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Abstract

Monitoring patients with atherosclerosis demands measurements of the thickness of the
carotid artery vessel wall. An accurate segmentation is essential for these measurements,
however manual acquisition is extremely time consuming. Recently, Alblas et al. [2] pro-
posed a fully automatic method for vessel wall segmentation on 3D MRI images, ensuring
ring-shaped segmentations. The method returns contour points describing two nested cir-
cles, representing the lumen and outer wall on each axial slice of the image. Although very
successful, the model returns a prediction regardless of the underlying image quality. This
can be problematic in medical images that contain regions of noise or artefacts, as the model
should indicate the segmentations are uncertain around those regions. Therefore, we propose
the use of dropout layers in the convolutional neural network of Alblas et al., introducing
stochasticity in the network. These dropout layers can be used to approximate the posterior
predictive distribution by passing multiple stochastic inferences through the network. The
predictive mean and variance are calculated for each of the predictive contour points. As we
hypothesized, we observe a substantial higher variance for low quality image data, as well as
near the carotid bifurcation.

Keywords: atherosclerosis, Bayesian neural networks, dropout, convolutional neural net-
works, deep learning, carotid artery, segmentation, uncertainty quantification, magnetic res-
onance imaging, anatomic prior

1 Introduction

Atherosclerosis is a cardiovascular disease that is characterized by plaque build-ups on the vessel
wall. It causes narrowing of the artery and can lead to ischemic stroke, one of the leading causes
of death in the modern developed world [14]. In Figure 1, the artery system in the neck region
is depicted. The left and right carotid arteries split at the bifurcation into the internal and
external carotid arteries.

When the build-up of plaques is suspected to take place in a carotid artery, the progression
can be visualized using black-blood magnetic resonance imaging (BB-MRI), which produces
three dimensional scans of the neck region. From these scans, the thickness of the plaque lesions
can be measured by segmenting the vessel wall. Segmentation is the identification of regions of
interest in image data. In our case this concerns the carotid artery vessel wall in 3D MR images
encompassing the neck region. Manual segmentation of the carotid artery vessel wall is a time-
consuming task, because the MRI scans consist of hundreds of axial slices that ideally should
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Figure 1: Arteries going from the neck to the head. In green is our region of interest: the left
and right common carotid arteries, splitting into the internal and external carotid arteries at
the bifurcation. Image adapted from [4].

all receive annotations. Moreover, these annotations are prone to inter- and intra-observer vari-
ability.

Automating the segmentation process rapidly decreases segmentation time and omits vari-
ability introduced by human operators. Traditionally, model-driven segmentation techniques
are used for segmentation. These techniques utilize prior shape and region information but are
strongly parameter and initialization dependent [13]. On the other hand, deep learning models
take large datasets to automatically learn features from the data. Deep learning segmentation
typically involve two steps: in step one the centerlines of the artery are located and in step
two the inner wall (lumen) and outer wall of the artery are predicted [5]. Many deep learning
algorithms, among which fully connected CNNs, yield voxel masks in the second step. These
voxel masks form a binary classification for each pixel or voxel in the image, and therefore do
not guarantee preservation the topology of the artery [12]. The resulting segmentation is likely
to show gaps and patches outside the region of interest.

Recently, Alblas et al. [2] developed a method using two nested circular shapes without
intersection as anatomical priors, combining the model-based and data-based approaches to
improve the voxel-mask approach. This anatomy-aided method has induced the aspiration to
quantify the uncertainty per angle. If the input image data is of questionable quality, the CNN
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still confidently produces a segmentation. Obtaining estimates for uncertainty of the estimations
allows for improving the reliability of the vessel wall thickness measurements. Segmentations
based on slices of poor quality can for example be excluded from further measurement of the
vessel wall thickness.

Thus the aim of this paper is to extend the automatic vessel wall segmentation method
developed by Alblas et al. [2] with a measure of uncertainty. To this end, a Bayesian CNN is
adopted by adding dropout layers to the CNN used in the second step of the segmentation.

In the next section (section 2) we start with introducing the main concepts and explain the
mathematical connection of Bayesian neural networks and dropout more detail. We then provide
information on the dataset in section 3. After this, some background is given on the model that
is to be improved, and we propose our modelling method in section 4. Subsequently, we will
show the results of the implementation of the proposed uncertainty estimations in section 5, and
end with a discussion of the results and implications in sections 6, 7 and 8.

2 Preliminaries

We provide some preliminary theoretical background on neural networks, dropout, CNNs and
Bayesian CNNs. This will give a more thorough understanding of our problem and will later be
used to justify the implementation of the proposed adapted model in section 4. We will show
that the use of dropout after each layer can be seen as an approximation of Bernoulli variational
inference in a Bayesian CNN and introduces stochasticity in the model. We can calculate the
mean of K forward passes through the dropout network during test time to obtain the posterior
predictive distribution.

2.1 Neural networks

Neural networks (NNs) are often represented as a graph, where the nodes are called neurons
and the connections between neurons called the weights. Deep neural networks consist of layers
of neurons; an input layer, an output layer and L hidden layers in between, as can be seen in
Figure 2.

A neural network can mathematically be defined as a function fw : X −→ Y, where X is the
input space, Y the output space and the parameters w1 ∈ Rn the weights of the network. The
output of the lth layer of the network is denoted by yl. Each layer processes the output of its
preceding layer by a linear transform, followed by a nonlinear activation:

yl+1 = σ(wl+1yl + bl+1) l ∈ {1, ..., L},

where wl and bl are called the weights and biases of layer l and σ is a nonlinear activation
function, e.g., ReLU or Tanh.

The weights and biases of the network are initialized randomly. The network learns param-
eters that can be used to optimally carry out a task by so-called training. The desired output
of the network given an input is given by ground truth data. During training, the discrep-
ancy between the output of the network and the desired output is measured by a loss function.
The loss function is then minimized using the gradient descent method, proceeding backward

1The parameters are also classically denoted by θ, however we decided to stick to the notation by [18] in this
paper.
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Figure 2: An example of a deep neural network. The function takes m inputs and passes it
through a number of hidden layers which perform a linear transformation and a non-linear
activation to produce n outputs. Training of the parameters is done by propagating backwards
through the network, minimizing the loss function using the gradient descend method. Image
adapted from [6].

through the network and adjusting the values of the parameters in each step in the direction of
the gradient. This process is called backpropagation and the size of the gradient descent step is
called the learning rate. After training, the parameters are fixed and the model can hopefully
generalize its performance to data it has not seen during training.

2.2 Dropout

Dropout is a regularization technique normally used to prevent overfitting. When a deep learn-
ing model is trained on a dataset with little variability, the parameters are prone to adjust to the
specifics of that dataset. This improves performance on the train data yet deteriorates perfor-
mance on unseen test data, a phenomenon we refer to as overfitting. Dropout decreases neuron
dependence by eliminating neurons with a certain probability during training time, introducing
stochasticity in the model. This limits the possibility of overfitting and causes the model to have
similar performance on train and validation data [7, 18].

When implementing dropout in the network, the value of a neuron is set to 0 with probability
pl. This equates to sampling a vector of variables from a Bernoulli distribution for each layer
and performing element-wise multiplication with the output of each layer:

rlj ∼ Bernoulli(1− pl)

yl+1 = σ(wl+1(yl ∗ rl+1) + bl+1) l ∈ {1, ..., L}.

An example of a deep neural network including dropout can be found in Figure 3. Literature
suggests a value of 0.5 for the value of each pl [8, 18].
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Figure 3: An example of dropout in a neural network. Neurons are eliminated in each layer with
a fixed probability per layer. Dropout reduces overfitting on the training data and introduces
stochaticity in the model. Image adapted from [19].

2.3 Convolutional neural networks

Convolutional neural networks (CNNs) are developed for structures with strong spatial depen-
dencies, such as images. A CNN is a neural network that takes an image as input, and processes
local image information using convolutional operations. Convolutional operations pass a sym-
metrical kernel over each position of the image, performing a dot product operation for all
overlapping voxels. An example of a convolutional operation can be seen in Figure 4. The
kernels middle value will be replaced with the calculated value in the image. Similar to regular
neural networks, the values of the kernel are trained by the CNN. Placing several convolution
layers subsequently allows for a growing receptive field and enables the network to extract dis-
tinctive features from the image, that can be used for classification, segmentation or regression.
As we will see later, CNNs are used in both steps of the segmentation model by Alblas et al.[2].

2.4 Bayesian neural networks

We introduce Bayesian neural networks as a way of including stochasticity in the model. In
Bayesian neural networks, the weights are modeled by a probability distribution instead of a
single value. The network then attempts to learn this distribution from the distributions of the
input and output data of the training network. This allows us to obtain the predictive distribu-
tion of the output, where the predictive variance can be used as an uncertainty measure.

But before we formally define a Bayesian neural network, we distinguish two types of pre-
dictive uncertainty used in Bayesian modelling [10]:

• Aleatoric uncertainty: This is the uncertainty that can be attributed to noise in the
data. This is the uncertainty that we aim to quantify and cannot be reduced. It can be
either independent of the data (homoscedastic) or, in our case, dependent on the data
(heteroscedastic).

• Epistemic uncertainty: This is the uncertainty that represents the limitations of the
model. This uncertainty can be reduced by controlling hyperparameters and observing
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Figure 4: An example of a convolutional operation. A dot product operation between the kernel
and the input image is performed to obtain the final value in the output array. In a CNN, the
kernel values will be the weights of the network. Image adapted from [9].

more data.

In Bayesian modeling, the total predictive uncertainty is given by the sum of the aleatoric
and epistemic uncertainty.

Mathematically, a Bayesian neural network is defined as follows: Given a neural network
with weights w, we place a prior distribution over the weights, denoted by p(w). From a dataset
consisting of input xi and corresponding labels yi, D = {(xi, yi)}Ni=1 ⊂ X × Y, we want to find
the predictive posterior distribution p(Y |x,D), which is the distribution of the output given the
training data and a new, unseen, set of inputs x. We obtain the predictive posterior distribution
by conditioning on the weights:

p(Y |x,D) =

∫
p(Y |x,w)p(w|D)dw. (1)

The predictive posterior gives us the distribution of the most likely output for x given
the data. We can use Bayes rule to calculate the posterior distribution p(w|D), which is the
probability of the weights given the training data:

p(w|D) =
p(D|w)p(w)

p(D)
,

where p(D|w) is the probability that the training data is generated from certain weights, also
called the likelihood. The model evidence p(D) represents the distribution of the input and
output data [18].

6



Figure 5: An example of a Bayesian neural network. Instead of single values, the network trains
weight distributions to obtain the output distribution. Image adapted from [11].

.

2.5 Dropout as a Bayesian approximation

Bayesian neural networks are exceedingly useful for uncertainty quantification. However, since
the network has to train a distribution instead of a single value, the complexity of the network in-
creases, making the network notoriously hard to implement in practice. We will approximate the
Bayesian neural network by applying dropout after each layer of the CNN. Then the predictive
distribution is obtained as the average ofK forward passes through the network during test time.

We approximate the posterior distibution p(w|D) by a variational distribution q(w) and min-
imize the Kullback-Leibler divergence KL(q(w)||p(w|D)), a measure for the similarity between
the distributions [8]. This is a well-known technique in statistics called variational inference. In
order to show that applying dropout after each layer is the same as approximating a Bayesian
NN, we define our q(w) with weights w = (Wl)

L
l=1 for each layer l as follows:

Wl = W̃l · diag([zl,j ]Ki
j=1) (2)

zl,j ∼ Bernoulli(1− pl),

where Wl is a matrix of dimension Ki ×Ki−1 for each layer l. Here, the diag() operator maps
the elements zl,j to the diagonals of a matrix of zeros. W̃l are the variational parameters to
optimize, corresponding to the weights in a network without dropout. Note that defining q(w)
(the approximation of our posterior distribution) this way equates to applying dropout to each
layer as described in section 2.2. The jth neuron of layer l is eliminated with probability pl.

Using this definition of the variational distribution, it can be shown that also the minimiza-
tion objectives of both networks are the same [7]. Then, we can evaluate the integral in equation
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1 using a Monte-Carlo approximation [10]:

p(Y |x,D) =

∫
p(Y |x,w)p(w|D)dw ≈

∫
p(Y |x,w)q(w) ≈ 1

K

K∑
j=1

p(Y |x,wj),

where wj are sampled from the variational distribution q(w) as described in equation 2. It
is shown by Gal and Ghahramani [7] (appendix C, proposition 3) that the expectation of the
predictive distribution can then be approximated as the average over K model outputs y∗:

E(p(Y |x,D)) ≈ 1

K

K∑
j=1

y∗(x, z1,j , ..., zL,j).

This expression can be evaluated easily by performing K forward passes through the network
at test time, with dropout after each layer. For the remainder of this paper, we refer to this
method as Monte-Carlo dropout (MC dropout).

3 Data description

The dataset as provided by the Carotid Artery Vessel Wall Segmentation Challenge [1] con-
sists of 26 black-blood magnetic resonance images (BB-MRI) of patients with various degrees of
atherosclerosis, obtained from the larger CARE II dataset with data from 13 different hospitals
in China. The data are obtained from a 3D Motion Sensitized Driven Equilibrium prepared
Rapid Gradient Echo (3D-MERGE) sequence, optimized for visualizing atherosclerosis lesions
in carotid arteries rapidly with high spatial resolution [3]. The images contain the left and right
common carotid arteries, splitting into the internal and external carotid arteries at the bifurca-
tion.

In medical images, there is often notion of the axial, sagittal and coronal plane. These are
anatomical terms, describing the orientation of 2D cross-sections in relation to the patient. The
Z-axis is considered to pass through the patient from the feet to the head. In this dataset, the
X,Y plane is called the axial plane, taking a cross-section orthogonal to the Z-axis. Similarly,
the X,Z plane is called the coronal plane and the Y, Z plane is called the sagittal plane. Ex-
amples of these planes can be found in Figure 6. For the segmentation method described in
this paper, we use axial planes as image input slices to identify the lumen and outer wall. The
images have axial dimensions 720 or 640. The isotropic voxel spacing varies between 0.27 mm3

and 0.39 mm3 [2]. Some axial slices were provided with closed contour annotations, 2533 of the
internal carotid artery and 122 of the external carotid artery. These annotations are used to
train the model. They were extended by Alblas et al.[2] with lumen centerlines to be used in
the first step of the model.

An important observation is the difference in quality of the slices. Usually at the beginning
and ending of the z-axis, the image quality tends to be low due to practical measurement issues.
Because of this, the carotid artery cannot be distinguished everywhere in the image volume,
resulting in axial slices without ground-truth annotations. This is resolved by only training the
network on the annotated slices. During inference time image quality is unknown, so predictions
are made for all images. This leads to our main motivation for the development of uncertainty
quantification: the necessity to automatically filter segmentations according to image quality.
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Figure 6: Orientation of 2D patient cross-sections. In our segmentation model, axial slices are
used. The axial slice in this image shows plaque buildup in the left artery, due to atherosclerosis.
In the upper and lower part of the coronal slice the poor data quality is clearly visible as white
noise.

4 Method

In this section we describe the method by Alblas et al. [2] in more detail. Then, our approach
for quantifying the uncertainty will be explained, based on the preliminary results from section
2.

As previously mentioned, Alblas et al. [2] uses the two-step method for artery vessel wall
segmentation. In the first step, the centerlines of the internal and external carotid arteries are
located. A cost function that represents the proximity of each voxel to the centerlines is defined.
The cost function for Dijkstra’s algorithm is learned using a U-Net, which is a convolutional
neural network architecture typically used for biomedical image segmentation [16]. The result
is a proximity map for the 3D image volume. From the maxima in the proximity maps every
50 slices, Dijkstra’s algorithm then finds the shortest path through the cost image, resulting in
a continuous centerline.

Secondly, using the estimated centerlines the Cartesian images are transformed into local
polar image patches by performing ray-casting at equidistant angles. These polar images serve
as input for a dilated CNN, that predicts the radius of the lumen and the vessel wall thickness
for each predetermined angle. Converting back to Cartesian coordinates, this results in a seg-
mentation mask of two non-intersecting nested contours for each axial slice. Since axial slices are
typically correlated, two distinct methods are compared. In the single-slice method, 2D polar
images are acquired without using additional context information in the axial direction. In the
multi-slice method, polar images from both sides are stacked to obtain a 3D polar image. This
last approach achieved the top result in a public challenge [1], yielding accurate and anatomi-
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Figure 7: The carotid artery vessel wall segmentation method used by Alblas et al. [2]. In
the first step, the centerlines of the internal and external carotid arteries are predicted globally
using Dijkstra’s algorithm, predicting the cost function with a U-net. In the second step, the
centerlines are used to predict the location of the lumen and outer wall locally, exploiting the
circular shape of a cross-section of the artery using polar coordinate systems. Image adapted
from [2].

cally plausible results. See figure 7 for a graphic representation of the used method. Note that,
unlike with voxel masks, the shape and continuity of the vessel wall segmentation is guaranteed.

In addition to the method above, we would like to include uncertainty estimation. Because
although the method is accurate for annotated slices, non-annotatable slices should still be ex-
cluded from the final result. Since high noise slice predictions are of poor quality due to high
aleatoric uncertainty, we are motivated to investigate uncertainty quantification methods. To
this end, as explained in the preliminaries, we would like to introduce Bayesian modelling to
obtain the posterior predictive distribution. Implementing this in our network, allows us to not
only calculate the predictive expectation, but also calculate the predictive variance as a mea-
sure of the uncertainty (aleatoric and epistemic) of the model. Gal and Ghahramani [8] have
shown the predictive variance to be equal to the sample variance of K stochastic forward passes
through the neural network plus the inverse model precision τ−1 = 2Nλ

pl2
, which is zero for our

model, since our CNN has a weight decay λ of zero.

We approximate a Bayesian neural network by implementing dropout after each layer of
network. Due to practical considerations, for our implementation we choose the single-layer
CNN in the second step. Although dropout is usually only employed during training, we will
implement dropout both during training and testing in order to obtain the expectation and
variance of the posterior predictive distribution. In this way implementing dropout correctly
will give us a measure for the uncertainty in the network and also improve the robustness of the
model to new data, as mentioned in section 2.2.

5 Experiments and results

5.1 Experimental setting

The model as described in section 4 is trained on a dataset of 21 patients from the training set
of the Carotid Artery Vessel Wall Segmentation Challenge [1], 5 patients from this dataset are
used for validation.

Dropout is implemented after each layer of the CNN in the second step of the model as
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(a) Train losses (b) Validation losses

Figure 8: Loss curves as a function of the number of epochs. Loss for the architecture with a
dropout value of 0.2 nearly coincides with the model without dropout, implying similar perfor-
mance.

Figure 9: Qualitative comparison of the ground truth to the prediction of the internal carotid
artery of a testing patient for the model with dropout probability 0.2. The segmentation is to
be almost indistinguishable from the ground truth, suggesting that the segmentation is of high
quality.

outlined in section 4, when the location of the lumen and outer wall is predicted. To validate
the implementation, the training of the original single-layer CNN is compared to the performance
of the new model with a dropout value of zero. During testing time, we perform 20 stochastic
forward passes and calculate the mean and the variance for the location of the lumen and the
thickness of the wall for each predicted contour point on each axial slice.

5.2 Model training and testing

Four different models were trained and compared to each other: a model with dropout value 0.5,
a model with dropout value 0.2, a model without dropout and the original single-slice model
with augmentation as described by Alblas et al. [2]. These models were trained for 120 epochs
with a learning rate of 0.01 and a batch size of 100, using an Adam optimizer and a smooth
L1 loss function. The train loss was evaluated after every epoch and the validation loss every 5
epochs, the results for are shown in Figure 8a and Figure 8b.
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(a) Dice Similarity Coefficient (DSC)

(b) Hausdorf Distance (HD)

Figure 10: A visual explanation of the performance metrics used in assessing the quality of the
results. Image adapted from [15].

The loss curves of the original model and the model without dropout are nearly indistinguish-
able, validating the implementation of the model. Furthermore, it was found empirically that
using a dropout probability pl = 0.5 resulted in slow convergence and poor-quality results, even
though this value is generally recommended in the literature. In all likelihood it takes longer
to train the model because a dropout rate of 0.5 deactivates half the units of the hidden layers.
Dependence on nodes is decreased, resulting in more variance in the results and a necessity to
perform more forward passes to stabilize. We have chosen to use a dropout rate of 0.2 to avoid
these drawbacks. This second model not only showed convergence for both the train loss as
well as the validation loss almost as fast as the original model, but also resulted in high-quality
segmentations as can be seen in Figure 9. Once chosen, we trained the model for a total of 200
epochs to increase accuracy.

The results were further assessed quantitatively by calculating two performance metrics for
the validation set: the Dice Similarity Coefficient (DSC) and the Hausdorff Distances (HD). The
performance metrics were calcultated for the validation set consisting of 5 patients. The DSC
gives a measure of the overlap of the ground truth and the segmentation. As can be seen in
figure 10a, the DSC calculates the area of the intersection, and compares it to the area of both
shapes. If the shapes overlap completely, the DSC is one. If they are disjunct, the DSC is zero.
In the other hand, as seen in figure 10b, the HD measures the smallest distance between the
shapes and takes the maximum of both distances. If the shapes overlap completely, this value is
0. Since the metrics measure the difference between two shapes differently, using both metrics
should give a fair view of the quality of the segmentation [15]. The results can be found in
Figure 11b. The median of the DSC of the model including dropout is 0.871 and the median of
the DSC of the original single-layer model is 0.769. For the HD, the medians of the model with
and without dropout are 0.411 and 0.522, respectively. The new model seems to have improved
performance for the validation set, likely because the model is less prone to overfitting.
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(a) Box plot comparison of the DSC (b) Box plot comparison of the HD

Figure 11: Dice Similarity Coefficient (DSC) and Hausdorff Distances (HD) for the lumen of the
model without dropout and the model with dropout rate 0.2, calculated for all testing patients.
The new model has improved for both performance metrics.

(a) Without bifurcation compensation (b) With bifurcation compensation

Figure 12: Average variances for the lumen and wall thickness of a patient from the test dataset.
The variance peaks at the first 200-250 slices, at the final 150-200 slices and in the middle around
the bifurcation. In the second image, intersecting predictions are removed from the variance.

5.3 Model uncertainty

The chosen model (with pl = 0.2) was tested on the set of validation patients, performing
K = 20 stochastic forward passes as suggested in [7], calculating the predictive mean and pre-
dictive variance for each angle of each segmentation as described before. Figure 12a shows the
average variance over all angles for the predictions of the lumen and the wall thickness for the
left internal carotid artery of a patient from the test dataset.

As was observed for all testing patients, the variance peaks at the first 200-250 slices and at
the final 150-200 slices. This was to be expected, as the aleatoric uncertainty should be high
for poor quality data. However, unanticipated was the peak in the middle of the figure, corre-
sponding to the location of the bifurcation. This has to do with the merging process around
the bifurcation, a low peak around the bifurcation remains. Since a part of the polar rays are
directed into the lumen, the lumen radius may grow too large, causing it to fall outside the
polar image and contributing to high uncertainty. As can be seen in Figure 13a, the variance is

13



(a) At the bifurcation (b) In a slice with plaque buildup

Figure 13: Predictive mean and variance of the lumen (red) and wall (green), where brighter
dots correspond to higher variance.

(a) Entire plot (b) The low variance cluster

Figure 14: Variance of all annotated slices in the validation set plotted againts the DSC. The
variance seems to be mostly independent from the DSC. High variance outliers correspond to
bifurcation slices.

especially high on the broadest side of the bifurcation wall. After all, the model performs best on
more circular shapes, because the training set contains relatively less images with non-circular
annotations, so performance of these shapes is less optimized. Since this is a limitation of the
model, it is explained by the epistemic uncertainty. This also explains why variance is higher at
slices with a lot of plaque build-up as can be seen in Figure 13b.

To assess whether high uncertainty corresponds to poor segmentation results, we also looked
into the correlation between the Dice Similarity Coefficient and the variance, as can be seen in
Figure 14b. We should mention that the dice score can only be calculated for annotated slices,
so poor quality slices are not included in this plot. The DSC seems to be high, even for slices
with a lot of uncertainty such as around the bifurcation. Note that no correction was performed
for the merging process around the bifurcation. But even when excluding high variance results,
the correlation between the variables is low.
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6 Discussion

Our initial goal was to improve the segmentation by excluding contours predicted on poor-
quality slices. Although we have successfully quantified the predictive uncertainty of the model,
we had not anticipated the high variance at the bifurcation. As of now it is not possible to
filter segmentation results on the basis of the prediction variance, without either rejecting the
bifurcation region or including poor quality slices. Stated differently, we have not been able to
separate the aleatoric and epistemic uncertainty. Furthermore, it was found that the model has
a higher uncertainty on slices with a lot of plaque build-up. This is concerning, as this is the
part of the carotid artery that we would like to predict with high accuracy. Also, dropout was
only implemented in the second step of the model, since we predicted the uncertainty to mainly
take place there. Moreover, it was only implemented on the single-layer version of the CNN,
although the multi-layer version has been shown to produce better results. It was also found
that the DSC and the variance are not correlated, even when excluding high variance results,
which was unanticipated. Finally, we should note that the dropout hyperparameter of 0.2 might
not be optimal.

7 Conclusion

In this paper we improved the carotid artery segmentation model developed by Alblas et al. [2].
This was done by implementing dropout after each layer of the convolutional neural network and
performing forward passes through the model to calculate the predictive variance as a measure
of uncertainty. It was found experimentally that a dropout parameter value of 0.2 instead
of 0.5 resulted in faster convergence of the train and validation loss. Adjusting this value
resulted in a model with a higher median Dice Similarity Coefficient and Hausdorff Distance
on the validation set than the original model. This suggests substantial improvement in model
performance. Moreover, we obtained the variance for each predicted point as a measure of the
uncertainty and observed peaks at the first 200-250 slices and the last 150-200 slices.

However, no variance-based separation could be performed yet. This is due to the unexpected
high variance in the bifurcation region, where the internal and external carotid artery split. The
variance peak around the bifurcation could partly be explained by the merging process used in
the model, and partly by the epistemic uncertainty. For the same reason, we also noted high
variance for angles where plaque build-up can be observed.

Summarizing, we successfully implemented dropout and performed an in-depth analysis of
the uncertainty. Uncertainty quantification has proven to be a promising direction in the ad-
vancement of this segmentation model and can help to significantly improve the medical care of
patients with atherosclerosis.

8 Outlook

For future research, it would be interesting to investigate the separation of the aleatoric and
epistemic uncertainties, as for example described by Kendall and Gal [10]. If necessary, a quicker
estimate could perhaps be made by smoothing the variance function, or by rejecting pointwise
for each angle and use spline interpolation to find the final contour.

Implementing dropout in the first step of the model could also result in additional interesting
results with respect to the quality of the model and the variance of the predictive distribution.
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Implementing dropout in the multi-layer version of the model could further improve the accu-
racy of the segmentations. Furthermore, the model could perhaps be improved if the dropout
parameter is somehow optimized or regularized, as researched by Theobald et al. [18].

The developed model could serve as a starting point for future research on improving deep
learning carotid artery segmentation and quantifying the model uncertainty. Often, segmen-
tation is a necessary first step for building a 3D mesh of the artery. This model can then be
analyzed using computational fluid dynamics (CFD), yielding important biomarkers for cardio-
vascular disease progression. For example for atherosclerosis, the wall shear stress (WSS) has
been found to correlate with plaque development. Using CFD to model arteries, biomarkers can
be estimated in an accurate and non-invasive manner [17].

We recommend to take the uncertainty in slices with high plaque build-up into account when
calculating the values of the biomarkers, such that decisions can be made on the basis of the
resulting confidence interval. It should then be investigated whether the predictive distribution
follows a normal distribution. Perhaps the uncertainty in these slices can also be used to our
advantage, identifying slices with plaque build-up by looking at the variance distribution of that
slice.
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