
BSc Thesis Applied Mathematics
& Applied Physics

Model Reduction of Transport
Phenomena with Kernel
Principal Component Analysis

Erik Leering

Supervisor: S. Glas

July 19, 2022

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

I want to thank Silke Glas for her guidance and contributions to the research. Our conver-
sations were long, interesting and fruitful and I am thankful for your help in the pursuit of
an ambitious thesis. Furthermore I would like to thank Jeroen Verschuur for his flexibility
and his help in the communication with Applied Physics and Bernard Geurts for joining
my examination committee on such a short notice.

Model Reduction of Transport Phenomena
with Kernel Principal Component Analysis

E. Leering∗

July 19, 2022

Abstract

Plasma, to be understood as ionized gas, is part of many physical instruments and
plays a major role in nuclear fusion [3]. Accurate simulations involving plasmas are
computationally expensive. To perform analysis on the behaviour of plasma under
varying parameters, Model Order Reduction (MOR) is desired. In this research, I
aim to perform MOR with the use of kernel Principal Component Analysis (kPCA).
To this end, I explain the workings behind kPCA and Proper Symplectic Decomposi-
tion (PSD), which is a necessary tool in the conservation of the symplectic structure
generally found in plasma. Lastly, I apply a kPCA-derived Reduced Order Model
(kPCA-ROM) on plasma with a linear Hamiltonian and a non-linear Hamiltonian and
compare the results with a PSD-ROM.

Keywords: model,reduction,MOR,kPCA,PCA,kernel,Dynamical,System,Plasma,Vlasov,
SDEIM,PSD,

1 Introduction

Plasmas occur in many applications and real-time simulations and predictions must be
made to control plasma in certain scenarios. The applications vary from neon tubes and
plasma displays to industrial applications such as amplifiers in telecommunication satellites
and production of X-rays. The main motivational application for this research case is
in controlled thermonuclear fusion [3], which only occurs on earth inside a hot plasma.
The so-called magnetic confinement fusion method relies on confining the plasma with a
magnetic field for a reasonable time. To that end, it is important that one can simulate
and control the plasma. MOR helps in the computability of plasma simulations. The most
popular Full Order Model (FOM) is the Particle In a Cell (PIC) method which simulates
every particle. In a real plasma, such a simulation would take 1010 and more particles [3].
kPCA, which is an extension to the well-known method of Principal Component Analysis
(PCA), is known to reduce the dimensions of non-linear data to only a fraction of the
original dimensions [4]. With less components to simulate, the computational cost should
decrease and viable real-time simulations can be performed. This thesis is outlined as
follows: first, I explain the general workings of PCA. Then I extend the theory to kPCA.
After that I describe the symplectic structure of certain Hamiltonian systems and how to
perform PSD on linear as well as non-linear systems. then I attempt to find a unification
of kPCA with PSD. I describe the Hamiltonian system of a simple plasma and use that
and my previous findings to produce a ROM and compare the ROM produced using kPCA

∗Email: e.leering@student.utwente.nl

1

with the ROM produced using PSD. Finally I reflect on my findings. In the appendix one
can find two toy models that I used to learn these methods, one being a recreation of the
paper written by García-González et al. [4], another being a simple pendulum example.

2 Principal Component Analysis (PCA)

The goal of PCA is to find a linear subspace of the data that explains as many of the
features as possible. This is done by taking those dimensions that maximize the variance.
Then one can possibly project the data unto this linear subspace.

Figure 1: Example of a linear subspace found by PCA. [7]

Let the data considered be X =
[
x1 x2 ... xns

]
∈ Rd×ns , where {xi} represent ns

samples in Rd, d being the dimension of one sample. As García-González et al. demonstrate
perfectly in their work [4], there are two ways of performing PCA on the data.

2.1 Covariance Matrix method

The first method takes the covariance matrix C ∈ Rd×d defined by C = XXT . One then
diagonalizes this matrix,

C = U ′ΛU ′T , (1)

where Λ ∈ Rd×d is the diagonal matrix of eigenvalues and U ′ ∈ Rd×d is the matrix of
corresponding eigenvectors. The eigenvalues are sorted from large to small. MOR can
be performed as follows: one takes the first k eigenvalues and the first k corresponding
columns of eigenvectors of U ′, U = U ′[:, : k]1. The columns of U ′ form an orthonormal
basis in Rd [4], and the data can be projected to this basis as Z = UTX, Z ∈ Rk×ns .
Equivalently, one element can be mapped as z = UTx.

1Here I use Python or MATLAB notation for matrix elements

2

2.2 Gram Matrix method

Alternatively one can consider the ns × ns Gram matrix G = XTX. Instead of straight-
forward diagonalization, one performs Singular Value Decomposition (SVD) on the data,

X = U ′ΣV ′T , (2)

with the same U ′ as before and V ′ being a ns × ns unit matrix. Σ is a d × ns diagonal
matrix of singular values of X. The singular values {σi} relate to the eigenvalues {λi} of
C as σ2

i = λi, i = 1, ..., d. The SVD therefore also gives the diagonalization of C. More
importantly, the SVD gives a diagonalization of the Gram matrix G [4]:

G = V ′Λ̃V ′T . (3)

Here Λ̃ is an ns×ns diagonal matrix of which the only d nonzero values are those of Λ. Once
more the singular values can be sorted from large to small and dimensionality reduction
can be achieved by taking only the first k singular values and the first k corresponding
columns of matrix V ′ : V = V ′[:, : k]. The data can now be projected as

Z = V TG, (4)

z = V T g. (5)

Here z represents one single element in reduced space, g is one column of G. Furthermore,
the reduced data Z can be mapped back as

X ≈ UZ. (6)

The methods 2 can be summarized as follows:

Covariance method Gram method
C = XXT G = XTX
C = U ′ΛU ′T X = U ′ΣV ′T

U = U ′[:, : k] V = V ′[:, : k]
Z = UTX Z = V TG

To introduce and map one new data sample x∗ to reduced space using the Gram matrix
method, one can construct a single column vector like those of G and map it the same way
using V :

g∗ = XTx∗, (7)

z∗ = V T g∗. (8)

3 kernel-PCA

Although PCA described in the previous section is a powerful tool, it fails to find any
dimensionality reduction when the data is non-linear. Therefore we extend the methods of
PCA to kernel-PCA. The main difference between regular PCA and kPCA is that kPCA
first tries to project the data to a high dimensional space, in the hopes that the nonlinear
features of the data ’untangle’. Then, regular dimension reduction can be applied in order
to reduce the data. This way, a significant order reduction is achieved even for nonlinear

2Interestingly, the covariance matrix method and the Gram matrix method for projecting the data are
equivalent [4].

3

data. One other difference is that PCA works by either diagonalizing the covariance matrix
C or the Gram matrix G, while kPCA requires the construction of G specifically.

The actual mapping of our data to a high dimensional space where it ’untangles’ is
usually unknown. Luckily, this mapping is not required directly. Since it is the Gram
matrix G that is diagonalized to give us the main features (eq. 3), we need only construct
G, without actually mapping the data. To this end, we implement a method of constructing
G so that it has the same form as if it were constructed using data projected to a higher
dimension. This method is called the kernel trick, and as it turns out, any bivariate
symmetric form κ(x, y) does just that, provided we take [4]

[G]ij = κ(xi, xj). (9)

This way of constructing G guarantees that G is symmetric and therefore constructing G
remains computationally affordable. Furthermore this symmetric form ensures the diago-
nalization of G to yield only real eigenvalues and real corresponding eigenvectors. This is
a useful property in symplectic model reduction, as I will illustrate later. It is considered
good practise to center the Gram matrix G. This can be done per column gj of G:

g̃j = gj −
1

ns
G1n1 −

1

ns
1ns×nsgj + (

1

ns

2

1
T
ns
G1ns)1ns . (10)

Matrix G̃ is then the centered version of matrix G. 1ns represents an ns column vector
and 1ns×ns represents an ns × ns matrix, both having all their entries equal to one. The
data can now be mapped using equations 4 - 7 with the centered versions of G and g. Note
that any newly introduced data point x∗ still has to be transformed to g∗ according to
equation 7, and note also that g∗ should be centered according to equation 10.

3.1 Backward-mapping

One complication in kPCA is the backward mapping. Where before we could take equation
6, the use of the kernel trick does not provide us with a matrix U that instantly returns
x. One must construct a more elaborate backward-mapping of the reduced data z∗ ∈ Rk

to its pre-image x∗ ∈ Rd. To this end, I will consider the general functional

J(w) = ∥z∗ − z(w)∥2. (11)

The variable w in this functional is to be understood as a vector of weights. z∗ is assumed
to be the projection of some unknown sample x∗ of the FOM. In order to find this x∗, we
assume it to be a linear combination of samples that are readily available,

x∗ ≈ x(w) =
∑
i

wixi

with known projections, zi ←− xi. To evaluate the functional (11), construct g(w) and z(w)
using x(w) in equation 7. If the Gram matrix G is centered, keep in mind that g(w) should
be centered according to equation 10 as well.

Since most of the original data samples are not close to the pre-image x∗ that we try
to approximate, they do not contribute much to the weights. In fact, having more points

4

makes it harder to find optimal weights in many cases3. In such cases, it is better to not
consider these points in the first place. Most of the weights are therefore set to 0 and only
those xi from the original data set are considered that map to zi in reduced space close to z∗.

Then, any optimization algorithm can be performed to find the optimal weights to
minimize the functional from equation 11. One such algorithm is a stochastic gradient
descent algorithm.

4 Symplectic model reduction for Hamiltonian systems

4.1 Hamiltonian systems and the canonical symplectic form

Consider a Hamiltonian system of N particles in one spatial dimension, neglecting particle
interactions:

H(x, v) =
N∑
i=1

1

2
v2i − F (xi), (12)

ẋi =
dH

dvi
= vi, v̇i = −

dH

dxi
= f(xi). (13)

Here F (x) describes a potential and f(x) = dF
dx (x) is a possibly non-linear function, x, v ∈

RN , x =
[
x1 ... xN

]
represent all particle positions, v =

[
v1 ... vN

]
represent all

particle velocities. The time evolution of the FOM can be described using its state, s ∈

R2N : s =

[
xT

vT

]
, and by rewriting the Hamiltonian system to

ṡ = J2N∇sH(s). (14)

Here, J2N =

[
0 IN
−IN 0

]
∈ R2N×2N is the so-called canonical symplectic matrix and

IN ∈ RN×N is the identity matrix. Matrix J2N also serves to define symplectic matrices:

Definition 4.1 (Symplectic matrix). Let J2N denote the canonical symplectic matrix. A
2N × 2k matrix A is called symplectic if

AT J2NA = J2k.

The flow Ft : R2N −→ R2N of a Hamiltonian system as described above preserves the
total energy of the system and the canonical symplectic form [12], which in matrix notation
reads [

DFt

]T J2N
[
DFt

]
= J2N . (15)

Here,
[
DFt

]
∈ R2N×2N describes the Jacobi matrix of the flow map Ft. According to

definition 4.1, the Jacobi matrix of the flow of a Hamiltonian system as considered in this
section is a symplectic matrix. The system (14) can be forwarded using simple simulation
techniques, but the results improve when simulation techniques are used that preserve
geometric properties such as the symplectic form [5].

3For example, let the data X ′ ∈ R2×N describe N points on a circle centered around the origin, and
assume all new points x∗ to be considered are known to lie on this circle as well. Any non-zero weights
assigned to points on the side opposite of x∗ will pull the backward mapping into the interior of the circle,
where we are certainly not expecting to find x∗. For inspiration, see the Appendix.

5

4.2 Proper Symplectic Decomposition (PSD)

In order to reduce the order of the model, one takes ns samples of the (possibly simulated)

system at different times. The data is represented as S =
[
s1 ... sns

]
=

[
X
V

]
∈ R2N×ns ,

where X,V ∈ RN×ns represent all positions and all velocities of the samples, respec-
tively. Tyranowski and Kraus [12] describe the method of PSD. One takes a matrix
A ∈ R2N×2k, k < N , satisfying definition 4.1. The symplectic inverse A+ ∈ R2k×2N of
A is defined as

A+ = JT2kAT J2N , (16)

which is an inverse in the sense that A+A = I2k and AA+ = I2N . A sample of the data
s ∈ S can be projected to z = A+s, z ∈ R2k, and can be projected back as s = Az. Tyra-
nowski and Kraus [12] name two methods of constructing a symplectic matrix A using the
available data: the Cotangent lift algorithm and the Complex SVD algorithm.

For the cotangent lift algorithm, the data is ordered as ∆ =
[
X1 ... Xns V1 ... Vns

]
∈

RN×2ns and one performs SVD on ∆ as in equation 2. Let Φ ∈ RN×k be the matrix with
the first K columns of U ′ : Φ = U ′[:, : k]. The symplectic matrix A can then be constructed
as

A =

[
Φ 0
0 Φ

]
. (17)

The Complex SVD algorithm is an extension on the Cotangent lift algorithm. First, SVD
is performed in the same manner as in the Cotangent lift algorithm. Then one considers
a possibly complex matrix U ′ resulting from the SVD and splits the real values from the
imaginary values in the first K columns: Φ = Re(U ′[:, : k]),Ψ = Im(U ′[:, : k]). Then

A =

[
Φ −Ψ
Ψ Φ

]
. (18)

Notice that this expression simplifies to equation 17 if U ′ only has real values. Further-
more, if one takes A from the Cotangent lift algorithm, its symplectic inverse is simply its
transpose, A+ = AT (see the appendix, A.1).

Replacing s = Az in the FOM (14) and using A+A = I2k gives the ROM

ż = A+J2N∇sH(Az) = J2k∇zH(Az), (19)

which can be seen as a lower dimensional Hamiltonian system with the Hamiltonian H̃(z) =
H(Az) that preserves the symplectic form [12]. This can put in the form of a theorem:

Definition 4.2 (Symplectic ROM for Hamiltonian systems). The symplectic ROM for
Hamiltonian systems as described by equation 14 is given by equation ż = J2k∇zH(Az).

Corollary 4.0.1 (Symplectic MOR for linear Hamiltonian systems). In case the Hamil-
tonian system (12) is linear, that is, f(x) = αx, it is possible to explicitly define the ROM
Hamiltonian H̃(z) = H(Az). In fact, H̃(z) = H(z).

Proof. First consider the FOM (14), which can be rewritten in matrix form to

ṡ = J2N∇sH(s) =

[
0 IN
−IN 0

] [
−αIN
IN

]
s =

[
IN
αIN

]
s =:

[
dH

]
s. (20)

6

This defines an equivalent Hamiltonian matrix
[
dH

]
=

[
IN
αIN

]
. Defining A using equation

(17), for which A+ = AT (A.1), it follows that the ROM in matrix form is

ż = A+J2N∇sH(Az) = AT
[
dH

]
Az =

[
ΦT 0
0 ΦT

] [
IN
αIN

] [
Φ 0
0 Φ

]
z = (21)

=

[
ΦT 0
0 αΦT

] [
Φ 0
0 Φ

]
z =

[
ΦTΦ 0
0 αΦTΦ

]
z =

[
Ik
αIK

]
z = J2k∇zH(z). (22)

This implies that any FOM with s =

[
x
v

]
results in a ROM with z =

[
z1
z2

]
where z1

relates to z2 in exactly the same way x relates to v. If the simulation technique does not
dependent explicitly on the dimension of the state s that one inserts, then the exact same
simulation can be used for the transformed state z.

5 Symplectic MOR for non-linear Hamiltonians using SDEIM

It is not difficult to see that Corollary 4.0.1 does not hold for non-linear Hamiltonians.
Chaturantabut & Sorensen (2010) [2], Sorensen & Embree (2015) [11], Sargsyan, Brunton
& Kutz (2015) [10] and Peng & Mohseni (2016) [9] address this issue extensively, all with
an implementation of the Discrete Empirical Interpolation Method (DEIM). In this context
it is appropriate to call the following method Symplectic DEIM (SDEIM), as Peng and
Mohseni do. Consider once more the general FOM (14) and ROM (19), but now split them
in a linear part L and a non-linear part fN (s):

ṡ = Lx+ fN (s), (23)

ż = L̃z +AT fN (Az). (24)

The idea is by splitting the system, we can use Corollary 4.0.1 on the linear part. The
non-linear part will be approximated using other methods. Notice how the expression now
states that we must map our low-dimensional state z to the higher dimensional s before
we can evaluate the non-linear function fN : R2N −→ R2N . Then we map the result back
to a lower dimension. This is not saving any computation time.

Instead, we will commit ourselves to another PSD: let SN ∈ R2N×ns be the ma-
trix representing the non-linear function fN (s), evaluated at all samples in matrix S:
SN =

[
fN (s1), ..., fN (sns)

]
. We assume fN (s) to lie approximately on the range of a sym-

plectic matrix AN ∈ R2N×2k, which is constructed using the methods of section 4, only now
we use SN as our data instead of S. We aim to evaluate fN (Az) only at 2k spatial indices.
Therefore, we project Az on a 2k-dimensional subset of Az, which I will call s̃ ⊂ Az. Then
we can evaluate fN (s̃) in the hopes that this approximates fN (s) well.

If fN (s) indeed does lie approximately on the range of AN , we can find a coefficient
vector τ(s) ∈ R2k such that fN (s) ≈ ANτ(s), and we can design a projection matrix
P ∈ R2N×2k such that P T fN (s) = P TANτ(s) holds exactly for all ns elements in SN . In
other words, we would like to have a projection matrix P for which we can find a corre-
sponding coefficient matrix Γ =

[
τ(s1), ..., τ(sT)

]
such that P TSN = P TANΓ.

7

The means of obtaining P are perfectly illustrated by Sorensen & Embree [11]. The
DEIM processes the columns of AN one at a time. The projection matrix P is found by a
greedy algorithm. Each step aims to find a new pivot-point that is to be added to matrix
P . The idea is that the pivot with the largest error in our projection compared to the real
value is where we will place the next pivot in P . For this algorithm, let pj =

[
p1 ... pj

]T
be a vector of indices, and P

(2N×j)
j = I2N×2N (:, pj) be the identity matrix with the columns

shuffled to correspond with the indices of pj . This way, Pj is a projection. Finally, let
ANj =

[
a1, ..., aj

]
be the first j columns of AN . The algorithm for obtaining the projection

matrix P is then described by Algorithm 1.

Algorithm 1 SDEIM for obtaining projection matrix P

Require: Symplectic matrix AN ∈ R2N×2k

Ensure: Projection matrix P ∈ R2N×2k

a=AN (:,1)
p1 = arg max(|a|)
p = [p1]
for j = 2, 3, ..., 2k do

a = AN (:, j)
c = AN (p, 1 : j − 1)−1a(p)
r = a−AN (:, 1 : j − 1)c
pj = arg max(|r|)
p = [p; pj]

end for
P = I(:,p)

Now that we have obtained a projection matrix P , we want to use it to evaluate fN .
To do so, we construct a linear projection term PA = P TAN and a non-linear projection
term PNL = AT

NP . The linear projection term maps z to x̃ so that fN can be evaluated at
2k spatial indices and the non-linear projection term projects the result to z again. The
ROM becomes:

ż = L̃z + PNLfN (PAz) (25)

Note that if one changes the problem so that the function fN is linear, the simple re-
placement of P by I2N×2N makes this expression equivalent to the last equation Corollary
4.0.1.

6 Symplectic kPCA

In order to construct a ROM that preserves the Hamiltonian and the symplectic form, we
apply the methods of section 4. Only, matrix A is constructed using kPCA as in section 3.

Let X,V ∈ RN×ns be measurements of the positions and velocities of N particles at ns

distinct times. Order the data as S =

[
X
V

]
=

[
s1 ... sns

]
∈ R2N×ns and ∆ =

[
X V

]
.

si ∈ R2N is the i’th column of S and represents the state of the system at one time. The
ns × ns Gram matrix G is constructed using the kernel trick, [G]ij = κ(si, sj). The kernel
trick once more ensures us that the Gram matrix is symmetric and therefore, the eigenval-
ues and eigenvectors from the diagonalization G = V ′ΛV ′T are real. Let Φ ∈ Rns×k take

8

the first k columns of V ′ : Φ = V ′[:, : k]. Since Φ is real, we can use the Cotangent lift
method to construct A ∈ R2ns×2k using equation 17.

Here we encounter a clash between model reduction using kPCA and symplectic model
reduction as described in section 4. PSD requires z = A+s, which is key to retaining the
symplectic flow. This will not work as the dimensions do not match. Furthermore, any
projection using S and not G results in a linear projection: there would be little point in
applying kPCA if we use it to find a projection of the data onto a linear subspace of the
data. kPCA requires Z = ΦTG. This offers us a possible mapping to a lower dimension,
but takes away all means of simulating the system as the symplectic form is not conserved
and none of the MOR methods developed in sections 4 and 5 apply. For now, it does seem
we have arrived at a dead-end. This research unfortunately offers no practical solution to
this problem. However, theoretical means of adjusting Z = ΦTG to preserve the symplectic
form are discussed in section 9.

6.1 Linear symplectic projections using kPCA

Let ∆ =
[
X V

]
=

 ξ1
...
ξN

 ∈ RN×2ns . ξi can be regarded as a single trajectory. Since

particle interactions are neglected, it is possible to consider the particle trajectories as the
samples (as opposed to taking the states). In terms of section 2, this means changing the
dimension d −→ ns and taking N samples of independent trajectories instead of ns samples
of the state of the system. Applying the techniques of section 3 now yields an N×N Gram
matrix constructed using [G]ij = κ(ξi, ξj).

Suppose the SVD G = V ′ΛV ′T is available. As discussed in section 3, the use of
the kernel trick ensures us that G has real eigenvalues and eigenvectors. Take the first k
columns of V ∈ RN×N , Φ = V [:, : k] ∈ RN×k. The symplectic matrix A ∈ R2N×2k is now
constructed using equation 17 and the data is projected to z = AT s. The ROM follows
from sections 4 and 5.

7 Plasma model

Plasma, previously described as ionized gas, is modelled in many different ways [3]. One
of the simpler models is derived from the Vlasov equation:

∂f

∂t
+ v

∂f

∂x
− E(x)

∂f

∂v
= 0. (26)

Where f(t, x, v) is the particle density function in a plasma and E(x) = −∂ϕ(x)
∂x is an

external electric field of the potential ϕ(x). As described by Tyranowski & Kraus [12], the
Particle In a Cell (PIC) method for the Vlasov equation has the form of a Hamiltonian
system of equations. PIC uses the Ansatz f(t, x, v) =

∑N
i=1wiδ(x−xi(t))δ(v−vi(t)), where

xi, vi, wi represent one particle’s position, velocity and weight, respectively. Inserting this
in the Vlasov equation (26), one obtains a system of ordinary differential equations:

ẋi = vi, (27)

v̇i =
∂ϕ

∂x
(xi), (28)

9

From here we can describe the system as a Hamiltonian system as in 12:

H(x, v) =
n∑

i=1

[
1

2
v2i − ϕ(xi)], (29)

ẋi =
∂H

∂vi
= vi, (30)

v̇i = −
∂H

∂xi
= −E(xi). (31)

Here x = (x1, ..., xN) and v = (v1, ..., vN) are all of the particle positions and velocities at
one time.

8 Numerical experiments

Having developed strategies of applying kPCA on dynamical models (albeit linearly), it is
time to use our tools on plasma simulations. I refer to Section 7 for the PIC modelling of
plasma. In the coming models, I consider 1000 particles which are simulated for a total
of 20 seconds with an interval of dt = 0.01 for a total of 2000 time steps. Since simula-
tion techniques that conserve the symplectic form are preferred over standard simulation
techniques [5], I make use of the Störmer-Verlet method:

vn+ 1
2
= vn +

h

2
∇xH(xn, vn+ 1

2
), (32)

xn+1 = xn +
h

2
(∇vH(xn, vn+ 1

2
) +∇vH(xn+1, vn+ 1

2
)), (33)

vn+1 = vn+ 1
2
+

h

2
∇xH(xn+1, vn+ 1

2
). (34)

This method will be used for the simulation of every model. Another famous example is
the implicit-midpoint method and there are many more [13].

It is possible to vary the character of plasma simulations by varying the electric field,
as has been demonstrated in section 7. In what follows, I will compare linear kPCA model
reduction techniques and PCA model reduction techniques w.r.t. the FOM simulations of
plasma. The kernel applied in kPCA for the construction of G is the Gaussian kernel,

κ(ξi, ξj) = exp(
−||ξi − ξj ||2

||ξ0||2
). (35)

This kernel, also known as the Radial Basis Function, computes the similarity of two
points, here the similarity between two trajectories. This kernel has been chosen because
it is relatively straightforward and works well in many kPCA applications [4]. For the
backward-mapping, I use gradient-descend, with a one-size-fits all adjustment described in
Appendix E, from here to be referred to as optimization back-mapping. I investigate the
plasma under two conditions, depending on the electric field. The first situation gives a
linear Hamiltonian, while the latter gives a non-linear Hamiltonian.

8.1 Linear-Hamiltonian plasma simulations

The first electrical field that we consider is E(x) = β2x, which coincides with the field
considered by Tyranowski and Kraus [12]. As it turns out, there exists an analytical

10

solution for the time-evolution of plasma under such a field:

Xi(t) =
1

β
Visin(βt) +Xi(0)cos(βt), (36)

Vi(t) = Vi(0)cos(βt)− βXisin(βt). (37)

Furthermore, we also take the same initial distribution for the state of our particles as
Tyranowski and Kraus:

f(0, x, v) =
1

η
√
2π

e
− 1

2η2
x2

(
1

1 + a

1√
2π

e−
1
2
v2 +

a

1 + a

1

η
√
2π

e−
1
σ2 (v−v0)2),

η = 10, a = 0.3, v0 = 4, σ = 0.5.

To be precise, we perform rejection sampling in 2D for our initial particle conditions on
this function. Using x, v ∈

[
−0.8, 0.8

]
, we only accept randomly selected values for x, v

that are plausible under f(0, x, v).

The goal is to perform model reduction that is precise enough to predict the behaviour
of the plasma, even for arbitrary β. Let us first examine the behaviour of plasma under
this electric field:

Figure 2: Trajectory of several particles for 2 values of β

As we can see, the trajectory of our particles is elliptic. The initial distribution is the
same in both of the above simulations. Furthermore, the same particles are tracked. It
can be seen that β mostly changes the maximum velocity reached. We will also have a
glimpse at the final state of our simulation and exact solution. Since an analytical solution
is available, it is worthwhile to investigate how well our FOM simulation performs against
this analytical solution, for every β we plan to use in the construction of our ROM. This
is presented in the following graphs:

11

Figure 3: Phase space from t=0 to t=2000.

The electric field rotates the particles and stretches the ensemble in the V -axis of phase
space. The exact solution and the Störmer-Verlet simulation ensembles overlap almost
entirely, but the individual particles differ by non-negligible amounts. This may be a sign
of the time steps dt = 0.01 being somewhat large. For the other value of β, the result is
slightly better. The errors are examined as follows:

Figure 4: Error of all particles for 2 values of β, FOM vs exact solution.

The total error of the phase space at any time (up) is determined as

12

1
N

∑N
i=1

√
∆x2i +∆v2i and the average X error is found as 1

N

∑N
i=1∆xi, the average V

error idem (down). The error increases linearly as we progress further in the simulation,
as expected [5]. Most notably, the error is due to the velocity of the particles, which is the
direction in which we stretch the ensemble.

The Hamiltonian for this electric field is linear: inserting this electric field in the equa-
tions of section 7 leads us to ẋi = vi, v̇i = E(xi) = β2xi. This implies we can use Corollary
4.0.1 to construct a ROM. We will base our ROM on the FOM simulation of the plasma, not
the exact solution. Furthermore, we take FOM simulations using 2 different β’s: β =

[
5, 7

]
and structure our data as S =

[
Xβ1 , Xβ2 Vβ1 , Vβ2

]
. It is possible to derive a ROM with

only one β, but the results are severely worse. Naturally more β’s improve the performance.

To analyze how well I can reduce the dimensions of this model, I plot the decay of the
singular values:

Figure 5: Decay of Singular Values.

This graph shows a significantly faster drop in singular values for regular PCA than for
kernel-PCA. It would seem there is no benefit in using kPCA for model reduction to this
problem. Still, I will construct a ROM using kPCA (a kPCA-ROM) for a linear projection
as in section 6.1 which only takes k = 10 features and compare it with the FOM. Further-
more, I will do the same for a ROM derived using regular PCA (a PCA-ROM) which takes
only two features. The choice of only including 2 features in the PCA-ROM is justified by
the instant decay of singular values using regular PCA.

The ROM’s are simulated in time for every β. The results are compared at 100 time
steps with the FOM. Since these ROM’s are produced as linear projections of the data, it
is also possible to map them back using the symplectic matrix A according to section 4. I
compare both methods:

13

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 6: Comparison of reduced models for β = 0.5.

It seems as if both our ROM do a fine job in mimicking the FOM, provided we use
the optimization method for backward-mapping. Similar results are obtained for β = 7.0
and the corresponding graphs can be found in the appendix B.1. If we consider the linear
backward-mapping however, the kPCA-ROM seems to perform much worse. This is to be
expected: usual means of PCA model reductions capture all the features in only 2 singular
values, while the kPCA approach in this setting needs about 350 (see figure 14). The errors
between the ROM’s and the FOM can be found in the appendix.

Of interest in this research is the performance of the ROM’s w.r.t. novel values for the
parameters. The ROM performances for novel β = 0.6 is as follows:

14

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 7: Comparison of reduced models for β = 0.6.

Here we can draw two conclusions: PCA outperforms kPCA and the linear backward-
mapping approach outperforms the optimization method for backward-mapping. Even new
values for β can be mimicked perfectly with only k = 2 features using symplectic PCA.

8.2 Non-linear-Hamiltonian plasma simulations

Alternatively, we consider the non-linear case described by Hesthaven, Pagliantini and
Ripamontiand [6]. They make use of an electric field E(x) = −x3 and a modified expression
for the Vlasov equation that includes a spatial scaling parameter ν, ∂f

∂t+
1
ν v

∂f
∂x−E(x)∂f∂v = 0.

This changes the Hamiltonian slightly, with a resulting set of differential equations:

ẋ =
1

4ν
v,

v̇ = −x3.

Otherwise the system remains unchanged. No exact solution exists,4 so I will only compare
the ROM’s with the FOM’s. The initial distribution is altered as well:

f(0, x, v) = (
1√
2πα

e−0.5v2α−2
)(1 + βcos(4π

x+ 0.8

1.6
)),

α = 0.07 β = 0.02.

4or is known to me, at least,

15

Once more I perform rejection sampling in 2D in the same manner as in the previous
section. In this case one can vary the parameter ν instead of β. The particle trajectories
are as follows:

Figure 8: Trajectory of several particles for 2 values of ν.

As a first attempt at model reduction, the ROM’s are constructed in the exact same
manner as in the previous section, giving a kPCA-ROM and a PCA-ROM. Here I assume
Corollary 4.0.1 is approximately true. This is a grave assumption, as I will soon demon-
strate. To analyze how well I can reduce the dimensions of this model, I plot the decay of
the singular values:

Figure 9: Decay of Singular Values.

This graph is similar to the figure 14. Once more PCA seems to do better than kPCA
by no small margin. Even though the PCA singular values decay slower than before,
Figure 9 is sufficient justification for me to use once more the first k = 2 features for the
PCA-ROM and the first k = 10 features for the kPCA-ROM. The ROM’s are simulated
in time for every ν. The results are compared at 100 time steps with the FOM.

16

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 10: Comparison of reduced models for ν = 0.4.

The above are all unimpressive imitations of the FOM. The kPCA-ROM with opti-
mization back-mapping does seem to get the shape right and all ROM’s have some amount
of rotation. All ROM’s are however insufficiently accurate to represent the FOM. The
same holds for ν = 0.8, see Appendix B.2. Nevertheless the ROM performances for novel
ν = 0.6 are still presented:

17

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 11: Comparison of reduced models for ν = 0.6.

Interestingly (and most unexpectedly) the linear approximations do resemble the FOM
if we apply optimization back-mapping. Both ROM’s however generally perform awful and
no conclusions can be made about how kPCA compares to PCA apart from the significant
difference in the decrease of singular values. Graphs of the errors can be found in the
Appendix.

8.2.1 SDEIM MOR on non-linear plasma simulations

To improve the ROM’s, the Symplectic Discrete Empirical Interpolation Method as de-
scribed in section 5 is applied. The ROM’s are now described by equation 25 and are
simulated using the Störmer-Verlet. Note that the non-linear part requires AN to be ob-
tained using regular PCA. For this simulation, the PCA-ROM, the kPCA-ROM and the
projection of the non-linear SN all take k = 10 features. The trajectories remain and the
final state remain unchanged w.r.t. the previous section. The singular value decomposition
is as follows:

18

Figure 12: Decay of Singular Values.

Once again PCA seems to outperform kPCA in the decay of singular values. When
the ROM’s are simulated however, the final state cannot be plotted. To investigate why,
consider the errors, which propagate as follows:

19

(a) kPCA-ROM error with optimization
back-mapping.

(b) PCA-ROM error with optimization
back-mapping.

(c) kPCA-ROM error with linear back-
mapping.

(d) PCA-ROM error with linear back-
mapping.

Figure 13: Comparison of reduced models for ν = 0.4.

As we can see, the errors grow exponentially for every ROM and just after 400 time
steps the ROM’s completely seize to function. I will elaborate on why in the discussion. For
now it suffices to say that the SDEIM extension could not save the ROM’s for non-linear
Hamiltonian plasma simulations.

9 Discussion

9.1 Combining kPCA with symplectic MOR

Unfortunately no combination of kPCA with symplectic model reduction was found in
this research. In general, kPCA model reduction does not conserve the symplectic form
of the system. This does not mean that the two methods are completely incompatible. In
fact, it would be a most interesting topic to further explore how kPCA might be combined
with symplectic model reduction. In this work I consider the trajectories to find a reduced
model instead of the states. When the Gaussian kernel is applied to a single state (and
normalized to a single state, not a trajectory), it projects the data as follows:

20

Figure 14: kPCA and PCA data projection of a single state.

As we can see, the data does seem to untangle somewhat in the first two principal
components. Naturally this is not sufficient to perform proper model reduction, but it
shows promise. It might be worthwhile to search for a kPCA technique on the states
instead of on the trajectories and construct a non-linear yet symplectic reduced model out
of that. A start to that search might look as follows. As shown in the paper of Buchfink,
Glas and Haasdonk [1], once can generalize the mapping of the physical data in terms of
an ’encoder’ e(s) : R2N −→ R2k and a ’decoder’ d(z) : R2k −→ R2N . Symplectic model
reduction can be performed as long as the encoder is a symplectic map:[

Dse(s)
]T J2k

[
Dse(s)

]
= J2N . (38)

Here
[
Dse(s)

]
represents the Jacobi matrix of the encoder. Let X,V ∈ RN×ns be positions

and velocities as before, and let

S =
[
XV

]
∈ RN×2ns , G : [G]ij = κ(si, sj), (39)

Gx : [Gx]ij = κ(xi, xj), Gv : [Gv]ij = κ(vi, vj). (40)

One suggestion I would bring forward is to pursue a more general way of mapping
the data to reduced space. In section 4 I consider the cotangent lift algorithm and the
complex SVD algorithm as a means of constructing a symplectic matrix A. It might be
worth having a look at the complex SVD method, under the right circumstances:

Z = A+G̃, A =

[
Φ −Ψ
Ψ Φ

]
, (41)

ΦTΨ = ΨTΦ, ΦTΦ+ΨTΨ = 0. (42)

Here one might use G̃ =
[
Gx Gv

]T and relate Φ,Ψ to Gx, Gv. A final thing to consider
are the structures of G,Gx, Gv: the Gaussian kernel κ(x, y) gives the similarity between
the points x, y. All trajectories considered here are orbits with some amount of similarity,
so I expect a Gram matrix on the trajectories to have a clear line in the trace (every point
is identical to itself), but otherwise with a lot of noise. The states however diffuse over
time, particles close to the center of phase-space move slower than particles on the outside.
I expect only states that are close in time to add any structure to the Gram matrix. Let
us find out:

21

(a) kPCA Gram matrix impression on tra-
jectories.

(b) kPCA Gram matrix impression on
states.

As expected, kPCA Gram matrix on the states resembles a stair matrix [8] or a diago-
nal matrix. Some promising results may be found by further investigating these structures.
Without too many restrictions, I believe it to be possible to find the right building blocks
to perform real symplectic kPCA.

9.2 PCA versus kPCA for linear model reduction

In this work it turns out that PCA overall performs better in MOR for dynamical systems
when independent trajectories are considered and the ROM is a linear projection. This
can be seen in the decay of singular values (Figures 14 and 9). Note that the decay of
singular values does not depend on how one transforms the data later: even if there was a
method that combines kPCA with symplectic model reduction, kPCA is unlikely to out-
perform PCA if performed on the particle trajectories. One could experiment with many
different kernels to solidify this statement, but the Decay of Singular Values as presented
here suggests than finding a kernel for which kPCA outperforms PCA in this context is
highly unlikely.

Furthermore, regardless on whether or not kPCA outperforms PCA in terms of the
singular values, when the method is applied to find a linear projection of the data onto a
lower dimensional subspace, it will almost certainly be outperformed by PCA in how well it
models the FOM. This is simply by design: kPCA is not designed to find a linear subspace
for the data, but instead finds a linear subspace for the non-linearly transformed data, see
equation 4 with g in terms of equation 9. PCA is designed to find a linear subspace that
maximizes the variance (therefore explaining most of the data). Since any linear subspace
on which we project using kPCA does not maximize the variance per se, it is certain to be
outperformed by PCA.

9.3 Failure of the SDEIM in this work

As we could see (or, not see) in the results, the SDEIM failed to give a useful projection
with which we can approximate the non-linear part of the Hamiltonian. As it turns out
however, it is not necessarily the implementation of the SDEIM that is at fault. I tried
to run simulations using equation 23, but to no avail. The results are exactly the same

22

as when the SDEIM was used. Most likely, the transformation from reduced space to
physical space is to blame. This might explain why the linear back-mapping of the results
performs so poorly. To check this, I inspected A,A+. Their products should be identity,
AA+ = I2N , A+A = I2k. An impression of how well this is the case is given as follows:

Figure 16: kPCA-ROM A,A+ impression.

Figure 17: PCA-ROM A,A+ impression.

As we can see, A+A is approximately identity, as it is supposed to be. Upon microscop-
ical inspection a similar line is present under AA+, but it approximates I2N quite poorly.
this implies Az also approximates s poorly. This is disastrous for every ROM considered
in this work since section 5 relies heavily on this backward-mapping to work, explicitly in
equation 23 and implicitly in equation 25.

It might be the case that the Cotangent lift algorithm was not applicable and I had
to use the complex SVD algorithm. In the linear kPCA-ROM case this does surprise me
however, as the construction of G should ensure us only real eigenvectors V and therefore
Φ = V [:, : k] should contain all the information about the eigenvalues. In other words,
I expect Ψ = 0 in equation 18 and the complex SVD algorithm should reduce to the
Cotangent lift algorithm for the linear kPCA-ROM. Further investigation as to why this
backward-mapping fails is most needed.

23

9.4 Incompatibility of SDEIM and kPCA

If the problems discussed in the previous discussions were to be solved, there remains
yet one more obstacle in the application of kPCA MOR on non-linear Hamiltonian plasma
simulations. The reason is simple: equation 25 relies on A to map the data back to physical
dimensions so that the non-linear function can be approximated, while for kPCA non-linear
projection of the data makes this impossible. In fact, one would need to apply optimization
backward-mapping as described in section 3 at every time step of the simulation before
one can approximate the non-linear function. This will almost certainly be more expensive
in terms of computational power than a straightforward FOM simulation. As of now, I am
in no position to advise future researchers on a strategy to solve this problem - I can only
advise them to seek other means of approximating the non-linear behaviour of the system.

10 Conclusions

10.1 kPCA for linear Hamiltonian systems

In case the Hamiltonian is linear, MOR can be performed highly accurate, even for new
parameter values. A linear ROM that conserves the symplectic form as in section 4 suf-
fices. It is possible to build a linear ROM based on kPCA. This is however not advised:
by the design, a symplectic PCA-ROM outperforms a linear symplectic kPCA-ROM. Fur-
thermore, the backward-mapping used for kPCA (optimization, section 3) is outperformed
by a linear backward-mapping (symplectic matrix A, section 4). For the best results, one
uses the work of Tyranowski and Kraus [12].

10.2 kPCA for non-linear Hamiltonian systems

In the case of non-linear Hamiltonians, the desire to preserve the canonical symplectic form
conflicts with the desire to apply kPCA on the data. As has been shown in section 5, we
have to evaluate the non-linear part of the Hamiltonian fN (s). To this end, we applied
strategies to approximate fN (s) using only 2k spatial indices of s in the hopes that these
spatial indices of s approximate the overall behaviour well. With the help of the SDEIM,
this evaluation of fN (s) is projected to our ROM. The effectiveness of this method could
unfortunately not be demonstrated in this work because of a mistake in the construction of
the symplectic matrix A and its symplectic inverse A+ as has been shown in the discussion.

In case one uses a PCA-ROM or a linear kPCA-ROM, the data can be transformed
and projected in a straightforward way, z = As, s = A+z. In theory this property makes it
possible to use the SDEIM to approximate the non-linear behaviour of the system. From
this point, one can follow the instructions of Peng and Mohseni [9] to construct a ROM.

Unfortunately in the case of kPCA, there is no easy way to map z to s, and the process
of finding 2k spatial indices of s to approximate fN (s) is computationally expensive, mak-
ing the kPCA method less desirable. In theory, one would have to perform optimization
at every time step of the simulation to find an approximation of s with which one can
approximate fN (s). To make up for that one would have to find a very fast method of
backward-mapping or use some hybrid ROM - or better yet, develop an approximation of
fN (s) that is compatible with kPCA.

24

References

[1] Patrick Buchfink, Silke Glas, and Bernard Haasdonk. Symplectic model reduction
of hamiltonian systems on nonlinear manifolds. arXiv preprint arXiv:2112.10815
[math.NA], 2021.

[2] Saifon Chaturantabut and Danny C. Sorensen. Nonlinear model reduction via discrete
empirical interpolation. SIAM J. Sci. Comput., 32:2737–2764, 2010.

[3] Francis Filbet and Eric Sonnendrücker. Numerical methods for the Vlasov equation.
In Numerical mathematics and advanced applications, pages 459–468. Springer, 2003.

[4] Alberto García-González, Antonio Huerta, Sergio Zlotnik, and Pedro Díez. A kernel
principal component analysis (kPCA) digest with a new backward mapping (pre-image
reconstruction) strategy. arXiv preprint arXiv:2001.01958, 2020.

[5] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integra-
tion illustrated by the störmer–verlet method. Acta Numerica, 12:399–450, 2003.

[6] Jan S. Hesthaven, Cecilia Pagliantini, and Nicolò Ripamonti. Rank-adaptive structure-
preserving model order reduction of hamiltonian systems. ESAIM : Mathematical
Modelling and Numerical Analysis, 56(2):617–650, March 2022.

[7] Sebastian Kirsch. Principal components analysis explained for dum-
mies. Progammathically.com, https://programmathically.com/
principal-components-analysis-explained-for-dummies/, 2022.

[8] Hao Lu. Stair matrices and their generalizations with applications to iterative meth-
ods i: A generalization of the successive overrelaxation method. SIAM Journal on
Numerical Analysis, 37(1):1–17, 1999.

[9] Liqian Peng and Kamran Mohseni. Symplectic model reduction of hamiltonian sys-
tems. SIAM Journal on Scientific Computing, 38:A1–A27, 02 2016.

[10] Syuzanna Sargsyan, Steven L. Brunton, and J. Nathan Kutz. Nonlinear model reduc-
tion for dynamical systems using sparse sensor locations from learned libraries. Phys.
Rev. E, 92:033304, Sep 2015.

[11] D. C. Sorensen and M. Embree. A deim induced cur factorization. arXiv preprint
arXiv:1407.5516 [math.NA], 2014.

[12] Tomasz M Tyranowski and Michael Kraus. Symplectic model reduction methods for
the Vlasov equation. arXiv preprint arXiv:1910.06026, 2019.

[13] Meiqing Zhang and Robert D. Skeel. Cheap implicit symplectic integrators. Applied
Numerical Mathematics, 25(2):297–302, 1997. Special Issue on Time Integration.

25

https://programmathically.com/principal-components-analysis-explained-for-dummies/
https://programmathically.com/principal-components-analysis-explained-for-dummies/

A Proof of AT = A+

Theorem A.1. Let ∆ ∈ RN×M and its Singular Value Decomposition ∆ = U ′ΣV T be
given. Suppose U ′ ∈ RN×N . It follows that Φ = U ′[:, : K] is also real. Then, the symplectic
matrix A constructed using equation 17 transposed is equal to the symplectic inverse of A,
AT = A+.

Proof. The proof is straightforward: plug matrix A in equation 16. It will yield AT .

A+ = JT2kAT J2N =

[
0 −IN
IN 0

] [
Φ 0
0 Φ

]T [
0 IN
−IN 0

]
=

[
0 −IN
IN 0

] [
ΦT 0
0 ΦT

] [
0 IN
−IN 0

]
=

[
0 −ΦT

ΦT 0

] [
0 IN
−IN 0

]
=

[
ΦT 0
0 ΦT

]
= AT .

Quite easily one can also check that AT is indeed the symplectic inverse of A by checking
ATA = I2k and AAT = I2N :

ATA =

[
ΦT 0
0 ΦT

] [
Φ 0
0 Φ

]
=

[
ΦTΦ 0
0 ΦTΦ

]
=

[
IK 0
0 IK

]
= I2k,

AAT =

[
Φ 0
0 Φ

] [
ΦT 0
0 ΦT

]
=

[
ΦΦT 0
0 ΦΦT

]
=

[
IN 0
0 IN

]
= I2N .

Here I used the fact that the columns of U ′ form an orthonormal basis in RN×N [4].

26

B Results - extra graphs

B.1 Linear Hamiltonian ROM-FOM comparison β = 0.7

(a) kPCA-MOR with optimization back-
mapping.

(b) PCA-MOR with optimization back-
mapping.

(c) kPCA-MOR with linear back-mapping. (d) PCA-MOR with linear back-mapping.

Figure 18: Comparison of reduced models for β = 0.7.

As promised, the results for β = 0.7 are identical to the results for β = 0.5.

27

B.2 Non-linear Hamiltonian ROM-FOM comparison ν = 0.8

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 19: Comparison of reduced models for ν = 0.8.

Indeed the ROM’s do not improve for ν = 0.8. It also no longer looks like kPCA outper-
forms PCA, for as far as that may have been the case.

28

B.3 Error graphs of novel parameters

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 20: Linear-Hamiltonian total error comparison of reduced models for β =
0.6.

29

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 21: Linear-Hamiltonian X,V error comparison of reduced models for β =
0.6.

30

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 22: Non-linear Hamiltonian total error comparison of reduced models for
ν = 0.6.

31

(a) kPCA-ROM with optimization back-
mapping.

(b) PCA-ROM with optimization back-
mapping.

(c) kPCA-ROM with linear back-mapping. (d) PCA-ROM with linear back-mapping.

Figure 23: Non-linear-Hamiltonian X,V error comparison of reduced models for
ν = 0.6.

C kernel-PCA applied on images

In a first attempt to apply kPCA, I reconstruct the problem of García-González [4]. I
made a video of my hand opening and closing several times and edited it to get 475 black
and white pictures, with dimensions (523,352) for a total of 184096 pixels per picture.
The goals is catch all features in as few dimensions possible, reducing the dimensions from
184096 to less than 10. In order to do this, I took 100 random pictures out of the first 175
as my data. The data is ordered as a 184096 × 100 matrix S. I compare both the usual
PCA and the kPCA method.

Since the matrix of data S (184096× 100) is too large to perform straightforward SVD
on, PCA was performed by diagonalizing the Gram matrix instead. The Gram matrix
is constructed as G100×100 = STS. G is then diagonalized and the dimension is reduced
to k = 3. G The data can easily be mapped to reduced space, Z = ΦTG as in sec-
tion 3. Since the matrix U from the SVD of X is not available, the data projected using
PCA must undergo the same optimization process as the data projected using kernel-PCA.

To compare, we apply kPCA on the data as well. G is constructed using the Gaussian
kernel, normalized by the first picture. Once more, G diagonalized and the dimension is
reduced to k = 3. The images are mapped in the same way as in regular PCA. New images
s∗ are mapped to g∗ : [g∗]i = κ(s∗, si). The Decay of the Singular Values of both matrices

32

is given in the following graph:

Figure 24: Decay of Singular Values

The decays are actually almost identical. It seems like there is no great benefit of using
kPCA over PCA so far. In fact, PCA once more performs slightly better. A few examples
of reconstructed images can be found below. To prevent the back-mapping from being
stuck in local minimum, most of the PCA reconstructions were mapped to the image of
the closest point in reduced space. This turns out to be a better starting point for back-
mapping than the initial point I have chosen for all back-mappings to start, which explains
why the PCA reconstructions look slightly better than the kPCA reconstructions.

As a side-note, I did not center the data for these images, nor did I center the Gram
matrix G. This is good practise, but not necessary. What is necessary is that one is
consistent in either centering their data or not in comparing ROM’s.

33

Unfortunately there is no example where my hand is open, but the reconstructions
would compare in the same way.

34

D Model reduction of N-pendulums

With slight abuse of notation, in this section I will at times refer to the angle θ of a pen-
dulum as X and its momentum p as V.

To test out how kPCA may be applied to the dimensional reduction of a dynamical
system, I constructed a toy model of 100 pendulums. The system of equations derived
from the Hamiltonian for one pendulum is 5:

θ̇ = p (43)
ṗ = −sin(θ) (44)

One pendulum is simulated for 2000 time steps using the implicit midpoint method, which
is a symplectic integrator. From its path, 100 values for the angle and momentum are
taken with a constant phase shift. These values serve as initial conditions for our 100 pen-
dulums, all of which follow the same path. Then these are simulated for 1000 time steps
to construct the data on which we apply kPCA. This way, the paths of all pendulums are
in fact dependent on the path of only one pendulum, and model reduction is ensured.

In order to apply kPCA on the system, I once more consider the pendulum trajectories
as my samples. The data is reduced to a dimension of k = 3 for the PCA-ROM and for
the kPCA-ROM. From here, the data is mapped to reduced space using the methods of
section 3. As a first attempt, the ROM constructed to simulate the reduced data is as if
the Hamiltonian were linear (naturally, for small angles, this is approximately true). In
other words, I use Corollary 4.0.1. I simulate the ROM’s using Störmer-Verlet. The Decay
of the Singular Values are as follows:

Once more, PCA proves superior when considering trajectories. The SVD of the non-
linear part is drawn as well. Some of the states of the system as approximated as follows:

5This derivation can be found in any book on classical mechanics or on any online resource.

35

Figure 26: Phase diagrams of the pendulums. The ROM’s have a dimension of
k=3.

In the phase diagrams, I added in black a line on which the original samples lie at
each point in time. Since there is no dissipation, energy is conserved, and the samples
should stay on that line at all times. We can see that the kPCA-ROM and the PCA-ROM
overlap completely. They do not match the back-map (with which I mean the real sample,
no back-mapping involved) exactly, but the ROM’s do manage to stay on the ring, which
is an excellent quality, since energy should be preserved.

36

I will also zoom in on the errors:

(a) Total error (b) kPCA-MOR average X,V error.

(c) PCA-MOR average X,V error.

We can see that the PCA-ROM and the kPCA-ROM indeed overlap completely, error
and all. This seems like the only scenario where a kPCA based linear ROM can equal PSD.

One more time, I apply the techniques of section 5 and apply SDEIM to the problem
at hand. It is very much possible that the problems arising in the plasma results are not
solved here.

37

Figure 28: Phase diagrams of the pendulums. The ROM’s have a dimension of
k=3.

Clearly, the projections of Section 5 do not improve the model. What can be observed
immediately is that the new model seems to have no energy conservation. One suggestion
of my supervisor Jeroen Verschuur was to project the angle and momentum to those angles
and momenta that retain the energy that they should have. Though this was more in the
context of the linear ROM’s, it may very well be applied here. As the system consists of
independent pendulums, all of which should conserve their own energy, such a projection

38

should be a feasible solution to our problem. At the very least, the main issue of energy not
being conserved would be solved in doing do. Unfortunately, there was no time remaining
for me to further explore this suggestion. It is however a very interesting extra topic:
what projection onto energy-preserving states models our pendulums best? An orthogonal
projection might do the job. I will also zoom in on the errors again:

(a) Total error (b) kPCA-MOR average X,V error.

E One-size-fits-all gradient descend using a PID control

In this section, I try to elaborate on the gradient descend method that I use for the
backward-mapping of my ROM’s. I refer to section 3 for context. The goal is to find
optimal weights.The initial weights are determined by d(i): [w0]i = (1− d(i))α. Although
this initially assumes that sj lies in the interior of all si, which need not hold necessarily,
it seems like a reasonable initial set of weights.The parameter α depends on how close
you want to make the original guess to the one closest point. The stochastic gradient
descent algorithm approximates the gradient in terms of the weights and aims to move in
the direction of steepest descend. In that spirit, algorithm 2 is implemented.

Note: the choice for stochastic gradient descent is based on its robustness and simple
implementation. It almost assuredly finds a local minimum. To possibly improve, one
can alter this method to the mini-batch gradient descend method, where one takes several
randomly selected weights instead of only one. The choice of δ depends on the problem.
Generally one can take ϵ× 10−3 or so.

E.1 PID control

One improvement I made to the Gradient Descend algorithm is to use a PID control on η.
Since convergence was often slow for several points in reduced space, while it was oscillating
for others, it seemed like a good idea to make the rate of change towards the direction of
steepest descend depend on the error that we still have to bridge. If the algorithm oscillates
around a certain (local) minimum, the parameters for the proportional and integral part
of the PID are decreased to a fraction of their size. Initial values P, I,D are chosen and
at each step the current error p = J(w), the integral error I =

∫
J(w) and h times the

derivative d = J(wi)− J(wi−1) are taken to compute η = |Pp+ II + Dd|. At each step of
the optimization, the algorithm checks that it is not oscillating around an equilibrium. If

39

Algorithm 2 Gradient descend
Require: Data X, transformed data Z, Functional J
Require: Vector with indices of close points c
Ensure: weights w that minimize J(w)

ini d: [d]i from (eq. 18) for points c
ini w0 : [w0]i = (1− [d]i)

α

w = w0
||w0||

l = 0
while J(w) > ϵ do

for wi ∈ w do
calculate ∇wiJ
wi −→ wi − η ∗ ∇wiJ

end for
if ||∇J || < δ then

Reset to new weights: w = 0
[w]l = 1
l −→ l + 1 ▷ This means we are stuck in a local minimum

end if
η −→ 0.999η

end while

that is the case, the parameters P, I are decreased to 99% of their value. If the algorithm
resets the weights because it is stuck in a (too high) local minimum, the parameters P, I
are reset to their original value.

40

	Introduction
	Principal Component Analysis (PCA)
	Covariance Matrix method
	Gram Matrix method

	kernel-PCA
	Backward-mapping

	Symplectic model reduction for Hamiltonian systems
	Hamiltonian systems and the canonical symplectic form
	Proper Symplectic Decomposition (PSD)

	Symplectic MOR for non-linear Hamiltonians using SDEIM
	Symplectic kPCA
	Linear symplectic projections using kPCA

	Plasma model
	Numerical experiments
	Linear-Hamiltonian plasma simulations
	Non-linear-Hamiltonian plasma simulations
	SDEIM MOR on non-linear plasma simulations

	Discussion
	Combining kPCA with symplectic MOR
	PCA versus kPCA for linear model reduction
	Failure of the SDEIM in this work
	Incompatibility of SDEIM and kPCA

	Conclusions
	kPCA for linear Hamiltonian systems
	kPCA for non-linear Hamiltonian systems

	Proof of AT = A+
	Results - extra graphs
	Linear Hamiltonian ROM-FOM comparison =0.7
	Non-linear Hamiltonian ROM-FOM comparison =0.8
	Error graphs of novel parameters

	kernel-PCA applied on images
	Model reduction of N-pendulums
	One-size-fits-all gradient descend using a PID control
	PID control

