
1

Testing Copositivity in Pentadiagonal Matrices
Sjoerd van Bree, s.vanbree@student.utwente.nl, University of Twente, The Netherlands

ABSTRACT

Testing a matrix for copositivity can in general not efficiently be
done. Therefore, it is of interest to find as many classes of
matrices as possible for which there exists a better method. We
propose an algorithm based on eliminating block diagonal
principal submatrices to check copositivity for pentadiagonal

matrices. We found this algorithm runs in O(φ𝑛 ∗ 𝑛4), where φ
is the golden ratio. Tests were performed on the algorithm to
compare it to the generic method.

Additional Key Words and Phrases: copositive matrix, pentadiagonal
matrix, computational complexity.

1 INTRODUCTION

The complexity of an algorithm determines the time or space in
memory it takes to execute with regard to the input size.
Different algorithms have different complexities, and it can
determine how useful an algorithm is, since a high complexity
can cause a program to take an unworkable amount of time. For
any computational problem, it is desiarable to find the most
efficient algorithm possible.
Copositive matrices have been a subject of research for some
time and have applications in many fields of science, examples
can be found in [2]. For these reasons it is useful to be able to test
whether a matrix is copositive or not. However, testing for
copositivity is an NP-hard problem, and for a general matrix, the
best current algorithm has a computational complexity of O(𝑛4 ∗
2𝑛) [5].

There has already been research to find classes of matrices in
which copositivity can be tested more efficiently. So far three
cases have been found. The first case is the acyclic matrix, which
can be tested in linear time [4]. The second case is the matrix in
which all off diagonal entries are nonpositive, such a matrix is
copositive if and only if it is semidefinite [3]. This can be tested

in O(n3) via Cholesky factorization. The third case is the
tridiagonal matrix, which can also be tested in linear time [1].
In [6], an algorithm is provided to test copositivity of tridiagonal
matrices. The algorithm is based on a characterization of Väliaho

and has a complexity of O(n6). We would like to investigate how
the argument given in [6] can be extended for pentadiagonal
matrices, and if the resulting algorithm is polynomial time or not.

Our conjecture is that the extention to the pentadiagonal case
must depend on the number of diagonals. In this paper, we focus
on characterization and development of an algorithm for
pentadiagonal matrices. We will provide the computational
complexity of this algorithm.

The structure of the paper is as follows: first, we will introduce
pentadiagonal matrices and their relevancy to this problem.
Then, an algorithm will be propesed for testing copositivity in
this matrix, and the complexity of that algorithm will be shown.
The algorithm will be implemented and tests will be performed
to compare it to the generic method. Finally, the results as well
as future work will be discussed.

1.1 Preliminaries

The following definitions will be used throughout the paper:

Principal submatrix. A principal submatrix of matrix A is a
submatrix of A for which the row with index i is removed if and
only if the column with index i is removed.

Tridiagonal matrix. Matrix 𝐴 ∈ ℝ𝑛𝑥𝑛 with elements 𝑎𝑖,𝑗 , 1 ≤ i,j ≤

n is tridiagonal if 𝑎𝑖,𝑗 = 0 for all i,j such that |i-j| ≥ 2. In other

words a tridiagonal matrix is a square matrix for which all
entries except those on the main diagonal and the two diagonals
next to the main diagonal are zeros. Such a matrix has the
following general form.

Pentadiagonal matrix. Matrix 𝐴 ∈ ℝ𝑛𝑥𝑛 with elements 𝑎𝑖,𝑗 , 1 ≤

i,j ≤ n is pentadiagonal if 𝑎𝑖,𝑗 = 0 for all i,j such that |i-j| ≥ 3. A

pentadiagonal square matrix is a matrix for which all entries
except those on the main diagonal, the two diagonals above the
main diagonal, and the two diagonals below the main diagonal
are zeros. Such a matrix has the following general form.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

2

TScIT 37, July 8, 2022, Enschede, The Netherlands Sjoerd van Bree

Block diagonal matrix. A block diagonal matrix A is a square
n×n matrix for which there exists an i < n for which 𝑎𝑖,𝑖 ≠ 0, and

𝑎𝑗,𝑘 = 0 for j ≤ i < k and k ≤ i < j, and there is at least one 𝑎𝑟,𝑟 ≠ 0

with r > i.

Copositive matrix. A symetric square matrix A ∈ ℝ𝑛×𝑛 is

copositive if 𝑥𝑇𝐴𝑥 ≥ 0 for every nonnegative vector x ∈ ℝ+
𝑛 . The

following is an example of a copositive matrix

Binary string. A binary string of length n is a sequence of n ones
and zeros.

2 PROBLEM STATEMENT

In general, testing whether a matrix is copositive takes
exponential time. But we also know that a tridiagonal matrix can
be tested in linear time. It is interesting to find out what happens
when we increase the number of diagonals in the matrix. The
first case that needs to be investigated is the matrix with two
more diagonal added, which is a pentadiagonal matrix. This
leads to the following questions:

(1) What is an efficient algorithm for testing copositivity in a
pentadiagonal matrix?

(2) What is the computational complexity of this algorithm?

3 METHODLOLOGY

To test copositivity in a pentadiagonal matrix, we are going to
use a characterization by Keller, found in the paper by Väliaho
[7]:

Theorem. A matrix is copositive if and only if each principal
submatrix for which the cofactors of its last row are nonnegative,
has a nonnegative determinant.

However, since the number of principal submatrices of a matrix
is 2𝑛, this would result in an exponential algorithm. Quist [6] has
shown that testing the complexity of tridiagonal matrices can be

done in O(n6). They used the fact that principal submatrices
which can be seen as block diagonal don’t have to be tested. By

testing all pricipal submatrices that are not block diagonal, we
are also testing all block from making up all block diagonal
principal submatrices. Their algorithm exploits the idea of
connected indices to compute the number of block diagonal
matrices. Howerver, in the case of pentadiagonal matrices
connected indices are not sufficient. Therefore, we will use a
different method.

We can represent a principal submatrix as a binary sting. We do
this in the following way: for a n×n matrix, the i-th entry in the
binary string represents the presence or absence of the i-th row
and column in the matrix. A 1 includes the row and column in the
principal submatrix, and a 0 excludes it. In the following theorem
we provide a connection between a binary string and block
diagonal martrices:

Theorem. If a binary string has two or more zeros between any
pair of consecutive ones, the string represents a block diagonal
matrix.

Proof: For a n×n pentadiagonal matrix A and an i < n-2, removing
the row and column with index i+1and i+2 from A while not
removing row and column i+3 will remove all of the following
entries: 𝑎𝑖,𝑖+1, 𝑎𝑖,𝑖+2, 𝑎𝑖+1,𝑖 , 𝑎𝑖+2,𝑖, 𝑎𝑖−1,𝑖+1, and 𝑎𝑖+1,𝑖−1. Since for

elements 𝑎𝑗,𝑘 with 1 ≤ j,k ≤ n we have 𝑎𝑖,𝑗 = 0 for all j,k such that

|j-k| ≥ 3 since the matrix is pentadiagonal, the principal
submatrix now satisfies our condition for a block diagonal
matrix.

We can show that the inverse is also true in case the
pentadiagonal matric has no zero entires on its five main
diagonals. This shows us that in those cases we have found all
blockdiagonal principal submatrices.

Proof. For a n×n pentadiagonal matrix A and an i < n-1, removing
the row and column with index i+1 from A while not removing
row and column i and i+2 will cause 𝑎𝑖,𝑖+2 to become right

adjacent to 𝑎𝑖,𝑖 in the submatrix. Since 𝑎𝑖,𝑖+2 is nonzero, it does

not satisfy our condition for a blockdiagonal matrix.

Since we don’t have to test the block diagonal submatrices, we
want to find the complement to the set of submatrices
decscribed in the theorem above. Specifically, we want to find all
binary strings with fewer than two zeros between any pair of
consecutive ones.

3.1 Algorithm

To find these binary strings, first we will make an algorithm that
returns all binary strings starting with a one and ending with a
one that meet this condition. The algorithm takes as input an
integer n for the length of the binary string. This algorithm is
given below.

Bachelor’s Student Conference Proceedings Paper in LaTeX Template TScIT 37, July 8, 2022, Enschede, The Netherlands

3

Step 2-7 : For the cases of n=0, n=1 and n=2, the algorithm
returns the only possible string.

Step 9-13: First, we create an empty list S in which we can store
all found binary strings. We split the binary strings in 2 different
cases: the case where the string starts with “11”, and the case
where the string starts with “10”.

In the case where our string starts with “11”, we know that the
second entry is a “1”. Since the last entry of the string is also a
one, we can find all possible binay strings that can follow our
initial “1” by recursively calling our algorithm on length n-1. We
can append all found stings to our initial “1” and add them to list
S.
In the case where the string starts with “10”, the next entry needs
to be another “1”, otherwise there will be more than two zeros
between two consecutive ones. Because the remaining string
still needs to end with a one, we can find all possible binary
strings that can follow our initial “10” by recursively calling our
algorithm on n-2. We can append all found stings to our initial
“10” and add them to list S.

Step 14: We return the list S with all found strings.

The number of binary strings for any length n is the number of
binary strings for length n-1 plus the number of binary strings
for n-2. If we say R(n) = { binary strings starting with a one and
ending with a one with fewer than two zeros between any pair
of consecutive ones} then |R(n)| = |(R(n-1)| + |R(n-2)| with
|R(1)| = 1 and |R2)| = 1. This clearly shows |R(n)| = 𝐹𝑛 being the
Fibonacci sequence. The complexity of our algorithm is equal to
the growth of the number of binary strings. The numbers in the
fibonacci sequence grow in O(φ𝑛), with φ being golden ratio.
Since the number of binary strings grows at the same speed as
the numbers in the Fibonaccy sequence, this is also our
algorithm’s complexity.

Now that we have all the binary strings of length n starting and
ending with a one, we need to find the remaining cases. If the
binary sting doesn’t start with a one, it starts with any number
of zeros, and if it doesn’t end with a one, it ends with any number
of zeros. Therefore, we find all remianing strings by taking a
string we found with the previous algorithm that are smaller
than our length n and adding zeros to the start and end.

The algorithm to find these is given below.

The algorithm requires an integer for the length of the binary
string. It returns a list with all the binary strings of length n that
satisfy our condition.

Step 2: Create an empty list to hold the strings.

Step 3: Because we are going to assume that there is at least one
“1” in our string, we manually add the string consisting of all
zeros.

Step 4 and 5: For a binary string of length n, we are going to
create sections starting and ending with a one via the
findPartialStrings algorithm with length n-c. Variable c is going
to determine the total amount of zeros we are going to add at the
beginning and at the end of the section those sections going from
1 to n-1.

Step 6-8: variable b determines the division of the c zeros at the
front and at the back of every section created by
findPartialStrings, going from 0 zeros in the front, to c zeros in
the front. We add all binary strings created this way to list S.

Step 9: We return the list S with all found strings.

W have two for loops with a linear complexity, followed by a for
loop dependent on the number of binary strings created by
findPartialStrings, which is O(φ𝑛). The complexity of the
algoritm is the largest of these complexities, which is O(φ𝑛). By
computing a few large n, we found that the complexity of the
algoirthm is ≈ 1.894*φ𝑛

As shown by Quist [6], testing a single principal submatrix takes
the computation of at most n determinants, with an order of at
most n. Since calculating a single determinant can be done in

O(n3), testing a single principal submatrix can be done in O(n4).
Doing this for every principal submatrix gives us a time
complexity of testing a pentadiagonal matrix for copositivity of
O(𝑛4 ∗ φ𝑛).

3.2 Experiments

To measure the performance of the algorithms, they were both
implemented in python version 3.7.2, making use of the numpy
library. All tests were ran on a system using Intel Core i7-
7700HQ CPU @ 2.80GHz and windows 10.

4

TScIT 37, July 8, 2022, Enschede, The Netherlands Sjoerd van Bree

For the first test that was performed we compared the number
of binary strings generated by the findBinaryStrings algorithm
to the number of principal submatrices that would be used by
the generic algorithm, which is 2𝑛. The test was performed for
matrices of size 1 to 15. The results of this test can be found in
the table below.

Matrix Size findBinaryStrings 2𝑛

1 2 2

2 4 4
3 8 8

4 15 16
5 27 32

6 47 64
7 80 128

8 134 256

9 222 512
10 365 1024

11 597 2048
12 973 4096

13 1582 8192
14 2568 16384

15 4164 32768

The number of principal submatrices that needs to be tested is
the same for a matrix of size 1,2 and 3, but starting from matrix
size 4 the number of principal submatrices found by the
findBinaryStrings algorithm is smaller than in the general case.
The difference between the two methods keeps increasing, at
matrix size 15 the number of strings of the genetic algorithm is 8
times larger than the number of strings in our method. This
shows us that we can expect testing copostitvity to be faster as
well.

For the second test we compared the number of binary strings
found by the findBinaryStrings algorithm to the number of
binary strings with fewer than two zeros between any pair of
consecutive ones, to give us more reason to believe that our
algorithm does indeed create such strings.

This was done by creating an algorithm to generate all different
binary strings of length n. These strings where then tested on
containing two or more zeros between any two consecutive
ones, and those that did were removed from the set. The set was
then compared to the set of binary strings generated by the
findBinaryStrings algorithm. The test was again performed on
matrices of size 1 to 15. The results can be found below.

Matrix Size Equivalent Sets

1 YES

2 YES
3 YES

4 YES

5 YES
6 YES

7 YES
8 YES

9 YES
10 YES

11 YES

12 YES
13 YES

14 YES
15 YES

The set of strings generated by the findBinaryStrings algorithm
is the same as the true set of binary strings that represent
principal submatrices that are not block diagonal. This shows us
that we can expext the algorithm to correctly test for copositivity,
since it generates all principal submatrices that need to be
tested.

For the third test we tested several matrices for copositivity
using the generic method as well as our proposed method. We
recorded the outcomes of the tests as well as the time it took both
algorithms to run the tests.

The matrices for this test were randomly generated. The
matrices were generated in the following way: the matrix is
pentadiagonal, the matrix is symetrical, all entries on the main
diagonal are between 0 and 1, and the entries on the four main
off diagonals are between -0.5 and 0.5. The test for copositivity
described by Väliaho [7] was also implemented.

For matrices of size 5 to 15 we each generated 100 random
matrices and applied both methods to them.

First, we compare the matrices found to be copositive by the
findBinaryStrings algorithm with those found to be opositive by
the generic method to see whether the algorithms perform the
same. The results are shown in the table below.

Matrix Size Equivalent Result

5 YES
6 YES

7 YES
8 YES

9 YES

10 YES
11 YES

12 YES
13 YES

14 YES
15 YES

Both algorithm gave the same results for the copositivity of the
matrices. This shows that the proposed method is equivalent in

Bachelor’s Student Conference Proceedings Paper in LaTeX Template TScIT 37, July 8, 2022, Enschede, The Netherlands

5

functionality to the generic method, at least for the set of
matrices this test was performed on.

Finally, the avarage execution time of both methods is compared
in regards to the matrix size. The results are seperated in the
matices that were found copositive and those that were found
non copositive because those execution times greatly differed.
The results are show in the following graph, with Method 1 being
our proposed method and method 2 being the generic method.

While the execution times of testing a non copositive matrix are
similar, the exection times of testing a copositive matrix are far
appart. This is because when testing a non copositive matrix,
both algorithms will teminate when only finding a single
principal submatrix that doesn’t pass the test. However, testing
a copositive matrix forces the algorithm to test every principal
submatrix. This makes our proposed mehtod more efficient since
there are less principal submatrices that need to be tested.

4 CONCLUSION AND DISCUSSION

While testing copositivity in a tridiagonal matrix can be done in
linear time, testing copositivity in a pentadiagonal matrix

requires O(𝑛4 ∗ φ𝑛). However, for the general case the
complexity is O(𝑛4 ∗ 2𝑛), which makes the method proposed in
this paper still an improvement for these matrices.

While this paper assumes that every entry on the five main
diagonals of pentadiagonal matrices is nonzero, this is of course
not necessarily the case. An optimization could be written for the
proposed algorithm which tests for the existence of more block
diagonal principal submatrices that exist because some of the
five main diagonal entries are zeros.
In the current algorithm, a very crude estimation is used for
calculating determinants once the binary strings have been
found. This is because we had already found an exponential
factor in the computational complexity. However, there might be

a more efficient way to do this part of the calculation, which
would lower the complexity of the algorithm.
Some of the principal submatrices of pentadiagonal matrices are
tridiagonal, if a different way of calculating determinates would
be implemented it might be worthwhile to find these tridiagonal
cases since calculating the determinant of a tridiagonal matrix
can be done more efficiently.
When testing the algorithm, the implementation of the test for
copositivity was not checked for its computational complexity.
Because of this the test results could have misrepresented the
actual time it would take if this method was implemented in a
more efficient way. However, since both our proposed method
and the generic method were tested on the same
implementation, the expectation is that the relative results are
accurate.
The tests in the experiments section used randomly generated
matrices with specific properties. Because of this, the algorithms
could behave differently on matrices generated with other
properties.

For future work, it would be interesting to see how this
complexity increases as the number of diagonals increase. The
expectation is that instead of finding binary strings that avoid
two zeros between consecutive ones, for a heptadiagonal matrix,
all binary string would need to be found that avoid three zeros
between every pair consecutive ones. This would add a third
recursive call to the findPartialStrings algorithm with the string
“100”. Instead of the Fibonacci sequence, this would lead to the
Tribonacci sequence i.e., adding the previous three elements of
the series to get the next one. We expect a pattern will exist for
increasing the number of diagonals in this way.

5 REFERENCES

[1] Bomze, I. M. (2000). Linear-time copositivity detection for tridiagonal

matrices and extension to block-tridiagonality. SIAM Journal on Matrix

Analysis and Applications, 21(3), 840-848.

[2] Bomze, I. M. (2012). Copositive optimization–recent developments and

applications. European Journal of Operational Research, 216(3), 509-520.

[3] Ikramov, K. D., & Savel'Eva, N. V. (2000). Conditionally definite matrices.

Journal of Mathematical Sciences, 98(1), 1-50.

[4] Ikramov, K. D. (2002). Linear-time algorithm for verifying the copositivity of

an acyclic matrix. Computational mathematics and mathematical physics,

42(12), 1701-1703.

[5] Kaplan, W. (2000). A test for copositive matrices. Linear Algebra and its

Applications, 313(1-3), 203-206.

[6] Quist, A. J., de Klerk, E., Roos, C., & Terlaky, T. (1998). Copositive realxation for

genera quadratic programming. Optimization methods and software, 9(1-3),

185-208.

[7] Väliaho, H. (1986). Criteria for copositive matrices. Linear Algebra and its

applications, 81, 19-34.

0

1

2

3

4

5

6

7

5 6 7 8 9 10 11 12 13 14 15

Ex
ec

u
ti

o
n

 T
im

e
in

 S
ec

o
n

d
s

Matrix Size

Method 1 Copositive

method 2 Copositive

Method 1 Non-Coposititve

Method 2 Non-Copositive

