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Fig. 1. SlimPark test location on UTwente[16]

Predictions for the power output of renewable energy sources are not always

accurate. Gaining insight in the error of predictions can help grid operators

manage the power gridmore efficiently. This is especially important now that

common households produce their own energy though Photovoltaic (PV)

systems more frequently. Currently, the increase in the amount of energy

generated through PV systems already leads to congestion and damage

to the main energy grid. To counter this development, more anticipating

control is required, which in turn requires more insight into future energy

generation. In this research paper, the viability of an independent centralised

model that estimates the error in the power output predictions made by a

PV system is analysed. Multiple Linear Regression and XGBoost are trained

on weather data in order to estimate the error of a PV prediction model.

Machine Learning models prove to be a viable tool to provide insight into

the reliability of output predictions, especially in classifying probable over-

/under-estimations.

Additional Key Words and Phrases: Photovoltaic, Output Prediction, Error

Estimation, Solar Energy, PV

1 INTRODUCTION
For the last few years, the energy system has shifted more towards

sustainable and renewable energy sources. One of the promising

technologies in this transition is the integration of solar power

through Photovoltaic (PV) cells, more commonly known as solar

cells [25]. The reduction in fabrication costs and increase in effi-

ciency and durability have made PV systems a popular renewable

alternative for fossil fuel based energy generation [9].
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The intermittent nature of the power production of PV systems

prevents these systems from being used as the main mode of gen-

erating energy for our current electrical grid. Intermittent power

production can damage our current energy grid by creating voltage

and frequency anomalies or excessive loads during peak produc-

tion. Besides this, there is the fact that traditional power plants

can supply a consistent and predictable power output that can be

stepped up or throttled down to fit the specific energy demands

at any moment. While solar energy can be throttled just like tra-

ditional energy sources, the maximum output cannot be stepped

up due to dependency on uncontrollable factors like the local solar

irradiance values. These fluctuations have become more common

now that average households also have access to these technologies

instead of relying on a few big energy generation sites spread across

the country. This results in a more decentralised energy market

with bi-directional flow which consequently leads to hard to predict

energy output from a plethora of suppliers.

Fluctuations in power output in our current electrical grids give

rise to an imbalance in supply and demand which forces grid op-

erators to find solutions to counter the effects of this imbalance

[20, 21, 23, 24]. The increase in the number of suppliers that mostly

supply an inconsistent amount of energy to the grid, increases the

complexity of this problem. Furthermore, these suppliers might pre-

dict their outputs using different methods and metrics with varying

rates of success. This consequently complicates managing the sup-

ply and demand of the main energy grid even further. Having a

robust energy management system can aid in reducing imbalances

and damages caused by these fluctuations by, for example, utilizing

energy storage solutions or the flexibility inherent to demand.

Because the accuracy of the models used to predict PV output can

differ between methods and implementations of energy manage-

ment systems, it is hard to allocate resources to guarantee grid
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stability effectively. Besides that, the data and models on which

the predictions are based and the performance metrics thereof are

generally not easily accessible if they are available at all. In order

to manage the main energy grid it would be useful to be able to

estimate the inaccuracy of a given model in certain weather condi-

tions, as this indicates to what extend backup resources need to be

available. This situation gives rise to the following research question:

Can the error of a PV output prediction model be estimated using a
different and independent model with different data sources than the
prediction model?

To test whether the error of such an output prediction model can

be estimated, machine learning will be utilised to find relations

between weather data and the error in the output prediction of

the original model. In this report the performance requirements,

the methodology of creating this model, and results are outlined.

Subsequently, the results are analysed in order to answer whether

this approach is viable when trying to predict estimation error.

2 REQUIREMENTS
In order for this approach to be considered viable it must meet the

following three requirements:

• Accurate: The error estimation must be accurate enough to

improve the final output estimation if the error is taken into

account in post processing of the prediction.

• Independent: The approach must be generally applicable

to models that use unknown data and approaches to realize

their predictions.

• Flexible: Since weather, and thus PV systems, perform depen-

dent on location specific conditions it is important that this

approach can make use of the possibly limited data available.

The requirements that a real life implementation would have to meet

are not noted in this list because functional real life implementations

are outside the scope of this research.

3 RELATED WORK
Research on how estimations for PV output can be obtained is im-

portant when we look at estimating the error of these models. After

all, only measurements related to PV output are to be considered

since unrelated data might skew the estimation.

Most estimation models that were published by studies conducted

nearly ten years ago use stochastic methods in order to estimate

the irradiance level in the future. Predictions are made on the basis

of camera images that predict predict the stochastic movement of

clouds in front of the sun [5], stochastic state spaces [17] or irradi-

ance values of other nearby PV systems [11].

In more recent years, artificial intelligence based prediction methods

have become a popular research topic. Estimation methods based

on decision trees [15], neural networks [3, 12] and deep learning

[4] can be found, which generally yield better results than the older

methods.

There is very little research on predicting the error of models. One

possible explanation of this is the fact that in general, being able

to predict the error of a model using certain features means that

you can improve the accuracy of the original model by adding these

features. In the case of the embedded models used to estimate output

of PV systems, however, it might be hard or undesirable to update

these models.

A common way to represent the accuracy of machine learning

models are the Mean Absolute Error (MAE), Mean Square Error

(MSE) and Root Mean Square Error (RMSE) scores. This can be

a problem as these scores generalize the performance to a single

value independent of external conditions. While this is a good way

to estimate the general accuracy of a model, it does not provide

enough information to aid in the task of managing energy since

this metric cannot be used to compensate mistakes in individual

measurements.

Fig. 2. Scatter plot of all time coordinates

4 METHODOLOGY
As mentioned before, machine learning models will be utilised to

find a relation between weather data and the error in the output pre-

diction of a PV system. The energy research group of the University

of Twente manages a living lab facility called SlimPark, which is

equipped with a PV system, electric vehicle chargers and a battery.

This test location uses machine learning in the form of Multiple

Linear Regression in order to estimate the PV output [8]. This im-

plementation and the obtained historical data is used as a source of

error data for the analysis.

4.1 Data acquisition
Predictions and actual output values recorded from February through

June by the SlimPark PV system were taken as a source of error

data. This PV system predicts its output based on irradiance forecast

predictions. In order to get the weather data required to find possible

relations between weather conditions and the error of the system

the data published by the Royal Netherlands Meteorological
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(a) Sinewave approximated with linear interpolation

(b) Sinewave approximated with cubic spline interpolation

(c) Sinewave approximated with PCHIP interpolation

Fig. 3. sinewave interpolations

Institute (KNMI) was taken. This is historical weather data instead

of historical weather forecast data since historical weather forecast

data for the location of the SlimPark PV system was not readily

available. The SlimPark installation does not have a weather station

on site. In order to keep the weather data as consistent as possible

with the weather at the SlimPark site, the weather station called

"twenthe airport" was used as a source of weather data, because this

was the closest weather station that the KNMI monitors.

4.2 Data Preparation
The data gathered from the KNMI weather station is recorded every

10 minutes whereas the historical data of the SlimPark PV system

is recorded every 15 minutes. This causes half of the data obtained

through SlimPark to be unsynchronizable without prepossessing.

The data point on the 15
th

and 45
th

minute of each hour can not

be matched directly to a data point taken from the KNMI data set.

In order to keep our data set as big as possible, the data from the

KNMI data was interpolated in order to obtain feasible data points

for the 15
th
and 45

th
minute of every hour.

4.2.1 Interpolation.
Linear interpolation [19] was considered, but due to the inability to

represent the smooth transitions of some of the data points in the

weather data effectively this method was not selected (see figure

3a), even though a form of linear regression is used to calculate

average monthly temperatures according to a literature review com-

missioned by the KNMI [22]. A cubic spline [14] was considered

next since this method generates smoother curves than linear inter-

polation, as can be seen in figure 3b. This method was not selected

due to the tendency of some of the data points in the weather data

to plateau. The Gibbs phenomenon would arise using splining [18],

which is undesirable. Apart from that, the values generated by cubic

splining can be higher or lower than the measured values it lies

between. This can be a problem when interpolating, for example,

rain gauge measurements. If it stops raining suddenly the cubic

splines interpolated values can give a measurement of negative

rainfall, which is impossible. Lastly, different splining methods are

considered a viable method of interpolating weather data [10, 13],

but this is only the case when considering data with resolutions of

a day or lower according to the same KNMI literature review [22].

The interpolation method that was selected after these considera-

tions was a "Piecewise Cubic Hermite Interpolating Polynomial"

(PCHIP) [7]. It works by calculating a cubic polynomial that goes

through the two neighbouring points at a specific slope in order to

smoothly transition point to point. This method is smoother than

linear interpolation, but always remains in the range of the given

measurements that it is surrounded by, as can be seen in figure 3c.

4.2.2 Data Selection.
The data taken from the KNMI publications contains data points of

different time resolutions. An example of this would be rainfall in

the last 24, 12, 6 and 1 hour(s). The data points with a time resolution

closest to 15 minutes has been taken in order to keep the resolution

of the model and the other data points as similar as possible. In the

case of the above example the data point for rainfall in the last hour

would be taken. This target resolution was chosen since the data
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resolution of the SlimPark data set is 15 minutes.

At some points the sensors of the weather station were partially

turned off. These entries of the KNMI data have been removed, as

well as the interpolated values around these data points. There are

also extreme outliers, which were also removed. Extreme outliers,

in this context, are defined as values that are more than 5 standard

deviations away from the mean, These outliers were removed be-

cause they coincided with moments of sensor outage, indicating

that the measurements might be unreliable.

After this data selection, the final data set contains data from the

12
th
of February 2022 up to and including the 24

th
of June 2022 with

no usable data on a few days at the end of march and the middle

of June. The set consist of 6912 data points, containing 119 features

in total. The weather data consists of features such as rainfall in

the last hour, global solar irradiation, wind speeds, maximum and

minimum temperatures, weather condition codes, air pressure, and

the prediction and output data of the SlimPark PV system.

4.2.3 General Data Manipulation.
Since the SlimPark test location only provides prediction values and

the actual output, the prediction error needs to be calculated from

these values. Prediction and output values provided by the living lab

facility are always negative because energy generation is defined as

negative energy consumption. Because of that, we use the following

formula to calculate the prediction error:

Prediction Error = Real Output - Predicted Output

Calculating the prediction error in this way results in negative num-

bers when the prediction model underestimates and positive values

when the model overestimates. The unit Watt_τ is defined to be

equal to 1 Watt/15m in order to be able to represent the. This means

that 4 Watt_τ is equal to 1 Wh exactly.

When taking into account general data manipulations, the following

changes have been made: there is no energy generation during the

nights, so the weather and SlimPark data have been removed before

sunrise and after sunset. The time of day is linked to the angle

at which sun rays hit the PV panel surface, which makes time an

important variable as well. The timestamps of the SlimPark and

KNMI data sets both use the 24 hours time notation. In order to

make this a normalized value, the time was plotted on a circle (see

figure 2) using the following algorithm:

time_numeric = hours*100 + (minutes/60)*100
timestamp_x = sin(2.0 * pi * time_numeric / 2400)
timestamp_y = cos(2.0 * pi * time_numeric / 2400)

Here timestamp_x and timestamp_y represent the x and y coordi-

nates of the timestamp in a graph. This approach was chosen so

that differences in time of two time stamps are proportional to the

distance of the coordinates of these same two timestamps.

For the categorical values, a one-hot-encoding was used in order to

be able to use this information in the models as well. This means

that every category that is present in the data will be a separate

feature with an indication of 1 if the data point is categorised in

that specific category and 0 otherwise.

4.3 Models
In order to gain more insight in the usefulness of this approach we

aim to find relations between the weather data and the error of the

predictions made by the PV system prediction model. To be exact,

weather data will be fed into machine learning models in order

to estimate the error of an output prediction using the following

machine learning algorithms:

• Multiple Linear Regression (MLR): Since this method is

also used in the PV prediction algorithm [8], this algorithm

has proven itself capable in a very similar situation. This

makes this algorithm a good starting point. The ’scikit-learn’

(sklearn) Python library [1] was used in order to provide en

efficient implementation of Multiple Linear Regression.

• XGBoost: XGBoost [6] is a tree boosting method that has

proven quite capable in machine learning competitions. Be-

cause of good performance in competitions XGBoost is ex-

pected to yield good results. The ’xgboost’ Python library [2]

was used in order to provide an efficient implementation of

this algorithm.

4.4 Evaluation
The implemented machine learning algorithms are evaluated using

the following metrics:

• Mean Absolute Error (MAE)

• Mean Square Error (MSE)

• Root Mean Square Error (RMSE)

• Percentage of correct over-/under-estimation indication (PS)

• Percentage of better predictions after compensation (PB)

MAE is chosen since it gives a intuitive indication of the magnitude

of the error of a model. MSE and RMSE are common indications of

the performance of models and the MSE tends to enlarge difference

between errors, making it useful in order to see small differences in

inaccuracies more clearly. PS and PB are added in order to gauge

the potency and reliability of the method.

Three data formats were used in order to evaluate the models. Firstly,

we take the data from the selected data set without any further pre-

processing beyond the data preparation and selection. This data set

is called the unprocessed data set. Secondly, we have a standardised

data set. This approach was taken in order to limit the influence of

having various units and scales within the data set. Coincidentally,

this should theoretically improve prediction accuracy if the machine

learning algorithm assumes a Gaussian distribution. Lastly, we have

the normalised data set. This data set normalises all values so they

have a value between 0 and 1.

Some features might be more important than others. In order to

see whether or not this is the case, the model is trained on different

sets of features. These feature sets are calculated using a sequential

feature selector, which is also provided by the scikit-learn library

[1]. The sequential feature selector is configured to use forward

selection, greedily choosing the feature with the most impact on
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the desired outcome at each step.

The MLR algorithm with steps of 5 features at a time while the

XGBoost algorithm was evaluated with 10 steps each time. This

approach is chosen because of time constraints and the fact that a

XGBoost model takes significantly longer to train.

(a) PB of MLR versus XGBOOST

(b) PS of MLR versus XGBOOST

Fig. 4. PB and PS metrics

To keep the evaluations consistent and reliable, a 10-fold cross val-

idation is used. This means that the data set is cut up in 10 parts,

of which 9 parts are taken in order to train the models and the 10
th

part is used in order test the accuracy of the model according to the

aforementioned metrics. Consequently this is done 9 more times.

After this, the average of these 10 results is taken as an indication

of the performance of that configuration.

5 RESULTS
The MAE, MSE, and RMSE of the prediction model, MLR, and XG-

Boost are plotted in figure 5. The output prediction model is un-

touched in this research, however, some of the same performance

metrics can be calculated for the results of this model. Including

these metrics in these figures serves the purpose of providing a sense

of scale to the metrics derived from the other models. This metric

can be used in this way since calculating the difference between

the error estimation and the actual error results in compensated

prediction error (CPE). The compensated prediction error is defined

as follows:

Prediction + Estimated Error = CPE

The PB and PS metrics cannot be taken from the original data,

because these values are based on the relation between the error

estimation and the output prediction, making PB of the prediction

model always zero and the PS undefined. The PS and PB scores of

the MLR and XGBoost algorithm can be seen in figure 4.

5.1 Multiple Linear Regression
Tables 1, 3, and 5 in appendix B contain the numerical values of the

metrics of the Multiple Linear Regression model resulting from the

different number of features obtained through sequential feature se-

lection. In appendix A.1 the values of all of the different metrics for

the Multiple Linear Regression are plotted in more detail in order to

see the small differences resulting from the different pre-processing

methods more clearly.

As can be observed in the above-mentioned plots an tables, theMulti-

ple Linear Regression algorithm does not show significant difference

between the performance between the unprocessed, standardised,

and normalised set. It can clearly be seen that the algorithm per-

forms the best when close to all features are included, even though

the accuracy decreases slightly when more features are added up to

110 features. There is also a notable spike with an increased error

on 75 features.

Since there is only little difference between the different number

of features, additional measurements are taken between 55 and 60

features. In this interval the model is analysed upon adding each

feature to see if there was more fluctuation in the inaccuracy when

looking at a higher resolution. It can be seen that the accuracy tends

to decrease slowly but steadily and there is no significant difference

in the magnitude of the fluctuations.

Note that the number of predictions that have an increased accuracy

after compensating for the estimated error is roughly 50% as can

be seen in figure 4a. This fact combined with the fact that the MAE

decreases by roughly 15% (see figure 5a) in relation to theMAE of the

output predictionmodel, indicates that the accuracy improvement of

predictions with a better CPE is larger than the accuracy reduction

in the predictions with a worsened CPE. The RMSE andMSEmetrics

penalize errors further from the true value significantly harder than

errors close to the mean, since these metrics are based upon the

square of the error. Consequently, we can conclude that if the RMSE

decreases more percentage-wise than the MAE, the peaks in the
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error are either lower or significantly less frequent Besides this, it

can be observed in figure 4b that the algorithm classifies an over-

or under-estimation correctly roughly 70% of the time.

This in combination with the PB score of roughly 50%, means that

the error estimation tends to overestimate the magnitude of the

error.

5.2 XGBoost
Tables 2, 4, and 6 contain the metrics of the XGBoost model with

several different number of features obtained through sequential

feature selection. In appendix A.2 the values of all the different

metrics for the XGBoost are plotted to more easily see the small

differences between the different data formats.

When analysing the difference between the unprocessed, standard-

ised, and normalised sets in figure 6, it can be observed that there is

difference in performance. Even though there a difference in perfor-

mance between the data sets at different points there is no data set

that performs the best in all or nearly all cases.

It can be seen that the XGBoost algorithm performs better when

more features are added. This is especially noticeable in the metrics

derived from training with more than 60 features. Similarly to the

results of the Multiple Linear Regression Algorithm, the XGBoost

has a significant boost in performance when using all the features

available to it.

XGBoost clearly has better results than themultiple linear regression.

With bothmore than 70% of predictions being improvedwhen taking

this error estimation into account, and over- or under-estimation

classification accuracy comfortably above 80%, it can be seen that

XGBoost is a potent tool when trying to estimate the error of PV

output predictions. The MAE and RMSE have very similar accuracy

increases and decreases, signifying that there are less fluctuations

in prediction error.

6 DISCUSSION

6.1 Integrity of Results
Even though the research is done in a controlled environment as

much as possible, there are factors that might have impacted the

integrity of the results.

Firstly, evaluating the results of the models some extreme outliers

were detected when looking at the inaccuracy of the MLR algorithm.

The noticeable outliers had a MAE of more than 12000 Watt_τ and

MSE of in the ranges of 0.5-2.0*10
21

Watt_τ. After investigating the

cause of these anomalies, it was discovered that these outliers were

caused by a state change in the tooling used to keep the computer

used to calculate the results awake during calculations. While these

outliers are recalculated and now the presented results are more in

line with expectations, it is unclear how many of the validation sets

are impacted in a less severe manner. The error is completely repro-

ducible and an alternative method of keeping the computer awake

has been considered. But due to time constraints, recalculating the

entire data set is impossible.

(a) MAE of all methods

(b) MSE of all methods

(c) RMSE of all methods

Fig. 5. MAE, MSE, and RMSE metrics
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It is also unclear in what capacity the XGBoost results are im-

pacted by this issue, since these results were also generated while

using the same tooling.

Secondly, the data that was used in order to get these results is not

perfectly representative of a real life situation. The data that was

used is historical weather data instead of historical weather forecast

data. It is thus possible that the results from a practical application

of this method will have different, most likely worse, results. The

results could also be skewed because the weather station is not at

the same location as the PV system. Half of the data is not an actual

measurement but rather interpolated, which might cause these data

to not be representative of the actual weather conditions at that

time.

Fig. 6. MAE scores of the XGBoost model for different data sets

6.2 Multiple Linear Regression
When looking at the results for the MLR algorithm, there is very

little difference between the unprocessed, standardised and nor-

malised results. This is quite remarkable since linear regression

assumes a Gaussian distribution, so it can be expected that using

standardised or normalised data sets would result in better predic-

tions than using the unprocessed data set. Since this is not the case

it is hypothesised that the library from which the linear regression

algorithm is taken detects when the data is not normalised or stan-

dardised and pre-processes the data accordingly. Researching this

falls outside the scope of this research.

The fact that the MLR error estimation does not yield significantly

better results can possibly be attributed to the fact that the there

might not be a linear relation between the weather data and the

prediction error. It can, however, be seen that there is useful in-

formation contained in the weather data points. The CPE has a

lower Mean Absolute error than the original prediction and an over-

/under-estimation can be classified with a higher accuracy than 50%.

The outlier in the error of the unprocessed error at 75 features can

likely be attributed to the processing errors caused by the tooling

mentioned in paragraph 6.1 and thus will not be considered as a

representative data point.

6.3 XGBoost
The results of the XGBoost model seem to be as expected. It can be

seen that the normalised and/or standardised data set yield similar

or better results than the unprocessed data set in most cases. This

can possibly be explained by the fact that XGBoost utilises linear

boosting among other things. Linear boosting assumes a Gaussian

distribution, just like linear regression, which consequently solidi-

fies the hypothesis that the Multiple Linear Regression model that is

used likely pre-processes data that is not normalised or standardised.

The performance of the XGBoost model can quite likely be improved

further by fine-tuning the algorithm. This can be done by tweaking

the number of estimators, learning rate, max depth, and the number

of scolumns considered for building trees. There is also a XGBoost

classifier instead of a regressor, which could possibly improve the

performance on over-/under-estimation classification.

7 CONCLUSION
While the MLR model only improves the output prediction roughly

50% of the time, the magnitude of the average error does decrease

significantly with 15%. When looking at the XGBoost model, the

error reduction gets even better with a magnitude decrease of al-

most 50% . This method is also more reliable with around 70% of

predictions having a lower CPE than the original prediction error.

The classification is both potent using Multiple Linear Regression

and XGBoost with an accuracy of roughly 70% and 82% respectively.

Both models seem to perform when using different feature sets

signifying that there is a wide range of weather data that can be

used using this approach. The initial data used to derive the output

prediction was not used to estimate the error, thus this method is

only reliant on weather data, the output prediction of a given model,

and the actual output of the PV system when training. Only relying

on weather data and the output prediction, when estimating the

error.

Consequently we can say that this approach is accurate, flexible

and independent which gives us enough information to answer the

research question: Can the error of a PV output prediction model be

estimated using a different and independent model with different

data sources than the prediction model?

Yes, the error of a PV output prediction model be estimated using a

different and independent model with different data sources than

the prediction model. The approach proposed in this research is

potent, but further research needs to be done in order to explore

the extent of its potential and its limits.

8 FUTURE WORK
Follow-up research topics that could provide more insight into the

potency, reliability and limits of this approach could be:

Firstly, there could be other feature selection methods considered

since the current feature selection method that was used did not
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seem to have much effect. This means that there could be significant

improvements if an effective feature selection method were to be

implemented. There are feature combinations that perform better

than others as can be seen at in at the 110 feature data points. The

greedy sequential feature selection might not be the most suitable

method to find these combinations.

Secondly, other machine learning models could be used in order

to see if there are other models that perform better than the ones

that were tested in this research. Separating classification of over-

/under-estimation from the estimation of the magnitude could be

researched to see whether this yields better results than having one

combined estimation.

Thirdly, it could be researched whether placing a weather station

closer to the PV-system causes this approach to yield better results as

well as seeing the impact of using forecast data instead of historical

weather data to train the models. In the same sense, weather forecast

data can be used in order to research the potency of the approach

in practical situations.

Finally, because the data in the data set is collected over a period

of 5 months, the effect of changing seasons could not be evaluated.

Further research with data collected over multiple years could thus

be prove to be valuable.
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A APPENDIX: DETAILED METRICS PLOTS

A.1 Multiple Linear Regression

Fig. 7. MAE scores of the Multiple Linear Regression for different data sets

Fig. 8. MSE scores of the Multiple Linear Regression for different data sets

Fig. 9. RMSE scores of the Multiple Linear Regression for different data sets

Fig. 10. PB scores of the Multiple Linear Regression for different data sets

Fig. 11. PS scores of the Multiple Linear Regression for different data sets
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A.2 XGBoost

Fig. 12. MAE scores of the XGBoost model for different data sets

Fig. 13. MSE scores of the XGBoost models for different data sets

Fig. 14. RMSE scores of the XGBoost models for different data sets

Fig. 15. PB scores of the XGBoost models for different data sets

Fig. 16. PS scores of the XGBoost models for different data sets
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B APPENDIX: TABLES NUMERICAL METRIC VALUES

Table 1. Unprocessed MLR results

nr_features MAE MSE RMSE PB PS

5 2207.1893447968064 9139200.421457661 3023.111050136541 49.985532407407405 69.58912037037037

10 2202.057016745125 9001390.003355004 3000.2316582815743 49.82638888888889 69.80613425925925

15 2193.3239861405345 8970769.024455681 2995.1242085188524 49.88425925925926 70.21122685185185

20 2194.0150205287086 8975242.668756833 2995.87093659871 49.84085648148148 70.10995370370371

25 2193.9227746100305 8975157.6955126 2995.856754838689 49.84085648148148 70.12442129629629

30 2194.827461283918 8981428.481459748 2996.903148495084 49.855324074074076 70.12442129629629

35 2194.6727990547024 8982943.616800282 2997.1559213361393 49.985532407407405 70.3125

40 2195.411335787018 8983851.489933513 2997.3073732824787 49.942129629629626 70.3269675925926

45 2196.38676602766 8989587.147271326 2998.2640222754444 49.95659722222222 70.34143518518519

50 2195.900522075354 8989029.114934886 2998.1709615922314 50.0 70.3125

55 2196.1680721491375 8986511.876256522 2997.7511364782304 49.91319444444444 70.26909722222221

56 2197.6161461995343 8992509.058102472 2998.751249787563 49.97106481481482 70.3125

57 2198.73968428131 8989216.25869274 2998.202171083988 50.02893518518518 70.28356481481481

58 2198.142598803729 8984143.754857179 2997.356127465867 50.02893518518518 70.2980324074074

59 2198.464125050927 9000853.229488403 3000.1422015445205 49.82638888888889 70.21122685185185

60 2199.8920347554667 8998541.113984123 2999.7568424764236 50.07233796296296 70.28356481481481

65 2197.4017587142484 8976059.598901404 2996.007276176312 49.92766203703704 70.13888888888889

70 2197.4505551421207 8987009.78560775 2997.8341824736985 49.97106481481482 70.22569444444444

75 2245.736724879391 25591462.48620674 5058.800498755287 50.08680555555556 70.15335648148148

80 2199.0184962757085 8994756.317912845 2999.125925651146 49.86979166666667 70.03761574074075

85 2198.931777240617 8987861.51551992 2997.976236650304 49.91319444444444 70.19675925925925

90 2200.9222853304364 9020073.271998998 3003.343681964986 49.78298611111111 70.09548611111111

95 2203.822133376227 9039791.213663897 3006.6245548228826 49.898726851851855 70.19675925925925

100 2205.3092309978183 9041097.142239599 3006.841722179536 50.014467592592595 70.19675925925925

105 2207.2212167938314 9026410.970240066 3004.39860375418 50.18807870370371 70.10995370370371

110 2166.6643278431125 8312814.891956202 2883.195257341445 50.27488425925925 70.37037037037037

115 2147.1196477164362 8240200.495154492 2870.5749415673667 50.607638888888886 70.41377314814815

Table 2. Unprocessed XGBoost results

nr_features MAE MSE RMSE PB PS

10 1458.3006813855254 5661801.341843199 2379.4540007832047 67.37557870370371 81.52488425925925

20 1457.6670994820224 5646298.136276899 2376.1940443231692 67.43344907407408 81.52488425925925

30 1457.95509654445 5648467.397942052 2376.650457669796 67.37557870370371 81.42361111111111

40 1457.0433344093083 5603562.796323266 2367.184571663829 66.62326388888889 81.49594907407408

50 1457.7656647700146 5630366.386721055 2372.839309081223 67.47685185185185 81.56828703703704

60 1458.4251996365265 5627562.460696687 2372.2483977645948 66.94155092592592 81.42361111111111

70 1440.6839478735142 5524845.81658502 2350.499056920683 67.43344907407408 81.43807870370371

80 1396.3834801309417 5212449.825721902 2283.079023100581 67.72280092592592 81.78530092592592

90 1430.7434503634636 5370042.421752103 2317.335198401842 66.71006944444444 81.39467592592592

100 1365.006236504631 4881956.290993881 2209.5149447319614 68.28703703703704 82.29166666666666

110 1314.918150873552 4617549.59645109 2148.8484349648975 69.32870370370371 83.52141203703704

119 1253.6623884605006 4256003.2426214535 2063.0082992129364 70.42824074074075 83.70949074074075
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Table 3. Standardised MLR results

nr_features MAE MSE RMSE PB PS

5 2207.8281001298647 9141208.799389483 3023.443202606836 49.86979166666667 69.50231481481481

10 2201.5696560092747 8994534.650972297 2999.0889701661567 49.898726851851855 69.83506944444444

15 2193.4029333738094 8967007.846646372 2994.49625924735 50.0 70.25462962962963

20 2193.5905323115185 8969543.717343625 2994.9196512333388 49.942129629629626 70.18229166666666

25 2193.6482406326477 8969598.338931926 2994.928770260142 49.942129629629626 70.18229166666666

30 2195.0519859925844 8977464.86530806 2996.2417901945196 49.95659722222222 70.18229166666666

35 2194.9244263008663 8978554.00851262 2996.423536236595 49.985532407407405 70.3125

40 2195.1446470154533 8979489.899877159 2996.5797002377826 49.91319444444444 70.28356481481481

45 2195.8228071593057 8982709.279110132 2997.1168277379734 49.91319444444444 70.28356481481481

50 2195.6268490583648 8985035.1275447 2997.5048169343613 49.91319444444444 70.26909722222221

55 2196.497331851873 8988185.225654695 2998.0302242730468 49.97106481481482 70.3125

56 2197.6161462000687 8992509.058105946 2998.751249788142 49.97106481481482 70.3125

57 2198.73968428123 8989216.258693092 2998.2021710840468 50.02893518518518 70.28356481481481

58 2198.1425988041838 8984143.754858175 2997.3561274660333 50.02893518518518 70.2980324074074

59 2196.8993366600052 8990381.881350258 2998.3965517173106 49.942129629629626 70.3125

60 2198.0023170922823 8995556.485257318 2999.259322775761 49.942129629629626 70.3269675925926

65 2197.401758716053 8976059.598903237 2996.007276176618 49.92766203703704 70.13888888888889

70 2197.450555140983 8987009.78560101 2997.834182472575 49.97106481481482 70.22569444444444

75 2196.656949636202 8986854.922098558 2997.8083531304264 50.08680555555556 70.13888888888889

80 2199.018496273882 8994756.31790901 2999.125925650507 49.86979166666667 70.03761574074075

85 2198.9523869755076 8987906.338092286 2997.9837121125734 49.91319444444444 70.19675925925925

90 2202.8689921925948 9033591.274959126 3005.593331600123 50.0 70.18229166666666

95 2204.566585826147 9049064.53841479 3008.1663083039125 50.04340277777778 70.34143518518519

100 2205.669422318143 9046477.603369253 3007.736292192062 50.0 70.26909722222221

105 2207.227037005617 9026245.352664126 3004.3710411106226 50.159143518518526 70.09548611111111

110 2166.290546871316 8309954.805504876 2882.6992221709284 50.30381944444444 70.42824074074075

115 2146.7163030703264 8236375.921228839 2869.908695625845 50.622106481481474 70.45717592592592

Table 4. Standardised XGBoost results

nr_features MAE MSE RMSE PB PS

10 1458.5946353641132 5662942.369480489 2379.693755398053 67.37557870370371 81.52488425925925

20 1457.9647903312705 5647702.986501271 2376.4896352606443 67.43344907407408 81.52488425925925

30 1458.069644497286 5648731.433887947 2376.7060049337083 67.37557870370371 81.42361111111111

40 1456.7994454061254 5601565.749455996 2366.7627150722137 66.66666666666666 81.51041666666666

50 1457.4486785503964 5627072.150002187 2372.145052479335 67.44791666666666 81.56828703703704

60 1458.554195377267 5625974.61509117 2371.9137031290093 66.91261574074075 81.39467592592592

70 1440.3372250060374 5520775.477795762 2349.6330517329216 67.43344907407408 81.43807870370371

80 1396.3529293713932 5211341.215931155 2282.836221880833 67.72280092592592 81.78530092592592

90 1327.9330456627763 4730547.249583187 2174.982126267521 68.63425925925925 82.65335648148148

100 1317.2642263267376 4699301.675385334 2167.78727632241 68.88020833333334 82.88483796296296

110 1309.1628663481263 4643537.793711311 2154.8869561328065 69.140625 82.94270833333334

119 1252.7761803098208 4252353.133102437 2062.123452439848 70.47164351851852 83.73842592592592
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Table 5. Normalised MLR results

nr_features MAE MSE RMSE PB PS

5 2207.9275885669335 9145173.957741626 3024.098867058024 50.04340277777778 69.58912037037037

10 2202.081826822542 8999931.217253016 2999.988536186933 49.76851851851852 69.79166666666666

15 2192.730155758405 8966071.857713286 2994.339970296173 49.942129629629626 70.19675925925925

20 2192.7819842172125 8967310.303017354 2994.546760866718 49.91319444444444 70.15335648148148

25 2192.6800874621545 8967207.030409768 2994.5295173715967 49.942129629629626 70.18229166666666

30 2193.7004015432217 8972838.729352511 2995.4697009571823 49.942129629629626 70.18229166666666

35 2194.3396258922494 8975953.48232431 2995.989566457852 49.95659722222222 70.18229166666666

40 2195.3918787499824 8983959.177294895 2997.3253372456743 49.92766203703704 70.28356481481481

45 2194.8698731001523 8981504.495535145 2996.9158305723477 49.92766203703704 70.22569444444444

50 2195.166179835974 8981701.910690125 2996.948766777658 49.92766203703704 70.21122685185185

55 2196.0573336802236 8983529.579211662 2997.2536728164437 49.942129629629626 70.3125

56 2197.6161461997294 8992509.058104075 2998.7512497878306 49.97106481481482 70.3125

57 2198.7396842819185 8989216.25869393 2998.2021710841864 50.02893518518518 70.28356481481481

58 2198.142598803988 8984143.754858358 2997.3561274660638 50.02893518518518 70.2980324074074

59 2197.4254412961154 8992457.675262723 2998.7426824025306 49.78298611111111 70.13888888888889

60 2198.8578485313697 8988464.903345736 2998.076867484511 49.86979166666667 70.15335648148148

65 2198.0035703025683 8975918.94664626 2995.983802801053 49.7974537037037 69.96527777777779

70 2197.0749323073514 8975408.450771822 2995.8986048883266 49.97106481481482 70.08101851851852

75 2196.71557944794 8979784.817958135 2996.6289089505453 49.942129629629626 70.09548611111111

80 2199.1578639637764 8988349.27141739 2998.0575830723114 49.855324074074076 69.99421296296296

85 2198.3587051312716 8973797.932515189 2995.6298056527594 50.07233796296296 70.18229166666666

90 2199.715854374913 8980385.255634367 2996.729092800076 50.014467592592595 70.13888888888889

95 2201.5166592018822 8997133.22576368 2999.522166239763 50.0 70.26909722222221

100 2203.144218090152 8998944.267694136 2999.8240394553372 50.14467592592593 70.18229166666666

105 2205.59198840934 8985665.500155838 2997.6099646478087 49.84085648148148 69.921875

110 2163.530772780769 8273600.782340527 2876.386758129116 50.18807870370371 70.22569444444444

115 2143.6440912408793 8190277.112262591 2861.8660192717953 50.73784722222222 70.52951388888889

Table 6. Normalised XGBoost results

nr_features MAE MSE RMSE PB PS

10 1458.2773230949376 5660985.154042776 2379.2824872307147 67.33217592592592 81.51041666666666

20 1457.593101668944 5645942.169052414 2376.1191403320695 67.41898148148148 81.52488425925925

30 1457.8982386567188 5648123.621201659 2376.578132778651 67.34664351851852 81.40914351851852

40 1456.8991146494704 5602964.178677729 2367.0581274395713 66.62326388888889 81.49594907407408

50 1457.6770974089034 5630316.242758905 2372.8287428212984 67.47685185185185 81.56828703703704

60 1458.2345660051606 5627096.1800526185 2372.1501175205203 66.94155092592592 81.42361111111111

70 1349.8236797494558 4832306.980002444 2198.250891050074 68.67766203703704 82.74016203703704

80 1364.8410195418373 4970101.741164873 2229.37249941881 68.79340277777779 82.91377314814815

90 1431.5843391812398 5489544.595236548 2342.977719748216 67.28877314814815 82.10358796296296

100 1371.7931862784128 4947094.293859923 2224.2064413763223 68.09895833333334 82.0167824074074

110 1301.6213231607853 4480459.723115112 2116.7096454438697 69.63252314814815 83.34780092592592

119 1253.7284254027024 4256852.903494358 2063.21421657916 70.44270833333334 83.73842592592592
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