
BSc Thesis Applied Mathematics

Planning interdependent tasks in
house construction
- an extension to the critical path
method

Esmee Nijhof

Supervisor: Gerhard Post

July 22, 2022

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

This report was written as a bachelor assignment in the study Applied Mathematics in the
department of discrete mathematics and mathematical programming. I would like to thank
my supervisor, Gerhard Post, who guided and supported me through the process of writing a
bachelor thesis. I have learnt a lot about the mathematics behind planning, scheduling and
about research itself, and this can be very valuable over the remaining course of my studies.

2

Abstract

House construction can often be seen as projects with tasks need to be done. Naturally, tasks
have a certain order, so-called task dependencies. For example, a foundation has to be poured
before walls can be built. Project based scheduling started with the Critical Path Method
(CPM) during the late 1950’s and ever since, this method was used as a basis for many ways of
project scheduling [9]. CPM respects the interdependencies between the tasks, but assumes
unlimited resources, i.e. workers that can execute tasks of a project. Also, CPM is unable to
consider tasks that become available during the project and it does not take into account that
some tasks may have to be finished before a deadline within the project. This paper aims to
find a method which considers the interdependencies and these factors simultaneously. This
is done by splitting the tasks between the number of resources and then sequencing the tasks
per resource. The found method uses the well-known multiway number partition problem
and the CPM in order to divide the tasks among the resources. In addition, by allowing pre-
emption, the method is able to consider unequal release dates of the materials. The method
deals with NP-hard problems, so they can probably not be solved in polynomial time. Ad-
ditionally, the limitations of the method are explained and demonstrated. More research is
required to find methods that are able to schedule projects with the use of the CPM, while
considering resource constraints in polynomial time.

3

Contents

1 Introduction 5

2 Linear Program 6

3 Critical Path Method without resource constraints 8

4 Critical Path Method with resource constraints 10
4.1 CPM with m resources and no release dates . 10

4.1.1 Method . 10
4.1.2 Numerical example . 12
4.1.3 Illustration of flaws . 14

4.2 CPM with m resources and unequal release dates 15
4.2.1 Method . 15
4.2.2 Numerical example . 16

5 Conclusion 18

6 Discussion 19

4

1 Introduction

Often, in project based scheduling, there are many different tasks that need to be done in
a certain sequence. It can be a challenge to plan those tactically, as there are many factors
to consider in this process, such as the availability of resources with regards to workers and
materials. In addition, some tasks naturally have a well defined order, for instance, in house
construction, the foundation of a house must be poured before the building of the walls can
start, or painting the walls and frames can only be done after door frames are placed. Though
obtaining an optimal project schedule may be hard, it has great benefits for both the man-
agement of the project and the workers. It makes it easier to identify the progress of the
overall project and in case of unexpected challenges, it helps to see what tasks should be pri-
oritized [10].

The desire for optimal planning of large projects originated from the second world war. For
instance, in a conflict the defender needs to choose against which offensive tools from the
attacker they should make countermeasures first, while considering the costs and damages
that come with this. In addition, the defender needs to decide how to divide the resources
strategically, as they are limited. This can be seen as a network optimization problem if the
outcome of events, such as the duration of counterattacks, is deterministic. Also, if the strate-
gic plan of the attacker is predictable, then this can also be seen as deterministic events [6].
From then on, scheduling methods and tools that help solve these kind of problems have
been developed. PERT, for example, is a scheduling tool for probabilistic problems [11]. One
of the first methods was the Critical Path Method (CPM). This method aims to minimize the
total project duration in which a project can be finished, while respecting the order in which
tasks have to be done [10]. The CPM is suitable for house construction projects, as it is a de-
terministic model and construction tasks have a deterministic duration.

This method was published shortly after the war and opened many doors in the field of
scheduling and planning. Even though, the method as designed in 1959 is as a solid foun-
dation for scheduling projects, it has some limitations. For instance, it does not consider any
resource constraints, i.e. the number of workers that are available. Furthermore, CPM is also
unable to consider release dates of tasks. It may occur that materials are not available, which
makes a task available during the project, instead of at the start of the project. Ideally, re-
sources and materials have unlimited availability, but in practice, this is hardly ever the case.
Note that in this paper, a company’s workers are considered as resources and this does not
entail any materials needed for a task.

This paper investigates whether the CPM can be extended or adapted in such a way that it
also considers resource constraints. Firstly, the problem is defined as a linear program, which
is solvable under certain assumptions. We then discuss the general CPM method and its lim-
itations with regard to resource constraints. Additionally, an alternative method in case of
m workers is given. The problems involved in this method are NP-hard, which complicates
finding a solution for the problem. The discussion elaborates on this in more detail.

5

2 Linear Program

Before the CPM and its limitations are explained, a linear program defines the problem. The
input is a set of tasks J = {1,2, . . . ,n}, where n is the number of tasks. In addition, each task,
i ∈ J , has an associated duration di ∈N , which is known. The linear program indicates time
units t ∈ T , with T = {1,2, . . . tp }, where tp = ∑

i∈J di . The linear program aims to minimize
the total project duration M , while considering the predefined order in which the tasks need
to be performed, which are also called precedence constraints [15, 17]. These are denoted as
follows: i −→ j . In case of a precedence constraint, task i has to be completed before task j can
start. Additionally, each task i ∈ J has a release date ri . This indicates when a task is available.
If all tasks are available from the start of the project, all ri can be set to 0. Furthermore, pre-
emption is not allowed, which means that a task has to be done without any interruptions.
Next to that, there are resource limitations, as there are a limited number of workers available
at a time. The variable m defines the number of resources available. It assumes that workers
are always available during the project.

The decision variable is defined as follows:

xi t =
{

1 if task i finishes at time t

0 otherwise
(1)

Also, to increase the readability of the linear program, we introduce another variable: the
number of tasks that are active in the time interval t −1 to t .

nt =∑
i
∑

t=t+di−1 xi t ∀i ∈ J ,∀t ∈ T (2)

The minimization problem is summarized into the following LP:

minimize M

subject to
∑

t xi t = 1 ∀i ∈ J (i)

nt ≤ m ∀t ∈ T (i i)∑
t t xi t ≤∑

t t x j t −d j ∀i −→ j with i , j ∈ J (i i i)

xi t = 0 ∀i ,∀t < di + ri (i v)∑
t t xi t ≤ M ∀i ∈ J (v)

xi t ∈ {0,1} ∀i ∈ J ,∀t ∈ T (vi)

Here the objective is to minimize the total project duration by ensuring that each task is
finished at the earliest possible time. Note that

∑
t∈T t xi t is the time at which task i is fin-

ished [16]. Constraint (i) ensures that each task is scheduled once, by allowing exactly one
finish time for each job. Moreover, Constraint (ii) considers the resource constraint. This
makes sure that the number of active tasks in time interval [t −1, t] does not exceed the num-
ber of workers available at each time interval. Furthermore, the precedence constraints are
considered in Constraint (iii). For each relation i −→ j , task j can only start after task i has
finished [7]. Note that the start time of a task can be calculated by subtracting the duration
from the finish time. Also, the earliest time a task can be finished is after the release time and

6

duration have passed, so if t ≥ ri +di , which is guaranteed by Constraint (iv). In addition,
Constraint (v) states that every task should be finished before the total project duration has
passed. Constraint (vi) defines the decision variable for each job, like Equation (1).

This linear program can be easily adapted, so that the availability of the resources can be
non-constant by making variable m dependent on time. Also, by changing the LP, it can also
consider task deadlines, which means that a task must be finished before some time t . If
a task is not finished before the deadline, the task is late and this should be minimized. In
principle, this does not change the LP a lot, except if more tasks than available resources can
be chosen to be scheduled at the same time. Due to the deadlines, the task which is the least
tardy should be chosen in this case.

7

3 Critical Path Method without resource constraints

This section explains the classic CPM and ways in which this method fails to consider re-
source constraints are demonstrated.

The CPM aims to find the minimal total project duration while considering the precedence
constraints of the tasks when a list of tasks and their duration is given. This is done with a
clear project structure by representing all tasks and their interrelations [10]. For each task,
it should be considered which tasks immediately precede this task, which tasks immediately
follow this task, and which tasks can be done parallel to this task. From the project structure,
calculations will be done in order to find the longest sequence of tasks, which is called the
critical path. These tasks are essential to finish the project within the time frame that the
CPM indicated. If one of the tasks on the critical path is delayed, the entire project duration
increases as well, whereas non-critical tasks do not necessarily delay the entire project.

Mathematically, we can define the tasks of a construction project as a set J = {1,2, . . . ,n},
where n is the number of tasks. The relations of the tasks are represented as follows: i −→ j ,
with i , j ∈ J , meaning that task i has to be fully completed before task j can start. In addition,
the duration of each task is known and given by di ∈N with i ∈ J .

The CPM starts with graphically representing the project. In order to do this, each task is
represented as a node. In this example, the set of nodes is J = {1, . . . ,5}. To illustrate, in Figure
1, task 3 can only be started after task 2 and 4 are finished. If there is no relation to any of
the other tasks, then the the task can be executed anywhere on the timeline. Note that the
notation differs from the typical CPM. Usually in CPM, the tasks are represented as arrows
and the nodes are so-called events where tasks start and finish.

FIGURE 1: Example of a graphical representation of a project

Typically, CPM continues with forward and back tracking the completion times of the project
to find the critical path. In this way, it yields the shortest possible project completion time,
so the longest sequence of tasks in duration. This algorithm runs in polynomial time, so the
problem is easily solved [2, 4].

However, CPM does not consider release dates of tasks in case that a task can only be started
after some period of time. This might be due to the availability of materials. Also, in CPM,
there are no deadlines for tasks. Realistically, it may occur that certain tasks have to be fin-
ished before a certain time, as it, for instance, can incur costs if the task is late, but CPM does
not consider this. Furthermore, CPM cannot take into account any resource constraints. It
may happen that the shortest project completion time is very small, as the dependencies al-
low all tasks to be planned parallel to each other, but if the project has fewer resources than
tasks that need to be executed at the same time, then the project cannot be finished in the
completion time calculated by the CPM. This is demonstrated with a small example in Figure
2. Here, the duration of each task is denoted under each node. The critical path, also the
longest duration of a path, is indicated in red. The critical path goes along nodes 1 −→ 3 −→ 5

8

and the project completion time is the sum of the corresponding durations, so 13 time units.
With unlimited resources, the project can be finished within this time. However, assume that
there are only 2 workers available during the execution of the project. One of them needs
to execute the tasks from the critical path, leaving the other with tasks 2 and 4 which have a
total duration of 14 time units. The non-critical tasks together have a longer duration than
the critical path itself, so the actual minimal project duration is 14 time units. This means
that the project completion time calculated by the CPM was too low considering the resource
constraints, and therefore it does not represent the actual project duration. In general, it is
clear that the completion time is always at least

∑
i∈J

di
m , rounded up, if m is the number of

resources.

FIGURE 2: Example of a case where CPM fails to consider resource constraints

9

4 Critical Path Method with resource constraints

This section investigates whether the critical path method can be altered in such a way that
it respects possible resource constraints as well. We consider the general case, where m re-
sources are available during project. In order to schedule the tasks, they need to be divided
among the resources. This is done with a multiway number partition problem. After that, the
tasks are scheduled in an optimal sequence per resource. In addition, we look at a case where
tasks have release dates. This means that tasks may become available during the project, in-
stead of all tasks being available at the start of the project. As before, this procedure yields a
sequence in which the tasks need to be performed and a total project completion time, but it
allows pre-emption in the last step of the procedure.

4.1 CPM with m resources and no release dates

In this particular case, we consider m resources at all times and each resource can execute
any task, so there are no specialised resources. Also, it is assumed that only one resource
at a time is allowed to work on a task and pre-emption is not allowed and that all tasks are
available from the start of the project. The aim is planning the tasks in such a way that the
total project completion time is minimized. By using a multiway number partition problem,
the tasks can be sorted into m sets of independent tasks. Also, each task has a deadline pi ,
which indicates when a task is considered late. This will be needed when choosing tasks in
one of the next steps when the tasks will be sequenced.

4.1.1 Method

In order to separate the tasks into m independent sets, we consider the maximal resource
duration to be K time units [3]. This means that the sum of the durations of the tasks sched-
uled at one resource cannot exceed K . It does not imply that the resource has to be occupied
from t = 0 to t = K . The size of K can be determined by using a bisection method [5]. Each
step bisects the interval

∑
i∈C di and selects the largest interval. This continues until it is large

enough to fit the set of tasks. The size of K cannot exceed
∑

i∈C di , as this is the sum of all the
task durations which are all scheduled at one resource. Note that, if it is possible to plan the
tasks in exactly

∑
i∈C

1
m di , then this is an optimal solution. This means that all resources are in

use at all times, so the project cannot be completed any faster without increasing resources.

Let us start with a maximal resource duration of size K . If all tasks are independent, then the
problem reduces to a multiway number partition problem. This is a well-known mathemat-
ical problem, which splits a set of non-negative integers in such a way that the difference of
the sum of the sets is as small as possible. This problem is an NP-hard problem, but there
exist greedy algorithms that can solve it [8, 14, 18]. The subset with the largest sum of task
durations is defined as the critical path and the sum of durations defines the total project
completion time.

We are particularly interested in dependencies between tasks. In order to divide those among
the resources, the tasks are made independent of each other, which reduces the problem with
dependencies to the multiway number partition problem. A dependency, such as i −→ j can
also be considered as a merged, larger task (i , j), with the associated duration of di , j = di +d j .
In case of a longer chain of dependencies, they can also be merged together into one larger
task. For instance, suppose i1 −→ . . . −→ in can be merged into task (i1, . . . , in) with duration
d1,...,n = ∑n

i=1 di . Note that chaining together tasks is only done when tasks {i2, . . . , in} have
in-degree of exactly one.

10

(A) Before the merge (B) Result of merging

FIGURE 3: Merging a tree-like structure of dependent tasks

It can also happen that a task has multiple immediately preceding tasks, implying that a node
has an in-degree of more than 1. This is also merged into one larger task by putting the pre-
ceding tasks in a row like before. To visualize this idea, node n+1 with in-degree n, see Figure
3(A), is merged to task (1, . . . ,n +1) by placing all parallel tasks behind each other, as can be
seen from Figure 3(B). The order in which this happens does not matter for the total project.
It can be speculated whether moving tasks behind each other is the best approach, as the
preceding tasks could have been done parallel as well, but this topic will be covered later. It
is also possible to merge more complicated structures, as they are always a combination of
chains and tree-like structures, which was explained earlier.

By merging all the dependent tasks, only independent tasks will be left over. We end up with
the partition problem that has been explained before. It will yield m independent sets of
tasks. As there are m resources, each resource will handle one set of tasks.

Now that the tasks have been divided among the resources, it is a matter of deciding the
order of the execution of the tasks. To determine the order, a sequencing algorithm of a single
machine is used [12].

As mentioned earlier, each task also has an associated deadline, pi . If a task is not finished
by that time, the task is late and lateness should be minimized. Deadlines are used to decide
the order of the tasks when there are multiple candidates that can be planned at a certain
time. This can be represented by a cost function depending on time, c j (t) as can be seen in
Equation (3) and Figure 4. Here, the cost is the number of time units the task is tardy.

c j (t) =
{

t −p j , t ≥ p j

0, t < p j
(3)

The maximal lateness, Ctotal, of the project must be minimized, so that the project completion
time is minimized. This is also written as Ctotal = max∀i∈C {mini {ci (ti)}}, where ci (ti) are the
costs that are incurred for finishing task i at time ti . By Lawler, the minmax can be found by
applying the "last-to-first"-rule. This means that the tasks are sequenced from the latest to the
earliest deadline [13]. So, the currently available task, i.e. tasks without successors, with the

11

FIGURE 4: Example of a case where CPM fails to consider resource constraints

latest possible deadline is chosen. The algorithm can be described as follows: let S denote the
subset of tasks which can be performed last, implying that these tasks are not preceding other
tasks and let D be the sum of durations of all tasks in this set, so D = ∑

i∈C di . Compute for
each task j in S such that c j (D) = mini∈S{ci (D)}. Compare their tardiness at time D , so c j (D),
and choose the task k with the lowest value. Then repeat these steps for the remaining tasks
in the set, namely C \ {k}, and consider the costs at time D −dk . Continue until all tasks have
been chosen. This algorithm creates an optimal sequence in O (n), where n is the number of
tasks. Also, note that this way of sequencing is independent of the duration of the task.

4.1.2 Numerical example

In order to illustrate the above explained procedure, a small numerical example is demon-
strated here. Suppose that the project has a set of tasks J ∈ {1,2, . . . ,10}, which have the given
interdependencies as can be seen in Figure 5. Also, the durations, di , and deadlines, pi , of
each task i ∈ J are given in Table 1. All tasks are released at the start of the project, so all tasks
are always available.

FIGURE 5: Numerical example: interdependencies between tasks

12

Node 1 2 3 4 5 6 7 8 9 10
di 2 4 4 2 1 4 1 2 2 2
pi 3 8 6 6 3 9 2 4 2 7

TABLE 1: Numerical example: task durations di and deadlines pi for each task i ∈ J

First, the tasks are split into two independent sets of tasks by merging all chains and tree-like
structures. This yields the project structure as shown in Figure 6. Accordingly, their durations
are added and mentioned next to each group of tasks. The sum of all durations D =∑

i∈ j di =
24 time units, so we take a maximal resource duration of 12 time units. From Figure 6, the
group of tasks {1,2,3,4} can be placed into one set which has a total duration of 12 time units,
while the other two sets {5,6} and {7,8,9,10} are combined in the other set, which has the
same total duration. Note that these two sets are independent of each other, as desired.

FIGURE 6: Numerical example: result after merging the tasks and their combined du-
rations

FIGURE 7: Numerical example: graph of the cost function of each task in Set 1

13

Next, the tasks within the set need to be sequenced. Firstly, we only focus on the set with
tasks {1,2,3,4}. To sequence them, the maximum lateness should be minimized by using the
"last-to-first"-rule, while respecting the interdependencies. Therefore, it is necessary to undo
the merging of the tasks, so that the inderdependencies within the tasks are shown again.
Additionally, the cost functions, based on the deadlines, are shown in Figure 7. At the last
time point, t = 12, the candidate tasks are 2 and 4, as they do not have any successors. The
tardiness of these tasks is determined by:{

c2(12) = 4

c4(12) = 6

Task 2 is the least tardy, and therefore most suitable to be performed last. The next candidates
are tasks 1 and 4. Note that task 1 has become available, as its successor, task 2, has been
finished. The lateness of the candidates is determined at time t = 8, which is the end time
subtracted by the duration of the chosen task, which is d2.

{
c1(8) = 5

c4(8) = 0

Task 4 can be finished before the deadline, whereas task 1 is late. So task 4 is the best choice
here. Now, task 1 and 3 are candidate. By computing the lateness at time t = 6, we get that
task 1 is 3 time units late, whereas task 3 is executed before the deadline. Lastly, task 1 is left
and will be performed first. This is before its deadline, and will not yield any lateness. After
these calculations, the sequence is as follows: 1 −→ 3 −→ 4 −→ 2. Only task 1 is late with 4 time
units.

The same procedure can be applied to the other set of tasks, so {5,6}∪ {7,8,9,10}. First, the
least tardy task from the candidate tasks at time t = 12 is task 6 with a lateness of 3 time units.
Next, task 5 or 10 can be chosen. They have the same lateness, but task 10 has the latest
deadline and therefore, is the chosen task. Continuing this, it yields the following sequence:
7 −→ 9 −→ 5 −→ 8 −→ 10 −→ 6 with a total project set duration of 12 and a tardiness of 8 time units.

4.1.3 Illustration of flaws

However, there are also cases in which this procedure does not provide an optimal solution.
This happens, for instance, if there are many interdependencies in the project scheme. Sup-
pose there are 4 tasks, each with their duration given below the node, and all tasks are prece-
dent to task 4, see Figure 8. Suppose that there are 2 resources and all tasks are released at the
start of the project. During the merging of the dependent tasks, all the tasks will be grouped
together. This results into one resource which is fully occupied all the time, and one resource
which is not in use at all. This makes the project completion time 10 time units. However,
an optimal solution utilizes the second resource as well. This reduces the project completion
time to 8 time units.

14

(A) Project structure
(B) Solution obtained with method from Section
4.1

(C) Optimal solution: Resource A (D) Optimal solution: Resource B

FIGURE 8: Instance where splitting tasks does not yield an optimal solution

4.2 CPM with m resources and unequal release dates

In practice, not all materials are available at the beginning of the project. It could happen
that materials have certain so-called release dates, which restricts the earliest start time of a
task. In order to take this into account, we allow pre-emption, i.e. unlimited interruptions
and resuming at a later moment in time [1]. Obviously, the precedence constraints are still
considered, so in case a task immediately follows another task, the precedent task has to be
fully completed before the next task can start. Each task also has a deadline, which means that
the task has to be completed before this time, or it is considered late. Also, lateness should be
kept to a minimum. In total, there are m available resources.

4.2.1 Method

As done in Subsection 4.1, the tasks will be divided into m independent subsets by using the
multiway number partition problem. The dependencies within the set can again be repre-
sented in a graph and each task, i , has out-degree, oi . The cost functions ci (t)∀i ∈ J are
described in Equation (3). Different from the previous section, each task i has an associated
release date ri , which indicates when a task becomes available.

In order to deal with the precedence constraints, the release dates are modified in such a way
that the release date added to the task duration of the precedent task does not exceed the

15

release date of the successive task. Therefore, in case i −→ j is a dependency, then ri +di ≤ r j .
This is a natural way of dealing with the precedence constraints. So, set r j = max{r j ,max{ri +
di |i −→ j }} for j = 2, . . . ,n. Then order the tasks according to non-decreasing r j . This creates a
schedule consisting out of blocks, where a block B ⊆ C is defines as a set of tasks which can
be executed consecutively without idle time. Now, for each block, update the out degree of
each task within the block. If a block consists of only 1 task, then this is an optimal part of
the schedule. In case a block consists of more than one task, make a sub-block B ′ with tasks
that have out degree 0, i.e the task without successors. Select the task which is the least tardy
at the completion time of block B . This task will be scheduled with pre-emption, meaning
that this task will be scheduled in case no other task is available. The remaining tasks are
scheduled as soon as they become available and the worker is available. New blocks will be
created in the period where the pre-emptive task is interrupted. The same procedure applies
until there are only optimal blocks left and this yields the optimal sequence of tasks with a
minimal maximum of lateness.

4.2.2 Numerical example

In order to illustrate this method, a small numerical example is given. Suppose the set of
tasks J = {1,2,3,4,5} has interdependencies as depicted in Figure 9. The release dates, task
durations, deadlines and initial out-degrees are given in Table 2(a).

FIGURE 9: Numerical example: task interdependencies

1 2 3 4 5
(a) ri 0 0 8 4 15

di 3 2 3 5 4
pi 5 6 11 16 20
oi 1 2 0 1 0

(b) updated ri 0 3 8 4 15
(c) updated oi of B1 1 1 0 0 -
(d) updated oi of B11 1 0 - - -

TABLE 2: Numerical example: given parameters for numerical example

We begin with modifying the release dates, so that r j ≥ ri +di if i −→ j . The outcome is given in
row (b) of Table 2. As we have taken care of the precedence constraints, the tasks can now be
scheduled in order of increasing release dates, so in the order: 1,2,4,3,5. This is illustrated in
Figure 10(A). The initial schedule can be split into different blocks: B1 = {1,2,3,4} from t = 0 to
t = 13 and B2 = {5} from t = 15 to t = 19. The blocks are separated by idle time of the resource.
Note that the block consisting of exactly one task is optimally scheduled.

The planning inside block B1 can still be optimized by using pre-emption. The updated out-
degrees within this block are given in Table 2(c). Task 3 and 4 have out-degree 0, which means
that they do not have any successors within the block. Therefore, they are candidates to be the

16

(A) Initial schedule of numerical example

(B) Updated schedule of numerical example

FIGURE 10: Numerical example: task scheduling with pre-emption

pre-emptive task, i.e the task that is scheduled if no other task is available. The pre-emption
is used to reduce the lateness within a block. To decide, the lateness of the candidate tasks is
compared at t = 13:

{
c3(13) = 2

c4(13) = 0

Task 4 is the best choice, as it will be executed before the deadline, whereas task 3 would
be late. The initial schedule can be updated by scheduling tasks 1, 2 and 3 as soon as they
become available and scheduling task 4 if no other task is available. This can be seen in Figure
10(B). Note that the execution of task 4 has been split up into two intervals.

Next, we look for sub-blocks that can be optimized. These are created in the intervals where
the pre-emptive task is not scheduled. Within block B1, a sub-block B11 from t = 0 to t = 5 is
created. The updated out-degrees in this sub-block are given in Table 2(d). Task 2 is the only
task without any successors. Therefore, this task is the pre-emptive task of this sub-block.
However, it cannot be optimized further as task 1 and 2 are already scheduled as soon as
possible. Therefore, Figure 10(B) is the optimal sequence of this part of the project. Note that
allowing pre-emption reduces the tardiness of the project. If we would schedule according
to increasing release dates without pre-emption, we obtain the schedule as shown in 10(A).
In this schedule, task 3 is late with 2 time units, whereas in the updated schedule as shown
in 10(B), all tasks are performed before their deadlines. Therefore, allowing pre-emption is
beneficial for the scheduling of projects with deadlines.

17

5 Conclusion

The classical CPM is a useful tool for scheduling projects, such as house construction projects,
but it would be more useful if it can also consider practical limitations. For example, it is not
realistic to assume unlimited resources during the entire project or to assume that all tasks are
available from the start of the project. Therefore, the CPM can be altered such that it can con-
sider these factors. For a resource limitation of m workers, the tasks should be divided among
the workers strategically, while considering the precedence constraints. This can be done by
splitting the tasks into m independent sets, so that the workers can execute their tasks inde-
pendently of each other and finish the project in the shortest possible time. In order to do so,
the well-known mathematical concept of the multi-way number partition problem is used. If
pre-emption, i.e. interruption of tasks, is allowed, it is fairly easy to consider the release dates
of tasks as well. Though this is still an NP-hard problem and it might not work for some in-
stances, it can still be used as a tool for scheduling tasks with m resources. However, it is not
always optimal, so future studies may research methods in which it is always optimal. Also,
future research can attempt to find methods that omit NP-hard problems.

18

6 Discussion

Though this paper has found a useful way to schedule a task-based project with precedence
constraints and release dates in the case of limited resources, it still has its limitations and
opportunities for further research. These will be discussed in this section.

Limitations of the method

As mentioned before, the method of splitting tasks between the resources may not work for all
kinds of project structures. In Section 4.1.3, it is already demonstrated that the method fails in
case all tasks are dependent of each other. By using the method, it will merge all tasks, leaving
other resources fully unused. This can be solved by adding an extra step after the splitting
of the tasks. This checks whether resources have some unscheduled time and if a task can
be moved from one resource to the other. Note that this task has possible dependencies on
other tasks in the set where it was initially scheduled. These still need to be considered while
rescheduling.

Similar to this, the method does not schedule tree-like structures, as depicted in Figure 3a,
optimally. During the merging of these kind of structures, all tasks involved are placed in
a row in order to make two independent sets of tasks. The tasks could have been executed
parallel if the number of resources allows it, but this implies that the sets of tasks are not
independent of each other. The method could be adapted in such a way that this is allowed,
which may reduce the minimum project time.

In addition, the computational boundaries of this method are not tested, so the size of the
project structures the method can handle is unclear. It should be mentioned that the method
is NP-hard, so it can in principle not be calculated in polynomial time. Future research may
look into heuristics that make scheduling possible in acceptable time.

Opportunities for further research

Even though this method has added to the field of scheduling, there are still a lot of, perhaps
even endless, opportunities for future research. Realistically, workers are often specialized,
meaning that not every worker is available for every task. Moreover, some tasks may require
more than 1 worker at a time, so a task may occupy multiple resources at the same time. To
further extend this, the number of resources that are working on a task may also be a choice.
The more resources on a task, the faster the task is done. It may be beneficial to schedule
more resources for a certain task with a strict deadline for example. These extensions may be
considered during the scheduling in order to portray the reality of a project better.

19

References

[1] K.R. Baker et al. Preemptive scheduling of a single machine to minimize maximum cost
subjest to release dates and precedence constraints. Operations Research, 31:381–386,
1981.

[2] Paul E. Black. Np-complete. https://www.nist.gov/dads/HTML/npcomplete.html,
2021.

[3] G. Borradaile et al. The knapsack problem with neighbour constraints. 2018.

[4] Pawel Chanas, Stefan; Zielinkski. The computational complexity of the criticality prob-
lems in a network with interval activity times. European Journal of Opeational Research,
136:541–550, 2002.

[5] Arun Dharavath. Bisection method. https://protonstalk.com/polynomials/
bisection-method/, 2022.

[6] Moshe; Uriel G.Rothblum; Michal Penn Golany, Boaz; Kress. Network optimization mod-
els for resource allocation in developing military countermeasures. Operations Research,
60(1):48–63, 2012.

[7] Neos Guide. Project scheduling with the critical path method. https://neos-guide.
org/content/project-scheduling-critical-path-method, 2020.

[8] Brian Hayes. Computing science: The easiest hard problem. American Scientist, 90:113–
117, 2002.

[9] John S. Sayer James E. Kelley, Morgan R. Walker. The origins of cpm: a personal history.
PM network, 3:7–22, 1989.

[10] Morgan R. Kelly, James E.; Walker. Critical-path planning and scheduling. Proceedings of
the Eastern joint computer conference, pages 160–173, 1959.

[11] Caron M. Kopp. Program evaluation review technique (pert) chart. https://www.
investopedia.com/terms/p/pert-chart.asp, 2022.

[12] E.L. Lawler. Optimal sequencing of a single machine subject to precedence constraints.
Management science, 19:544–546, 1973.

[13] E.L.; Morre J.M. Lawler. A functional equation and its application to resource allocation
and sequencing problems. Management Science, 16:77–84, 1969.

[14] Ethan L. Schreiber et al. Optimal multi-way number partitioning. Journal of the ACM,
65(4):1–61, 2018.

[15] C.M.F. Swennenhuis. Parallel machine scheduling with partition constraints. Master’s
thesis, TU Delft, 2018.

[16] Bernard W. Taylor. Formulating the CPMPERT Network as a Linear Programming Model.
https://flylib.com/books/en/3.287.1.114/1/, 2006.

[17] C.A.J Vredeveld, T; Hurkens. Experimental comparison of approximation algorithms for
scheduling unrelated parallel machines. Informs Journal on Computing, 14:176–189,
2002.

[18] Liang Zhou et al. On generalized greedy splitting algorithms for multiway partition prob-
lems. Discrete Applied Mathematics, 143(1-3):130–143, 2004.

20

https://www.nist.gov/dads/HTML/npcomplete.html
https://protonstalk.com/polynomials/bisection-method/
https://protonstalk.com/polynomials/bisection-method/
https://neos-guide.org/content/project-scheduling-critical-path-method
https://neos-guide.org/content/project-scheduling-critical-path-method
https://www.investopedia.com/terms/p/pert-chart.asp
https://www.investopedia.com/terms/p/pert-chart.asp
https://flylib.com/books/en/3.287.1.114/1/

	Introduction
	Linear Program
	Critical Path Method without resource constraints
	Critical Path Method with resource constraints
	CPM with m resources and no release dates
	Method
	Numerical example
	Illustration of flaws

	 CPM with m resources and unequal release dates
	Method
	Numerical example

	Conclusion
	Discussion

