
BSc Thesis Applied Mathematics

Online scheduling of tasks to
minimize maximum processor
temperature

Floor van Maarschalkerwaart

Supervisors: M. de Graaf and B. Ozceylan

July 1, 2022

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface
This report is part ofmyBachelor’s assignment ofAppliedMathematics at theUniversity of Twente.

I would like to thank Maurtis de Graaf and Baver Ozceylan for their help with my assignment. Thank
you for being so involved and for thinking along whenever I got stuck or lost motivation. It really
helped to know I could come by or send an e-mail at any moment. After a little dip during the middle
of the process I did find my motivation again and I really enjoyed learning a lot about this subject.

Online scheduling of tasks to minimize maximum
processor temperature

Floor van Maarschalkerwaart∗

July 1, 2022

Contents

1 Introduction 2

2 Definitions and models 3
2.1 Problem definition . 3
2.2 Thermal model . 3
2.3 System definition offline problem . 5
2.4 System definition online problem . 6

3 Optimal allocation 7
3.1 Policies . 7
3.2 Optimal allocation offline problem . 8
3.3 Optimal allocation online problem . 9
3.4 Analytic results . 10

3.4.1 Output offline problem . 10
3.4.2 Output online problem . 10
3.4.3 Queuing model . 11

4 Simulation 12
4.1 Discretization . 12
4.2 Simulation offline problem . 12
4.3 Simulation online problem . 13
4.4 Verification . 15

4.4.1 Output offline job problem . 15
4.4.2 Output online job problem . 16
4.4.3 Queuing model . 16

4.5 Simulation results . 17

5 Discussion 19

6 Conclusion 21

7 Bibliography 23

8 Appendix A 24

9 Appendix B 25

10 Appendix C 29

11 Appendix D 33
∗Email: f.vanmaarschalkerwaart@student.utwente.nl

1

1 Introduction
Thermal management is becoming more and more important since high temperatures can have a

lot of consequences for electronic devices. High temperatures shorten the lifespan of devices, decrease
the reliability and can also decrease the effective operating speed. Large variations in the temperature
also decrease the reliability even further. It is hard however to control the power consumption (high
power consumption is a large cause of high processor temperature) of these devices while they are
operating. Active cooling mechanisms often consume too much power for mobile devices due to their
battery dependent nature and are often not suited for the environments where these devices are used,
usually subject to vibrations and shock. Therefore the focus of thermal management of electronic
devices lies with passive cooling mechanisms. [9] [13] In our research we will focus on one such
passive cooling mechanism, namely idle time scheduling which idles the processor for a time to let it
cool down. When idling the processor it will have some time to cool down, but idling it for too long
will cause the system to reduce performance. Therefore, a balance between performance and proces-
sor temperature has to be found. More specifically, we will research how the algorithm for optimal
temperature aware-scheduling of offline jobs from the paper by B. Ozceylan et al. [9] behaves when
applied to online scheduling. Offline scheduling is a type of decision-making where a set schedule is
made before it is executed. With online scheduling, the schedule is made as the system is running.
This could be for example that a new schedule is made every few time units but also that a new sched-
ule is made when the system has reached a certain temperature.

There has already been quite some research for thermal-aware management for offline systems. Some
examples include a resource management framework [6], using idle time [10] or task scheduling [5]
to minimize the maximum temperature while still meeting the time constraints of certain jobs. One
of the first papers analyzing online heuristics for thermal management is by Yao et al. [13]. The pa-
per provides a formal analysis of the minimum-energy scheduling problem and gives a simple model
in which each job is to be executed between its arrival time and deadline by a single variable-speed
processor. It then proposes an offline algorithm and analyses some online heuristics. The paper is
innovative in the sense that it is one of the first papers on saving energy of electronic devices, espe-
cially in the form of a scheduling problem. They also state that an online algorithm cannot in general
construct an optimal energy schedule, even for a simple problemwith only two tasks. In [3] the paper
by Yao et al. [13] is described as initiating the theoretical study of speed scaling policies to manage
energy. As this innovative paper is only from 1995, we can acknowledge that the field of (stochastic)
online scheduling is still relatively new. There are already quite a few results but very many problems
remain open [11]. The paper by T. Vredeveld [11] combines online and stochastic scheduling into
the stochastic online scheduling (S0S) model. In this model, jobs arrive in an online manner and as
soon as this job arrives, the scheduler only learns about the probability distribution of the workload
and not the actual workload. The paper by N. Bansal et al. [3] proposes an online algorithm which
always puts out a feasible schedule, which means that for each task iwith workloadw, at leastwwork
is done on this task after its arrival time and before its deadline. They show that no deterministic
online algorithm can have a better competitive ratio than their algorithm. The competitive ratio is the
ratio between the performance of the online algorithm and the offline version of the algorithm. There
are already some more online algorithms for specific systems/fields. Examples include the field of
edge computing [7] and multiple clock domain chip multi-processors [2]. The paper by Q. Bashir
et al. [4] proposes an online scheduling technique to avoid thermal emergencies in multiprocessor
systems. Their technique performs load balancing based on dynamic temperature measurement at
a fixed ambient temperature. Their simulation results show that their technique reduces the overall
temperature up to 5%.

The goal of this paper is to apply the algorithm from [9] into this setting to have an online version of
this algorithm that minimizes the maximum temperature while meeting the performance constraints
by scheduling idle time. We will then implement this algorithm into a simulation to see the effects it
has on the temperature. Our research question is thus as follows: “How can we schedule online jobs to
minimize the maximum processor temperature of electronic devices while still meeting deadlines of jobs?”

We show how the policy proposed in [9] can be implemented as an online scheduling method to

2

minimize the maximum processor temperature while still meeting the deadlines of jobs with respect
to other policies. We show this in a systemwith one type of job with the same (known) workload and
deadline and a certain arrival process. In this situation, this policy can decrease the temperature with
up to 44% with respect to other policies.

2 Definitions and models
In this section we will show the models and system definitions we used. We will start by stating

our problem definition and summarizing the thermal model and offline system of [9]. Afterwards we
will define our online system.

2.1 Problem definition
In this bachelor’s thesis, we will consider a systemwith a processor for which we can schedule idle

time andwe consider one type of job arriving to the system. With this wemean that every job arriving
to the system has the same (known) workload and time before it must be finished (also known as
the deadline). However, we do not know when each job will arrive, we only know the arrival rate of
its Poisson arrival process. We also assume the processor can process only one job at the same time.
When a job arrives while another is already in the system, this means it will be rejected. When a job
enters the system, the system starts processing it and the processor temperature will increase. Once
a job leaves the system, the processor will cool down until a new job arrives. The goal of the optimal
policy from [9] is to schedule and assign the resources in a certain way to minimize the maximum
processor temperature.

As input variables of the algorithm we use one type of job. The algorithm will yield a schedule that
shows how many resources should be assigned at each moment. We use this schedule together with
an initial temperature as input of our simulation to get the temperature over time as output of our
simulation. A schematic overview of the input and output can be found in Figure 1.

Figure 1: Schematic overview of input and output of our algorithm and simulation

2.2 Thermal model
We will briefly explain the thermal model we used. This model is the same as in [9], upon which

this research is building. Therefore we shall not discuss it in great detail but it is important since it
introduces some variables and symbols we will use in our system definition.

The heat dissipation in a system is directly related to the assigned resources. There are two heat
sources in a processor unit. One reflecting the switching activities in the processor, which depends
on the active resources of the processor. The second source relates to the leakage current in the pro-
cessor, which depends on the temperature of the system. But as stated in [9] this source has a very
low effect compared to the first one so we focus on the heat source reflecting the switching activities:

3

QD(t) = αx(t), where 0 ≤ x(t) ≤ 1 is the normalized amount of active resources (also known as
processor utilization) and α > 0 is a system dependent parameter. [9]

To describe the change in temperature when a certain utilization x(t) is applied, [9] uses the following
dynamic heat transfer equation:

Ṫ = −1

τ
T (t) +

1

τ
Ta +

α

τ
x(t) (1)

where Ṫ is the first-order derivative of the temperature T , τ > 0 a thermal system dependent time
constant and Ta is the ambient temperature dependent on the environment. We assume Ta is constant
over time.

Afterwards, [9] defines the output as the normalized temperature difference y(t) = 1
αT (t) −

1
αTa.

Now we can rewrite Eq. (1) as follows:

ẏ(t) = −1

τ
y(t) +

1

τ
x(t) (2)

From [9], the solution to this first-order DE is

y(t) =
1

τ

∫ t

t0

e−
t−σ
τ x(σ)dσ + y(t0)e

− t−t0
τ , ∀t ≥ t0 (3)

where [9] takes the initial value of y(t), namely y0 = y(t0) ∈ [0, 1]. Then 0 ≤ y(t) ≤ 1 always since
x(t) is normalized. And thus we have Ta ≤ T (t) ≤ Ta + α.

Having established the thermal model, [9] makes two observations to ease notation. This will help us
with the analysis and simulation later. Firs, suppose x(t) is constant in a time interval [δa, δb] where
0 ≤ δa ≤ δb, so x(t) = x(δa), ∀t ∈ [δa, δb]. Then we can write y(t) using Eq. (3) as follows:

y(t) = x(δa)(1− e−
t−δa

τ) + y(δa)e
− t−σ

τ . (4)

Second, if y(t) is constant in this time interval such that y(t) = y(δa), ∀t ∈ [δa, δb] then we can write
x(t) using Eq. (2) as:

x(t) = y(t) = y(δa), ∀t ∈ [δa, δb]. (5)

To illustrate the behavior of y(t) and T (t) for different input x(t) we have made an example based on
the theory in [9]. Suppose α = 25, τ = 0.6s, Ta = 10◦C and T0 = 17.5◦C. Then Figure 2 shows a
sample input x(t) and the corresponding output y(t) and temperature T (t).

Figure 2: Example of the behaviour of the output of the system with varying input

4

2.3 System definition offline problem
System definition for multiple offline jobs

We will start by summarizing the offline model of [9] so we can base our online system off of this
later.

We have a set of jobs n ∈ {1, 2, ..., N} becoming available at time t = 0 with known deadline vec-
tor d = [d1, d2, ..., dN] and workload vector w = [w1, w2, ..., wN]which are defined as follows:

• wn is the time needed for the system to process job n at full system resources (i.e. x(t) = 1).
• dn is the time before which job n has to be completed.

Assume jobs are ordered by increasing deadlines so d1 ≤ d2 ≤ ... ≤ dn and processed in this order.
Theminimum cumulative required resources needed tomeet all deadlines coming before a given time
t is

Fw(t) =
∑

n∈{n|dn≤t}

wn, ∀t ≥ 0 (6)

And the cumulative resources assigned up to a given time t is Fx(t) =
∫ t

0
x(σ)dσ.

We can now form the following constraints for the system:
• The assigned resources are at least as large as the minimum cumulative required resources at

time t:
Fx(t) ≥ Fw(t) ∀t ∈ [0, dN].

• We cannot assign more resources if there is no more remaining workload:
Fx(t) ≤ Fw(dN), ∀t ∈ [0, dN].

• Since 0 ≤ x(t) ≤ 1 we have
0 ≤ Fx(t) ≤ t, ∀t ∈ [0, dN].

Summarizing, the feasibility conditions for the input are as follows: min{Fw(dN), t} ≥ Fx(t) ≥ Fw(t), ∀t ∈
[0, dN]. This means the system has a solution only if Fw(t) ≤ t ∀t ∈ [0, dN]. From here on, we will
focus on the interval [0, dN] and assume the above conditions are satisfied.

To illustrate the relation between these constraints we havemade an example based on the theory from
[9]. Suppose we have five jobs in the form of Fw(t) and a sample input x(t) in the form of Fx(t). This
set containsN = 5 jobs with workload vector w = [1, 2, 0.5, 3, 1] and deadline vector d = [2, 4, 6, 8, 10].
Then Figure 3 show the relation between the constraints.

Figure 3: An example illustrating the relation between constraints

5

To ease some notation, [9] defines the remaining minimum required amount of resources at time
t and for a given deadline dn where t < dn as follows:

λ(t; dn) = Fw(dn)− Fx(t) (7)

This is the required amount of resources at time t to meet dn. If it is negative, the deadline is already
satisfied. We have maxλ(t; dn) = dn − t since Fw(t) ≤ t. These are the total amount of available
resources. We can define its complement as follows: λc(t; dn) = dn− t−λ(t; dn) and since y(t) ∈ [0, 1]
we can define the complement of y(t) as yc(t) = 1− y(t) and this is also in the interval [0,1].

Finally, we have themultiple job allocation problem. Givenw, d and y0 our problem is to find the input
x(t) that minimizes max y(t):

Multiple offline job allocation problem: (8)
min
x(t)

max
t∈[0,dN]

y(t) (9)

s.t. y(t) = 1

τ

∫ t

0

e−
t−σ
τ x(σ)dσ + y0e

− t
τ (10)

Fx(dk) ≥ Fw(dk), ∀k ∈ {1, 2, ..., N − 1} (11)
Fx(dN) = Fw(dN) (12)
0 ≤ x(t) ≤ 1, ∀t ∈ [0, dN] (13)

System definition for a single offline job

Later, we will describe how [9] minimizes the maximum temperature for multiple offline jobs.
However, in order to do this and to later generalize this to an online setting we first simplify the model
to one offline job, in the same way as in [9]. We consider a single job becoming available at t = 0with
a workload w and a deadline d.

Here we have
Fw(t) =

{
w if t ≥ d

0, if t < d
(14)

and the deadline constraint

Fx(d) = w. (15)

Given w, d and y0 our problem is to find the input x(t) that minimizes max y(t):

Single offline job allocation problem: (16)
min
x(t)

max
t∈[0,d]

y(t) (17)

s.t. y(t) = 1

τ

∫ t

0

e−
t−σ
τ x(σ)dσ + y0e

− t
τ (18)∫ d

0

x(t)dt = w (19)

0 ≤ x(t) ≤ 1 ∀t ∈ [0, d] (20)

2.4 System definition online problem
Now, it is time to extend the idea for the offline problem to the online problem. In this case we

will consider multiple jobs n = 1, 2, ... arriving according to a Poisson arrival process with arrival rate
λ. Each job has a deadline, which is the time after the arrival of the job by which it must be com-
pleted. This is different than in the offline model since there the deadline was equal to the time-point
by which the job must be completed. For example in the online problem, if a job arrives at t = r and

6

has deadline d, it must be completed by t = r + d. Each job also has a workload, which is the amount
of (normalized) resources that is needed to complete the job. For example, if a job arrives at t = r,
has workload w and the system immediately processes this job at full resources, it will be finished by
t = r + w. Recall that we will consider only one type of job for this thesis. With this we mean that all
jobs arriving to the system have the same workload w and deadline d. We assume d ≥ w > 0 and that
job n cannot be processed by the system before t = rn, with rn being the actual arrival time of job n.
Finally, we assume that the capacity of the system is equal to one. This means there can only be one
job in the system at a time. So if a job is already in the system and a new job arrives, it will be deleted.

An example of this problem is a locked door that can be unlocked by a card reader. There can only be
one card read at a time, and the workload and deadline of each card to be read is the same.

There are very few analytical expressions for measuring certain quantities (such as the expected time
until a new arrival at an arbitrary time) of this kind of queuing system namely an M/D/1 queue with
a capacity of c. In our case c = 1. We will discuss the reasons of this in section 3.4.2. We have found an
article giving an explicit solution for the mean queue length and the average waiting time [8]. Unfor-
tunately this was not exactly what we were looking for as we are looking for expressions such as the
expected number of processed jobs at a certain time-point. This makes it difficult to construct a real-
istic model for this multiple online job allocation problem. However, we can make a single online job
allocation problem based on the single offline job allocation problem. As soon as a job arrives at t = r,
we know its deadline and the system can choose to process it in a certain way. The problem for this
single job is then similar to the single offline job allocation problem but instead of the job becoming
available at t = 0 it becomes available at t = r. Since all jobs arriving to the systemwhile this job is still
being processed are deleted, we can now treat this as the single offline job problem allocation problem.

Given w, d and y0 our problem is to find the input x(t) that minimizes max y(t):

Single online job allocation problem: (21)
min
x(t)

max
t∈[r,r+d]

y(t) (22)

s.t. y(t) = 1

τ

∫ t

r

e−
t−σ
τ x(σ)dσ + y(r)e−

t−r
τ (23)∫ r+d

r

x(t)dt = w (24)

0 ≤ x(t) ≤ 1 ∀t ∈ [r, r + d] (25)

For themultiple online job allocation problem, we can repeat the optimal policy for each job as soon
as it enters the system.

3 Optimal allocation
In this section we will shortly discuss how the algorithm for the offline problems as detailed in [9]

optimally allocates the resources to minimize the maximum temperature. Afterwards we show how
we implemented this algorithm into our online problem. Lastly, we will do some analysis on how the
temperature should behave in our system when this algorithm is applied so that we can compare it to
our simulated results later.

3.1 Policies
The algorithm we will implement in our system for online jobs is a policy on how to assign the

resources of the system. As stated, we will apply the algorithm as detailed in [9], which introduces
the just enough policy and the performance policy and then proposes its own optimal policy which is a
combination of the former two. We will summarize these policies and their effects on the temperature
in this section.

7

Performance policy: This policy processes a job immediately at full resources. When a job enters the
system at time t = 0with workload w and deadline d the performance policy will immediately process
it at full resources and finish it at the earliest possible moment, which is actually t = w. This means
that x(t) = 1 ∀t ∈ [0, w) and x(t) = 0 otherwise. For this policy, deadlines set by the user are not
relevant as the policy immediately processes the job and finishes it as soon as possible, regardless of
the deadline. The maximum value of y(t) will then occur at t = w and max y(t) = 1 + (y0 − 1)e−

w
tau

because of Eq. (4).

Just enough policy: This policy assigns the resources such that the job is completed exactly at the
deadline and not before. Once a job n enters the system at time t = 0 with workload w and deadline
d the just enough policy will immediately process it, but with the least amount of resources such that
it is completed exactly at t = d. This means that x(t) = w

d ∀t ∈ [0, d) and x(t) = 0 otherwise so that∫ d

0
x(t) =

∫ d

0
w/d = w, therefore the job is finished. The maximum value of y(t) will then occur at

t = d and max y(t) = w
d + (y0 − w

d)e
− d

τ . This maximum temperature is lower than the maximum
temperature of the performance policy. However, this policy does not solve the resource allocation
problem (16) optimally because its utilization is not effective when the temperature is low. Therefore
[9] proposes the optimal solution as described below.

Optimal: When a new job arrives, the optimal policy behaves like the performance policy until it
reaches a steady-state temperature at a time-pointµ, and behaves like the just enoughpolicy afterwards.
This will make sure that the temperature stays constant at this steady-state temperature instead of
increasing and minimizes the maximum temperature as can be seen in Figure 4.

(a) Input (b) Output

Figure 4: Illustration of three different policies for the single job case with y0 = 0.

3.2 Optimal allocation offline problem
Optimal allocation for a single offline job

The solution to the problem with a single offline job we will discuss here is proposed and proven
to be optimal in [9]. This solution distinguishes whether the system is in a heating, steady or cooling
state and behaves like the performance policy until a steady-state temperature is reached at a certain
time t = µ and then behaves like the just enough policy. This means the system applies full or no
utilization until it reaches t = µ (i.e. x(t) = 1 ∀t ∈ [0, µ) or x(t) = 0 ∀t ∈ [0, µ)) and applies minimal
utilization afterwards (i.e. x(t) = (remaining workload) / (remaining time until deadline) ∀t ∈ [µ, d)).

We will repeat the definition of these states and how the steady-state temperature can be computed
from [9] since we will use this in our solution to the online problem.

The three system states are defined in [9] as follows:

• The system is in a heating state when y(t) < λ(t;d)
d−t .

8

• The system is in a stable state when y(t) = λ(t;d)
d−t .

• The system is in a cooling state when y(t) > λ(t;d)
d−t .

So when t = 0, the system is in a heating state when y0 < w
d , a stable state when y0 = w

d and a cooling
state when y0 > w

d .

Suppose there is one job with deadline d arriving to an empty system at t = 0. At time t ∈ [0, d),
if the system is in a heating state, the steady-state temperature yss(t; d) is reached after applying full
utilization for a certain time period. This steady-state temperature is proven in [9] to be as follows:

yss(t; d) = 1− λc(t; d)

τW0(
e
d−t
τ

τ
λc(t;d)
yc(t))

, (26)

whereW0 denotes the real value of the principal branch of the Lambert W functionwhich is defined
to solve x = zez as z = W (x).

Suppose there is one job with deadline d arriving to an empty system at t = 0. At time t ∈ [0, d),
if the system is in a cooling state, the steady-state temperature yss(t; d) is reached after applying zero
utilization for a certain time period. This steady-state temperature is proven in [9] to be as follows:

yss(t; d) =
λ(t; d)

τW0(
e
d−t
τ

τ
λ(t;d)
y(t))

. (27)

The algorithm in [9] determines the moment the steady-state temperature is reached dependent on
what state it is in and assigns the resources accordingly. If it is in a heating state it will apply full
utilization until this moment and it will behave like the just enough policy afterwards. If it is in a
cooling state it will apply zero utilization until this moment and it will behave like the just enough
policy afterwards.

Optimal allocation for multiple offline jobs

When generalizing their solution to amultiple job problem, [9] looks for a certain, optimal division
point. This division point divides the jobs into two sub-intervals: jobswith a deadline before this point
and jobs with a deadline after this point. This division point dv is proven in [9] to be found by the
following rule:

dv = argmaxn∈{1,...,N}{yss(0, dn)}. (28)

For the multiple offline job case, [9] applies the algorithm for the single offline job to the first interval
and use the input given by this algorithm up to the division point. Afterwards, they look for a new
division point and repeat the same process until the last job is processed. This division point yielding
the optimal input is proven to be the deadline of the job with the maximum steady-state temperature.
This solution to the multiple job allocation problem is also proven in [9] to be an optimal solution.

3.3 Optimal allocation online problem
Our proposed solution will follow the same idea as the one proposed in [9]. Once a job arrives,

it will behave like the performance policy until the steady-state temperature is reached and like the
just enough policy afterwards and repeat this for every job. We will start by applying the performance
policy and the just enough policy to the system separately and see what the effects are. Afterwards
we can combine these policies to determine our optimal policy. When applying the optimal policy on
multiple offline jobs, [9] groups the jobs in an optimal way to find the steady-state temperature per
group instead of per job. The fact that we don’t do this will probably result in a higher variance than
[9] since the input will switch values more often, which means the output will switch from heating
or cooling more often and remain constant for shorter amounts of time.

9

3.4 Analytic results
In this section we will do some mathematical analysis on how the output should behave in our

system when applying the optimal policy and how our queuing system should behave in terms of
busy and idle time.

3.4.1 Output offline problem

In this section we will determine some expressions for the temperature of the offline single job
system when applying the optimal policy.

Suppose our system has initial value y0 ≤ w
d . Since the algorithm applies a constant utilization of

1 in the interval [0, µ)we can apply Eq. (4) as follows to that interval:

y(t) = 1(1− e−
t−0
τ) + y(0)e−

t−0
τ) = 1− (1− y0)e

− t
τ , ∀t ∈ [0, µ). (29)

Suppose our system has initial value y0 > w
d . Since the algorithm applies a constant utilization of 0 in

the interval [0, µ)we can apply Eq. (4) as follows to that interval:

y(t) = 0(1− e−
t−0
τ) + y(0)e−

t−0
τ) = y0e

− t
τ , ∀t ∈ [0, µ). (30)

Since the solution applies a constant utilization of x(µ) = (w−µ)/(d−µ) in the interval [µ, d), we can
apply Eq. 4 as follows to that interval:

y(t) = x(µ)(1− e−
t−µ
τ) + y(µ)e−

t−µ
τ , ∀t ∈ [µ, d). (31)

and we can determine y(µ) from that as follows:

(1− e−
t−µ
τ)y(µ) = x(µ)(1− e−

t−µ
τ).

So
y(µ) = x(µ) =

w − µ

d− µ
. (32)

Now, Eq. (??) gives us the following:

y(t) = x(µ)(1− e−
t−µ
τ) + x(µ)e−

t−µ
τ = x(µ)(1− e−

t−µ
τ + e−

t−µ
τ) = x(µ), ∀t ∈ [µ, d). (33)

3.4.2 Output online problem

We will determine expressions for the output of our online system in a steady-state analytically.
We will determine these expressions for the just enough and performance policies separately.

Since the assigned resources are either 0, 1 orw/d and always constant in a certain interval, we can use
Eq. (4) to compute the expected output of our system. In a system with the just enough or performance
policy, there are two possible states the system can be in. For the just enough policy this is either min-
imal utilization (x(t) = w/d) or no utilization (x(t) = 0) and for the performance policy this is either
maximal utilization (x(t) = 1) or no utilization (x(t) = 0). We can calculate the expected output at
each time-point of these states since the assigned resources are constant while the system is in that
state.

Just enough
Let yJ,0 denote the expected output of the system applying the just enough policy at the end of the idle
period (so when a new job has just arrived) and let yJ,1 denote the expected output of this system at
the end of the busy period (so when a job has just finished processing). Suppose we are currently at

10

time t = r1 + d, and a job that arrived at t = r1 with workload w and deadline d has just finished
processing. Using Eq. (4) and the fact that the output at t = r1 is equal to the output of the system at
the end of an idle period yJ,0, we get the following for the output at this time:

yJ,1 = x(r1)(1− e−
r1+d−r1

τ) + e−
r1+d−r1

τ yJ,0 =
w

d
(1− e−

d
τ) + e−

d
τ yJ,0. (34)

We now want to know the expected time between the finishing of a job and the arrival of a new job to
find the expected output at the end of an idle period. Suppose the jobs arrive according to a Poisson
process with arrival rate λ. Unfortunately, we cannot say that at any time t the expected time until a
new job arrives is 1

λ . This is because of two reasons. First, it is true that on average λ jobs per time unit
arrive to the system but a proportion of those arrivals finds the system filled to capacity and leave.
Therefore the rate at which customers actually enter the system is not equal to λ. Second, it is not
appropriate to model this system as a birth-death process since the service times no longer have their
memorylessness property. [12]

There are very few analytical expressions for the measuring quantities of this kind of queuing sys-
tem. Unfortunately, we could not find a satisfactory analytical expression for the time between the
finishing of a job and the arrival of a new job. Therefore we decided to find an approximate value for
the time between the finishing of a job and the arrival of a new job by running a simulation. Let this
value be ρJ for the just enough policy and ρP for the performance policy. Then at time t = r1 + d the
expected time until a new job arrives is ρJ for the just enough policy. Now the expected output at this
time (the end of the idle period) is:

yJ,0 = x(r1 + d)(1− e−
ρJ
τ) + yJ,1e

− ρJ
τ = yJ,1e

− ρJ
τ (35)

since the utilization during the idle period is zero per definition.

Let αJ = e−
ρJ
τ and βJ = e−

d
τ . We can now substitute Eq. (35) into Eq. (34) to solve the system

of equations:

yJ,1 =
w

d
(1− βJ) + αJβJyJ,1 (36)

so yJ,1 =
1− βJ

1− αJβJ

w

d
(37)

and yJ,0 =
αJ(1− βJ)

1− αJβJ

w

d
. (38)

Performance
Let yP,0 denote the expected output of the system applying the performance policy at the end of the idle
period (so when a new job has just arrived) and let yP,1 denote the expected output of this system at
the end of the busy period (sowhen a job has just finished processing). We can easily find these values
by replacing dwithw in Eqs. (37) and (38) since the performance policy immediately starts processing
with full utilization for the duration of the workload, regardless of the deadline. Let αP = e−

w
τ and

βP = e−
ρP
τ Therefore we get:

yP,1 =
1− β

1− αPβP
(39)

and yP,0 =
αP (1− βP)

1− αPβP
. (40)

3.4.3 Queuing model

Wewill analytically determine the ratio our system is busy or idle analytically for all three policies
separately. The proportion of time the system applying the just enough policy is busy is w

d multiplied
by d and divided by the expectation of the arrival rate plus the deadline, as can be seen in Figure 5a.

11

(a) Performance, Just Enough (b) Optimal with y0 ≤ w
d

(c) Optimal with y0 > w
d

Figure 5: Workload distribution over time for three different policies

The busy ratio of our just enough system is π1 = w
E[λ]+d and the ratio our system is idle is π0 = 1−

π1 = E[λ]+d−w
E[λ]+d . The ratio’s of our performance policy are then the same as that of the just enough policy

butwe replace d byw, which can aslo be seen in Figure 5a. If we process a job at a single utilization level
- which is the case for the just enough and performance policies - we can revert back to theM/D/1model
since our workload is fixed. However, for the optimal policy we have a variable utilization level so in
general there is no simple queuing model that describes it. Suppose the temperature of the system
when a job enters the system is equal to y0. The ratio’s of the optimal policy are a different for when
the system is in a heating (y0 ≤ w

d) or in a cooling state (y0 > w
d), as can be seen in Figures 5b and 5c.

When the system is in a heating state, the system does the same amount of work in the same amount
of time as the just enough policy. However, when the system is in a cooling state, the system does the
same amount of work in a smaller amount of time, namely d − µ. In the heating state the busy and
idle ratio’s of the optimal policy are therefore the same as for the just enough policy and for the ratio’s
of the cooling state we replace d by d− µ. We will leave these separate and we will not combine them
due to the variable utilization level.

4 Simulation
In this section we will shortly discuss how we set up the different simulations and show some

pseudo-code of the simulation for the online problem. Afterwards, we will verify our simulation and
show some results. However, we will start with a brief explanation on howwe discretized our system.

4.1 Discretization
In our model x(t) and y(t) are described as continuous functions of t. However in our simulation,

x and ywill become vectors x and y respectively. We can iterate over x and y at integer time-points, but
not in between those. Therefore we chose to simulate in milliseconds, so the time between x[k] and
x[k+1] is equal to one millisecond, the same holds for y. We have to be careful in how we calculate y
fromx. For example, saywehave y[0]= 0 andwe assign x[i]= 1 for i ∈ {0, 1, 2}. In that same iteration-
loop, we cannot assign y[i] = y[0]e− t

τ + x[0](1 − e−
t
τ) for i ∈ {0, 1, 2} since then we overwrite y[0]

to be equal to y[0] + 1 = 1. Thus, we would start the y-calculation one iteration later. We would also
have to go one iteration further because when we do the same when assigning x[i] for i ∈ {3, 4, 5},
the iterations would always skip one value of y, in this case y[3]. Thus, if the iterations over x go from
i = {k, .., n} the iterations over y would go from i = {k + 1, ..., n+ 1}. This was not necessary for the
single offline job allocation problem as the calculations were very simple but it was for the multiple
online job simulation.

4.2 Simulation offline problem
Westarted by simulating the solution to the problem for one offline job arriving to an empty system.

The implementation of the functions Fw(t), Fx(t) and λ(t; d) (Eqs. (14), (15) and (7) respectively)
were very straight-forward. For the implementation of Eq. (3) we actually used Eqs. (29), (30) and
(31) in our simulation resulting in the following pseudo-code:

if y0 <= workload / deadline:

12

if t < mu:
y[t] = 1 - (1 - y_0) * exp(-t/tau)

else:
y[t] = x[mu] * (1 - exp(-t/tau)) + y[mu] * exp(-t/tau)

else:
if t < mu:

y[t] = y_0 * exp(-t/tau)
else:

y[t] = x[mu] * (1 - exp(-t/tau)) + y[mu] * exp(-t/tau)

Finally, we implemented the algorithm as detailed in [9] which was pretty straight-forward. The
algorithm would yield a vector x as optimal input. The code can be found in Appendix A.

4.3 Simulation online problem
For our online simulation we used the Python library DiscreteEventSimulation from the 2020

project of Module 8 of Applied Mathematics at the University of Twente [1]. This library contains
some basic classes and functions so we can build our own discrete events. We started by simulating
the performance and just enough policies separately and finally combined them into the optimal policy.
In this section we will first discuss the pseudo-code of those two policies and afterwards we will dis-
cuss the pseudo-code of the simulation implementing the optimal policy. The actual code of the just
enough and performance policies can be found in Appendix B. Most of the code of the just enough and
performance policies is the same, except that in the performance policy the deadline is set equal to the
workload. In the pseudo-code, "Time" is used to denote the time-point at which the calculations are
being done.

The pseudocode for when a job arrives is as follows:
Arrival

If Time == 0:
Start "start processing"

If the number of jobs in the system > 0:
Delete job

If the number of jobs in the system == 0:
If Time > 0:

For t in [prevDeadline, Time]:
y[t] = exp(-(t - prevDeadline)/tau) * prevTempArrival

prevArrival = Time
prevTempDeadline = y[Time]
Start "start processing"

Schedule "arrival" at Time + exponential time with rate "arrivalRate"

We treat "Time ==0" separately here as to not get a division by 0 and since we give the system an
initial value for y[0] the temperature is already "saved".

The pseudo-code for the starting of processing is as follows:

Start processing (just enough and performance)
x[Time] = workload / deadline
For t in [Time + 1, Time + deadline - 1]:

x[t] = workload / deadline
y[t] = exp(-(t - prevArrival)/tau) * prevTemp

+ (1 - exp(-(t - prevDeadline)/tau)) * workload / deadline
y[Time + deadline] = exp(-(t - prevArrival)/tau) * prevTemp

+ (1 - exp(-(t - prevDeadline)/tau)) * workload / deadline
prevTemp = y[Time + deadline]
Schedule "end processing" at Time + deadline

13

We take x[Time] and y[Time + deadline] out of the loop so that we don’t overwrite the initial tem-
perature at the moment a job arrives with a wrong temperature and we don’t have an "extra" value for
x, as described in section 4.1. The code above is for the just enough policy. If we replace deadline by
workload we will get the performance policy.

The last type of event left to code is the "end processing" event:
End processing

prevDeadline = Time
If Time > timeToEndSimulation:

Stop Simulation

We start our simulation by triggering an arrival at Time = 0.

To be able to simulate the optimal policy, we needed to add a function that calculates the steady-state
temperature for each job at the moment it arrives so we know when to switch from policies. Next to
that, the "start processing" event needed to be altered to implement that switching. The code of the
optimal policy can be found in Appendix C.

The pseudo-code for the calculation of the steady-state temperature yss is as follows:
yss(y0):

if y0 <= workload / deadline
yc = 1 - y0
lambc = deadline - workload
yss = 1 - (lambc / (tau * (lambertW(exp(deadline/tau))/tau * lambc/yc).real))

else:
lamb = workload
yss = lamb / (tau * (lambertW(exp(workload/tau))/tau * lamb/y0).real)

And the pseudo-code for the "start processing" event was altered as follows:
Start processing (optimal)

workDone = 0
yss = yss(y[Time])
if y[Time] <= workload / deadline

x[Time] = 1
For t in [Time + 1, Time + deadline - 1]:

if not steadyState:
x[t] = 1
y[t] = exp(-(t - prevArrival)/tau) * prevTemp

+ (1 - exp(-(t - prevDeadline)/tau))
if y[t] >= yss:

steadyState = True
mu = t
workDone = t - prevArrival
steadyStateTemp = y[t]
Quit for loop

y[Time + deadline] = exp(-(t - prevArrival)/tau) * prevTemp
+ (1 - exp(-(t - prevDeadline)/tau))

else:
x[Time] = 0
For t in [Time + 1, Time + deadline - 1]:

if not steadyState:
x[t] = 0
y[t] = exp(-(t - prevArrival)/tau) * prevTemp
if y[t] <= yss:

steadyState = True
mu = t

14

workDone = 0
steadyStateTemp = y[t]
Quit for loop

y[Time + deadline] = exp(-(t - prevArrival)/tau) * prevTemp

if steadyState:
x[mu] = (workload - workDone) / (prevArrival + deadline - mu)
For t in [mu + 1, Time + deadline - 1]:

x[t] = (workload - workDone) / (prevArrival + deadline - mu)
y[t] = exp(-(t - prevArrival)/tau) * steadyStateTemp

+ (1 - exp(-(t - prevDeadline)/tau)) * (workload - workDone) /
(prevArrival + deadline - mu)

y[Time + deadline] = exp(-(t - prevArrival)/tau) * steadyStateTemp
+ (1 - exp(-(t - prevDeadline)/tau)) * (workload - workDone) /
(prevArrival + deadline - mu)

prevTemp = y[Time + deadline]
steadyState = False
Schedule "end processing" at Time + deadline

4.4 Verification
In this section, we will compare the analytic expressions we determined in section 3.4 to the values

our simulation gives to verify our simulation. We will start by verifying if our simulation imple-
menting the optimal policy for a single job matches that of [9] and our expectation from section 3.4.1.
Afterwards we will analytically compute a few values to verify that our simulation for multiple online
jobs represents the reality in some way. Here, we will analyze the two main aspects of our simulation:
the output and the queuing model.

4.4.1 Output offline job problem

Here, we will check if our simulation implementing the optimal policy for a single offline job does
whatwewant it to do sowe knowwehave a good basis for the online simulation. We used one jobwith
w = 150ms, d = 200ms, τ = 60ms and two different initial values for y(t), one above and one below
w
d . Figure 6a shows the output for y0 = 0.25 ≤ w

d and Figure 6b shows the output for y0 = 0.95 > w
d .

(a) y0 <= w
d

(b) y0 > w
d

Figure 6: Output of single offline job with different initial values of y(t)

Aswe can see, the input starts at 0 or 1 and the output sinks or rises respectively, as we expect from
Eqs. (29) and (30. When the steady-state is reached the input rises or drops to the value the output
has at that time-point, as we expect from Eqs. (32) and (33).

15

4.4.2 Output online job problem

Before we verify our simulation with the online system, we will verify our simulation with a sys-
tem with one periodic type of job (with workload w and deadline d), this means we are looking at a
D/D/1 queue with a capacity of one. Let’s say this job arrives every r time units. We can then cal-
culate the output at the end of the idle and busy states exactly and compare this to what values our
simulation gives. We do not need to use ρ1 or ρ2 here since we know the time between the finishing
of a job and a new job arriving as this is discrete and equal to r − d. If the errors of those simulation
values are small we can be assured that the basis of our simulation is satisfactory. We get the following
parameters for Eqs. (37) and (38) when we apply the just enough policy: αJ = e−

d
τ and βJ = e−

r−d
τ .

All these vaulues are known since we can choose our parameters. When applying the performance
policy, we replace d by w. We take our parameter values as in Table 1. We simulated for 100000 time
units and took the mean of the outputs at the end of the idle period and at the end of the bsy period
as our simulation value. We used Eqs. (37), (38), (39) and (40) to determine the analytic values. The
analytically calculated values and simulated values for the different outputs of the different policies
and the errors can be found in Table 2.

Table 1: Values used to compare the analytical results to the simulation results.

Parameter symbol unit value
Workload w ms 40
Deadline d ms 70

Time between arrivals r ms 100
System dependent parameter τ ms 200

Table 2: Analytical results versus simulation results of a D/D/1 queue with capacity of one.

Quantity Analytical (≈) Simulation (≈) Absolute error Relative error
yJ,1 0.4289 0.4264 0.0025% 0.58%
yJ,0 0.3691 0.3666 0.25% 0.68%
yP,1 0.4607 0.4531 0.0076% 1.67%
yP,0 0.3413 0.3353 0.60% 1.76%

The errors are all very small, so we can be satisfied with the basis of our simulation.

We can now fill in our parameters to verify our simulation for the online system. We will verify the
output y(t) of the just enough and performance simulations separately. If these give us satisfactory re-
sults, then we can use the sameway of calculating the output for the optimal policy. We take the values
from Table 3. Using these values and simulating over 100.000 time-points, our simulation gave us an
approximate value for ρ, which is also displayed in Table 3. The values used for the parameters are
summarized in Table 3. We simulated for 100000 time units and took the mean of the outputs at the
end of the idle period and at the end of the busy period as our simulation values. The analytically cal-
culated values and simulated values for the different outputs of the different policies and the errors
can be found in Table 4, where we again used Eqs. (37), (38), (39) and (40) to determine the analytic
values.

We can see that the errors are all very low, so we can conclude that the output-calculation of our
simulation is representing the reality quite well.

4.4.3 Queuing model

To verify that our queuing model is working properly, we can compute the ratio the system is idle
or busy analytically and compare this to the results of our simulation. We have different expressions
for the busy and idle ratio’s of the optimal policy when the system is in a heating or a cooling state
as stated in section 3.4.3. The amount of time the system is in a heating or cooling state is dependent

16

Table 3: Values used to compare the analytical results to the simulation results.

Parameter symbol unit value
Workload w ms 40
Deadline d ms 70

Arrival rate λ 1/(expected ms between arrivals) 1/50
System dependent parameter τ ms 2000

Expected time between arrivals just enough ρJ ms 51.3277
Expected time between arrivals performance ρP ms 51.7961

Table 4: Analytical results versus simulation results.

Quantity Analytical (≈) Simulation (≈) Absolute error Relative error
yJ,1 0.3339 0.3274 0.65% 1.9%
yJ,0 0.3254 0.3189 0.66% 2.0%
yP,1 0.4414 0.4288 1.3% 2.9%
yP,0 0.4301 0.4176 1.3% 2.9%

on basically all of the different parameters of our system, however we have seen in our simulation
that when y0 = 0 and using the parameters of Table 3, the system does not reach the cooling state.
Therefore, we will only compute and compare the ratio’s of the heating state. To determine the busy
ratio in our simulation we can simply sum up all elements of our resource vector and divide that by
its length. The idle ratio is then 1 - busy ratio. The analytically computed values, the simulated values
and the errors can be found in Table 5. Here, the analytical values are determined by the ratio’s as
described in section 3.4.3 and again using the values of Table 3.

Table 5: Analytical results versus simulation results.

Quantity Analytical Simulation (≈) Absolute error Relative error
Busy ratio Just Enough 1/3 0.3297 0.36% 1.1%
Idle ratio Just Enough 2/3 0.3703 0.36% 0.54%
Busy ratio Performance 4/9 0.4359 1.0% 2.3%
Idle ratio Performance 5/9 0.5641 0.85% 1.53%
Busy ratio Optimal 1/3 0.3272 0.61% 1.8%
Idle ratio Optimal 2/3 0.6728 0.61% 0.92%

These errors are all low enough to conclude that our queuingmodel is also representing the reality
quite well.

4.5 Simulation results
In Table 6 the results of a simulation with y0 = 0, τ = 2000ms, d = 70ms, λ = 1/50 and w =

20, 40, 60ms can be found. For all of these simulations we used a simulation time of 10.000ms. We
have displayed the mean output and the mean output of the systemwhen a job departs for all policies
and the mean steady-state output for the optimal policy. All of these outputs are taken over the steady-
state, excluding the warm-up or cool-down period. In Table 7 the absolute and relative differences
between the simulated departure times of the just enough and optimal policies can be found. Here, the
relative difference is calculated as follows: (just enough output - optimal output) / just enough output. In
Table 8 the results of simulations with the same parameters but τ = 200ms can be found. When using
τ = 200ms, the error of the mean arrival output of the performance policy rises to 5% to 6%. However
all other errors remain below 5% and the arrival output is the least interesting to us. When using this
same τ but setting λ = 1/80 the errors are very low. We specifically look at the departure times of each
job because this is always the maximum output for the just enough and performance policies, therefore
the goal is to minimize this output.

The following observations can be made about these three figures.

17

Table 6: Analytical results versus simulation results.

Workload 20 40 60
Just enough

Mean Output 0.1606 0.3349 0.5618
Mean Departure Output 0.1629 0.3380 0.5707

Performance
Mean Output 0.2662 0.4904 0.5177

Mean Departure Output 0.2734 0.4984 0.5895
Optimal

Mean Output 0.1457 0.3138 0.4595
Mean Departure Output 0.1480 0.3180 0.4670
Mean Steady-State Output 0.1480 0.3180 0.4670

Table 7: Difference departure output Just Enough and Optimal from Table 6

Workload Absolute Difference Relative difference
20 1.5% 9.21%
40 2.0% 5.93%
60 10.4% 18.17%

Table 8: Departure output Just Enough and Optimal for τ = 200 and various workloads.

Workload 20 40 60
Just enough 0.1861 0.3955 0.5976
Performance 0.3071 0.5177 0.6168
Optimal 0.1653 0.3448 0.5628

Relative Difference JE - O 8.0% 12.8% 5.82%
Relative Difference P - O 44.3% 33.4% 8.75%

• First of all, we notice that for the optimal policy, the mean steady-state output is (almost) equal
to the mean departure output for every case.

• The mean departure output of the optimal policy is always lower than that of the other policies.
• In the case of τ = 2000ms, the difference between the optimal and the just enough policy is biggest

for a high workload of w = 60ms and lowest for a medium workload of w = 40ms. In the case
of τ = 200ms the difference is actually the biggest for a medium workload of w = 40ms.

• In both cases of τ = 200ms, 2000ms, the difference between the performance and the just enough
policy is biggest for a lowworkload of w = 20ms and smallest for a high workload of w = 60ms.
In the case of τ = 2000ms the relative difference in the mean departure output for w = 20ms is
45.9%.

• The differences for the case of τ = 200ms lie much closer together than the differences for τ =
2000ms.

• We can also see that in any case, a higher workload means a higher output.
In Figures 9 to 12 in Appendix D multiple box-plots and line-graphs can be found. For various

workloads and initial values for y(t) we have plotted the simulated results of the different policies in
the same plot. The parameters that were the same for every simulation are τ = 200ms, d = 70ms and
λ = 1/50 and every time we have simulated over 10.000ms. In Figures 9 to 11 the results of the simu-
lations with initial value y0 = 0 and a low workload w = 20ms, medium workload w = 40ms and a
high workloadw = 60ms can be found. We have made one box-plot and line-graph for each workload
over a smaller time-interval towards the end of the simulation so we can see the mean and variance
over the steady-state and so that we can look at the differences between the policies clearer. This time-
interval is about 1.000ms. The same is done for initial value y0 = 0.9 and workloads w = 20ms, 40ms

18

in Figures 12 to 13. The box-plot and line-graph of initial value y0 = 0 and workload w = 40ms can
also be found below in Figure 7.

(a) Boxplot (b) Linegraph

Figure 7: Results of the simulation with workload w = 40ms, τ = 200ms, y0 = 0, d = 70ms,
λ = 1/50

• We can see that the mean of the optimal policy is at least as low as the mean of the just enough
policy and the maximum value of the optimal value is also as least as low as the maximum value
of the just enough policy for every simulation.

• We can see that the mean and departure values of the optimal policy over the steady-state are
quite a bit lower than those of the just enough policy for every simulation.

• The variance of the performance policy is usually the largest. The variance of the just enough and
optimal policies lie quite close to one another except that in Figures 9a and 13a the variance of
the just enough policy is a bit smaller.

• The optimal policy usually has less outliers, increases less when a new job arrives and decreases
less when a new job departs.

• In the case of initial value y0 = 0.9we see that the difference between the optimal and just enough
policy is smaller than when y0 = 0.

• The difference between the optimal and just enough policies in a steady state seems the largest for
a medium workload in most cases.

We have plotted the input x(t) and output y(t) of the optimal policy for various workloads over the
time-interval approximately t ∈ [8000, 9000] in Figure 8 to see how the output behaves. It is displayed
a bit bigger in Appendix D, Figure 14. We have again plotted for a low workload w = 20, medium
workload w = 40 and a high workload w = 60 and y0 = 0, τ = 200, d = 70 and λ = 1/50. We can see
that the input x(t) shoots up to 1 when a new job n arrives, then falls to somewhere just below, at or
just above the current output at a certain time-point (t = µn) and then falls down to 0 when the job is
finished. We can see that the output y(t) rises when the input x(t) = 1, stays approximately constant
from t = µn until the job is finished and then falls down until a new job arrives.

5 Discussion
In this section we will make some observations and state some conclusions that can be made from

the results in section 4.5. First of all, we have seen that playing with the parameters can cause very
different values and it is important to keep looking at the errors of our output with respect to the an-
alytically determined expected output and to think about what types of configurations of parameters
are "logical" in the real world.

We have seen that the mean steady-state output of the optimal policy is very close to to the mean
departure output over the steady-state. This means the simulation does what we expect it to: when

19

(a) Low workload (b) Medium workload (c) High workload

Figure 8: Relation of input x(t) and output y(t) for different workloads

a job arrives and the steady-state output is reached, the output will remain approximately the same
until that job leaves the system. We can also see that in any case, a higher workload means a higher
output. This is also what we expect, since the system will have to do more work in the same amount
of time, and this means a higher temperature.

When looking at the steady-state outputs in Figures 9 - 11, we can clearly see that the optimal pol-
icy has lower mean and departure outputs than both the performance and the just enough policy when
y0 = 0.9 than when y0 = 0. As for the case with a high initial temperature, wee see in the Figures
?? - 13 that the optimal policy has lower mean and departure outputs than the other two policies but
the difference with the just enough policy is smaller. As stated in [9] the just enough policy does not
assign the resources efficiently for low temperatures. Therefore it is not surprising that the differences
between the policies are smaller when the initial temperature is high.

We can see in all the different steady-state simulations that the optimal policy produces a lower out-
put than the just enough policy, both in the mean output and the mean departure output. That this
difference is the largest for the medium workload is a logical consequence. For a high workload, all
of the policies will behave more like the performance policy, since the closer the workload gets to the
deadline, the more the just enough policy will behave like the performance policy and thus the hybrid
optimal policy will do the same. This causes the differences between all policies to become smaller, this
intuition is confirmed by the smaller relative differences in Table 8 and the behaviour of x(t) and y(t)
during our simulation. We can see this behaviour in Figure 14c, as the optimal policy behaves like the
performance policy for a long time, after which it behave like the just enough policy for a shorter time.
For a low workload, the optimal policy will behave more like the just enough policy, since the system
will have to process less workload in the same amount of time so it can spread the work more evenly.
This is again confirmed by the smaller relative difference between the just enough and the optimal pol-
icy in Table 8 and can also be seen in Figure 14a, we see the system behaves like the performance policy
for a very short time and then shoots down to behave like the just enough policy for quite long. That is
why the differences between the optimal and just enough policies are smaller for a low workload. The
relative difference between the optimal and performance policy are biggest for a small workload since
this is when the optimal policy behaves least like the performance policy. Finally, we can see in 14b that
for a medium workload, the time the system spends as the performance or just enough is less skewed to
one or the other. In the case of τ = 200, it is quite odd that the relative difference between the mean
departure outputs of the optimal and just enough policies is the smallest for w = 40, as we can see in
Table 7. This probably has to do with the value for τ since when this is 200, the relative difference is
the highest for w = 40, as we expect.

That the variance of the performance policy is usually the largest is in line with our expectations, since
this input shoots up to its maximum value very quickly when a job arrives and falls down at the ear-
liest possible moment, so the temperature rises high and falls down quickly as well. We would have
expected the optimal policy to usually have a smaller variance than the just enough policy, as the for-
mer aims to stay at a somewhat constant value. In [9] this expectation is confirmed as they state that
a reduction in the variance of the temperature profile is a side-effect of the optimal policy. The fact that
we don’t see that in our results is likely the result of not grouping jobs together in an optimal way to

20

find the steady-state temperature per group of jobs instead of per job.

The behaviour of the input and output for different workloads in Figure 14 as we have described in
section 4.5 is exactly what we expect from the system. The system behaves like the performance policy
when a job arrives, then the input x(t) shoots down to behave like the just enough policy until the job
is finished. We can see that the value x(t) takes on when the steady-state temperature is reached is
approximately equal to the steady-state temperature, which is in line with Eq. (5) for when we have
a constant output y(t).

Finally, in general the output of the optimal policy does what we hope it will do: it minimizes the
maximum processor temperature by smartly assigning the resources, with respect to the just enough
and performance policies. We have seen that the optimal policy can decrease the maximum temperature
in terms of y(t) with up to 18.17% with respect to the just enough policy and up to 45.9% with respect
to the performance policy.

There are still some improvements left in our implementation of the optimal policy into an online
scheduling algorithm. First of all, in this thesis we have implemented the optimal policy into quite a
specific case of online scheduling with only one type of job and a capacity of only one. This could be
extended to become a systemwith more types of jobs (where each type of job has the same workload,
deadline and arrival rate) and/or where the workload and deadlines are stochastic as well. Further
research could also include researching the effect the optimal policy has on such a system that has a
larger capacity, maybe with more jobs that can be processed at the same time and/or that the jobs can
be put on hold for a certain time, so they are not immediately deleted if they arrive to the system and
find the system full. Furthermore, the just enough and optimal policy finish a job exactly before it’s
deadline and not earlier. An arising question is how many jobs are rejected by the optimal policy in a
system with a capacity. If we set a constraint on how many jobs can be rejected we expect the optimal
policy would then skew more to the performance policy, as the latter finishes a job as soon as possible.

We have modeled an M/D/1 queue with a capacity of one. Even though there are many real-life
systems that can be modeled as this kind of queuing system there are not many known analytical
expressions for values such as the expected time until a new job arrives when the last one has just
finished. This made it more difficult to perform an analysis on this queuing system when applying
the optimal policy since we would have to know this value. We made do with a value taken from our
simulations but it would be nice for further research to find an exact value for this. Further research
could include how the optimal policy would effect the temperature in a M/M/1 queue with a capacity
of one or a M/D/1 queue with infinite capacity because for these systems there are known analytical
expressions for values such as the expected time until the next arrival.

The way we have implemented the optimal policy is that it finds the steady-state temperature per job,
while the offline multiple job algorithm in [9] groups the jobs in an optimal way and finds the steady-
state temperature of this group of jobs. In further research, it could be interesting to see how that can
be implemented into an online setting. This would probably cause the system to have a more constant
overall value since the input will not have to jump to different values as much and thus the output will
not either. This would cause a smaller variance in the output which would mean the policy was more
reliable. Lastly, we have not looked at how the leakage current which we shortly described in section
2.2 affects our output, this could cause the actual temperature of the system to be different from how
we calculated it in terms of y(t).
We have not shown that this optimal policy is actually optimal like they do in [9], but as is said in [13],
an online algorithm cannot in general construct an optimal energy schedule. It could be interesting to
try however, in the future. Determining the competitive ratio would be a good start at least.

6 Conclusion
To conclude, we have shown that the optimal policy can be implemented as an online scheduling

method to minimize the maximum processor temperature with respect to the just enough and the

21

optimal policies while still meeting the deadlines of jobs. In fact, we have shown that the optimal policy
decreases the temperature with up to 18% with respect to the just enough policy and up to 44% with
respect to the performance policy. The optimal policy is mainly useful when the workload of a job is
medium with respect to its deadline, so that the ratio is around 1/2. This is shown in a system with
one type of job that has a known workload and deadline but with a stochastic arrival process and
where there can only be one job in the system at a time. This M/D/1 queuing system with a capacity
of one is amore difficult system than anticipated, as there do not exist analytical expressions for certain
values we need. Further research would be needed to find these.
The research could be expanded and generalized to encompass a more general system This could
encompass different types of jobs with a variable workload and/or deadline, a larger capacity in the
form of more jobs being processed at the same time and/or the queuing of jobs that find the system
busy. The research could also be extended to find a way to decrease the variance of the optimal policy
even more.

22

7 Bibliography
[1] Discrete event simulation in python. University of Twente, 2020.
[2] Amirali Shayan Arani. Online thermal-aware scheduling for multiple clock domain cmps. In

2007 IEEE International SOC Conference, pages 137–140, 2007.
[3] N. Bansal, T Kimbrel, and K Pruhs. Speed scaling to manage energy and temperature. Journal of

the ACM, 54(1):1–39, 2007.
[4] Qaisar Bashir, Muhammad Naeem Shehzad, Muhammad Naeem Awais, Sobia Baig, Muham-

mad Ghaffar Dogar, and Aamir Rashid. An online temperature-aware scheduling technique to
avoid thermal emergencies inmultiprocessor systems. Computers Electrical Engineering, 70:83–98,
2018.

[5] Thidapat Chantem, Robert P. Dick, and X. Sharon Hu. Temperature-aware scheduling and as-
signment for hard real-time applications on mpsocs. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’08, page 288–293, New York, NY, USA, 2008. Association for
Computing Machinery.

[6] Youngmoon Lee, Hoon Sung Chwa, Kang G. Shin, and Shige Wang. Thermal-aware resource
management for embedded real-time systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2857–2868, 2018.

[7] J. Meng, H. Tan, X. Y. Li, Z. Han, and B. Li. "online deadline-aware task dispatching and schedul-
ing in edge computing. n IEEE Transactions on Parallel and Distributed Systems, 31(6):1270–1286,
june 2020.

[8] Jean-Marie Garcia Olivier Brun. Analytical solution of finite capacity m/d/1 queues. Journal of
Applied Probability, 37(4), December 2000.

[9] Baver Ozceylan, Boudewijn R. Haverkort, Maurits de Graaf, and Marco E. T. Gerards. Minimiz-
ing the maximum processor temperature by temperature aware scheduling of real-time tasks,
(article has been accepted for inclusion in a future issue of the journal IEEE TRANSACTIONS
ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEM, as of june 2022).

[10] Pratyush Panda and Lothar Thiele. Cool shapers: Shaping real-time tasks for improved thermal
guarantees. In Proceedings - Design Automation Conference, pages 468–473, 06 2011.

[11] Tjark Vredeveld. Stochastic online scheduling. Computer Science - Research and Development, 27:1–
7, 01 2010.

[12] Wayne L. Winston. Operations Research, Applications and Algorithms. Thomson. 4 edition, 2004.
[13] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In Proceedings

of IEEE 36th Annual Foundations of Computer Science, pages 374–382, 1995.

23

8 Appendix A

1 """
2 Created by Floor van Maarschalkerwaart
3 This is a simulation for a single job with a known deadline and workload
4 We apply the optimal policy
5
6 """
7
8 import random
9 import numpy as np
10 import math
11 from scipy.special import lambertw
12 from matplotlib import pyplot as plt
13
14 # Initializing
15 dt = 1 # 10 milliseconds
16 t0 = 0 # initial time
17 y0 = 0.25 # standardized initial output
18 interval = np.arange(0, 300, dt)
19 n = len(interval)
20 d = int (200) # deadline of job
21 w = 150 # workload of job
22 tau = 60 # 600 milliseconds
23 x = np.zeros ((n,)) # initializing
24 t = int(0) # current time
25 integermu = 0
26
27
28 # Minimum cumulative required resources to meet all deadlines coming before a time t
29 def Fw(t):
30 global d, w
31 if t >= d:
32 func_val = w
33 else:
34 func_val = 0
35 return func_val
36
37
38 # Cumulative resources assigned up to a given time t
39 def Fx(t):
40 subarrayx = x[0:t] # goes from index 0 to index t-1
41 return np.sum(subarrayx)
42
43
44 # Remaining minimum required amount of resources at a time t for a deadline dn
45 def lamb(t, dn):
46 lam = int(Fw(dn) - Fx(t))
47 return lam
48
49
50 # Function to calculate output
51 def y(t):
52 global integermu
53
54 if y0 <= w / d:
55 if integermu >= t:
56 func_val = 1 - (1-y0)*math.exp(-t/tau)
57 else:
58 func_val = x[integermu] * (1-math.exp(-t/tau)) + y(integermu) * math.exp(-

t/tau)
59 else:
60 if integermu >= t:
61 func_val = y0 * math.exp(-t/tau)
62 else:
63 func_val = x[integermu] * (1-math.exp(-t/tau)) + y(integermu) * math.exp(-

t/tau)
64 return func_val
65
66

24

67 # Algorithm for a single job
68 def SJ(w, d, y0):
69 global x, integermu
70 if y0 <= w/d:
71 mu = d - tau * (lambertw(math.exp(d/tau)/tau * (d-w)/(1-y0))).real
72 integermu = int(mu)
73 if integermu < 0:
74 integermu = 0
75 for t in np.arange(0, integermu):
76 x[t] = 1 # Voor t = 0 tot mu
77 w = w - integermu
78 else:
79 mu = d - tau * (lambertw(math.exp(d/tau)/tau * w/y0)).real
80 integermu = int(mu)
81 for t in np.arange(0, integermu):
82 x[t] = 0 # Voor t = 0 tot mu
83 for t in np.arange(integermu , d):
84 x[t] = w/(d-integermu) # Voor t=mu tot d
85 return x
86
87
88 # Input
89 ltd = lamb(t, d)
90 y_input = y0
91 finalx = SJ(ltd , d - t, y_input)
92
93 temperature = np.zeros((n,))
94
95 for i in np.arange(0, n):
96 temperature[i] = y(i)
97
98 print(finalx , temperature)
99

100 xaxis = np.arange(0, n)
101
102 plt.plot(xaxis , temperature , 0.5, color=’red’)
103 plt.xlabel(’t (ms)’)
104 plt.ylabel(’y(t)’)
105 plt.show()

9 Appendix B

1 """
2 Created by Floor van Maarschalkerwaart
3 This is a simulation for multiple jobs with the same known deadline and workload
4 arriving according to a Poisson arrival process
5 We apply the just enough policy
6 This code can be altered to apply the performance policy , as indicated at line 126
7
8 """
9 import random
10 import math
11 import numpy as np
12 import DiscreteEventSimulation as DES
13 import sys
14 import matplotlib.pyplot as plt
15 np.set_printoptions(threshold=sys.maxsize)
16
17
18 # Function that performs some actions when a job starts processing
19 def startService(Time):
20 global serviceRate , x, deadline
21
22 # Allocation of resources and computation of output
23 x[Time] = serviceRate/deadline
24 for i in np.arange(Time + 1, Time+deadline):
25 x[i] = serviceRate/deadline

25

26 temperature[i, 0] = math.exp(-(i - currSimTime1) / tau) * temperature[
currSimTime1 , 0] + (

27 1 - math.exp(-(i - currSimTime1) / tau)) * serviceRate /
deadline

28
29 temperature[Time + deadline , 0] = math.exp(-(Time + deadline - currSimTime1) / tau

) * temperature[currSimTime1 , 0] + (
30 1 - math.exp(-(Time + deadline - currSimTime1) / tau)) *

serviceRate / deadline
31
32 # Trigger endservice event
33 DES.insertEvent(EndService(Time + deadline))
34
35
36 # Class that performs some actions when a job arrives
37 class Arrival(DES.Event):
38 def description(self):
39 return ’arrival ’
40
41 def execute(self):
42 global numberOfCustomers , numberOfArrivals , temperature , x, currSimTime2 ,

rejected , currSimTime1
43 global prevArrival , tau , deadline
44
45 # Take this out of loop to not overwrite initial values
46 if self.Time == 0:
47 numberOfCustomers += 1
48 numberOfArrivals += 1
49 currSimTime1 = self.Time
50 startService(self.Time)
51
52 # Reject arriving job if there is already a job in the system
53 if self.Time <= currSimTime2:
54 rejected += 1
55 else:
56 if numberOfCustomers > 0:
57 rejected += 1
58
59 if numberOfCustomers == 0:
60 # Update counters
61 numberOfCustomers += 1
62 numberOfArrivals += 1
63
64 # Save information about temperature
65 if self.Time != 0:
66 for i in np.arange(currSimTime2 , self.Time + 1):
67 temperature[i, 0] = math.exp(-(i - currSimTime2) / tau) *

temperature[currSimTime2 - 1, 0]
68
69 temperature[self.Time , 1] = 1 # 1 = arrival
70 temperature[self.Time , 2] = numberOfArrivals # Save number of job
71
72 interArrival[self.Time] = self.Time - currSimTime2 # Time between

deadline and arrival
73
74 # Save current time
75 currSimTime1 = self.Time
76
77 # Trigger start service event
78 startService(self.Time)
79
80 # Trigger next arrival
81 prevArrival = int(random.expovariate(arrivalRate))
82 DES.insertEvent(Arrival(self.Time + prevArrival))
83
84
85 # Class that performs some actions when a job has finished processing
86 class EndService(DES.Event):
87 def description(self):
88 return ’end service ’
89

26

90 def execute(self):
91 global numberOfCustomers , currSimTime1 , currSimTime2 , numberOfArrivals ,

prevArrival , tau , deadline
92
93 temperature[self.Time , 1] = 2 # 2 = departure of job
94 temperature[self.Time , 2] = numberOfArrivals # Save number of job
95
96 numberOfCustomers -= 1
97
98 currSimTime2 = self.Time
99

100 DES.stopSimulation = self.Time > timeToEndSimulation
101
102
103 # Initializing
104 numberOfArrivals = 0
105 numberOfCustomers = 0
106 initialTemperature = 0
107 currSimTime1 = 0
108 currSimTime2 = 0
109 rejected = 0
110 epsilon = 0.01
111 timeToEndSimulation = 10000
112 matrix_length = timeToEndSimulation + 1000 # To make sure there is room for all data
113 x = np.zeros ((matrix_length ,)) # Our resource vector
114 interArrival = np.zeros ((matrix_length ,)) # Our steady -state temperature vector
115
116 # Initialize temperature matrix
117 # Column 1 is temperature; 2 is arrival , steady -state point or departure; 3 is number

of job
118 temperature = np.zeros((matrix_length , 3))
119 temperature [0, 0] = initialTemperature # Set initial temperature to 0
120 temperature [0, 1] = 1 # Classify first Arrival
121 temperature [0, 2] = 1 # First job
122
123 # Set our parameters
124 arrivalRate = 1/50
125 serviceRate = 40
126 deadline = 70 # When we set deadline = serviceRate we should get the performance

policy
127 tau = 200 # 200 milliseconds
128 prevArrival = 0
129
130 # Trigger first arrival at time = 0 and run simulation
131 DES.insertEvent(Arrival (0))
132 DES.runSimulation ()
133
134
135 ############################
136 # Everything below is the computation of values to verify the simulation and/or

collect results
137 ############################
138
139
140 # Print assigned resources and temperature matrix
141 print(f’Assigned resources are {x}’)
142 print(f’Temperature matrix is {temperature}’)
143 print(f’Number of rejected jobs is {rejected} out of {numberOfArrivals + rejected}’)
144
145 # Identify indeces of non -arrival temperatures
146 index_arrival = np.where(temperature [0: matrix_length , 1] != 1)
147 # Identify indeces of non -deadline temperatures
148 index_deadline = np.where(temperature [0: matrix_length , 1] != 2)
149 # Identify time -points where we did not save any data
150 index_zero = np.where(temperature [0: matrix_length , 1] == 0)
151
152 # Make a matrix of only arrival temperatures
153 arrivalTemperatures = np.delete(temperature , index_arrival , axis =0)
154 arrivalLength = len(arrivalTemperatures)
155 # Make a matrix of only departure temperatures
156 departureTemperatures = np.delete(temperature , index_deadline , axis =0)

27

157 departureLength = len(departureTemperatures)
158 # Make a matrix of all temperatures
159 allTemperatures = np.delete(temperature , index_zero , axis =0)
160 allLength = len(allTemperatures)
161 # Delete zero values
162 interzero = np.where(interArrival [0: matrix_length] == 0)
163 interArrival = np.delete(interArrival , interzero , axis =0)
164
165 # Save as csv file
166 temperature_final = np.around(temperature [0: timeToEndSimulation , 0], decimals =2) # *

alpha + T_a
167 temperature_final.tofile(’temperature_JE.csv’, sep=’,’)
168
169 # Plot temperature over time
170 plt.plot(np.arange(0, timeToEndSimulation), temperature [0: timeToEndSimulation , 0],

0.2, color=’blue’)
171 plt.xlabel(’t (s)’)
172 plt.ylabel(’y(t)’)
173 plt.grid()
174 plt.show()
175
176 # Verify model
177 # Verify queueing simulation by checking idle/busy formula ’s
178 actualUtilization = sum(x[0: timeToEndSimulation])/len(x[0: timeToEndSimulation])
179 actualIdleTime = (len(x[0: timeToEndSimulation])-sum(x[0: timeToEndSimulation]))/len(x

[0: timeToEndSimulation])
180
181 expectedUtilization = serviceRate / (deadline + 1/ arrivalRate)
182 expectedIdleTime = (deadline + 1/ arrivalRate - serviceRate)/(deadline + 1/ arrivalRate)
183
184 print(f’System is utilized {actualUtilization} of the time while we expect {

expectedUtilization}’)
185 print(f’absolute error is {100* abs(expectedUtilization -actualUtilization)}, rel error

is {100* abs(expectedUtilization -actualUtilization)/expectedUtilization }.’)
186 print(f’System is idle {actualIdleTime} of the time while we expect {expectedIdleTime}

’)
187 print(f’absolute error is {100* abs(expectedIdleTime -actualIdleTime)}, rel error is

{100* abs(expectedIdleTime -actualIdleTime)/expectedIdleTime}’)
188
189 # Verify temp calculation
190 interArrivalTime = np.mean(interArrival)
191 beta = math.exp(-deadline/tau)
192 alpha = math.exp(-interArrivalTime/tau)
193 expectedTempBusy = ((1 - beta)/(1 - alpha*beta)) * serviceRate/deadline
194 expectedTempIdle = alpha*expectedTempBusy
195
196 meanTemp = np.mean(allTemperatures [0: allLength , 0])
197 meanTempArrival = np.mean(arrivalTemperatures [0: arrivalLength , 0])
198 meanTempDeparture = np.mean(departureTemperatures [0: departureLength , 0])
199 maxTemp = max(allTemperatures [0: allLength , 0])
200
201 print(f’Actual mean temperature is {meanTemp}’)
202 print(f’Mean arrival temperature is {meanTempArrival} while we expected {

expectedTempIdle}’)
203 print(f’absolute error is {abs(meanTempArrival - expectedTempIdle)*100}, rel error is

{100 * abs(meanTempArrival - expectedTempIdle)/expectedTempIdle}’)
204 print(f’Mean departure temperature is {meanTempDeparture} while we expected {

expectedTempBusy}’)
205 print(f’absolute error is {abs(meanTempDeparture - expectedTempBusy)*100}, rel error is

{100* abs(meanTempDeparture - expectedTempBusy)/expectedTempBusy}’)
206 print(f’Mean interarrival time is {np.mean(interArrival)}’)
207 print(f’Max temperature is {maxTemp}’)
208
209 print(f’Mean temp over steady state is {np.mean(temperature [6000: timeToEndSimulation ,

0])}’)
210 print(f’Mean departure temp over steady state is {np.mean(departureTemperatures[int

((2* departureLength /3)):departureLength , 0])}’)

28

10 Appendix C

1 """
2 Created by Floor van Maarschalkerwaart
3 This is a simulation for multiple jobs with the same known deadline and workload
4 arriving according to a Poisson arrival process
5 We apply the optimal policy
6
7 """
8 import random
9 import math
10 import numpy as np
11 import DiscreteEventSimulation as DES
12 import sys
13 import matplotlib.pyplot as plt
14 from scipy.special import lambertw
15
16 np.set_printoptions(threshold=sys.maxsize)
17
18
19 # Function to calculate steady -state output
20 def yss(y0):
21 global tau , serviceRate , deadline
22 y = y0
23 if y0 <= serviceRate / deadline:
24 yc = 1 - y
25 lambc = deadline - serviceRate
26 yss = 1 - (lambc / (tau * (lambertw ((math.exp(deadline / tau) / tau) * (lambc

/ yc))).real))
27 else:
28 lamb = serviceRate
29 yss = lamb / (tau * (lambertw ((math.exp(deadline / tau) / tau) * (lamb / y))).

real)
30 return yss
31
32
33 # Function that performs some actions when a job starts processing
34 def startService(Time):
35 global serviceRate , x, deadline , steadyState , tau , temperature , steadyStateTime ,

steadyTemps
36
37 # Initialize / reset some variables
38 workDone = 0
39 sstemp = yss(temperature[Time , 0])
40 steadyTemps[Time] = sstemp
41
42 # Allocation of resources and computation of output
43 if temperature[Time , 0] <= serviceRate/deadline:
44 x[Time] = 1
45 for i in np.arange(Time + 1, Time + deadline):
46 if not steadyState:
47 x[i] = 1
48 temperature[i, 0] = math.exp(-(i - currSimTime1) / tau) * temperature[

currSimTime1 , 0] + (
49 1 - math.exp(-(i - currSimTime1) / tau)) * 1
50 if temperature[i, 0] >= sstemp:
51 steadyState = True
52 steadyStateTime = i
53 temperature[i, 1] = 3
54 workDone = i - currSimTime1
55 temperature[Time+deadline , 0] = math.exp(-(Time + deadline - currSimTime1) /

tau) * temperature[currSimTime1 , 0] + (
56 1 - math.exp(-(Time + deadline - currSimTime1) / tau)) * 1
57 else:
58 x[Time] = 0
59 for i in np.arange(Time + 1, Time + deadline):
60 if not steadyState:
61 x[i] = 0
62 temperature[i, 0] = math.exp(-(i - currSimTime1) / tau) * temperature[

currSimTime1 , 0]

29

63 if temperature[i, 0] <= sstemp:
64 steadyState = True
65 steadyStateTime = i
66 temperature[i, 1] = 4
67 workDone = 0
68 temperature[Time + deadline , 0] = math.exp(-(Time + deadline - currSimTime1) /

tau) * temperature[
69 currSimTime1 , 0]
70
71 if steadyState:
72 x[steadyStateTime] = (serviceRate - workDone) / (currSimTime1 + deadline -

steadyStateTime)
73 for i in np.arange(steadyStateTime + 1, Time + deadline):
74 x[i] = (serviceRate - workDone) / (currSimTime1 + deadline -

steadyStateTime)
75 if serviceRate - workDone > 0:
76 temperature[i, 0] = math.exp(-(i - steadyStateTime) / tau) *

temperature[steadyStateTime , 0] + (
77 1 - math.exp(-(i - steadyStateTime) / tau)) * ((serviceRate

- workDone) / (currSimTime1 + deadline - steadyStateTime))
78 else:
79 temperature[i, 0] = math.exp(-(i - steadyStateTime) / tau) *

temperature[steadyStateTime , 0]
80 temperature[Time + deadline , 0] = math.exp(-(Time + deadline - steadyStateTime

) / tau) * temperature[
81 steadyStateTime , 0] + (1 - math.exp(-(Time + deadline - steadyStateTime) /

tau)) * ((serviceRate - workDone) / (currSimTime1 + deadline - steadyStateTime))
82
83 # Reset steady -state
84 steadyState = False
85
86 # Trigger endservice event
87 DES.insertEvent(EndService(Time + deadline))
88
89
90 # Class that performs some actions when a job arrives
91 class Arrival(DES.Event):
92 def description(self):
93 return ’arrival ’
94
95 def execute(self):
96 global numberOfCustomers , numberOfArrivals , temperature , x, currSimTime2 ,

rejected , currSimTime1
97 global steadyState , steadyStateTime , tau , deadline
98
99 # Take this out of loop to not overwrite initial values

100 if self.Time == 0:
101 numberOfCustomers += 1
102 numberOfArrivals += 1
103 currSimTime1 = self.Time
104 startService(self.Time)
105
106 # Reject arriving job if there is already a job in the system
107 if self.Time <= currSimTime2:
108 rejected += 1
109 else:
110 if numberOfCustomers > 0:
111 rejected += 1
112
113 if numberOfCustomers == 0:
114 # Update counters
115 numberOfCustomers += 1
116 numberOfArrivals += 1
117
118 # Save information about temperature
119 if self.Time != 0:
120 for i in np.arange(currSimTime2 , self.Time +1):
121 temperature[i, 0] = math.exp(-(i - currSimTime2) / tau) *

temperature[currSimTime2 - 1, 0]
122 temperature[self.Time , 1] = 1 # 1 = arrival
123 temperature[self.Time , 2] = numberOfArrivals # Save number of job

30

124
125 # Save current time
126 currSimTime1 = self.Time
127
128 # Trigger start service event
129 startService(self.Time)
130
131 # Trigger next arrival
132 prevArrival = int(random.expovariate(arrivalRate))
133 DES.insertEvent(Arrival(self.Time + prevArrival))
134
135
136 # Class that performs some actions when a job has finished processing
137 class EndService(DES.Event):
138 def description(self):
139 return ’end service ’
140
141 def execute(self):
142 global numberOfCustomers , currSimTime1 , currSimTime2 , numberOfArrivals , tau ,

deadline
143
144 temperature[self.Time , 1] = 2 # 2 = departure of job
145 temperature[self.Time , 2] = numberOfArrivals # Save number of job
146
147 numberOfCustomers -= 1
148
149 currSimTime2 = self.Time
150
151 DES.stopSimulation = self.Time > timeToEndSimulation
152
153
154 # Set our parameters
155 arrivalRate = 1 / 50
156 serviceRate = 40
157 deadline = 70 # When we set deadline = serviceRate we should get the performance

policy
158 tau = 200 #
159
160 # Initializing
161 numberOfArrivals = 0
162 numberOfCustomers = 0
163 initialTemperature = 0
164 currSimTime1 = 0
165 currSimTime2 = 0
166 rejected = 0
167 steadyState = False
168 steadyStateTime = 0
169 timeToEndSimulation = 10000
170 matrix_length = timeToEndSimulation + 1000 # To make sure there is room for all data
171 x = np.zeros ((matrix_length ,)) # Our resource vector
172 steadyTemps = np.zeros((matrix_length ,)) # Our steady -state temperature vector
173
174 # Initialize temperature matrix
175 # Column 1 is temperature; 2 is arrival , steady -state point or departure; 3 is number

of job
176 temperature = np.zeros((matrix_length , 3))
177 temperature [0, 0] = initialTemperature # Set initial temperature to 0
178 temperature [0, 1] = 1 # Classify first Arrival
179 temperature [0, 2] = 1 # First job
180
181 # Trigger first arrival at time = 0 and run simulation
182 DES.insertEvent(Arrival (0))
183 DES.runSimulation ()
184
185 ############################
186 # Everything below is the computation of values to verify the simulation and/or

collect results
187 ############################
188
189 # Print assigned resources and temperature matrix
190 print(f’Assigned resources are {x}’)

31

191 print(f’Temperature matrix is {temperature}’)
192 print(f’Number of rejected jobs is {rejected} out of {numberOfArrivals + rejected}’)
193
194 # Identify indeces of non -arrival temperatures
195 index_arrival = np.where(temperature [0: matrix_length , 1] != 1)
196 # Identify indeces of non -deadline temperatures
197 index_deadline = np.where(temperature [0: matrix_length , 1] != 2)
198 # Identify time -points where we did not save any data
199 index_zero = np.where(temperature [0: matrix_length , 1] == 0)
200 index_zero_ss = np.where(steadyTemps [0: matrix_length] == 0)
201
202 # Make a matrix of only arrival temperatures
203 arrivalTemperatures = np.delete(temperature , index_arrival , axis =0)
204 arrivalLength = len(arrivalTemperatures)
205 # Make a matrix of only departure temperatures
206 departureTemperatures = np.delete(temperature , index_deadline , axis =0)
207 departureLength = len(departureTemperatures)
208 # Make a matrix of all temperatures
209 allTemperatures = np.delete(temperature , index_zero , axis =0)
210 allLength = len(allTemperatures)
211 steadyTemps2 = np.delete(steadyTemps , index_zero_ss , axis =0)
212 steadyLength = len(steadyTemps2)
213
214 # Save as csv file
215 temperature_final = np.around(temperature [0: timeToEndSimulation , 0], decimals =2)
216 temperature_final.tofile(’temperature_o.csv’, sep=’,’)
217 temperature_dep_final = np.around(departureTemperatures [0: departureLength , 0],

decimals =2)
218 temperature_dep_final.tofile(’temperature_o_dep.csv’, sep=’,’)
219
220 # Plot input and output over time
221 plt.plot(np.arange (8000 , 9000) , temperature [8000:9000 , 0], 0.2, color=’blue’, label=’y

(t)’)
222 plt.plot(np.arange (8000 , 9000) , x[8000:9000] , 0.2, color=’red’, label=’x(t)’)
223 plt.xlabel(’t (ms)’)
224 plt.ylabel(’y(t), x(t)’)
225 plt.grid()
226 plt.show()
227
228 # Plot only output over time
229 plt.plot(np.arange(0, timeToEndSimulation), temperature [0: timeToEndSimulation , 0],

0.2, color=’blue’)
230 plt.xlabel(’t (s)’)
231 plt.ylabel(’y(t)’)
232 plt.grid()
233 plt.show()
234
235 # Verify model
236 # Verify queueing simulation by checking idle/busy formula ’s
237 actualUtilization = sum(x[0: timeToEndSimulation]) / len(x[0: timeToEndSimulation])
238 actualIdleTime = (len(x[0: timeToEndSimulation]) - sum(x[0: timeToEndSimulation])) / len

(x[0: timeToEndSimulation])
239
240 expectedUtilization = serviceRate / (deadline + 1 / arrivalRate)
241 expectedIdleTime = (deadline + 1 / arrivalRate - serviceRate) / (deadline + 1 /

arrivalRate)
242
243 print(f’System is utilized {actualUtilization} of the time while we expect {

expectedUtilization}’)
244 print(
245 f’absolute error is {100 * abs(expectedUtilization - actualUtilization)}, rel

error is {100 * abs(expectedUtilization - actualUtilization) / expectedUtilization
}.’)

246 print(f’System is idle {actualIdleTime} of the time while we expect {expectedIdleTime}
’)

247 print(
248 f’absolute error is {100 * abs(expectedIdleTime - actualIdleTime)}, rel error is

{100 * abs(expectedIdleTime - actualIdleTime) / expectedIdleTime}’)
249 print(f’Actual mean temperature is {np.mean(allTemperatures [0: allLength , 0])}’)
250 print(f’Mean arrival temperature is {np.mean(arrivalTemperatures [0: arrivalLength , 0])}

’)

32

251 print(f’Mean departure temperature is {np.mean(departureTemperatures [0: departureLength
, 0])}’)

252 print(f’Mean temp over steady state is {np.mean(temperature [6000: timeToEndSimulation ,
0])}’)

253 print(f’Mean departure temp over steady state is {np.mean(departureTemperatures[int
((2* departureLength /3)):departureLength , 0])}’)

254 print(f’Mean steady state temperature is {np.mean(steadyTemps2[int ((2* steadyLength /3))
:steadyLength])}’)

11 Appendix D

(a) Boxplot

(b) Linegraph

Figure 9: Results of the simulation with lowworkload and low initial temperature, steady state

33

(a) Boxplot

(b) Linegraph

Figure 10: Results of the simulationwithmediumworkload and low initial temperature, steady
state

34

(a) Boxplot

(b) Linegraph

Figure 11: Results of the simulation with high workload and low initial temperature, steady
state

35

(a) Boxplot

(b) Linegraph

Figure 12: Results of the simulation with low workload and high initial temperature, steady
state

36

(a) Boxplot

(b) Linegraph

Figure 13: Results of the simulation with medium workload and high initial temperature,
steady state

37

(a) Low workload (b) Medium workload

(c) High workload

Figure 14: Relation of input x(t) and output y(t) for different workloads

38

	Introduction
	Definitions and models
	Problem definition
	Thermal model
	System definition offline problem
	System definition online problem

	Optimal allocation
	Policies
	Optimal allocation offline problem
	Optimal allocation online problem
	Analytic results
	Output offline problem
	Output online problem
	Queuing model

	Simulation
	Discretization
	Simulation offline problem
	Simulation online problem
	Verification
	Output offline job problem
	Output online job problem
	Queuing model

	Simulation results

	Discussion
	Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D

