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Testing Copositivity in Pentadiagonal Matrices 
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ABSTRACT 

Testing a matrix for copositivity can in general not efficiently be 
done. Therefore, it is of interest to find as many classes of 
matrices as possible for which there exists a better method. We 
propose an algorithm based on eliminating block diagonal 
principal submatrices to check copositivity for pentadiagonal 

matrices. We found this algorithm runs in O(φ𝑛 ∗ 𝑛4), where φ 
is the golden ratio. Tests were performed on the algorithm to 
compare it to the generic method. 

 
Additional Key Words and Phrases: copositive matrix, pentadiagonal 
matrix, computational complexity. 

1 INTRODUCTION 

The complexity of an algorithm determines the time or space in 
memory it takes to execute with regard to the input size. 
Different algorithms have different complexities, and it can 
determine how useful an algorithm is, since a high complexity 
can cause a program to take an unworkable amount of time. For 
any computational problem, it is desiarable to find the most 
efficient algorithm possible. 
Copositive matrices have been a subject of research for some 
time and have applications in many fields of science, examples 
can be found in [2]. For these reasons it is useful to be able to test 
whether a matrix is copositive or not. However, testing for 
copositivity is an NP-hard problem, and for a general matrix, the 
best current algorithm has a computational complexity of O(𝑛4 ∗
2𝑛) [5]. 

There has already been research to find classes of matrices in 
which copositivity can be tested more efficiently. So far three 
cases have been found. The first case is the acyclic matrix, which 
can be tested in linear time [4]. The second case is the matrix in 
which all off diagonal entries are nonpositive, such a matrix is 
copositive if and only if it is semidefinite [3]. This can be tested 

in O( n3 ) via Cholesky factorization. The third case is the 
tridiagonal matrix, which can also be tested in linear time [1]. 
In [6], an algorithm is provided to test copositivity of tridiagonal 
matrices. The algorithm is based on a characterization of Väliaho 

and has a complexity of O(n6). We would like to investigate how 
the argument given in [6] can be extended for pentadiagonal 
matrices, and if the resulting algorithm is polynomial time or not. 

Our conjecture is that the extention to the pentadiagonal case 
must depend on the number of diagonals. In this paper, we focus 
on characterization and development of an algorithm for 
pentadiagonal matrices. We will provide the computational 
complexity of this algorithm.  

The structure of the paper is as follows: first, we will introduce 
pentadiagonal matrices and their relevancy to this problem. 
Then, an algorithm will be propesed for testing copositivity in 
this matrix, and the complexity of that algorithm will be shown. 
The algorithm will be implemented and tests will be performed 
to compare it to the generic method. Finally, the results as well 
as future work will be discussed. 
 

1.1 Preliminaries 

The following definitions will be used throughout the paper: 
 

Principal submatrix. A principal submatrix of matrix A is a 
submatrix of A for which the row with index i is removed if and 
only if the column with index i is removed. 
 

Tridiagonal matrix. Matrix 𝐴 ∈ ℝ𝑛𝑥𝑛  with elements 𝑎𝑖,𝑗 , 1 ≤ i,j ≤ 

n is tridiagonal if 𝑎𝑖,𝑗 = 0 for all i,j such that |i-j| ≥ 2. In other 

words a tridiagonal matrix is a square matrix for which all 
entries except those on the main diagonal and the two diagonals 
next to the main diagonal are zeros. Such a matrix has the 
following general form. 
 

  
 

Pentadiagonal matrix. Matrix 𝐴 ∈ ℝ𝑛𝑥𝑛 with elements 𝑎𝑖,𝑗 , 1 ≤ 

i,j ≤ n is pentadiagonal if 𝑎𝑖,𝑗 = 0 for all i,j such that |i-j| ≥ 3. A 

pentadiagonal square matrix is a matrix for which all entries 
except those on the main diagonal, the two diagonals above the 
main diagonal, and the two diagonals below the main diagonal 
are zeros. Such a matrix has the following general form.  
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Block diagonal matrix. A block diagonal matrix A is a square 
n×n matrix for which there exists an i < n for which 𝑎𝑖,𝑖  ≠ 0, and 

𝑎𝑗,𝑘  = 0 for j ≤ i < k and k ≤ i < j, and there is at least one 𝑎𝑟,𝑟  ≠ 0 

with r > i. 

 
Copositive matrix. A symetric square matrix A ∈ ℝ𝑛×𝑛  is 

copositive if 𝑥𝑇𝐴𝑥 ≥ 0 for every nonnegative vector x ∈ ℝ+
𝑛 .  The 

following is an example of a copositive matrix 
 

 
 
Binary string. A binary string of length n is a sequence of n ones 
and zeros. 
 

2 PROBLEM STATEMENT 

In general, testing whether a matrix is copositive takes 
exponential time. But we also know that a tridiagonal matrix can 
be tested in linear time. It is interesting to find out what happens 
when we increase the number of diagonals in the matrix. The 
first case that needs to be investigated is the matrix with two 
more diagonal added, which is a pentadiagonal matrix. This 
leads to the following questions: 
 

(1) What is an efficient algorithm for testing copositivity in a 
pentadiagonal matrix? 

 
(2) What is the computational complexity of this algorithm? 

 

3 METHODLOLOGY 

To test copositivity in a pentadiagonal matrix, we are going to 
use a characterization by Keller, found in the paper by Väliaho 
[7]: 

 
Theorem. A matrix is copositive if and only if each principal 
submatrix for which the cofactors of its last row are nonnegative, 
has a nonnegative determinant. 
 

However, since the number of principal submatrices of a matrix 
is 2𝑛, this would result in an exponential algorithm. Quist [6] has 
shown that testing the complexity of tridiagonal matrices can be 

done in O(n6 ). They used the fact that principal submatrices 
which can be seen as block diagonal don’t have to be tested. By 

testing all pricipal submatrices that are not block diagonal, we 
are also testing all block from making up all block diagonal 
principal submatrices. Their algorithm exploits the idea of 
connected indices to compute the number of block diagonal 
matrices. Howerver, in the case of pentadiagonal matrices 
connected indices are not sufficient. Therefore, we will use a 
different method. 

 

We can represent a principal submatrix as a binary sting. We do 
this in the following way: for a n×n matrix, the i-th entry in the 
binary string represents the presence or absence of the i-th row 
and column in the matrix. A 1 includes the row and column in the 
principal submatrix, and a 0 excludes it. In the following theorem 
we provide a connection between a binary string and block 
diagonal martrices: 
 

Theorem. If a binary string has two or more zeros between any 
pair of consecutive ones, the string represents a block diagonal 
matrix. 

 
Proof: For a n×n pentadiagonal matrix A and an i < n-2, removing 
the row and column with index i+1and i+2 from A while not 
removing row and column i+3 will remove all of the following 
entries: 𝑎𝑖,𝑖+1, 𝑎𝑖,𝑖+2, 𝑎𝑖+1,𝑖 , 𝑎𝑖+2,𝑖, 𝑎𝑖−1,𝑖+1, and 𝑎𝑖+1,𝑖−1. Since for 

elements 𝑎𝑗,𝑘 with 1 ≤ j,k ≤ n we have 𝑎𝑖,𝑗 = 0 for all j,k such that 

|j-k| ≥ 3 since the matrix is pentadiagonal, the principal 
submatrix now satisfies our condition for a block diagonal 
matrix. 
 

We can show that the inverse is also true in case the 
pentadiagonal matric has no zero entires on its five main 
diagonals. This shows us that in those cases we have found all 
blockdiagonal principal submatrices.  

 
Proof. For a n×n pentadiagonal matrix A and an i < n-1, removing 
the row and column with index i+1 from A while not removing 
row and column i and i+2 will cause 𝑎𝑖,𝑖+2  to become right 

adjacent to 𝑎𝑖,𝑖  in the submatrix. Since 𝑎𝑖,𝑖+2 is nonzero, it does 

not satisfy our condition for a blockdiagonal matrix. 

 
Since we don’t have to test the block diagonal submatrices, we 
want to find the complement to the set of submatrices 
decscribed in the theorem above. Specifically, we want to find all 
binary strings with fewer than two zeros between any pair of 
consecutive ones. 
 

3.1 Algorithm 
 
To find these binary strings, first we will make an algorithm that 
returns all binary strings starting with a one and ending with a 
one that meet this condition. The algorithm takes as input an 
integer n for the length of the binary string. This algorithm is 
given below. 
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Step 2-7 : For the cases of n=0, n=1 and n=2, the algorithm 
returns the only possible string. 

 
Step 9-13: First, we create an empty list S in which we can store 
all found binary strings. We split the binary strings in 2 different 
cases: the case where the string starts with “11”, and the case 
where the string starts with “10”.  

In the case where our string starts with “11”, we know that the 
second entry is a “1”. Since the last entry of the string is also a 
one, we can find all possible binay strings that can follow our 
initial “1” by recursively calling our algorithm on length n-1. We 
can append all found stings to our initial “1” and add them to list 
S. 
In the case where the string starts with “10”, the next entry needs 
to be another “1”, otherwise there will be more than two zeros 
between two consecutive ones. Because the remaining string 
still needs to end with a one, we can find all possible binary 
strings that can follow our initial “10” by recursively calling our 
algorithm on n-2. We can append all found stings to our initial 
“10” and add them to list S. 

 
Step 14: We return the list S with all found strings. 

 
The number of binary strings for any length n is the number of 
binary strings for length n-1 plus the number of binary strings 
for n-2.  If we say R(n) = { binary strings starting with a one and 
ending with a one with fewer than two zeros between any pair 
of consecutive ones} then |R(n)| = |(R(n-1)| + |R(n-2)| with 
|R(1)| = 1 and |R2)| = 1. This clearly shows |R(n)| = 𝐹𝑛 being the 
Fibonacci sequence. The complexity of our algorithm is equal to 
the growth of the number of binary strings. The numbers in the 
fibonacci sequence grow in O(φ𝑛 ), with φ being golden ratio. 
Since the number of binary strings grows at the same speed as 
the numbers in the Fibonaccy sequence, this is also our 
algorithm’s complexity. 

 
Now that we have all the binary strings of length n starting and 
ending with a one, we need to find the remaining cases. If the 
binary sting doesn’t start with a one, it starts with any number 
of zeros, and if it doesn’t end with a one, it ends with any number 
of zeros. Therefore, we find all remianing strings by taking a 
string we found with the previous algorithm that are smaller 
than our length n and adding zeros to the start and end.  

The algorithm to find these is given below. 

 

 
 
The algorithm requires an integer for the length of the binary 
string. It returns a list with all the binary strings of length n that 
satisfy our condition. 

 
Step 2: Create an empty list to hold the strings. 

 
Step 3: Because we are going to assume that there is at least one 
“1” in our string, we manually add the string consisting of all 
zeros.  

 
Step 4 and 5: For a binary string of length n, we are going to 
create sections starting and ending with a one via the 
findPartialStrings algorithm with length n-c. Variable c is going 
to determine the total amount of zeros we are going to add at the 
beginning and at the end of the section those sections going from 
1 to n-1. 
 

Step 6-8: variable b determines the division of the c zeros at the 
front and at the back of every section created by 
findPartialStrings, going from 0 zeros in the front, to c zeros in 
the front. We add all binary strings created this way to list S. 
 

Step 9: We return the list S with all found strings. 

 
W have two for loops with a linear complexity, followed by a for 
loop dependent on the number of binary strings created by 
findPartialStrings, which is O( φ𝑛 ). The complexity of the 
algoritm is the largest of these complexities, which is O(φ𝑛). By 
computing a few large n, we found that the complexity of the 
algoirthm is ≈ 1.894*φ𝑛  
 

As shown by Quist [6], testing a single principal submatrix takes 
the computation of at most n determinants, with an order of at 
most n. Since calculating a single determinant can be done in 

O(n3), testing a single principal submatrix can be done in O(n4). 
Doing this for every principal submatrix gives us a time 
complexity of testing a pentadiagonal matrix for copositivity of 
O(𝑛4 ∗ φ𝑛). 

 

3.2 Experiments 

 
To measure the performance of the algorithms, they were both 
implemented in python version 3.7.2, making use of the numpy 
library. All tests were ran on a system using Intel Core i7-
7700HQ CPU @ 2.80GHz and windows 10. 
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For the first test that was performed we compared the number 
of binary strings generated by the findBinaryStrings algorithm 
to the number of principal submatrices that would be used by 
the generic algorithm, which is 2𝑛. The test was performed for 
matrices of size 1 to 15. The results of this test can be found in 
the table below. 

 
Matrix Size findBinaryStrings 2𝑛 

1 2 2 

2 4 4 
3 8 8 

4 15 16 
5 27 32 

6 47 64 
7 80 128 

8 134 256 

9 222 512 
10 365 1024 

11 597 2048 
12 973 4096 

13 1582 8192 
14 2568 16384 

15 4164 32768 

 
The number of principal submatrices that needs to be tested is 
the same for a matrix of size 1,2 and 3, but starting from matrix 
size 4 the number of principal submatrices found by the 
findBinaryStrings algorithm is smaller than in the general case. 
The difference between the two methods keeps increasing, at 
matrix size 15 the number of strings of the genetic algorithm is 8 
times larger than the number of strings in our method. This 
shows us that we can expect testing copostitvity to be faster as 
well. 
 

For the second test we compared the number of binary strings 
found by the findBinaryStrings algorithm to the number of 
binary strings with fewer than two zeros between any pair of 
consecutive ones, to give us more reason to believe that our 
algorithm does indeed create such strings. 

This was done by creating an algorithm to generate all different 
binary strings of length n. These strings where then tested on 
containing two or more zeros between any two consecutive 
ones, and those that did were removed from the set. The set was 
then compared to the set of binary strings generated by the 
findBinaryStrings algorithm. The test was again performed on 
matrices of size 1 to 15. The results can be found below. 
 

 
 

 

 
 

 
 

 
 

Matrix Size Equivalent Sets 

1 YES 

2 YES 
3 YES 

4 YES 

5 YES 
6 YES 

7 YES 
8 YES 

9 YES 
10 YES 

11 YES 

12 YES 
13 YES 

14 YES 
15 YES 

 
The set of strings generated by the findBinaryStrings algorithm 
is the same as the true set of binary strings that represent 
principal submatrices that are not block diagonal. This shows us 
that we can expext the algorithm to correctly test for copositivity, 
since it generates all principal submatrices that need to be 
tested. 

 
For the third test we tested several matrices for copositivity 
using the generic method as well as our proposed method. We 
recorded the outcomes of the tests as well as the time it took both 
algorithms to run the tests. 

The matrices for this test were randomly generated. The 
matrices were generated in the following way: the matrix is 
pentadiagonal, the matrix is symetrical, all entries on the main 
diagonal are between 0 and 1, and the entries on the four main 
off diagonals are between -0.5 and 0.5. The test for copositivity 
described by Väliaho [7] was also implemented. 

For matrices of size 5 to 15 we each generated 100 random 
matrices and applied both methods to them.  

First, we compare the matrices found to be copositive by the 
findBinaryStrings algorithm with those found to be opositive by 
the generic method to see whether the algorithms perform the 
same. The results are shown in the table below. 
 

Matrix Size Equivalent Result 

5 YES 
6 YES 

7 YES 
8 YES 

9 YES 

10 YES 
11 YES 

12 YES 
13 YES 

14 YES 
15 YES 

 

Both algorithm gave the same results for the copositivity of the 
matrices. This shows that the proposed method is equivalent in 
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functionality to the generic method, at least for the set of 
matrices this test was performed on.  
 

Finally, the avarage execution time of both methods is compared 
in regards to the matrix size. The results are seperated in the 
matices that were found copositive and those that were found 
non copositive because those execution times greatly differed. 
The results are show in the following graph, with Method 1 being 
our proposed method and method 2 being the generic method. 
 

 
While the execution times of testing a non copositive matrix are 
similar, the exection times of testing a copositive matrix are far 
appart. This is because when testing a non copositive matrix, 
both algorithms will teminate when only finding a single 
principal submatrix that doesn’t pass the test. However, testing 
a copositive matrix forces the algorithm to test every principal 
submatrix. This makes our proposed mehtod more efficient since 
there are less principal submatrices that need to be tested. 
 

4 CONCLUSION AND DISCUSSION 

While testing copositivity in a tridiagonal matrix can be done in 
linear time, testing copositivity in a pentadiagonal matrix 

requires O( 𝑛4 ∗ φ𝑛 ). However, for the general case the 
complexity is O(𝑛4 ∗ 2𝑛), which makes the method proposed in 
this paper still an improvement for these matrices. 

 

While this paper assumes that every entry on the five main 
diagonals of pentadiagonal matrices is nonzero, this is of course 
not necessarily the case. An optimization could be written for the 
proposed algorithm which tests for the existence of more block 
diagonal principal submatrices that exist because some of the 
five main diagonal entries are zeros.  
In the current algorithm, a very crude estimation is used for 
calculating determinants once the binary strings have been 
found. This is because we had already found an exponential 
factor in the computational complexity. However, there might be 

a more efficient way to do this part of the calculation, which 
would lower the complexity of the algorithm. 
Some of the principal submatrices of pentadiagonal matrices are 
tridiagonal, if a different way of calculating determinates would 
be implemented it might be worthwhile to find these tridiagonal 
cases since calculating the determinant of a tridiagonal matrix 
can be done more efficiently. 
When testing the algorithm, the implementation of the test for 
copositivity was not checked for its computational complexity. 
Because of this the test results could have misrepresented the 
actual time it would take if this method was implemented in a 
more efficient way. However, since both our proposed method 
and the generic method were tested on the same 
implementation, the expectation is that the relative results are 
accurate. 
The tests in the experiments section used randomly generated 
matrices with specific properties. Because of this, the algorithms 
could behave differently on matrices generated with  other 
properties. 

 
For future work, it would be interesting to see how this 
complexity increases as the number of diagonals increase. The 
expectation is that instead of finding binary strings that avoid 
two zeros between consecutive ones, for a heptadiagonal matrix, 
all binary string would need to be found that avoid three zeros 
between every pair consecutive ones. This would add a third 
recursive call to the findPartialStrings algorithm with the string 
“100”. Instead of the Fibonacci sequence, this would lead to the 
Tribonacci sequence i.e., adding the previous three elements of 
the series to get the next one. We expect a pattern will exist for 
increasing the number of diagonals in this way. 
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