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Abstract

Hemodynamic quantities like wall shear stress (WSS) and blood pressure in the
carotid arteries have been found to correlate with plaque development and arterial
remodelling which could result in atherosclerosis, which is one of the leading causes
for ischemic strokes. Computational fluid dynamics (CFD) is a tool that can be used to
simulate blood flow inside arteries and from there these hemodynamic quantities can
be calculated. In this work, data generated from applying a segmentation algorithm
on MRI-scans of carotid arteries in a patient is used to construct a 3D tetrahedral
finite element mesh of the lumen wall of the artery. The incompressible Navier Stokes
equations are solved inside the mesh to get a steady state velocity and pressure profile
over the artery. Using this flow profile, clinically relevant biomarkers can be found.
This research therefore provides a general way of finding blood flow inside MRI-derived
carotid artery segmentations.

Keywords: Carotid blood flow, Computational fluid dynamics, Surface mesh genera-
tion, Volume mesh generation

1 Introduction

Plaque development in carotid arteries can be the cause of atherosclerosis, which reduces
blood flow towards the brain. Atherosclerosis in major intra and extracranial arteries like
the carotid arteries is one of the most common causes of stroke [5, 25]. Hemodynamic
quantities like wall shear stress (WSS) and blood pressure were found to correlate with
atherosclerotic plaque development [20, 18]. Both WSS and blood pressure can be deter-
mined from the blood flow inside the artery.
Several techniques exist for measuring blood flow in major arteries. However, measuring
blood flow using a catheter has its complications and risks [19]. Therefore, noninvasive
methods are preferable to reduce the medical complications. A noninvasive method like
particle image velocimetry becomes inaccurate in regions of low WSS [6] and 4D flow MRI
fails to provide blood flow descriptions that are sufficiently accurate to be of direct clinical
value[23].
Another noninvasive approach uses MRI angiography in sequence with a segmentation
procedure, to create a 3D finite element mesh employing mesh construction algorithms.
If this mesh is sufficiently refined, the Navier Stokes equations can be solved repeatedly
over time using computational fluid dynamics (CFD). This process will lead to a model of
the 3D velocity profile of the blood flow through the artery along with the scalar pressure
throughout the blood vessel. From these two parameters, clinically relevant biomarkers
can be readily determined. Methods similar to this were already applied to determine the
fractional flow reserve (FFR) inside coronary arteries [30].
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The advantage of this method is that it is noninvasive and therefore it will decrease the
amount of surgical complications that could arise. It is also not subject to all kinds of
systematic errors that would arise when invasive methods are used. For example, for the
catheterization method, the presence of a catheter inside an artery will influence the blood
flow.
If this method leads to robust blood flow models, then it could be generally applied to seg-
mentations of MRI-scans of carotid arteries, providing a solid method to calculate patient
specific hemodynamic quantities.
Additionally, once a numerically converging model of the blood flow is made, this data can
be used as ground truth to a graph convolutional network which would be able to produce
fast and accurate estimations of biomarkers like WSS[29].
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2 Theory

To estimate blood flow in blood vessel shapes from MRI-scans, four steps are taken. Firstly,
a tetrahedral finite element mesh is created from a point cloud that was obtained from a
segmentation algorithm applied to a medical image. To be able to find a weak solution to
the incompressible Navier-Stokes equations, they are transformed to a sequence of three
linear variational forms. To compute blood flow, a set of three Dirichlet boundary condi-
tions are imposed on the mesh. Finally, a high performance computer is used to find a
solution to the equations using linear system solvers. The following sections will describe
these steps in more detail.

2.1 Meshing algorithms

The carotid arteries are a set of two common carotid arteries that each bifurcate into an
external carotid artery and an internal carotid artery. The carotid arteries can thus be
described as four branches. In an effort to decrease the complexity of the problem, the
upstream and the downstream vasculature is modelled by inflow and outflow boundary
conditions.

Figure 1: The right common carotid artery bifurcates into the external and in-
ternal carotid arteries [28].

The starting point for creating the mesh is data that is obtained from applying a seg-
mentation algorithm on the medical imaging data [1]. This data consists of four point
clouds for each patient, which geometrically describe the lumen wall of the left and right
external carotid artery as well as the left and right internal carotid arteries. A point cloud
is saved as a collection of level sets, stacked on top of each other along the z-axis. Every
level set contains a number of vertices described in Cartesian coordinates. The vertices
are ordered clockwise at a constant angle interval. Inside each level set, an interpolation
is made through the vertices, connecting them with a smooth B-spline loop. Then, 48
equally spaced vertices are created along each loop (Figure 2).
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Figure 2: The segmented imaging data from the right external carotid artery is
transformed to a collection of level sets, each level set consisting of 48 vertices.

Next is the creation of a triangular surface mesh that describes the entire part of the
lumen wall of the artery that we are interested in. The mesh is defined as (V, F ), where V
is a set of vertices and F is a set of faces. A face is defined as an ordered tuple of 3 vertices
which induce a face normal dependent on the ordering of the vertices. The orientation
of the face normal is determined by the left hand rule. To create the appropriate faces,
a vertex v0 is linked by an edge to its clockwise neighbour v1 inside the same level set,
after which v0 and v1 are both linked by an edge to the vertex v48 closest to v0 inside an
adjacent level set. In this way the first face is defined as F1 = (v0, v1, v48). Triangular
polygons are created throughout the entire point cloud in this way such that the resulting
mesh is watertight everywhere except at the in and outlets of the model.
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Figure 3: The initial surface mesh is created by interconnecting vertices from
adjacent level sets.

The segmentation algorithm’s predictive uncertainty in the position of the data from
the segmentation increases towards both ends of the vessel. This is due to the fact that the
image quality of the MRI-scan is more noisy in these parts. As including all data would
lead to extremely noisy meshes towards either end of the vessel, only the part where the
uncertainty in the position is relatively small is used for the creation of the mesh. The
exact collection of level sets that is used is manually selected based on visual inspection of
the mesh.

Figure 4: From the segmented imaging data, a simple surface mesh is created. As
the uncertainty in the position of the vessel wall at both ends of the vessel increases,
only a certain part of the vessel is used for simulation.

In order to simulate the blood flow through the bifurcation of the common carotid
artery, the meshes of the left and right carotid artery are to be merged. To merge the
meshes we use a boolean union algorithm based on the enclosed volume of both meshes.
However, as the meshes are not watertight, they do not enclose any volume. Hence, a
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simple surface mesh is generated for the entrance and the exits of the vessel by simply in-
terconnecting vertices in the lowest and highest level sets, as can be seen in Figure 5(left).
Now, the mesh contains no more cavities. Another necessity for a surface mesh to enclose
a volume is that the normal vectors of all faces point either outwards or inwards of the
mesh. Since the normal vector of a face is induced by the ordering of vertices, and the faces
were not constructed in a way that the normal vector is consistently pointing outwards
or inwards, this needs to be changed. A mesh repair algorithm developed by Trimesh [9]
redefines the faces by ordering the vertices inside them differently. After application of this
algorithm, all face normals point outwards and the meshes are watertight and ready to be
merged.

Figure 5: The entrance and exits of the blood vessel are connected in a trivial
way to make the mesh watertight (left), and are then smoothened after isotropic
remeshing of the 2D surface mesh (right).

After the surface meshes are closed by the entrance and exits, the mesh of the external
and internal carotid artery can be merged. Let Vext and Vint denote the volumes enclosed
by the surface meshes of the external and internal carotid artery respectively. The boolean
merging algorithm of Meshlab [8] calculates the merged volume:

Vmerged = {x|x ∈ (Vext ∪ Vint)}.

The result of the merging algorithm is a new mesh that exactly encloses the volume Vmerged.
After the meshes have been merged, the resulting mesh has some areas in which a lot of
small faces have been created, especially close to the bifurcation (see Figure 6. This is
due to the fact that the merging algorithm takes exactly the area that it is supposed to
enclose. This level of refinement is not necessary for the simulation, and this could lead
to an unnecessary amount of calculation for the linear solver to compute. Additionally,
‘badly shaped’ polygons like the ones at the intersection of the merging have been found
empirically to introduce artifacts in the CFD simulation results [7]. Therefore, an isotropic
smoothing algorithm from Meshlab is applied.
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Figure 6: After merging the two meshes, the mesh becomes very refined close to
the bifurcation. Additionally, ‘badly shaped’ triangles can be seen especially to the
right of the bifurcation as they are stretched to long.

Isotropic remeshing is an algorithm that repeatedly applies edge flip, collapse, relax
and refine operations on a triangular mesh to regularize the size of all triangles in the
mesh. After three iterations of these operations the faces of the mesh are more similar in
size and the bifurcation is no longer overly refined.

Then the quality of the mesh is improved by using the mesh adaptation algorithm
created by open-source software mmg [4]. This moves the vertices inside the 2D manifold
by a sequence of algorithms that optimises heuristically defined quality metrics.
The last step in the mesh creation process is to convert the surface mesh to a tetrahedral
volume mesh. For this a Delaunay tetrahedralization process is applied to the surface mesh
that fills the volume that is enclosed by the mesh with tetrahedral elements. This process
is done using a software package called TetGen [27].

Figure 7: The surface meshes of two branches of the carotid artery are merged
and smoothed to create a single volumetric mesh.

Alternative methods for creating a mesh from a point cloud include Poisson surface
reconstruction [16] which could potentially result in a mesh shape that is closer to the
actual blood vessel shape, or implicit geometric regularization [15] which is uses neural
networks that represent shapes as level sets of data.
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2.2 Navier Stokes equations

After a finite element mesh for the simulation has been created, blood flow will be simulated
inside this mesh. The first simplification that is made is the ‘rigid wall’ assumption. The
lumen wall of the artery is elastic and its shape is dependent on parameters like the wall
thickness and blood pressure[22]. For simplicity however, in this study the lumen wall of
the artery is considered to be a rigid wall that does not change in shape. The second
simplification can be made for medium to large sized arteries, e.g. the main branch of
the aorta and the carotid arteries [32]. Blood flow inside these arteries can be considered
incompressible, meaning that the density and volume of the blood do not change with
pressure. Therefore the blood flow is modelled by solving the incompressible Navier Stokes
equations:

ρ(
∂u

∂t
+ u · ∇u) = ∇ · σ(u, p) + f, (1a)

∇ · u = 0, (1b)

where ρ is the density, u is the velocity, σ is the shear stress and p is the pressure. Note
that the ∇u represents taking the gradient of u, whereas the ∇ · σ represents taking the
divergence of σ.

A strong solution to the Navier Stokes equations on general domains is not known.
Hence, an alternative approach is taken by solving the weak form of equations (1a) and
(1b). The approach followed in this section was inspired by [2]. As the carotid arteries are
relatively large blood vessels the blood can be regarded a Newtonian fluid[10], therefore
the viscous stresses are at every point linearly correlated to the local strain rate and the
stress tensor is given by:

σ(u, p) = 2µϵ(u)− pI,

with the strain rate is described by:

ϵ(u) =
1

2
(∇u+ (∇u)T ).

No external forces like for example gravity are taken into consideration and consequently
in equation (1a), f = 0.
As the Navier-Stokes equations in this form are a nonlinear system of equations, they are
written in variational form and a multistep technique is used to describe the problem as a
sequence of three linear variational problems over time [14].
The first variational problem is obtained by multiplying equation (1a) by a test function
v and integrating each term over its domain, where v is a function from a vector valued
second order function space. To approximate the derivative of the velocity with respect to
time a forward difference scheme is used: du

dt ≈ u∗−un
∆t . The problem is to find the tentative

velocity (u∗), using un and pn, such that∫∫∫
Ω
(ρ

u∗ − un
∆t

)v dxdydz+

∫∫∫
Ω
(ρun·∇un)v dxdydz =

∫∫∫
Ω
(∇·σ(un, pn))v dxdydz, (2)

where the subscript n denotes the current time step.
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Green’s theorem can be applied to linearize the nonlinear parts of the equation. Using
the assumption that the velocity close to the boundary goes towards zero and the fact that
the flow is fully developed, i.e. the derivative of the velocity in the direction of the vessel
at the outflow vanishes we get

−
∫∫∫

Ω
(∇ · σ(un, pn))v dxdydz = −

∫∫∫
Ω
(∇ · (µ(∇u+ (∇u)T )− pI))v dxdydz =

∫∫∫
Ω
(σ(un+ 1

2
, pn)ϵ(v) dxdydz +

∫
∂Ω

(pnn⃗)v ds−
∫
∂Ω

(µ∇(
un+1 + un

2
)n⃗)v ds. (3)

Where ∂Ω denotes the boundary of Ω and n⃗ is the normal vector on the boundary. Finally,
equation (3) is substituted in equation (2) to get∫∫∫

Ω
(ρ

u∗ − un
∆t

)v dxdydz +

∫∫∫
Ω
(ρun · ∇un)v dxdydz +

∫∫∫
Ω
(σ(un+ 1

2
, pn)ϵ(v) dxdydz+∫

∂Ω
(pnn⃗)v ds−

∫
∂Ω

(µ∇(
un+1 + un

2
)n⃗)v ds = 0.

(4)

The tentative velocity u∗ is now used to find the pressure on the next time step pn+1 in
the second variational problem, which is defined as follows. Taking the difference between
equation (1a) with u∗ and pn and the same equation using un+1 and pn+1, results in the
following equation:

un+1 − u∗
∆t

+∇pn+1 −∇pn = 0. (5)

The divergence is taken on both sides of equation (5):

1

∆t
(∇ · un+1 −∇ · u∗) +∇2pn+1 −∇2pn = 0. (6)

Then, each term is multiplied by a test function q and integrated over its domain, where
q is from a scalar valued first order function space. Using Green’s theorem again, along
with the fact that ∇ · un+1 = 0 from equation (1b) leads to∫∫∫

Ω
∇pn+1∇q dxdydz =

∫∫∫
Ω
∇pn∇q dxdydz − 1

∆t

∫∫∫
Ω
(∇ · u∗)q dxdydz. (7)

The third variational problem is to find un+1 based on the previous two variational forms.
The equation is obtained by multiplying equation 5 by (∆t)v and integrating over the
domain again.∫∫∫

Ω
(un+1)v dxdydz =

∫∫∫
Ω
u∗v dxdydz −∆t

∫∫∫
Ω
(∇(pn+1 − pn) dxdydz. (8)

With appropriate boundary and initial conditions, a numerical solution to the incompress-
ible Navier-Stokes equation can be found by solving equations (4), (7) and (8) iteratively
over time.
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2.3 Boundary and Initial Conditions

The surface of the mesh can roughly be split into four sections, the inlet ∂Ωin, the outlets
∂Ωout,1 and ∂Ωout,2 and the vessel wall ∂Ωwall. To find a solution to the sequence of
variational problems described in the previous section, physical boundary conditions are
imposed on every section of the surface of the mesh. Based on the previously mentioned
‘rigid wall’ assumption, the ‘no-slip’ boundary condition can be imposed on the mesh:

u⃗(x, y, z) = 0⃗, for (x, y, z) ∈ ∂Ωwall. (9)

The second boundary condition is applied at the inlet of the vessel shape to describe the
velocity of the blood that flows into the vessel. As the inlet is a part of a long and straight
blood vessel, it is assumed that u⃗x = u⃗y = 0. The first boundary condition also applies
for the inlet and so u⃗ = 0⃗ at the vessel wall. As distance to the vessel walls increases, the
velocity increases quadratically, resulting in a maximum velocity at the center of ∂Ωin and
a parabolic velocity profile over the rest of ∂Ωin:

u⃗(x, y, z) = (0, 0, uinflow(x, y)), for (x, y, z) ∈ ∂Ωin. (10)

In this equation uinflow(x, y) is a parabolic scalar function that is computed by Sim-
Vascular [31] in the following manner. Let ∂Ωin,outer denote the outer rim of ∂Ωin. For
every pair of opposite points inside ∂Ωin,outer, a parabolic function is fitted through them
points (at which the u = 0) and the point at the center of the inlet. This process creates a
function uinflow(V, x, y) for the velocity at every point in ∂Ωin, where on V , which denotes
the velocity at the center of ∂Ωin. Then the equation

Qin =

∫
∂Ωin

uinflow(V, x, y) dx dy

is solved to find V, where Qin is an input parameter for the program that denotes the flow
rate at the inlet.

The third boundary condition is applied at both outlets of the vessel shape to describe
peripheral resistance, i.e. the resistance of the downstream vascular system to blood flow.
This effect is modelled by a resistance R = (70 − 160) × 106 Pa · s/m3[17], that acts on
the outlets of the mesh. The resistance is integrated into the model by applying it as an
additional pressure pR1 at ∂Ωout,1 and pR2 at ∂Ωout,2, where pR1 = RQ1 and p2 = RQ2.
Here Q1 and Q2 are the flow rates through ∂Ωout,1 and ∂Ωout,2 respectively. In short, the
third boundary condition is given by:

p(x, y, z) = p0 +RQi, for (x, y, z) ∈ ∂Ωout,i, (11)

where p0 is the atmospheric pressure that is the same everywhere in the vessel.
Using these boundary conditions along with the sequence of discretized variational forms
derived in section 2.2, the flow profile can be found by iterating through time using the
results of previous time steps. However, to start this process of iteration, an initial state
is required. The initial conditions used in this study are:

u⃗(x, y, z) = 0⃗, for (x, y, z) ∈ Ω

p(x, y, z) = 0, for (x, y, z) ∈ Ω.
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3 Results

Simulations were performed in SimVascular and the visualization were made by ParaView
[26], with flow rate Q = 15000 mm3/s, resistance value R = 0.997g/mm4 · s, density
ρ = 0.00106 g/mm3 and dynamic viscosity µ = 0.004g/mm · s.

Figure 8: Velocity profile through the a central slice of the right carotid artery
(absolute value), ∆t = 0.0004s

Using the parabolic inflow defined in section 2.3, the velocity profile is initially high
at the inlet and as time progresses the absolute value of the velocity increases at points
further down the artery. After a certain amount of time tsteady, a steady state is reached
and the flow profile is independent of time for all t > tsteady.
The simulations were run for different values of ∆t, to check the convergence characteristics
of the Krylov subspace solvers that SimVascular uses. For ∆t = 0.004 s, tsteady ≈ 0.19 s
and for ∆t = 0.005 s, tsteady ≈ 0.24 s. Thus, when a larger time step is used, it takes
slightly longer for the steady state to be reached. Therefore it is favourable to use smaller
time steps.
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Figure 9: Pressure profile through the a central slice of the right carotid artery,
∆t = 0.0004 s

The pressure is initially high at the inflow as the blood that flows into the channel has
to push the initially static blood through the channel. After the initial effects have worn
off and the steady state is reached, the pressure is more evenly divided over the channel.
In the steady state, a high amount of pressure is present at the bifurcation, this is due to
the blood hitting the wall at a relatively high velocity as can be seen in Figure 8.
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Figure 10: Wall shear stress profile through the a central slice of the right carotid
artery for t = 0.320 s, ∆t = 0.0004 s

Inside the common carotid artery, the wall shear stress is approximately constant. At
the bifurcation however, the wall shear stress is significantly higher as the velocity of the
blood that hits the bifurcation wall is higher than the velocity at the common carotid
arterial walls. Additionally, the wall shear stress is very low at the opposite sides to the
bifurcation as the blood velocity is relatively smaller there. The wall shear stress in the
external and internal carotid artery is higher than the wall shear stress in the common
carotid artery. This is due to the higher velocity of the blood and the smaller diameter of
the vessel.
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4 Discussion

In future studies, the ‘rigid wall’ assumption could be replaced by an elastic wall, and it
could even be extended to include damping and longitudinal tension [11]. This is a way of
improving the estimation of the WSS as a real vessel wall is also an active entity.
Another interesting improvement is to model the inlet boundary condition as a pulsatile
flow, which is in closer resemblance of the actual flow pattern inside a blood vessel [21].
This way wall shear stress can be estimated over the entire cardiac cycle. This could be
paired with an outlet boundary condition described by a resistance in series with a parallel
capacitor and resistor as a way to describe the fluctuations in the peripheral resistance
during different stages of the cardiac cycle [24]. This way, time averaged WSS could also
be calculated.

A limitation to this model is also that the blood flow is modeled as a Newtonian fluid.
While this is done in several other CFD studies, blood does show non-Newtonian behavior.
Under steady flow conditions, differences in axial velocities and velocity gradients can be
found between Newtonian and non-Newtonian blood flow simulations [13].
For the creation of the mesh, several alternatives are possible as mentioned in section 2.1.
If one were to use the meshing procedure described in this study in future applications,
the selection of which part of the vessel is usable for simulation and which part is regarded
too noisy can be done based on a threshold on the uncertainty in the location of the seg-
mentation algorithm. Additionally, to prevent that the bifurcation is overly smoothened,
losing its shape characteristics, the remeshing can be based on the local curvature of the
mesh. This way, the bifurcation still remains its shape, while the remaining part of the
mesh is smoothened.
Finally, another approach to solving the sequence of variational forms in 2.2 is by using
FEniCSx [17], which is an open-source computing platform for solving partial differen-
tial equations. It allows users to solve PDEs in an intuitive way, while still remaining
control over over the flow modeling, which gives it an advantage over using SimVascu-
lar. However, due to technical issues and time constraints this study was unable to in-
corporate FEniCSx simulations. A GitLab link to a repository containing a currently
non converging implementation of FEniCSx is provided: https://gitlab.utwente.nl/
mathematics-of-imaging-and-ai/bachelor-students/ties-martens.git.

5 Conclusion

The method that was described, provides a method to describe blood flow inside a carotid
arteries, based on data from MRI-derived carotid artery segmentations. The results in
Figure 8 are both qualitatively and quantitatively similar to the result of other CFD
studies[12]. The blood pressure in Figure 9is also similar to blood pressure measurements
done in other studies [3]. However, while the WSS shown in Figure 10 is qualitatively simi-
lar to the WSS from another MRI-based CFD study, the WSS in this study is significantly
higher. Variability in WSS estimation like this is common problem in this research area.
In this case, the deviation might have to do with the fact that peak inflow and pressure are
used in the model. Also, clinicians are usually not interested in the magnitude of the WSS
stress, but rather in the qualitative development, therefore the WSS estimations could still
prove to be useful in practice. In conclusion, this study provides a promising way of finding
blood velocity and pressure inside the carotid arteries.
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