1.1 where an example with two buses, five sightseeing
locations and five time slots is shown. An optimal solution scheme and a Nash
equilibrium is given in Figure 1.1a and in Figure 1.1b respectively. The situation
mentioned above can be described by a bipartite graph, this is shown in Figure
1.1c. The graph in green indicates all different possibilities of a bus to visit a loca-
tion at a certain time slot, where s are the different sightseeing locations and t the
different time slots. The matchings in blue, yellow, purple and orange correspond to
the matchings in the schemes of the buses in the same color.
To see why Figure 1.1a and Figure 1.1b are an optimal solution and a Nash equilib-
rium respectively, the objective needs to be stated. A strategy profile is an optimal
solution when the total cost of all buses is minimized. The cost for each bus can be
measured in the total waiting time the bus needs to wait at every stop. When there
are multiple buses at the same time at the same place, the time it takes to visit the
locations increases. For simplicity, we assume when p buses are at the same loca-
tion at the same time, every of those buses have to wait p time units. This means
that the total cost of those p buses for that time slot is p2 time units. If those p buses
were each alone at different locations at the same time slot, the cost for each of
those p buses at that time slot would be 1 time unit. In total at that time slot the cost
for those buses would be p time units. It might happen when the buses choose self-
ishly their own schedule that they are in an equilibrium (no player wants to switch it’s
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(a) Scheme of an optimal solution

(b) Scheme of a Nash equilibrium

(c) Graph of the example (green) and all four different possible matchings (blue, yellow, purple
and orange)

Figure 1.1: Example of a matching congestion game



4 CHAPTER 1. INTRODUCTION

strategy while other players do not change their strategy), but with higher total cost
than when the bus schedules where chosen optimally. This means that not every
equilibrium has to be optimal.
In Figure 1.1a, no buses are at the same location at the same time. However, in Fig-
ure 1.1b, there are two sightseeing locations where the buses are at the same time.
This is at sightseeing locations 1 and 4 at time slots 1 and 3 respectively. When,
for example bus 1 changes its location at time slot 1 from location 1 to location 2, it
also has to change it’s location at time slot 2, as it is again at location 2. It can be
checked that it does not matter how bus 1 changes its schedule, it will always have
overlap with bus 2 at two time slots. The same applies for bus 2, hence they are in
an equilibrium, however it is not an optimal solution.
The results we found for the upper bound on the price of anarchy for matching con-
gestion games with identity cost functions and a given bipartite graph is equal to
2− 1/p for two, three and four players. For five or more players we were not able to
find a better bound than 5p−2

2p+1
. We found a lower bound of 2 − 1/p for two players.

For three or more players we were not able to find a lower bound higher than 1. This
means that the bound of 2 − 1/p is only tight for two players. For a special case,
when the graph allows as many disjoint matchings as there are players, we found
also an upper bound of 2 − 1/p and this bound holds for any number of p players.
The same lower bound holds for this special case and therefore also here the bound
of 2− 1/p is tight for two players.
The outline of this report is as follows; in Chapter 2 we explain some of the game
theory definitions and show the mathematical notations used in this report. Further-
more, we state our results and discuss related work. Then in Chapter 3 we analyse
the price of anarchy for n-uniform congestion games with identity cost functions.
Subsequently, in Chapter 4 we study the price of anarchy for matching congestion
games. Thereafter, in Chapter 5 we give the proof of finding a Nash equilibrium
in matching congestion games in polynomial time. Finally, we end with Chapter 6
where we state the conclusions and ideas for further research.



Chapter 2

Preliminaries

In this chapter we will explain some important definitions that we use in this thesis.
Next, we will give a list of important notations. We end this chapter with a brief sec-
tion on our results and related work.

2.1 Definitions

In this thesis we study congestion games. A congestion game, first introduced by
Rosenthal [17], is a game where a finite number of p players choose selfishly simul-
taneously from a finite set of resources E and with P the set of all players. For each
player i ∈ P , a subset Si ⊆ 2E of strategies is given. When players can all choose
from the same set of strategies, the game is called symmetric. When not all players
have the same set of strategies to choose from, i.e., Si 6= Sj for i 6= j, the game is
called asymmetric.

Definition 2.1.1 (Symmetric game). A symmetric game is a game where all players
have access to the same set of strategies; Si = Sj ∀i, j ∈ P

Definition 2.1.2 (Asymmetric game). An asymmetric game is a game where there
are players which do not have access to the same set of strategies; Si 6= Sj for some
i 6= j ∈ P

Definition 2.1.3 (Strategy profile). A Strategy profile is a vector of the strategies
chosen by each player: S = (S1, S2, . . . , Sp).

Every strategy Si is a subset of resources, Si ⊆ E and because the resources
are often the edges of a graph they are denoted as e ∈ E, where E is the set of
all resources. When all players have chosen their strategy the cost can be calcu-
lated. The cost function of a resource depends on the number of players using this
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6 CHAPTER 2. PRELIMINARIES

resource. We define xe(S) = |{i ∈ P : e ∈ Si}| as the number of players that have
chosen resource e for strategy profile S. The cost functions can for example be
identity, linear or affine.

Definition 2.1.4 (Identity cost function). Identity cost functions are cost functions of
the form: ce(xe) = xe, with e ∈ E.

Definition 2.1.5 (linear cost function). Linear cost functions are cost functions of the
form: ce(xe) = aexe, with e ∈ E and where ae is nonnegative.

Definition 2.1.6 (affine cost function). Affine cost functions are cost functions of the
form: ce(xe) = aexe + be, with e ∈ E and where ae and be are nonnegative.

Identity cost functions are a subclass of linear cost functions and linear cost
functions are a subclass of affine cost functions. Using the cost of the resources
for a strategy profile S the cost for each player can be determined. The cost for
each player for a strategy profile S is equal to the sum of the costs of the re-
sources it uses, ci(S) =

∑
e∈Si

ce(xe(S)), ∀i ∈ P . For the total or social cost of the
strategy profile S we sum over all players’ individual cost, cost(S) =

∑p
i=1 ci(S) =∑p

i=1

∑
e∈Si

ce(xe(S)). Now we can give a more formal definition of a congestion
game which is defined by multiple aspects and can therefore be defined in a tuple.

Definition 2.1.7 (Congestion game). A congestion game M can be defined as a
tuple M = (P,E, (Si)i∈P , (ce)e∈E), where P = {1, 2, . . . , p} denotes the players, E =

{1, 2, . . . , r} the set of resources, Si ⊆ 2E denotes the set of strategies for player
i ∈ P , where each strategy Si ∈ Si is a set of resources and finally, ce is the cost
function for resource e ∈ E.

There are different classes of congestion games, for example, there are network,
n-uniform and singleton congestion games.

Definition 2.1.8 (Network congestion games). A Network congestion game is a con-
gestion game where the resources are given by the edges of a given directed graph,
D = (V,A) with A the set of all directed edges. For every player a source and
sink node are given, si, ti ∈ V and i ∈ P . The set of strategies for every player
i, Si, consists of all directed (si, ti)-paths in D, where every strategy consists of a
different (si, ti)-path. When every player has the same source and sink node, it is a
symmetric network congestion game.

Definition 2.1.9 (n-uniform congestion games). An n-uniform congestion game is a
congestion game where every player has to choose any n resources out of the total
set of resources E; Si = {Si ⊆ E : |Si| = n} .
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Definition 2.1.10 (Singleton congestion games). A singleton congestion game is
a congestion game where players only choose one resource out of the set of all
resources E; Si = {Si ⊆ E : |Si| = 1}.

Note that singleton congestion games are a subclass of the n-uniform conges-
tion games. Another congestion game which is the main subject of this thesis are
the matching congestion games where each player chooses a strategy where the
resources must form a perfect matching.

Definition 2.1.11 (Matching congestion games). A matching congestion game is a
congestion game where the resources of every strategy of a player form a perfect
matching in a given undirected graph G = (V,E).

In this thesis we use bipartite graphs and we only use graphs G(V1 ∪ V2, E) with
|V1| = |V2| = n. This means for matching congestion games, that every player has to
choose n resources which form a perfect matching. Because the resources need to
form a perfect matching, a player cannot choose from every subset of n resources.
Therefore, matching congestion games are not a subclass of n-uniform congestion
games.
Furthermore, we study the price of anarchy for matching congestion games which
is the ratio of the total cost of the worst Nash equilibrium compared to the total cost
of a socially optimal solution. First, a Nash equilbrium is defined and later a socially
optimal solution is defined.

Definition 2.1.12 (Nash equilibrium). A Nash equilibrium is defined as a strategy
profile S = (S1, S2, . . . , Sp) where no player has an incentive to deviate from their
strategy, this means ci(S) ≤ ci(S

′
i, S−i), for all S ′i ∈ Si and all i ∈ P .

Here (S ′i, S−i) means that only player i switches from strategy Si to some other
strategy S ′i ∈ Si for a given instance M . A Nash equilibrium strategy profile is de-
noted by SNE(M) and the set of all profiles which are a Nash equilibrium of a given
instance M is denoted by ANE(M).
A socially optimal solution can be defined in different ways. Christodoulou and Kout-
soupias [3] used the maximum and the average player costs as the social cost,
however for the average player costs they used for simplicity the sum of all player
costs (which is equal to p times the average costs). The minimum total players cost
is what we use in this thesis as a socially optimal solution, which we refer to as an
optimal solution. The socially optimal strategy profile for a given instance M is de-
fined as SOPT (M), note that cost(SOPT (M)) ≤ cost(S(M)), for all strategy profiles S
of the instance M .
We will now define the price of anarchy, however we have to distinguish between
the price of anarchy of a single game M and the price of anarchy of the class of all
matching congestion gamesM.
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Definition 2.1.13 (Price of anarchy of congestion game M ). The price of anarchy of
a congestion game is defined as the ratio of the cost of the worst Nash equilibrium
to the cost of the optimal solution of the game,

PoA(M) := max
S∈ANE(M)

cost(S)

cost(SOPT (M))
.

Definition 2.1.14 (Price of anarchy of class of congestion gamesM). The Price of
anarchy of a given class of congestion gamesM is the highest price of anarchy over
all congestion games in that class. In other words, the highest ratio of the cost of
a Nash equilibrium to the cost of an optimal solution over all instances of the given
class of congestion games.

PoA(M) := sup
M∈M

PoA(M).

In the next section we will give a brief overview in the form of a list of the notations
we defined here.

2.2 List of notations

In this section we summarize the important symbols with the definitions. Which can
be of later use while reading this report.

P = {1, 2, · · · , p} Denotes the set of agents/players,

E = {1, 2, · · · , r} Denotes the set of resources,

(Si)i∈P ⊆ 2E Is the set of pure strategies for player i,

Si ∈ Si Set of resources chosen by player i; for matching

congestion games they form a perfect matching,

S = (S1, S2, · · · , Sp) A strategy profile which is a vector consisting

of the strategy chosen by each player,

(ce)e∈E The cost functions per resource e ∈ E,

ci(S) :=
∑
e∈Si

ce(xe(S)) The cost of player i, for a strategy profile

S = (S1, S2, . . . , Sp),
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xe(S) Denotes the number of players using

resource e in strategy profile S,

cost(S) :=
∑
i∈P

ci(S) Is the total cost of strategy profile S,

(Si, S−i) Strategy profile where player i plays Si and

all other players play

S−i = (S1, . . . , Si−1, Si+1, . . . , Sp),

SNE Denotes a strategy profile which is a Nash

equilibrium; no single player has an

incentive to deviate from SNE,

SOPT Denotes a strategy profile which is socially

optimal meaning that it has lowest total

cost; cost(SOPT ) ≤ cost(S) for any strategy

profile S,

ANE(M) The set of all strategy profiles which are a

Nash equilibrium of a given instance M ,

PoA(M) := max
S∈ANE(M)

cost(S)

cost(SOPT (M))
Denotes the price of anarchy of a congestion

game M,

PoA(M) := sup
M∈M

PoA(M) Denotes the price of anarchy forM, a given

class of congestion games.
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2.3 Our results

We mainly studied the price of anarchy for symmetric matching congestion games
with identity cost functions. First we proved that for symmetric n-uniform conges-
tion games with identity cost functions the price of anarchy is always equal to 1. In
matching congestion games every player chooses a subset of n resources. How-
ever, since resources of every strategy set in matching congestion games need to
form a matching, this upper bound of 1 on the price of anarchy will not necessarily
hold for matching congestion games. In our proofs on the upper bound on price of
anarchy for matching congestion games we actually did not use the restriction that
resources in every strategy need to form a matching and therefore the upper bound
on the price of anarchy also holds for n-uniform congestion games. However, the
upper bound we proved is higher than the upper bound of 1 for symmetric n-uniform
congestion games with identity cost functions.
We also studied a special case for matching congestion games. For this special
case the graph allows as many disjoint matchings as there are players. For this
special case we proved that the upper bound on the price of anarchy is 2− 1/p, with
p the number of players. We also showed that this bound is asymptotically tight for
p = 2. However for p ≥ 3 we did not find any example with a lower bound signifi-
cantly higher than 1. In the general case, where an optimal solution with p disjoint
matchings in the bipartite graph does not necessarily exist, the upper bound on the
price of anarchy is also 2 − 1/p for two, three and four players. For five or more
players we were not able to prove a better upper bound than the previously known
bound proven by Christodoulou and Koutsoupias [3] which is (5p− 2)/(2p+ 1). The
same lower bounds holds and therefore the bound of 2− 1/p is asymptotically tight
for two players for the special case as well.

2.4 Related work

The price of anarchy was first introduced by Koutsoupias and Papadimitriou [15].
They studied simple network routing congestion games with m parallel links from a
source to a target node with affine functions and a different, namely min-max social
objective. They showed the lower bound for this problems to be Ω(logm/ log logm)

and this bound is proved to be Θ(logm/ log logm) by Czumaj and Vöcking [5] and at
the same time by Koutsoupias et al. [14].
From the study by Christodoulou and Koutsoupias [3] we know that price of anarchy
for finite congestion games with affine cost functions and minimal total cost as social
objective, is equal to 5/2 for asymmetric congestion games with p ≥ 3 and equal to
2 for p = 2. For symmetric congestion games with affine cost functions they proved
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the price of anarchy equal to (5p− 2)/(2p + 1). For symmetric network routing con-
gestion games the bound (5p−2)/(2p+ 1) was proved to be tight by Correa et al. [4]
and for asymmetric network routing congestion games Christodoulou and Koutsou-
pias [3] showed that the bound of 5/2 for the price of anarchy holds tight for p ≥ 3.
Moreover, in the study of de Jong et al. [7] the upper bound on the price of anarchy
in symmetric uniform congestion games was proven to be bounded from above by
28/13 ≈ 2.154 and they found a lower bound of 7− 4

√
2 ≈ 1.343 for p (the number of

players) large enough, so the bound (5p − 2)/(2p + 1) is not tight for these games.
This means that there is still a gap which can be improved.
For asymmetric singleton congestion games the upper bound of 5/2 from Christodoulou
and Koutsoupias [3] is proven to be tight by Caragiannis et al. [2]. For asymmetric
singleton congestion games with identity cost functions Suri et al. [18] found a lower
bound of approximately 2.0120669 and an upper bound of (1 + 2

√
3) ≈ 2.1547. How-

ever, Caragiannis et al. [2] found an upper bound of approximately 2.012067 which
is almost tight to the lower bound in the study of Suri et al. [18]. For symmetric sin-
gleton congestion games, Lücking et al. [16] proved the price of anarchy is equal to
4/3.
In this thesis we also address the algorithmic complexity of computing a Nash equi-
librium. We quickly summarize what is known. For general congestion games, sym-
metric congestion games and asymmetric network congestion games Fabrikant et
al. [9] proved that finding a Nash equilibrium is PLS-complete. PLS (polynomial-
time local search) is defined by Papadimitriou and Yannakakis [12]. They define a
problem to be PLS when local optimality can be verified in polynomial time. Ieong
et al. [11] proved that for singleton congestion games Nash equilbria can be found
in polynomial time. Ackermann et al. [1] went further and proved that for matroid
congestion games the best response sequences are polynomially bounded in the
number of players and resources. A matroid congestion game is defined as a con-
gestion game where the strategy set of each player corresponds to the set of bases
of a matroid. Moreover, they showed that the matroid property of the players’ strat-
egy sets is necessary and sufficient to guarantee a polynomial time convergence to
a Nash equilibrium. We show in Chapter 5 that a Nash equilibrium of a matching
congestion game can be computed in polynomial time. We use the idea of Fabrikant
et al. [9] and transfer it to matching congestion games. The idea of Fabrikant et al.
that we use also here, is reducing the problem of finding a social optimal solution
in a symmetric network congestion game to a min-cost flow problem. They did this
by replacing every edge in a symmetric network congestion game by p edges with
the cost of the edges non decreasing in p and they added a source and sink node.
Del Pia et al. [8] also showed that finding a Nash equilibrium for symmetric match-
ing congestion games can be done in polynomial time. However, they reduced the
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problem to a different problem as the strategy sets of the players are defined as
matchings and not necessarily perfect matchings.



Chapter 3

PoA for n-uniform congestion games
with identity cost functions

In this chapter we give our main results on the price of anarchy of symmetric n-
uniform congestion games with identity cost functions.

We begin with a simple lemma that states that in equilibrium, an n-uniform con-
gestion game with identity cost functions, the number of players on resources are as
equally spread as possible. Subsequently, we show, by using this lemma, that the
price of anarchy is always equal to 1 for these games.

Lemma 3.0.1. In a symmetric n-uniform congestion game with identity cost func-
tions, r resources and p players, in every Nash equilibrium all resources are used
by dnp

r
e or bnp

r
c players, with r, p, n ∈ Z>0.

Proof. We are going to prove Lemma 3.0.1 by means of a contradiction. First we
prove that there cannot be a resource used by more than dnp

r
e players in a Nash

equilibrium of an n-uniform congestion game and we also prove that there cannot
be a resource which is used by less than bnp

r
c players. We show that for a strategy

profile in which there is a resource with more than dnp
r
e or less than bnp

r
c players

using this resource, there always exists a player who wants to switch from strategy.
Therefore, the strategy profile cannot be a Nash equilibrium.
Consider a Nash equilibrium strategy profile SNE, r resources and p players. Fur-
thermore, assume that there is a resource r′ which is used by more than dnp

r
e play-

ers. This means

xr′(S
NE) >

⌈np
r

⌉
.

In a symmetric n-uniform congestion game every player has access to the same
set of strategies and every strategy contains n resources. Therefore, the sum of
the number of players using a resource e over all resources is equal to a total of
np. The mean of the number of players over all resources except resource r′ is

13
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the total number of players on all resources subtracted by the number of players on
resource r′ and divided by the remaining r−1 resources. This means that the mean
occupation rate of all other resources is

1

r − 1

∑
e∈E\r′

xe(S
NE) =

np− xr′(SNE)

r − 1

<
np−

⌈
np
r

⌉
r − 1

≤
np− np

r

r − 1

=
(r − 1)np

r(r − 1)

=
np

r

≤
⌈np
r

⌉
.

The first inequality comes from the assumption that the number of players using
resource r′ is strictly more than

⌈
np
r

⌉
. The second and last inequality hold because

np
r
≤ dnp

r
e by definition of a ceiling function.

We proved that the mean of the number of players on a resource is strictly less than
dnp
r
e. Hence, there must be a resource, r′′, which is used by strictly less than dnp

r
e

players. This means that xr′′(SNE) ≤ dnp
r
e − 1. Therefore, the number of players

on resource r′ is strictly larger than the number of players on resource r′′ plus one
player,

xr′ >
⌈np
r

⌉
≥ xr′′(S

NE) + 1.

Consequently, there is a player which uses resource r′ and not resource r′′. As the
game is symmetric, this player can switch from r′ to r′′ and the cost of this player
decreases with at least 1. Hence, this violates the assumption of SNE being a Nash
equilibrium.  

We still have to prove that a resource cannot have less than bnp
r
c players using

this resource. Consider another Nash equilibrium strategy profile ANE in a symmet-
ric n-uniform congestion game. Furthermore, assume now that there is a resource
which is used by less than bnp

r
c players, call this resource r∗. This means

xr∗(A
NE) <

⌊np
r

⌋
.
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The mean occupation rate of all other resources is now

1

r − 1

∑
e∈E\r∗

xe(A
NE) =

np− xr∗
r − 1

>
np−

⌊
np
r

⌋
r − 1

≥
np− np

r

r − 1

=
(r − 1)np

r(r − 1)

=
np

r

≥
⌊np
r

⌋
.

The first inequality comes from the assumption that the number of players using re-
source r∗ is strictly less than bnp

r
c. The second and last inequality holds by definition

of a floor function (np
r
≥ bnp

r
c).

We just proved that the mean occupation rate of all other resources is strictly larger
than bnp

r
c. Therefore, there must be a resource r∗∗, which is used by strictly more

than bnp
r
c players,

xr∗∗(A
NE) ≥ bnp

r
c+ 1

and because xr∗(ANE) < bnp
r
c the following hold

xr∗(A
NE) <

⌊np
r

⌋
≤ xr∗∗(A

NE)− 1

⇒ xr∗∗(A
NE) > xr∗(A

NE) + 1.

The the number of players using resource r∗∗ is strictly larger than the number of
players using resource r∗ plus one player. This means that there is a player that is
using resource r∗∗ and not resource r∗ and when this player switches from resource
r∗∗ to resource r∗ the cost of this player decreases with at least 1. Hence, this
violates the assumption of ANE being a Nash equilibrium.  
Consequently, resources can only be used by bnp

r
c or by dnp

r
e players. This proves

Lemma 3.0.1.

As the result of 3.0.1 it is easy to see that all Nash equilibria are equal to each
other because of symmetry and hence are all optimal. We use this to prove our main
theorem, namely that the price of anarchy is always 1.

Theorem 3.0.2. The price of anarchy for symmetric n-uniform congestion games
with identity cost functions is always equal to 1.
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Proof. It is easy to see that a solution where all resources are used by the same
amount of players or one less (which is described above) is an optimal solution. The
total cost cannot be lower than when each player chooses n resources and for all
players together this is equally divided over all resources. Hence, all Nash equilibria
in symmetric n-uniform congestion games with identity cost functions with a total of
r resources and p players are always an optimal solution and therefore the price of
anarchy is always equal to 1.

In the next sections we study the price of anarchy of symmetric matching con-
gestion games. As matching congestion games are not a subclass of n-uniform
congestion games, because not every set of n resources form a perfect matching
which is required for a matching congestion game. This means that the lower bound
examples do not hold for n-uniform congestion games. For the upper bound proofs
no matching constraint is used. Therefore, these proofs do hold for both n-uniform
as for matching congestion games. However, we already proved an upper bound of
1 (see Theorem 3.0.2) for the symmetric n-uniform congestion games (with identity
cost functions). So the upper bound proves are redundant for n-uniform conges-
tion games. We also show that the lower bound examples of matching congestion
games do not necessarily hold for n-uniform congestion games, see Observation
4.1.2.



Chapter 4

PoA for matching congestion games
with identity cost functions

In this chapter we will study the lower and upper bound on the price of anarchy for
matching congestion games with identity cost functions. In Section 4.1 we will give
lower bound examples for two players. Next, in Section 4.2 we will study the upper
bound with two players and lastly, in Section 4.3 we will study the upper bound with
p players.

4.1 Lower bound on the PoA for two players

In this section we will give a few examples of a matching congestion game with a
given bipartite graph. We will show that when n, the size of the graph, goes to
infinity, the price of anarchy goes to 3/2.

Lemma 4.1.1. The lower bound on the price of anarchy for matching congestion
games with a bipartite graph, two players and identity cost functions goes asymptot-
ically to 2− 1

p
= 3

2
when n goes to infinity.

Proof. Assume a bipartite graph G = (V1 ∪ V2, E), with |V1| = |V2| = n. The cost
functions are identity, therefore ce(xe) = xe ∀e ∈ E. We will give three examples,
namely for n = 5, n = 9 and n = 13 and use these examples to provide a general
example.
First, we give an example for n = 5, see Figure 4.1. It is easy to check that OPT a,
OPT b, NEa and NEb are the only perfect matchings in G(V,E).
Next, we show that the Nash condition holds for NE = (NEa, NEb). In Figure 4.1 in
NE the players have two edges in common and these edges have therefore cost 2.
Both players have three edges not in common and these edges have therefore cost
1. Consequently, the cost for each player in NE is equal to 7. The same cost for

17
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each player holds when player 1 switches to OPT a or to OPT b (note, when player 1
switches to NEb the cost for both players increases).

c1(NE) =
∑
e∈E

ce(xe(NE)) = 7

= c1(OPT
a, NE−1)

= c1(OPT
b, NE−1).

Because of symmetry, the same holds for c2(NE). This means that the Nash con-
ditions are fulfilled for strategy profile NE. The price of anarchy for this example
is:

PoA =
cost(NE)

cost(OPT )
=

∑2
i=1 ci(NE)∑2
i=1 ci(OPT )

=

∑2
i=1

∑
e∈NEi

ce(xe(NE))∑2
i=1

∑
e∈OPTi ce(xe(OPT ))

=
14

10
= 1.4

Figure 4.1: Lower bound example on the price of anarchy in a matching congestion
game for 2 players, n = 5

We use this lower bound example to show that the lower bound examples of match-
ing congestion games do not necessarily hold for n-uniform congestion games.

Observation 4.1.2. In Figure 4.2 two strategies are shown which players can choose
from if the example in Figure 4.1 is an n-uniform congestion game. It is easy to see
that, if for example player 1 chose NEa and player 2 chose NEb (see 4.1) and when
player 1 switches to strategy S ′′ or if player 2 switches to strategy S ′ (see Figure
4.2 for strategies S ′ and S ′′), the cost decreases of the player who switched strat-
egy. Therefore, in an n-uniform congestion game NE = (NEa, NEb) is no longer
a Nash equilibrium. Other strategies can be found with lower cost than (S ′′, NEb)
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and (NEa, S ′). Hence, a Nash equilibrium for a matching congestion game does not
necessarily hold for an n-uniform congestion game.

Figure 4.2: Example of two different strategies in an n-uniform congestion game,
where a player of the example in Figure 4.1 can switch to.

Next, we give an example with n = 9, see Figure 4.3. There are two perfect
matchings that are disjoint in the graph and two other perfect matchings that form a
Nash equilibrium (NE). These four matchings (OPT a,OPT b, NEa and NEb) are the
only perfect matchings in the graph. In NE the players have four edges in common,
which have therefore cost 2 and the players have five edges not in common, which
have therefore cost 1. So the total cost for each player in NE is equal to 13. The
same cost for each player holds when player 1 switches to OPT a or OPT b (note,
when player 1 switches to NEb the cost for both players increases).

c1(NE) =
∑
e∈E

ce(xe(NE)) = 13

= c1(OPT
a, NE−1)

= c1(OPT
b, NE−1)).

Because of symmetry the same holds for c2(NE). Hence, the Nash conditions hold
for strategy profile NE. The price of anarchy for Example 4.3 is as follows:

PoA =
cost(NE)

cost(OPT )
=

∑2
i=1 ci(NE)∑2
i=1 ci(OPT )

=

∑2
i=1

∑
e∈NEi

ce(xe(NE))∑2
i=1

∑
e∈OPTi ce(xe(OPT ))

=
26

18
=

13

9
≈ 1.444

Lastly, we give an example for n = 13, see Example 4.4. Again, the four matchings
(OPT a,OPT b, NEa and NEb) that are shown in the example are the only four possi-
ble matchings. This is still easy to check, because most nodes have a degree of two
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Figure 4.3: Lower bound example on the price of anarchy in a matching congestion
game for 2 players, n = 9

and therefore, if one edge is chosen, most other edges also need to be chosen to
form a perfect matching. In NE the players have six edges in common, which have
therefore cost 2. Both players have seven edges not in common and these edges
have therefore cost 1. Consequently, the cost for each player in NE is equal to 19.
Again the same cost hold for each player when player 1 switches to OPT a or OPT b

(note, when player 1 switches to NEb the cost for both players increases).

c1(NE) =
∑
e∈E

ce(xe(NE)) = 19

= c1(OPT
a, NE−1)

= c1(OPT
b, NE−1).

Because of symmetry the same holds for c2(NE). Therefore, the Nash conditions
hold for the strategy profile NE. The price of anarchy for this example is as follows:

PoA =
cost(NE)

cost(OPT )
=

∑2
i=1 ci(NE)∑2
i=1 ci(OPT )

=

∑2
i=1

∑
e∈NEi

ce(xe(NE))∑2
i=1

∑
e∈OPTi ce(xe(OPT ))

=
38

26
=

19

13
≈ 1.462
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Figure 4.4: Lower bound example on the price of anarchy in a matching congestion
game for 2 players, n = 13
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Subsequently, we will use the examples above as a base to provide a more general
example. The idea for these three examples is as follows: we want two perfect
matchings which are disjoint and two perfect matchings which form NE. When the
matchings of OPT are disjoint then both matchings of NE can have with both the
matchings in OPT a maximum of bnc edges in common. Because of the Nash
condition also the matchings in NE can have a maximum of bnc edges in common
with each other. In a matching congestion game with two players, eight nodes extra
(or |V1| = |V2| = n + 4) in the bipartite graph enables for both strategies in NE to
have two extra edges in common with both the matchings of OPT . Therefore, the
strategies in NE can also have two extra edges in common without violating the
Nash conditions. So with eight extra nodes the two strategies in NE can have two
extra edges in common such that one of those two edges is also used in one of
the strategies in OPT and the other is also used in the other strategy in OPT . We
define m such that when n increases with 4, m increases with 1 and when n = 5,
m = 1. This means that m := 1

4
(n−1). We define m this way because now a general

example can be given for which PoA is exact when m ∈ Z>0. Here below we show
that when n increases with 4, m increases with 1.

m(n+ 4)−m(n) =
1

4
(n+ 4− 1)− 1

4
(n− 1)

=
3

4
+

1

4
= 1

So we have:

m = 1 ⇔ n = 5

m = 2 ⇔ n = 9

m = 3 ⇔ n = 13

m = 4 ⇔ n = 17

...
...

Based on the pattern we detected in the three examples provide above, we created
a more general example, see Figure 4.5. This example holds for n = 4m + 1 with
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m ∈ Z>0. In this general example the total cost for OPT and for NE are as follows:

cost(OPT ) = 2n = 8m+ 2

cost(NE) =
2∑
i=1

((
n+ 3

4
− 1

)
+

(
3n+ 1

4
− 1−

(
n+ 1

2
− 1

)))
· 2

+
2∑
i=1

(
n−

(
n+ 3

4
− 1 +

3n+ 1

4
− 1−

(
n+ 1

2
− 1

)))
· 1

=
2∑
i=1

(
2n− 2

4
· 2
)

+
2∑
i=1

(
2n+ 2

4
· 1
)

=
2∑
i=1

(
2n− 2

2
+

2n+ 2

2

)

=
2∑
i=1

(
3n− 1

2

)
= 3n− 1

= 12m+ 2.

Therefore, a lower bound on the price of anarchy is as follows:

PoA =
12m+ 2

8m+ 2

⇒ lim
m→∞

PoA = lim
m→∞

12m+ 2

8m+ 2
=

12

8
=

3

2
.

When m = 1
4
(n−1) goes to infinity then the price of anarchy goes to 3

2
, which proves

Lemma 4.1.1.
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Figure 4.5: General lower bound example on the price of anarchy in a matching
congestion game for 2 players
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In this section we showed that the lower bound on the price of anarchy for two
players asymptotically goes to 3/2. For three or more players we were not able to
find an example which has an price of anarchy significantly higher than 1. When
we follow the two players example for p = 3 and n = 8 there are already over 100
different strategies which form a perfect matching.
In the next section, we will analyse the upper bound on the price of anarchy for two
players in bipartite graphs.

4.2 Upper bound on the PoA for two players

First, we introduce some extra notations that we use in the proofs to follow. Namely,
we denote by OPT = (S∗1 , S

∗
2) the optimal solution, and by NE = (S1, S2) the worst-

case Nash equilibrium. Where S∗i and Si are the strategies of player i in the optimal
solution and the worst-case Nash equilibrium respectively. Furthermore, we call
cost(NE) and cost(OPT ) the total cost of the worst Nash equilibrium and the opti-
mal solution respectively. Lastly, we denote by d∗ = |S∗1 ∩ S∗2 | the total overlap in
edges between S∗1 and S∗2 , and by d = |S1 ∩ S2| the total overlap in edges between
S1 and S2.
Now that we have set the notation we are going to investigate the upper bound on the
price of anarchy for two players in a matching congestion game with bipartite graph
G = (V1 ∪ V2, E) with |V1| = |V2| = n and with identity cost functions ce(xe) = xe, for
all e ∈ E.

Theorem 4.2.1. In a symmetric matching congestion game with two players, a bi-
partite graph G = (V1 ∪ V2, E) where |V1| = |V2| = n and identity cost functions, the
price of anarchy is at most 3

2
. Specifically,

PoA =
cost(NE)

cost(OPT )
≤ 3

2
− d∗

n+ d∗
.

Where d∗ equals the number of edges that are used by both players simultaneously
in the optimal solution.

Proof. We have a matching congestion game with a bipartite graph G = (V1∪V2, E),
two players and identity cost functions ce(xe) = xe, for all e ∈ E. The edges have
identity cost functions, therefore the cost for each of the two players using a common
edge is 2 for each of the common edges and the cost is 1 for all other edges. There
are d edges which are used by both players in NE and therefore n − d edges are
only used by one player. Note, this holds for both players. Summing the costs for
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both players, the total cost for NE is equal to,

cost(NE) =
2∑
i=1

(d · 2 + 1 · (n− d))

= 4d+ 2(n− d)

= 2n+ 2d

The same holds for cost(OPT ) only now the cost depends on d∗ in stead of d.

cost(OPT ) =
2∑
i=1

(2 · d∗ + 1 · (n− d∗))

= 4d∗ + 2(n− d∗)
= 2n+ 2d∗

We want to bound d from above in terms of d∗ and n, such that the price of anarchy
is also bounded from above in terms of d∗ and n. The cost of OPT is not higher than
the cost of any other strategy profile, by definition of an optimal solution. Hence, the
cost of OPT is not higher than the cost of NE.

cost(OPT ) ≤ cost(NE)

⇒ 2n+ 2d∗ ≤ 2n+ 2d

⇒ d∗ ≤ d

Because of the Nash condition the following holds:

d = |S1 ∩ S2| ≤ |S1 ∩ S∗1 |

Otherwise, player 2 could choose S∗1 in stead of S2. Because of symmetry, the same
argument holds for the following:

d ≤ |S1 ∩ S∗2 |
d ≤ |S∗1 ∩ S2|
d ≤ |S∗2 ∩ S2|

We define c1 := |S1 ∩ S∗1 ∩ S∗2 | and c2 := |S2 ∩ S∗1 ∩ S∗2 |. We know that c1 ≤ d∗ and
c2 ≤ d∗, because d∗ = |S∗1 ∩ S∗2 |. Furthermore, all strategies sets in G have n edges
and thus |S1| = |S2| = n. Therefore the following holds (see also Figure 4.6),

n ≥ |S1 ∩ S∗1 |+ |S1 ∩ S∗2 | − |S1 ∩ S∗1 ∩ S∗2 |
⇒ |S1 ∩ S∗1 |+ |S1 ∩ S∗2 | ≤ n+ c1. (4.1)
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Figure 4.6: Venn diagram of S1, S∗1 and S∗2

and,

n ≥ |S2 ∩ S∗1 |+ |S2 ∩ S∗2 | − |S2 ∩ S∗1 ∩ S∗2 |
⇒ |S2 ∩ S∗1 |+ |S2 ∩ S∗2 | ≤ n+ c2 (4.2)

As mentioned above, d ≤ |Si ∩S∗j | for all i, j ∈ {1, 2}, if we now sum over i and j we
get the following,

4d ≤ |S1 ∩ S∗1 |+ |S1 ∩ S∗2 |+ |S2 ∩ S∗1 |+ |S2 ∩ S∗2 |
≤ c1 + n+ c2 + n (4.3)

≤ 2d∗ + 2n (4.4)

⇒ d ≤ 1

2
d∗ +

1

2
n. (4.5)

The inequality in 4.3 holds because of 4.1 and 4.2. The inequality of 4.4 holds
because c1 ≤ d∗ and c2 ≤ d∗ as mentioned earlier. We showed that d is bounded
from above in terms of d∗ and n. Therefore, cost(NE) is bounded in terms of d∗ and
n as follows:

cost(NE) = 2n+ 2d

≤ 2n+ 2(
1

2
d∗ +

1

2
n)

= 3n+ d∗.

We used 4.5 for the inequality above. This means that for two players the price of
anarchy is:
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PoA =
cost(NE)

cost(OPT )
≤ 3n+ d∗

2(n+ d∗)

=
3n+ 3d∗ − 2d∗

2(n+ d∗)

=
3

2
− 2d∗

2(n+ d∗)

=
3

2
− d∗

n+ d∗

Because n and d∗ are nonnegative we see in the last equality that PoA is maximized
when d∗ = 0, therefore, PoA is bounded from above by 3

2
. This proves Theorem

4.2.1.

4.3 Upper bound on the PoA for p players

For finding an upper bound on the price of anarchy for matching congestion games
with p players with a given bipartite graph and identity cost functions we start with
using the same steps as for two players. Only now OPT = (S∗1 , S

∗
2 , . . . , S

∗
p) an

optimal strategy profile and NE = (S1, S2, . . . , Sp) the worst-case Nash equilibrium.
We start with finding the cost for a strategy profile S, then we bound this cost by n
and d∗. Where d∗ is now the sum of the intersections of every pair of strategies S∗i
and S∗j (∀i 6= j ∈ P ) in the strategy profile OPT .

d∗ = |S∗1 ∩ S∗2 |+ |S∗1 ∩ S∗3 |+ . . .+ |S∗p−1 ∩ S∗p |

=
∑
i<j
i,j∈P

|S∗i ∩ S∗j |

Subsequently, we find an upper bound on the price of anarchy in terms of n, p and
d∗.
We start with the cost of a strategy profile S. Because of the identity cost function
every edge that is used by r players has cost r2. First, in S every player i uses n
edges in the strategy Si and therefore

p∑
i=1

|Si| = pn (4.6)

This is the total cost only if there is no edge which is used by more than one player.
Because if for example an edge is used in both Si and in Sj the cost of this edge
is equal to 2 in 4.6. However, the cost of edges used by two players, is equal to
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22 = 4. So when the cost of a strategy S is equal to pn, the cost of an edge which
is used by r players is only equal to r in stead of r2. This is only correct if there is
no overlap between the strategies of the players. However, if there is some overlap
of edges between the strategies of different players this cost function is not correct.
We observe that the cost function of a strategy profile S is as follows:

Lemma 4.3.1. In a matching congestion game with identity cost functions and strat-
egy profile S the total cost for all players is equal to:

cost(S) = pn+ 2ds

Where, ds is the sum of the intersections of every pair of strategies Si and Sj (∀i 6=
j ∈ P ) in the strategy profile S = (S1, S2, . . . , Sp).

ds = |S1 ∩ S2|+ |S1 ∩ S3|+ . . .+ |Sp−1 ∩ Sp|

=
∑
i<j
i,j∈P

|Si ∩ Sj|

.

Proof. We prove this by checking the cost of the edges which are used by r players.
Note that the cost of those edges should be equal to r2. In

∑p
i=1 |Si| = pn an edge

e which is used by r players is counted r times with cost 1 and therefore, this edge
has cost r. However, the cost of e in 2ds has to be added. There are

(
r
2

)
pairs of

intersections of the r strategies in ds with cost 2. When we sum the cost of e in pn

and 2ds we see that it is exactly equal to r2, which is required.

r + 2 ·
(
r

2

)
= r + 2 · r!

(r − 2)!2!

= r +
r(r − 1)(r − 2)!

(r − 2)!

= r + r(r − 1)

= r + r2 − r
= r2

This means that the cost of S is as follows,

cost(S) = |S1|+ |S2|+ . . .+ |Sp|+ 2|S1 ∩ S2|+ . . . 2|Sp−1 ∩ Sp|
= pn+ 2ds.

This proves Lemma 4.3.1.
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We know that in case of a Nash equilibrium, the cost will be cost(NE) = pn+ 2d

and in case of an optimum solution, the cost will be cost(OPT ) = pn + 2d∗. Next,
d needs to be bounded from above by the terms d∗, n and p, such that the upper
bound on the price of anarchy is also bounded from above by d∗, n and p.

Lemma 4.3.2. d is bounded from above by d∗, n and p:

d ≤ p− 1

2
n+

1

p
(2p−1 − 1)d∗

Proof.

d =
∑
i<j

i,j∈1,...,p

|Si ∩ Sj| (4.7)

d∗ =
∑
i<j

i,j∈1,...,p

|S∗i ∩ S∗j |

Because of the Nash condition we know that in a Nash equilibrium when one player
changes its strategy Si to any other strategy, the cost of player i must be at least as
high as its cost when choosing strategy Si. When player 1 switches from strategy S1

to strategy S∗1 means that the following must hold:

|S1 ∩ S2|+ |S1 ∩ S3|+ . . .+ |S1 ∩ Sp| ≤ |S∗1 ∩ S2|+ |S∗1 ∩ S3|+ . . .+ |S∗1 ∩ Sp|

The same is true for every strategy in NE that is changed to any strategy in OPT :∑
j∈−i

|Si ∩ Sj| ≤
∑
j∈−i

|S∗k ∩ Sj|, ∀ i, k ∈ P (4.8)

Because i, k ∈ {1, . . . , p}, there are p2 such inequalities. We define a term of d
(with d defined in 4.7) as |Si ∩ Sj| with i < j and i, j ∈ P . Every element of d in
4.8 occurs twice for every k ∈ {1, . . . , p} on the left hand side, namely for player i
and also for player j. Therefore, in total every term of d occurs 2p times. On the
right hand side of the inequalities, every cardinality of the intersection of a strategy
of NE with a strategy of OPT occurs (p − 1) times. This is true, because from the
p2 inequalities, one times a player i switches from strategy Si to strategy S∗k , ∀k ∈ P
and the cardinality of |S∗k∩Sj| occurs on the right hand sight (p−1) times. The minus
one comes from the fact that in the inequality where player j switches to S∗k there is
no |S∗k ∩ Sj| term on the right hand side. Therefore, the following holds:

⇒ 2pd ≤ (p− 1)
∑
k∈P

∑
j∈P

|S∗k ∩ Sj|

⇒ 2pd

p− 1
≤
∑
k∈P

∑
j∈P

|S∗k ∩ Sj| (4.9)
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Furthermore, we know that |Si| = n ∀i ∈ P . Therefore, the sum of the intersections
of Si with every other matching of OPT minus the edges that are counted multiple
times, is bounded from above by n:

n ≥
∑
j∈P

|Si ∩ S∗j | −
∑
j<k

|Si ∩ S∗j ∩ S∗k |+
∑
j<k<l

|Si ∩ S∗j ∩ S∗k ∩ S∗l | − . . .

(−1)p−1|Si ∩ S∗1 ∩ S∗2 ∩ . . . ∩ S∗p |, ∀ i ∈ 1, . . . , p

⇒
∑
j∈P

|Si ∩ S∗j | ≤ n+
∑
j<k

|Si ∩ S∗j ∩ S∗k | − . . . (4.10)

(−1)p|Si ∩ S∗1 ∩ S∗2 ∩ . . . ∩ S∗p |, ∀ i ∈ 1, . . . , p

If we now take the sum over all i ∈ P on the left side of (4.10) we get the same as
the right side of (4.9). Furthermore, a plus term of intersections on the right side
of (4.10) is smaller equal than the term with one of those intersections less. For
example,

|Si ∩ S∗j ∩ S∗k | ≤ |S∗j ∩ S∗k |.

The term on the right side of the inequality is a part of d∗. For all plus parts on the
right side of 4.10 holds that it is smaller or equal to a part of d∗. The total number of
those plus parts is, (

p

2

)
+

(
p

4

)
+

(
p

6

)
+ . . .

Using the sum of the binomial coefficients, we know that:

(1 + x)p =

(
p

0

)
+

(
p

1

)
x+

(
p

2

)
x2 + . . .+

(
p

p

)
xp

(1− x)p =

(
p

0

)
−
(
p

1

)
x+

(
p

2

)
x2 + . . . (−1)p

(
p

p

)
xp

Adding these two equation together and setting x = 1, we get:

(1 + x)p + (1− x)p = 2[

(
p

0

)
+

(
p

2

)
x2 +

(
p

4

)
x4 + . . .]

⇒ 2p = 2[

(
p

0

)
+

(
p

2

)
+

(
p

4

)
+ . . .]

⇒ 2p−1 =

(
p

0

)
+

(
p

2

)
+

(
p

4

)
+ . . .

⇒ 2p−1 − 1 =

(
p

2

)
+

(
p

4

)
+

(
p

6

)
+ . . .
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So we have 2p−1 − 1 parts of d∗, and d∗ consist of
(
p
2

)
parts. So putting everything

together using 4.9, 4.10 and that the total sum of the plus parts in 4.10 on the right
side is smaller equal to 2p−1−1

(p
2)

d∗ with all the negative terms in (4.10) set to 0, we get:

2pd

p− 1
≤
∑
k∈P

∑
j∈P

|S∗k ∩ Sj| ≤ pn+ pd∗
2p−1 − 1(

p
2

)
= pn+

p

(p·(p−1)·(p−2)!
(p−2)!·2 )

d∗(2p−1 − 1)

= pn+
2

p− 1
d∗(2p−1 − 1)

= pn+
1

p− 1
d∗(2p − 2)

⇒ d ≤ p− 1

2

(
n+

1

p(p− 1)
(2p − 2)d∗

)
=
p− 1

2
n+

1

p
(2p−1 − 1)d∗

This proves Lemma 4.3.2.

Now that d is bounded in terms of d∗ and n and p, we can calculate an upper
bound on the price of anarchy.

Theorem 4.3.3.

PoA =
cost(NE)

cost(OPT )
≤ 2 +

1
p
(2p − 4p− 2)d∗ − n

pn+ 2d∗

Proof. Using Lemma 4.3.2, the cost of NE is:

cost(NE) = pn+ 2d

≤ pn+ 2(
p− 1

2
n+

1

p
(2p−1 − 1)d∗)

= pn+ pn− n+
1

p
(2p − 2)d∗

= (2p− 1)n+
1

p
(2p − 2)d∗

The cost of OPT is as follows:

cost(OPT ) = pn+ 2d∗
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Therefore the price of anarchy is:

PoA =
cost(NE)

cost(OPT )
≤

(2p− 1)n+ 1
p
(2p − 2)d∗

pn+ 2d∗

=
2pn+ 4d∗ + 1

p
(2p − 2)d∗ − 4d∗ − n
pn+ 2d∗

= 2 +

1
p
(2p − 4p− 2)d∗ − n

pn+ 2d∗

Which proves Theorem 4.3.3.

Unfortunately, this bound is not very useful for the general case, because of the
2p term. However, it does immediately result in an upper bound on the price of anar-
chy for 2, 3, 4 players and when no player in the optimal strategy share an edge with
another player, i.e. d∗ = 0.

Theorem 4.3.4. If there exists a solution where no player uses the same edge as
another player in an optimal solution, i.e. d∗ = 0, then the price of anarchy in a
matching congestion game with identity cost functions is bounded from above by

PoA =
cost(NE)

cost(OPT )
≤ 2− 1

p
.

Proof. Using Theorem 4.3.3 and with d∗ = 0 the proof immediately yields.

PoA =
cost(NE)

cost(OPT )
≤ 2 +

1
p
(2p − 4p− 2)d∗ − n

pn+ 2d∗

= 2− n

pn

= 2− 1

p
.

Now we state four theorems, each for a different number of players. In these
theorems no assumption about d∗ is made.

Theorem 4.3.5. In a matching congestion game with two players and with identity
cost functions the price of anarchy is bounded from above by

PoA =
cost(NE)

cost(OPT )
≤ 3

2
.
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Proof. Using Theorem 4.3.3 and set p = 2 we get

PoA =
cost(NE)

cost(OPT )
≤ 2 +

1
p
(2p − 4p− 2)d∗ − n

pn+ 2d∗

= 2 +
1
2
(22 − 4 · 2− 2)d∗ − n

2n+ 2d∗

= 2 +
1
2
· (−6)d∗ − n
2n+ 2d∗

= 2− n+ 3d∗

2n+ 2d∗

= 2− (n+ d∗) + 2d∗

2n+ 2d∗

= 2− 1

2
− 2d∗

2n+ 2d∗

=
3

2
− d∗

n+ d∗

≤ 3

2

The last inequality holds, because n, d∗ ≥ 0.

Theorem 4.3.6. In a matching congestion game with three players and with identity
cost functions the price of anarchy is bounded from above by

PoA =
cost(NE)

cost(OPT )
≤ 5

3
.

Proof. Using Theorem 4.3.3 and set p = 3 we get

PoA =
cost(NE)

cost(OPT )
≤ 2 +

1
p
(2p − 4p− 2)d∗ − n

pn+ 2d∗

= 2 +
1
3
(23 − 4 · 3− 2)d∗ − n

3n+ 2d∗

= 2− 2d∗ + n

3n+ 2d∗

= 2−
(n− 2

3
d∗)− 4

3
d∗

3n+ 2d∗

=
5

3
−

4
3
d∗

3n+ 2d∗

≤ 5

3

The last inequality holds, because n, d∗ ≥ 0.

Theorem 4.3.7. In a matching congestion game with four players and with identity
cost functions the price of anarchy is bounded from above by

PoA =
cost(NE)

cost(OPT )
≤ 7

4
.
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Proof. Using Theorem 4.3.3 and set p = 4 we get

PoA =
cost(NE)

cost(OPT )
≤ 2 +

1
p
(2p − 4p− 2)d∗ − n

pn+ 2d∗

= 2 +
1
4
(24 − 4 · 4− 2)d∗ − n

4n+ 2d∗

= 2−
1
2
d∗ + n

4n+ 2d∗

= 2− 1

4

=
7

4

We see that this upper bound on the price of anarchy for four players does not
depend on n or d∗.
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Chapter 5

Computation time of optimal
solutions and Nash equilibria in
bipartite graphs

In this chapter we prove that the computation time of finding an optimal solution in a
symmetric matching congestion game can be done in polynomial time. We do this
by using the idea of Fabrikant et al. [9]. They reduced the problem of finding an
optimal solution of a symmetric network congestion game to a minimum-cost flow
problem. However, instead of a network congestion game, we reduce the problem of
finding an optimal solution of a matching congestion game to a minimum-cost flow
problem. We also prove that every optimal solution in these problems is always a
Nash equilibrium and hence, a Nash equilibrium can be found in polynomial time.
Call the problem of finding an optimal solution in symmetric matching congestion
games with a given bipartite graph G = (V1 ∪ V2, E) with |V1| = |V2| = n and identity
cost functions, ΠOPT . We state the following lemma:

Lemma 5.0.1. Solving ΠOPT can be done in polynomial time.

Proof. To prove this we reduce an instance of ΠOPT to an instance of a min-cost flow
problem. There are multiple algorithms known that solve an instance of a min-cost
flow problem in polynomial time and therefore it will also solve an instance of ΠOPT in
polynomial time. A min-cost flow problem consist of a network graph G(V flow, Eflow)

with a source node and a sink node, such that flow can go from the source node to
the sink node. All edges have a cost function ak with k ∈ Eflow.
ΠOPT contains a bipartite graph G(V1 ∪ V2, E) and the cost functions are identity,
so ce(xe) = xe, ∀e ∈ E. To transform an instance of ΠOPT to an instance of the
min-cost flow problem, we first replace every edge e ∈ E by p parallel edges. This
means that edge e is now replaced by {e1, e2, . . . , ep}, see Figure 5.1b. The capacity
of these edges are 1 and with non-decreasing cost aei in i, which we define as

37
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(a) A bipartite graph
G(V1 ∪ V2, E)

(b) Replacing every
edge e ∈ E by p

edges (here p =

2)

(c) Adding a source node si and a
sink node ti for every player i ∈
P with edges to every u ∈ V1

and v ∈ V2 respectively.

(d) Adding an s and t node connecting with every si and ti respectively.
All the arcs are directed from left to right

Figure 5.1: Transformation of an instance of ΠOPT to a min-cost flow network

ae(i) := i2 − (i− 1)2 = 2i− 1 with i ∈ P . So the following holds,

ae1 ≤ ae2 ≤ . . . ≤ aep ∀ e ∈ E.

Next, we add a source node, si, and a target node, ti, for every player i ∈ P . Every
source node si is connected with every node v ∈ V1 and every target node ti is
connected with every node v ∈ V2. These edges have capacity 1 and zero cost, see
Figure 5.1c. Lastly, we add a super source node s which is connected with every
source node si ∀i ∈ P and a super target node t which is connected with every
target node ti ∀i ∈ P . These edges have capacity n and also zero cost, see Figure
5.1d.

To make sure there are p perfect matchings in Π, the required flow from s to t is
equal to np. Furthermore, the required flow from s to every si is equal to n ∀i ∈ P
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. Same holds for every flow from ti to t. However, this is redundant because of the
capacity constraints and the required flow from s tot t. We define the ingoing and
outgoing arcs of a node v as follows:

δin(v) = ingoing arcs of node v

δout(v) = outgoing arcs of node v

Minimizing over the total cost gives the following integer program:

min
∑
e∈E

∑
i∈P

aei · fei

s.t. f(u, v) ≤ 1 ∀u ∈ V1, v ∈ V2 (capacity constraints)

f(si, v) ≤ 1 ∀i ∈ P, v ∈ V1 (capacity constraints)

f(v, ti) ≤ 1 ∀i ∈ P, v ∈ V2 (capacity constraints)∑
e∈δin(v)

f(e) =
∑

e∈δout(v)

f(e) ∀v 6= s, t (Flow conservation)

∑
e∈δout(s)

f(e) = n · p (required flow)

This program can be seen as a min-cost flow program and the optimal solution can
be computed in polynomial time by known minimum-cost flow algorithms. A solution
to this program will give the total minimum cost with the corresponding flow over
every edge. The sum of fei over all players i and is equal to the number of players
using edge e ∈ E, so

∑
i∈P fei = xe. Because of the capacity and the required flow

constraints we have p perfect matchings on the nodes in V1 ∪ V2. We can ignore the
edges from s to si ∀i ∈ P and the edges from every node si to all the nodes in V1

and also we can ignore the edges from nodes in V2 to every node ti and the edges
from every node ti to t, because those edges have zero cost and therefore it does
not matter how many players use these edges for the solution of ΠOPT . Next, we
only have to show that the cost of the edges ei summed over all i ∈ P is equal to
the cost of edge e ∈ E. If there is a flow of q players on edges e1 ∪ e2 ∪ . . . ∪ ep then
we show that

∑
ei
aei · fei = x2e = q2. Because of the non-decreasing cost functions

in i of the edges, in an optimal solution only the first q edges will be used, therefore
fek = 0 for k ∈ {q + 1, . . . , p} and fek = 1 for k ∈ {1, 2, . . . , q) because of the capacity
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constraints. This means

∑
k∈P

aek · fek =

q∑
k=1

aek · fek +

p∑
k=q+1

aek · fek

=

q∑
k=1

(2k − 1) · 1 +

p∑
k=q+1

(2k − 1) · 0

=

q∑
k=1

(2k − 1)

= 2 ·
q∑

k=1

k −
q∑

k=1

1

= 2(
q

2
(q + 1))− q

= q2.

All together, this means that an optimal solution to this transformed instance yields
an optimal solution of the original problem ΠOPT .

Lemma 5.0.2. An optimal solution of a matching congestion game with identity cost
functions is always a Nash equilibrium.

Proof. Let S∗ be an optimal solution in a matching congestion game. For the sake
of a contradiction assume, S∗ is not a Nash equilibrium. This means that there is
a player, say player i, that has an incentive to switch from strategy S∗i to another
strategy, say Si, with S∗i , Si ∈ Si. Then the cost of player i in the strategy profile
S∗ must be strictly larger than the cost of player i when switching to strategy Si;
ci(S

∗) > ci(Si, S
∗
−i) . Furthermore, S∗ is an optimal solution, meaning that the total

cost of S∗ is not higher than the total cost when player i switches to strategy Si;
cost(S∗) ≤ cost(Si, S

∗
−i) ∀ Si ∈ Si. Define Y ∗ := S∗i \Si, all the edges that player i

uses in S∗i but not in Si and define Y := Si\S∗i , all the edges that player i uses in
Si, but did not use in S∗i . The total number of edges in each strategy is the same,
because a strategy in a matching congestion game must contain a perfect matching
and therefore, |Y ∗| = |Y |. We know, because of the identity cost functions that:

cost(S∗) =
∑
e∈E

x2e(S
∗)

Only player i changes its strategy, therefore cost(Si, S∗−i) only differ from cost(S∗) on
the edges in Y ∗ and in Y . The cost of the edges in Y ∗ changes from

∑
e∈Y ∗ x

2
e(S

∗)

to
∑

e∈Y ∗(xe(S
∗) − 1)2 and the cost of the edges in Y changes from

∑
e∈Y x

2
e(S

∗) to
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∑
e∈Y (xe(S

∗) + 1)2. So,

cost(Si, S
∗
−i) = cost(S∗) +

(∑
e∈Y ∗

(xe(S
∗)− 1)2 −

∑
e∈Y ∗

x2e(S
∗)

)
+(∑

e∈Y

(xe(S
∗) + 1)2 −

∑
e∈Y

x2e(S
∗)

)
= cost(S∗) +

∑
e∈Y ∗

(x2e(S
∗)− 2xe(S

∗) + 1− x2e(S∗)) +∑
e∈Y

(x2e(S
∗) + 2xe(S

∗) + 1− x2e(S∗))

= cost(S∗)−
∑
e∈Y ∗

(2xe(S
∗)− 1) +

∑
e∈Y

(2xe(S
∗) + 1).

As stated above, cost(Si, S∗−i) ≥ cost(S∗) this means that:∑
e∈Y

(2xe(S
∗) + 1)−

∑
e∈Y ∗

(2xe(S
∗)− 1) ≥ 0

⇒ 2
∑
e∈Y

xe(S
∗) + |Y | − 2

∑
e∈Y ∗

xe(S
∗) + |Y ∗| ≥ 0

⇒
∑
e∈Y

xe(S
∗) + |Y | −

∑
e∈Y ∗

xe(S
∗) ≥ 0 (|Y ∗| = |Y |) (5.1)

Furthermore, the cost ci(Si, S∗−i) only differ from ci(S
∗) in the edges in Y ∗ and in Y ,

because those are the only edges that change for player i.

ci(Si, S
∗
−i) = ci(S

∗)−
∑
e∈Y ∗

xe(S
∗) +

∑
e∈Y

(xe(S
∗) + 1)

We know, as stated above that c(S∗i ) > c(Si). It follows that:∑
e∈Y

(xe(S
∗) + 1)−

∑
e∈Y ∗

xe(S
∗) < 0

⇒
∑
e∈Y

xe(S
∗) + |Y | −

∑
e∈Y ∗

xe(S
∗) < 0 (5.2)

Comparing (5.1) and (5.2) we see that we have a contradiction. No player can
switch to a strategy with lower cost without lowering the total cost. This means that
for S∗ the Nash condition holds, hence S∗ is a Nash equilibrium. This proves Lemma
5.0.2.

Finally, we proof that a Nash equilibrium in a symmetric matching congestion
game can be computed in polynomial time.

Lemma 5.0.3. A Nash equilibrium of a symmetric matching congestion game with
identity cost functions can be computed in polynomial time.
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Proof. Lemma 5.0.1 shows that an optimal solution of a symmetric matching con-
gestion game can be computed in polynomial time. Moreover, Lemma 5.0.2 shows
that an optimal solution of a symmetric matching congestion game with identity cost
functions is always a Nash equilibrium. Hence, a Nash equilibrium of a symmetric
matching congestion game with identity cost functions can be computed in polyno-
mial time.

We proved that a Nash equilibrium and an optimal solution of a matching con-
gestion game with a bipartite graph and identity cost functions can be computed in
polynomial time. However, this does not mean that we always have the worst Nash
equilibrium and therefore we cannot claim to be able to compute the price of anarchy
in polynomial time.



Chapter 6

Conclusions and recommendations

6.1 Conclusions

In this research, the price of anarchy of symmetric matching congestion games with
identity cost functions was studied. We showed in Chapter 3 that the price of anar-
chy for symmetric n-uniform congestion games with identity cost functions is always
equal to 1. Matching congestion games are not a subclass of n-uniform congestion
games as players do choose a strategy with n resources, however the resources of
every strategy need to form a perfect matching and therefore not every subset of n
resources is available for a player. Hence, the price of anarchy of 1 for n-uniform
congestion games does not hold for matching congestion games.
We studied the price of anarchy when the underlying graph G is a bipartite graph.
We showed that the price of anarchy for two players is tight and equal to 3/2. For
three and four players the upper bound is equal to 2 − 1/p too, however we were
not able to find a lower bound example which has a price of anarchy significantly
higher than 1. A lower bound example for three or more players was harder than
expected. When following the example for two players, small examples (n = 8) al-
ready have over 100 perfect matchings. We also could not find a better upper bound
for five or more players better than the bound of 5p−2

2p+1
, which is the upper bound by

Cristodoulou and Koutsoupias [3].
We also studied the price for anarchy of symmetric congestion games with identity
cost functions when there exists a solution where no player shares a resource (‘dis-
joint optimal solution’). We proved that an upper bound on the price of anarchy for
this special case is indeed 2− 1/p. For the lower bound we could use the same ex-
amples as for the general situation, where there does not necessarily exist a disjoint
optimal solution. In these lower bound examples a disjoint optimal solution exists,
hence these lower bound examples also hold for the special case. The bound is
only tight for two players, however.
In Chapter 5, we proved that an optimal solution of a symmetric congestion game
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with identity cost functions with a given bipartite graph, is always a Nash equilibrium.
Furthermore, we used the idea of Fabrikant et al. [9] and transferred it to matching
congestion games. The idea of Fabrikant et al. that is reducing the problem of find-
ing a socially optimal solution in a symmetric network congestion game to a min-cost
flow problem. Using this reduction we showed that an optimal solution and hence,
a Nash equilibrium, can be computed in polynomial time for matching congestion
games.

6.2 Recommendations

We tried to prove a better upper bound with five and more players by using a
quadratic program. We looked at the proof of Christodoulou and Koutsoupias [3], us-
ing the LP we tried to find different values of µ and λ than µ = p−1

3p
and λ = 5p−2

3p
which

were used in their proof. They found that cost(NE) ≤ p−1
3p
cost(NE)+ 5p−2

3p
cost(OPT ),

which results in the upper bound of PoA ≤ 5p−2
2p+1

. We specifically tried to find differ-
ent coefficients λ and µ, such that the price of anarchy would be lower by using a
quadratic program with an objective of (1 − µ)cost(NE) − λcost(OPT ) for a given
value of µ and λ. We used p, n, λ and µ as input. However, as we proved in Chapter
3 without modeling the fact that strategies must be perfect matchings, the price of
anarchy is always equal to 1. Therefore, such an approach might only work if a given
bipartite graph is used. When using such an approach for different examples of bi-
partite graphs and for different p, n, λ and µ there are too many cases to enumerate
over to get an idea of some λ and µ that might give a lower price of anarchy. As the
program is quadratic, this is too time consuming.
It might be more interesting to study symmetric matching congestion games with
affine cost functions, which is a natural expansion. We found an example for two
players which also has a price of anarchy of 2 − 1/p = 3/2, see Figure 6.1. There,
every thick edge has cost axe and every dotted edge has cost 1.

cost(OPT ) = cost(OPT a, OPT b) = 4a+ 6

cost(NE) = cost(NEa, NEb) = 22a+ 2a+ 5 = 6a+ 5

cost(OPT a ∩NEa) = cost(OPT a ∩NEb)

= cost(OPT b ∩NEa)

= cost(OPT b ∩NEb)

= 22a+ 2a+ 5 = 6a+ 5

⇒ PoA =
cost(OPT )

cost(NE)
=

6a+ 5

4a+ 6

The price of anarchy goes to 3/2 when a→∞.
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Figure 6.1: Example of symmetric matching congestion game with affine cost func-
tions with a price of anarchy equal to 3/2

Another direction which is interesting to study, is asymmetric matching congestion
games, because an upper bound would also yield the same bound for the symmetric
case.
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combinatorial structure on congestion games. Journal of the ACM, 55(6), 2008.

[2] Ioannis Caragiannis, Michele Flammini, Christos Kaklamanis, Panagiotis
Kanellopoulos, and Luca Moscardelli. Tight bounds for selfish and greedy load
balancing. Algorithmica (New York), 61(3):606–637, 2011.

[3] George Christodoulou and Elias Koutsoupias. The price of anarchy of finite
congestion games. In STOC’05: Proceedings of the Annual ACM Symposium
on Theory of Computing, Baltimore MD USA, May22-24, pages 67–73, 2005.
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